1
|
Yang X. Research progress of LSD1-based dual-target agents for cancer therapy. Bioorg Med Chem 2024; 101:117651. [PMID: 38401457 DOI: 10.1016/j.bmc.2024.117651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Lysine-specific demethylase 1 (LSD1) is a histone lysine demethylase that is significantly overexpressed or dysregulated in different cancers and plays important roles in cell growth, invasion, migration, immune escape, angiogenesis, gene regulation, and transcription. Therefore, it is a superb target for the discovery of novel antitumor agents. However, because of their innate and acquired resistance and low selectivity, LSD1 inhibitors are associated with limited therapeutic efficacy and high toxicity. Furthermore, LSD1 inhibitors synergistically improve the efficacy of additional antitumor drugs, which encourages numerous medicinal chemists to innovate and develop new-generation LSD1-based dual-target agents. This review discusses the theoretical foundation of the design of LSD1-based dual-target agents and summarizes their possible applications in treating cancers.
Collapse
Affiliation(s)
- Xiaojuan Yang
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China.
| |
Collapse
|
2
|
Shen L, Wang B, Wang SP, Ji SK, Fu MJ, Wang SW, Hou WQ, Dai XJ, Liu HM. Combination Therapy and Dual-Target Inhibitors Based on LSD1: New Emerging Tools in Cancer Therapy. J Med Chem 2024; 67:922-951. [PMID: 38214982 DOI: 10.1021/acs.jmedchem.3c02133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Lysine specific demethylase 1 (LSD1), a transcriptional modulator that represses or activates target gene expression, is overexpressed in many cancer and causes imbalance in the expression of normal gene networks. Over two decades, numerous LSD1 inhibitors have been reported, especially some of which have entered clinical trials, including eight irreversible inhibitors (TCP, ORY-1001, GSK-2879552, INCB059872, IMG-7289, ORY-2001, TAK-418, and LH-1802) and two reversible inhibitors (CC-90011 and SP-2577). Most clinical LSD1 inhibitors demonstrated enhanced efficacy in combination with other agents. LSD1 multitarget inhibitors have also been reported, exampled by clinical dual LSD1/histone deacetylases (HDACs) inhibitors 4SC-202 and JBI-802. Herein, we present a comprehensive overview of the combination of LSD1 inhibitors with various antitumor agents, as well as LSD1 multitarget inhibitors. Additionally, the challenges and future research directionsare also discussed, and we hope this review will provide new insight into the development of LSD1-targeted anticancer agents.
Collapse
Affiliation(s)
- Liang Shen
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| | - Bo Wang
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| | - Shao-Peng Wang
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| | - Shi-Kun Ji
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| | - Meng-Jie Fu
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| | - Shu-Wu Wang
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| | - Wen-Qing Hou
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| | - Xing-Jie Dai
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| | - Hong-Min Liu
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| |
Collapse
|
3
|
Li D, Liang H, Wei Y, Xiao H, Peng X, Pan W. Exploring the potential of histone demethylase inhibition in multi-therapeutic approaches for cancer treatment. Eur J Med Chem 2024; 264:115999. [PMID: 38043489 DOI: 10.1016/j.ejmech.2023.115999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
Histone demethylases play a critical role in gene transcription regulation and have been implicated in cancer. Numerous reports have highlighted the overexpression of histone demethylases, such as LSD1 and JmjC, in various malignant tumor tissues, identifying them as effective therapeutic targets for cancer treatment. Despite many histone demethylase inhibitors entering clinical trials, their clinical efficacy has been limited. Therefore, combination therapies based on histone demethylase inhibitors, along with other modulators like dual-acting inhibitors, have gained significant attention and made notable progress in recent years. In this review, we provide an overview of recent advances in drug discovery targeting histone demethylases, focusing specifically on drug combination therapy and histone demethylases-targeting dual inhibitors. We discuss the rational design, pharmacodynamics, pharmacokinetics, and clinical status of these approaches. Additionally, we summarize the co-crystal structures of LSD1 inhibitors and their target proteins as well as describe the corresponding binding interactions. Finally, we also provided the challenges and future directions for utilizing histone demethylases in cancer therapy, such as PROTACs and molecular glue etc.
Collapse
Affiliation(s)
- Deping Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Hailiu Liang
- School of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ganzhou, 341000, China
| | - Yifei Wei
- School of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ganzhou, 341000, China
| | - Hao Xiao
- School of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ganzhou, 341000, China.
| | - Xiaopeng Peng
- School of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ganzhou, 341000, China.
| | - Wanyi Pan
- School of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
4
|
Sheikh KA, Iqubal A, Alam MM, Akhter M, Khan MA, Ehtaishamul Haque S, Parvez S, Jahangir U, Amir M, Khanna S, Shaquiquzzaman M. A Quinquennial Review of Potent LSD1 Inhibitors Explored for the Treatment of Different Cancers, with Special Focus on SAR Studies. Curr Med Chem 2024; 31:152-207. [PMID: 36718063 DOI: 10.2174/0929867330666230130093442] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/30/2022] [Accepted: 11/17/2022] [Indexed: 02/01/2023]
Abstract
Cancer bears a significant share of global mortality. The enzyme Lysine Specific Demethylase 1 (LSD1, also known as KDM1A), since its discovery in 2004, has captured the attention of cancer researchers due to its overexpression in several cancers like acute myeloid leukaemia (AML), solid tumours, etc. The Lysine Specific Demethylase (LSD1) downregulation is reported to have an effect on cancer proliferation, migration, and invasion. Therefore, research to discover safer and more potent LSD1 inhibitors can pave the way for the development of better cancer therapeutics. These efforts have resulted in the synthesis of many types of derivatives containing diverse structural nuclei. The present manuscript describes the role of Lysine Specific Demethylase 1 (LSD1) in carcinogenesis, reviews the LSD1 inhibitors explored in the past five years and discusses their comprehensive structural activity characteristics apart from the thorough description of LSD1. Besides, the potential challenges, opportunities, and future perspectives in the development of LSD1 inhibitors are also discussed. The review suggests that tranylcypromine derivatives are the most promising potent LSD1 inhibitors, followed by triazole and pyrimidine derivatives with IC50 values in the nanomolar and sub-micromolar range. A number of potent LSD1 inhibitors derived from natural sources like resveratrol, protoberberine alkaloids, curcumin, etc. are also discussed. The structural-activity relationships discussed in the manuscript can be exploited to design potent and relatively safer LSD1 inhibitors as anticancer agents.
Collapse
Affiliation(s)
- Khursheed Ahmad Sheikh
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Mumtaz Alam
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mymoona Akhter
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Umar Jahangir
- Department of Amraaz-e-Jild wa Tazeeniyat, School of Unani Medical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Amir
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Suruchi Khanna
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Shaquiquzzaman
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
5
|
Chen M, Lan H, Yao S, Jin K, Chen Y. Metabolic Interventions in Tumor Immunity: Focus on Dual Pathway Inhibitors. Cancers (Basel) 2023; 15:cancers15072043. [PMID: 37046703 PMCID: PMC10093048 DOI: 10.3390/cancers15072043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
The metabolism of tumors and immune cells in the tumor microenvironment (TME) can affect the fate of cancer and immune responses. Metabolic reprogramming can occur following the activation of metabolic-related signaling pathways, such as phosphoinositide 3-kinases (PI3Ks) and the mammalian target of rapamycin (mTOR). Moreover, various tumor-derived immunosuppressive metabolites following metabolic reprogramming also affect antitumor immune responses. Evidence shows that intervention in the metabolic pathways of tumors or immune cells can be an attractive and novel treatment option for cancer. For instance, administrating inhibitors of various signaling pathways, such as phosphoinositide 3-kinases (PI3Ks), can improve T cell-mediated antitumor immune responses. However, dual pathway inhibitors can significantly suppress tumor growth more than they inhibit each pathway separately. This review discusses the latest metabolic interventions by dual pathway inhibitors as well as the advantages and disadvantages of this therapeutic approach.
Collapse
Affiliation(s)
- Min Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Huanrong Lan
- Department of Surgical Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Shiya Yao
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Yun Chen
- Department of Colorectal Surgery, Xinchang People's Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang 312500, China
| |
Collapse
|
6
|
Yuan XY, Song CH, Liu XJ, Wang X, Jia MQ, Wang W, Liu WB, Fu XJ, Jin CY, Song J, Zhang SY. Discovery of novel N-benzylarylamide-dithiocarbamate based derivatives as dual inhibitors of tubulin polymerization and LSD1 that inhibit gastric cancers. Eur J Med Chem 2023; 252:115281. [PMID: 36940611 DOI: 10.1016/j.ejmech.2023.115281] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023]
Abstract
In this work, N-benzylarylamide-dithiocarbamate based derivatives were designed, synthesized, and their biological activities as anticancer agents were explored. Some of the 33 target compounds displayed significant antiproliferative activities with IC50 values at the double-digit nanomolar level. The representative compound I-25 (also named MY-943) not only showed the most effective inhibitory effects on three selected cancer cells MGC-803 (IC50 = 0.017 μM), HCT-116 (IC50 = 0.044 μM) and KYSE450 (IC50 = 0.030 μM), but also exhibited low nanomolar IC50 values from 0.019 to 0.253 μM against the other 11 cancer cells. Compound I-25 (MY-943) effectively inhibited tubulin polymerization and suppressed LSD1 at the enzymatic levels. Compound I-25 (MY-943) could act on the colchicine binding site of β-tubulin, thus disrupting the construction of cell microtubule network and affecting the mitosis. In addition, compound I-25 (MY-943) could dose-dependently induce the accumulation of H3K4me1/2 (MGC-803 and SGC-7091 cells) and H3K9me2 (SGC-7091 cells). Compound I-25 (MY-943) could induce G2/M phase arrest and cell apoptosis, and suppress migration in MGC-803 and SGC-7901 cells. In addition, compound I-25 (MY-943) significantly modulated the expression of apoptosis- and cycle-related proteins. Furthermore, the binding modes of compound I-25 (MY-943) with tubulin and LSD1 were explored by molecular docking. The results of in vivo anti-gastric cancer assays using in situ tumor models showed that compound I-25 (MY-943) effectively reduced the weight and volume of gastric cancer in vivo without obvious toxicity. All these findings suggested that the N-benzylarylamide-dithiocarbamate based derivative I-25 (MY-943) was an effective dual inhibitor of tubulin polymerization and LSD1 that inhibited gastric cancers.
Collapse
Affiliation(s)
- Xin-Ying Yuan
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Chun-Hong Song
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Xiu-Juan Liu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Xiao Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Mei-Qi Jia
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wang Wang
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, 471934, China
| | - Wen-Bo Liu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Xiang-Jing Fu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Cheng-Yun Jin
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China.
| | - Jian Song
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Sai-Yang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
7
|
Noce B, Di Bello E, Fioravanti R, Mai A. LSD1 inhibitors for cancer treatment: Focus on multi-target agents and compounds in clinical trials. Front Pharmacol 2023; 14:1120911. [PMID: 36817147 PMCID: PMC9932783 DOI: 10.3389/fphar.2023.1120911] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Histone lysine-specific demethylase 1 (LSD1/KDM1A) was first identified in 2004 as an epigenetic enzyme able to demethylate specific lysine residues of histone H3, namely H3K4me1/2 and H3K9me1/2, using FAD as the cofactor. It is ubiquitously overexpressed in many types of cancers (breast, gastric, prostate, hepatocellular, and esophageal cancer, acute myeloid leukemia, and others) leading to block of differentiation and increase of proliferation, migration and invasiveness at cellular level. LSD1 inhibitors can be grouped in covalent and non-covalent agents. Each group includes some hybrid compounds, able to inhibit LSD1 in addition to other target(s) at the same time (dual or multitargeting compounds). To date, 9 LSD1 inhibitors have entered clinical trials, for hematological and/or solid cancers. Seven of them (tranylcypromine, iadademstat (ORY-1001), bomedemstat (IMG-7289), GSK-2879552, INCB059872, JBI-802, and Phenelzine) covalently bind the FAD cofactor, and two are non-covalent LSD1 inhibitors [pulrodemstat (CC-90011) and seclidemstat (SP-2577)]. Another TCP-based LSD1/MAO-B dual inhibitor, vafidemstat (ORY-2001), is in clinical trial for Alzheimer's diseases and personality disorders. The present review summarizes the structure and functions of LSD1, its pathological implications in cancer and non-cancer diseases, and the identification of LSD1 covalent and non-covalent inhibitors with different chemical scaffolds, including those involved in clinical trials, highlighting their potential as potent and selective anticancer agents.
Collapse
Affiliation(s)
- Beatrice Noce
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Di Bello
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy
| | - Rossella Fioravanti
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy,*Correspondence: Rossella Fioravanti,
| | - Antonello Mai
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy,Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
Choi SH, Yousefian-Jazi A, Hyeon SJ, Nguyen PTT, Chu J, Kim S, Kim S, Ryu HL, Kowall NW, Ryu H, Lee J. Modulation of histone H3K4 dimethylation by spermidine ameliorates motor neuron survival and neuropathology in a mouse model of ALS. J Biomed Sci 2022; 29:106. [PMID: 36536341 PMCID: PMC9764677 DOI: 10.1186/s12929-022-00890-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive paralysis due to motor neuron degeneration. It has been proposed that epigenetic modification and transcriptional dysregulation may contribute to motor neuron death. In this study, we investigate the basis for therapeutic approaches to target lysine-specific histone demethylase 1 (LSD1) and elucidate the mechanistic role of LSD1-histone H3K4 signaling pathway in ALS pathogenesis. METHODS In order to examine the role of spermidine (SD), we administered SD to an animal model of ALS (G93A) and performed neuropathological analysis, body weight, and survival evaluation. RESULTS Herein, we found that LSD1 activity is increased while levels of H3K4me2, a substrate of LSD1, is decreased in cellular and animal models of ALS. SD administration modulated the LSD1 activity and restored H3K4me2 levels in ChAT-positive motor neurons in the lumbar spinal cord of ALS mice. SD prevented cellular damage by improving the number and size of motor neurons in ALS mice. SD administration also reduced GFAP-positive astrogliogenesis in the white and gray matter of the lumbar spinal cord, improving the neuropathology of ALS mice. Moreover, SD administration improved the rotarod performance and gait analysis of ALS mice. Finally, SD administration delayed disease onset and prolonged the lifespan of ALS (G93A) transgenic mice. CONCLUSION Together, modulating epigenetic targets such as LSD1 by small compounds may be a useful therapeutic strategy for treating ALS.
Collapse
Affiliation(s)
- Seung-Hye Choi
- grid.35541.360000000121053345K-Laboratory, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 South Korea
| | - Ali Yousefian-Jazi
- grid.35541.360000000121053345K-Laboratory, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 South Korea
| | - Seung Jae Hyeon
- grid.35541.360000000121053345K-Laboratory, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 South Korea
| | - Phuong Thi Thanh Nguyen
- grid.35541.360000000121053345K-Laboratory, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 South Korea ,grid.412786.e0000 0004 1791 8264KIST School, Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Seoul, 02792 South Korea
| | - Jiyeon Chu
- grid.35541.360000000121053345K-Laboratory, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 South Korea ,grid.222754.40000 0001 0840 2678Integrated Biomedical and Life Science Department, Graduate School, Korea University, Seoul, 02841 South Korea
| | - Sojung Kim
- grid.35541.360000000121053345K-Laboratory, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 South Korea
| | - Suhyun Kim
- grid.35541.360000000121053345K-Laboratory, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 South Korea
| | - Hannah L. Ryu
- grid.189504.10000 0004 1936 7558Department of Neurology, Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, Boston, MA 02118 USA
| | - Neil W. Kowall
- grid.189504.10000 0004 1936 7558Department of Neurology, Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, Boston, MA 02118 USA ,grid.410370.10000 0004 4657 1992VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130 USA
| | - Hoon Ryu
- grid.35541.360000000121053345K-Laboratory, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 South Korea ,grid.412786.e0000 0004 1791 8264KIST School, Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Seoul, 02792 South Korea
| | - Junghee Lee
- grid.189504.10000 0004 1936 7558Department of Neurology, Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, Boston, MA 02118 USA ,grid.410370.10000 0004 4657 1992VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130 USA
| |
Collapse
|
9
|
Mills CM, Turner J, Piña IC, Garrabrant KA, Geerts D, Bachmann AS, Peterson YK, Woster PM. Synthesis and evaluation of small molecule inhibitors of LSD1 for use against MYCN-expressing neuroblastoma. Eur J Med Chem 2022; 244:114818. [DOI: 10.1016/j.ejmech.2022.114818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/04/2022]
|
10
|
Identification and Characterization of Novel Small-Molecule SMOX Inhibitors. Med Sci (Basel) 2022; 10:medsci10030047. [PMID: 36135832 PMCID: PMC9504029 DOI: 10.3390/medsci10030047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
The major intracellular polyamines spermine and spermidine are abundant and ubiquitous compounds that are essential for cellular growth and development. Spermine catabolism is mediated by spermine oxidase (SMOX), a highly inducible flavin-dependent amine oxidase that is upregulated during excitotoxic, ischemic, and inflammatory states. In addition to the loss of radical scavenging capabilities associated with spermine depletion, the catabolism of spermine by SMOX results in the production of toxic byproducts, including H2O2 and acrolein, a highly toxic aldehyde with the ability to form adducts with DNA and inactivate vital cellular proteins. Despite extensive evidence implicating SMOX as a key enzyme contributing to secondary injury associated with multiple pathologic states, the lack of potent and selective inhibitors has significantly impeded the investigation of SMOX as a therapeutic target. In this study, we used a virtual and physical screening approach to identify and characterize a series of hit compounds with inhibitory activity against SMOX. We now report the discovery of potent and highly selective SMOX inhibitors 6 (IC50 0.54 μM, Ki 1.60 μM) and 7 (IC50 0.23 μM, Ki 0.46 μM), which are the most potent SMOX inhibitors reported to date. We hypothesize that these selective SMOX inhibitors will be useful as chemical probes to further elucidate the impact of polyamine catabolism on mechanisms of cellular injury.
Collapse
|
11
|
Structure of human spermine oxidase in complex with a highly selective allosteric inhibitor. Commun Biol 2022; 5:787. [PMID: 35931745 PMCID: PMC9355956 DOI: 10.1038/s42003-022-03735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 07/18/2022] [Indexed: 11/28/2022] Open
Abstract
Human spermine oxidase (hSMOX) plays a central role in polyamine catabolism. Due to its association with several pathological processes, including inflammation and cancer, hSMOX has garnered interest as a possible therapeutic target. Therefore, determination of the structure of hSMOX is an important step to enable drug discovery and validate hSMOX as a drug target. Using insights from hydrogen/deuterium exchange mass spectrometry (HDX-MS), we engineered a hSMOX construct to obtain the first crystal structure of hSMOX bound to the known polyamine oxidase inhibitor MDL72527 at 2.4 Å resolution. While the overall fold of hSMOX is similar to its homolog, murine N1-acetylpolyamine oxidase (mPAOX), the two structures contain significant differences, notably in their substrate-binding domains and active site pockets. Subsequently, we employed a sensitive biochemical assay to conduct a high-throughput screen that identified a potent and selective hSMOX inhibitor, JNJ-1289. The co-crystal structure of hSMOX with JNJ-1289 was determined at 2.1 Å resolution, revealing that JNJ-1289 binds to an allosteric site, providing JNJ-1289 with a high degree of selectivity towards hSMOX. These results provide crucial insights into understanding the substrate specificity and enzymatic mechanism of hSMOX, and for the design of highly selective inhibitors. Rational engineering of human spermine oxidase yields crystallizable structures and the design of an allosteric inhibitor.
Collapse
|
12
|
He X, Zhang H, Zhang Y, Ye Y, Wang S, Bai R, Xie T, Ye XY. Drug discovery of histone lysine demethylases (KDMs) inhibitors (progress from 2018 to present). Eur J Med Chem 2022; 231:114143. [DOI: 10.1016/j.ejmech.2022.114143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/19/2022]
|
13
|
Li QZ, Zuo ZW, Zhou ZR, Ji Y. Polyamine homeostasis-based strategies for cancer: The role of combination regimens. Eur J Pharmacol 2021; 910:174456. [PMID: 34464603 DOI: 10.1016/j.ejphar.2021.174456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/14/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023]
Abstract
Spermine, spermidine and putrescine polyamines are naturally occurring ubiquitous positively charged amines and are essential metabolites for biological functions in our life. These compounds play a crucial role in many cell processes, including cellular proliferation, growth, and differentiation. Intracellular levels of polyamines depend on their biosynthesis, transport and degradation. Polyamine levels are high in cancer cells, which leads to the promotion of tumor growth, invasion and metastasis. Targeting polyamine metabolism as an anticancer strategy is considerably rational. Due to compensatory mechanisms, a single strategy does not achieve satisfactory clinical effects when using a single agent. Combination regimens are more clinically promising for cancer chemoprevention because they work synergistically with causing little or no adverse effects due to each individual agent being used at lower doses. Moreover, bioactive substances have advantages over single chemical agents because they can affect multiple targets. In this review, we discuss anticancer strategies targeting polyamine metabolism and describe how combination treatments and effective natural active ingredients are promising therapies. The existing research suggests that polyamine metabolic enzymes are important therapeutic targets and that combination therapies can be more effective than monotherapies based on polyamine depletion.
Collapse
Affiliation(s)
- Qi-Zhang Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China.
| | - Zan-Wen Zuo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Ze-Rong Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Yan Ji
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| |
Collapse
|
14
|
Li Y, Sun Y, Zhou Y, Li X, Zhang H, Zhang G. Discovery of orally active chalcones as histone lysine specific demethylase 1 inhibitors for the treatment of leukaemia. J Enzyme Inhib Med Chem 2021; 36:207-217. [PMID: 33307878 PMCID: PMC7738283 DOI: 10.1080/14756366.2020.1852556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Histone lysine specific demethylase 1 (LSD1) has emerged as an attractive molecule target for the discovery of potently anticancer drugs to treat leukaemia. In this study, a series of novel chalcone derivatives were designed, synthesised and evaluated for their inhibitory activities against LSD1 in vitro. Among all these compounds, D6 displayed the best LSD1 inhibitory activity with an IC50 value of 0.14 μM. In the cellular level, compound D6 can induce the accumulation of H3K9me1/2 and inhibit cell proliferation by inactivating LSD1. It exhibited the potent antiproliferative activity with IC50 values of 1.10 μM, 3.64 μM, 3.85 μM, 1.87 μM, 0.87 μM and 2.73 μM against HAL-01, KE-37, P30-OHK, SUP-B15, MOLT-4 and LC4-1 cells, respectively. Importantly, compound D6 significantly suppressed MOLT-4 xenograft tumour growth in vivo, indicating its great potential as an orally bioavailable candidate for leukaemia therapy.
Collapse
Affiliation(s)
- Yang Li
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Sun
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Zhou
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinyang Li
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huan Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guojun Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Dai XJ, Liu Y, Xue LP, Xiong XP, Zhou Y, Zheng YC, Liu HM. Correction to "Reversible Lysine Specific Demethylase 1 (LSD1) Inhibitors: A Promising Wrench to Impair LSD1". J Med Chem 2021; 64:6410-6411. [PMID: 33871995 DOI: 10.1021/acs.jmedchem.0c02176] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Design, synthesis and biological evaluation of novel benzofuran derivatives as potent LSD1 inhibitors. Eur J Med Chem 2021; 220:113501. [PMID: 33945992 DOI: 10.1016/j.ejmech.2021.113501] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 01/01/2023]
Abstract
Lysine-specific demethylase 1 (LSD1) is a FAD-dependent enzyme, which has been proposed as a promising target for therapeutic cancer. Herein, a series of benzofuran derivatives were designed, synthesized and biochemical evaluated as novel LSD1 inhibitors based on scaffold hopping and conformational restriction strategy. Most of the compounds potently suppressed the enzymatic activities of LSD1 and potently inhibited tumor cells proliferation. In particular, the representative compound 17i exhibited excellent LSD1 inhibition at the molecular levels with IC50 = 0.065 μM, as well as anti-proliferation against MCF-7, MGC-803, H460, A549 and THP-1 tumor cells with IC50 values of 2.90 ± 0.32, 5.85 ± 0.35, 2.06 ± 0.27, 5.74 ± 1.03 and 6.15 ± 0.49 μM, respectively. The binding modes of these compounds were rationalized by molecular docking. Meanwhile, a preliminary druggability evaluation showed that compound 17i displayed favorable liver microsomal stability and weak inhibitory activity against CYPs at 10 μM. Remarkably, H460 xenograft tumors studies revealed that 17i demonstrated robust in vivo antitumor efficacy without significant side effects. All the results demonstrated that compound 17i could represent a promising lead for further development.
Collapse
|
17
|
Mehndiratta S, Liou JP. Histone lysine specific demethylase 1 inhibitors. RSC Med Chem 2020; 11:969-981. [PMID: 33479691 PMCID: PMC7513387 DOI: 10.1039/d0md00141d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
LSD1 plays a pivotal role in numerous biological functions. The overexpression of LSD1 is reported to be associated with different malignancies. Over the last decade, LSD1 has emerged as an interesting target for the treatment of acute myeloid leukaemia (AML). Numerous researchers have designed, synthesized, and evaluated various LSD1 inhibitors with diverse chemical architectures. Some of these inhibitors have entered clinical trials and are currently at different phases of clinical evaluation. This comprehensive review enlists recent research developments in LSD1 targeting pharmacophores reported over the last few years.
Collapse
Affiliation(s)
- Samir Mehndiratta
- School of Pharmacy , College of Pharmacy , Taipei Medical University , Taiwan . ; Tel: +886 2 2736 1661 ext 6130
- Department of Pharmacology and Pharmaceutical Sciences , School of Pharmacy , University of Southern California , Los Angeles , California , USA
| | - Jing-Ping Liou
- School of Pharmacy , College of Pharmacy , Taipei Medical University , Taiwan . ; Tel: +886 2 2736 1661 ext 6130
| |
Collapse
|
18
|
Ma L, Wang H, You Y, Ma C, Liu Y, Yang F, Zheng Y, Liu H. Exploration of 5-cyano-6-phenylpyrimidin derivatives containing an 1,2,3-triazole moiety as potent FAD-based LSD1 inhibitors. Acta Pharm Sin B 2020; 10:1658-1668. [PMID: 33088686 PMCID: PMC7563019 DOI: 10.1016/j.apsb.2020.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/24/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
Histone lysine specific demethylase 1 (LSD1) has become a potential therapeutic target for the treatment of cancer. Discovery and develop novel and potent LSD1 inhibitors is a challenge, although several of them have already entered into clinical trials. Herein, for the first time, we reported the discovery of a series of 5-cyano-6-phenylpyrimidine derivatives as LSD1 inhibitors using flavin adenine dinucleotide (FAD) similarity-based designing strategy, of which compound 14q was finally identified to repress LSD1 with IC50 = 183 nmol/L. Docking analysis suggested that compound 14q fitted well into the FAD-binding pocket. Further mechanism studies showed that compound 14q may inhibit LSD1 activity competitively by occupying the FAD binding sites of LSD1 and inhibit cell migration and invasion by reversing epithelial to mesenchymal transition (EMT). Overall, these findings showed that compound 14q is a suitable candidate for further development of novel FAD similarity-based LSD1 inhibitors.
Collapse
Key Words
- AML, acute myeloid leukemia
- ANOVA, analysis of variance
- Anticancer
- EMT, epithelial to mesenchymal transition
- ESI, electrospray ionization
- FAD, flavin adenine dinucleotide
- FBS, fetal bovine serum
- Flavin adenine dinucleotide (FAD)
- Gastric cancer
- HRMS, high resolution mass spectra
- IC50, half maximal inhibitory concentration
- LSD1 inhibitors
- LSD1, histone lysine specific demethylase 1
- MOE, molecular operating environment
- PAINS, pan assay interference compounds
- PDB, the Protein Data Bank
- Pyrimidine
- RLU, relative light units
- SARs, structure–activity relationship studies
- TCP, tranylcypromine
- VDW, van der Waals
Collapse
Affiliation(s)
| | | | - Yinghua You
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chaoya Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuejiao Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Feifei Yang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yichao Zheng
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hongmin Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
19
|
Dunston TT, Khomutov MA, Gabelli SB, Stewart TM, Foley JR, Kochetkov SN, Khomutov AR, Casero Jr. RA. Identification of a Novel Substrate-Derived Spermine Oxidase Inhibitor. Acta Naturae 2020; 12:140-144. [PMID: 33173604 PMCID: PMC7604895 DOI: 10.32607/actanaturae.10992] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Homeostasis of the biogenic polyamines spermine (Spm) and spermidine (Spd),
present in μM-mM concentrations in all eukaryotic cells, is precisely
regulated by coordinated activities of the enzymes of polyamine synthesis,
degradation, and transport, in order to sustain normal cell growth and
viability. Spermine oxidase (SMOX) is the key and most recently discovered
enzyme of polyamine metabolism that plays an essential role in regulating
polyamine homeostasis by catalyzing the back-conversion of Spm to Spd. The
development of many types of epithelial cancer is associated with inflammation,
and disease-related inflammatory stimuli induce SMOX. MDL72527 is widely used
in vitro and in vivo as an irreversible
inhibitor of SMOX, but it is also potent towards
N1-acetylpolyamine oxidase. Although SMOX has high substrate
specificity, Spm analogues have not been systematically studied as enzyme
inhibitors. Here we demonstrate that
1,12-diamino-2,11-bis(methylidene)-4,9-diazadodecane (2,11-Met2-Spm) has, under
standard assay conditions, an IC50 value of 169 μM towards SMOX
and is an interesting instrument and lead compound for studying polyamine
catabolism.
Collapse
Affiliation(s)
- T. T. Dunston
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - M. A. Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russia
| | - S. B. Gabelli
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - T. M. Stewart
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - J. R. Foley
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - S. N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russia
| | - A. R. Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russia
| | - R. A. Casero Jr.
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| |
Collapse
|
20
|
Holshouser S, Cafiero R, Robinson M, Kirkpatrick J, Casero RA, Hyacinth HI, Woster PM. Epigenetic Reexpression of Hemoglobin F Using Reversible LSD1 Inhibitors: Potential Therapies for Sickle Cell Disease. ACS OMEGA 2020; 5:14750-14758. [PMID: 32596612 PMCID: PMC7315572 DOI: 10.1021/acsomega.0c01585] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Sickle cell disease (SCD) is caused by a single nucleotide polymorphism on chromosome 11 in the β-globin gene. The resulting mutant hemoglobin S (HbS) is a poor oxygen transporter and causes a variety of vascular symptoms and organ failures. At birth, the DRED epigenetic complex forms and silences the γ-globin gene, and fetal hemoglobin (HbF, 2 α-, and 2 γ-subunits) is replaced by adult HbA (α2β2) or HbS (α2βs 2) in SCD patients. HbF is a potent inhibitor of HbS polymerization, thus alleviating the symptoms of SCD. The current therapy, hydroxyurea (HU), increases γ-globin and the HbF content in sickle cells but is highly underutilized due to concern for adverse effects and other complications. The DRED complex contains the epigenetic eraser lysine-specific demethylase 1 (LSD1), which appears to serve as a scaffolding protein. Our recently discovered 1,2,4-triazole derivatives and cyclic peptide LSD1 inhibitors promote the upregulation of γ-globin production in vitro without significant toxicity. Herein, we demonstrate that these LSD1 inhibitors can be used to disrupt the DRED complex and increase the cellular HbF content in vitro and in vivo. This approach could lead to an innovative and effective treatment for SCD.
Collapse
Affiliation(s)
- Steven Holshouser
- Department
of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President St., Charleston, South Carolina 29414, United States
| | - Rebecca Cafiero
- Department
of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President St., Charleston, South Carolina 29414, United States
| | - Mayra Robinson
- Department
of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President St., Charleston, South Carolina 29414, United States
| | - Joy Kirkpatrick
- Department
of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President St., Charleston, South Carolina 29414, United States
| | - Robert A. Casero
- Sidney
Kimmel Comprehensive Cancer Center, Johns
Hopkins School of Medicine, 1650 Orleans St. Room 551, Baltimore, Maryland 21287, United States
| | - Hyacinth I. Hyacinth
- Department
of Pediatrics, School of Medicine, Emory
University, 2015 Uppergate Dr., Atlanta, Georgia 30322, United
States
| | - Patrick M. Woster
- Department
of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President St., Charleston, South Carolina 29414, United States
| |
Collapse
|
21
|
Sierra JC, Piazuelo MB, Luis PB, Barry DP, Allaman MM, Asim M, Sebrell TA, Finley JL, Rose KL, Hill S, Holshouser SL, Casero RA, Cleveland JL, Woster PM, Schey KL, Bimczok D, Schneider C, Gobert AP, Wilson KT. Spermine oxidase mediates Helicobacter pylori-induced gastric inflammation, DNA damage, and carcinogenic signaling. Oncogene 2020; 39:4465-4474. [PMID: 32350444 PMCID: PMC7260102 DOI: 10.1038/s41388-020-1304-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 01/05/2023]
Abstract
Helicobacter pylori infection is the main risk factor for the development of gastric cancer, the third leading cause of cancer death worldwide. H. pylori colonizes the human gastric mucosa and persists for decades. The inflammatory response is ineffective in clearing the infection, leading to disease progression that may result in gastric adenocarcinoma. We have shown that polyamines are regulators of the host response to H. pylori, and that spermine oxidase (SMOX), which metabolizes the polyamine spermine into spermidine plus H2O2, is associated with increased human gastric cancer risk. We now used a molecular approach to directly address the role of SMOX, and demonstrate that Smox-deficient mice exhibit significant reductions of gastric spermidine levels and H. pylori-induced inflammation. Proteomic analysis revealed that cancer was the most significantly altered functional pathway in Smox-/- gastric organoids. Moreover, there was also less DNA damage and β-catenin activation in H. pylori-infected Smox-/- mice or gastric organoids, compared to infected wild-type animals or gastroids. The link between SMOX and β-catenin activation was confirmed in human gastric organoids that were treated with a novel SMOX inhibitor. These findings indicate that SMOX promotes H. pylori-induced carcinogenesis by causing inflammation, DNA damage, and activation of β-catenin signaling.
Collapse
Affiliation(s)
- Johanna C Sierra
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - M Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Paula B Luis
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Daniel P Barry
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Margaret M Allaman
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Thomas A Sebrell
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Jordan L Finley
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Kristie L Rose
- Department of Biochemistry, Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Salisha Hill
- Department of Biochemistry, Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Steven L Holshouser
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Robert A Casero
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - John L Cleveland
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Patrick M Woster
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Kevin L Schey
- Department of Biochemistry, Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Diane Bimczok
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Claus Schneider
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Alain P Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, 37232, USA.
| |
Collapse
|
22
|
He X, Gao Y, Hui Z, Shen G, Wang S, Xie T, Ye XY. 4-Hydroxy-3-methylbenzofuran-2-carbohydrazones as novel LSD1 inhibitors. Bioorg Med Chem Lett 2020; 30:127109. [PMID: 32201021 DOI: 10.1016/j.bmcl.2020.127109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/23/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
Histone lysine specific demethylase 1 (LSD1 or KDM1A) is a potential therapeutic target in oncology due to its overexpression in various human tumors. We report herein a new class of benzofuran acylhydrazones as potent LSD1 inhibitors. Among the 31 compounds prepared, 14 compounds exhibited excellent LSD1 inhibitory activity with IC50 values ranging from 7.2 to 68.8 nM. In cellular assays, several compounds inhibited the proliferations of various cancer cell lines, including PC-3, MCG-803, U87 MG, PANC-1, HT-29 and MCF-7. This opens up the opportunity for further optimization and investigation of this class compounds for potential cancer treatment.
Collapse
Affiliation(s)
- Xingrui He
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, PR China; Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, PR China; Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, PR China; School of Pharmacy, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Yuan Gao
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, PR China; School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510000, PR China
| | - Zi Hui
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, PR China; Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, PR China; Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, PR China
| | - Guodong Shen
- School of Pharmacy, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Shuo Wang
- School of Pharmacy, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Tian Xie
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, PR China; Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, PR China; Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, PR China.
| | - Xiang-Yang Ye
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, PR China; Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, PR China; Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, PR China.
| |
Collapse
|