1
|
Lee CM, Nguyen J, Pope B, Imami AS, Ryan VWG, Sahay S, Mathis V, Pulvender P, Eby HM, Arvay T, Alganem K, Wegman-Points L, McCullunsmith R, Yuan LL. Functional kinome profiling reveals brain protein kinase signaling pathways and gene networks altered by acute voluntary exercise in rats. PLoS One 2025; 20:e0321596. [PMID: 40233052 PMCID: PMC11999169 DOI: 10.1371/journal.pone.0321596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/07/2025] [Indexed: 04/17/2025] Open
Abstract
Regular exercise confers numerous physical and mental health benefits, yet individual variability in exercise participation and outcomes is still poorly understood. Uncovering the neurobiological mechanisms governing exercise behavior is essential for promoting physical activity and developing targeted interventions for related disorders. While genetic studies have provided insights, they often cannot account for protein-level alterations, such as changes in kinase activity. Here, we employ protein kinase activity profiling to delineate brain protein kinase activity and signaling networks modulated by acute voluntary exercise in rats. Focusing on the dorsal striatum, which governs voluntary exercise, as well as the hippocampus, which is susceptible to modulation by physical activity, we aim to understand the molecular basis of exercise behavior. Utilizing high throughput kinome array profiling and advanced pathway analyses, we identified protein kinase signaling pathways implicated in regulating voluntary exercise. Pathway analysis using Gene Ontology (GO) revealed significant alterations in 155 GO terms in the dorsal striatum and 206 GO terms in the hippocampus. Changes in kinase activity were observed in the striatum and hippocampus between the exercise (voluntary wheel running, VWR) and sedentary control rats. In both regions, global serine-threonine kinase (STK) activity was decreased, while global phospho-tyrosine kinase (PTK) activity was increased in VWR rats compared to control rats. We also identified specific kinases altered in VWR rats, including the IKappaB Kinase (IKK) and protein kinase delta (PKD) families. C-terminal src Kinase (CSK), epidermal growth factor (EGFR), and vascular endothelial growth factor receptor (VEGFR) tyrosine kinase were also enriched. These findings suggest regional heterogeneity of kinase activity following voluntary exercise, emphasizing potential molecular mechanisms underlying exercise behavior. This exploratory study lays the groundwork for future investigations into the causality of variations in exercise outcomes among individuals and different sexes, as well as the development of targeted interventions to promote physical activity and combat associated chronic diseases.
Collapse
Affiliation(s)
- Chia-Ming Lee
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, United States of America
| | - Jennifer Nguyen
- Department of Neurosciences and Psychiatry, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Brock Pope
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, United States of America
| | - Ali Sajid Imami
- Department of Neurosciences and Psychiatry, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - V. William George Ryan
- Department of Neurosciences and Psychiatry, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Smita Sahay
- Department of Neurosciences and Psychiatry, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Victoria Mathis
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, United States of America
| | - Priyanka Pulvender
- Department of Neurosciences and Psychiatry, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Hunter Michael Eby
- Department of Neurosciences and Psychiatry, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Taylen Arvay
- Department of Neurosciences and Psychiatry, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Khaled Alganem
- Department of Neurosciences and Psychiatry, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Lauren Wegman-Points
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, United States of America
| | - Robert McCullunsmith
- Department of Neurosciences and Psychiatry, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
- ProMedica, Neurosciences Institute, Toledo, Ohio, United States of America
| | - Li-Lian Yuan
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, United States of America
| |
Collapse
|
2
|
Charles S, Jackson-Holmes E, Sun G, Zhou Y, Siciliano B, Niu W, Han H, Nikitina A, Kemp ML, Wen Z, Lu H. Non-Invasive Quality Control of Organoid Cultures Using Mesofluidic CSTR Bioreactors and High-Content Imaging. ADVANCED MATERIALS TECHNOLOGIES 2025; 10:2400473. [PMID: 40248044 PMCID: PMC12002419 DOI: 10.1002/admt.202400473] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Indexed: 04/19/2025]
Abstract
Human brain organoids produce anatomically relevant cellular structures and recapitulate key aspects of in vivo brain function, which holds great potential to model neurological diseases and screen therapeutics. However, the long growth time of 3D systems complicates the culturing of brain organoids and results in heterogeneity across samples hampering their applications. We developed an integrated platform to enable robust and long-term culturing of 3D brain organoids. We designed a mesofluidic bioreactor device based on a reaction-diffusion scaling theory, which achieves robust media exchange for sufficient nutrient delivery in long-term culture. We integrated this device with longitudinal tracking and machine learning-based classification tools to enable non-invasive quality control of live organoids. This integrated platform allows for sample pre-selection for downstream molecular analysis. Transcriptome analyses of organoids revealed that our mesofluidic bioreactor promoted organoid development while reducing cell death. Our platform thus offers a generalizable tool to establish reproducible culture standards for 3D cellular systems for a variety of applications beyond brain organoids.
Collapse
Affiliation(s)
- Seleipiri Charles
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
| | - Emily Jackson-Holmes
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta, Georgia 30332, U.S.A
| | - Gongchen Sun
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta, Georgia 30332, U.S.A
| | - Ying Zhou
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, U.S.A
| | - Benjamin Siciliano
- Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, 615 Michael Street, Atlanta, GA, 30322, U.S.A
| | - Weibo Niu
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, U.S.A
| | - Haejun Han
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
| | - Arina Nikitina
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta, Georgia 30332, U.S.A
| | - Melissa L Kemp
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, U.S.A
| | - Hang Lu
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta, Georgia 30332, U.S.A
| |
Collapse
|
3
|
Charles S, Jackson-Holmes E, Sun G, Zhou Y, Siciliano B, Niu W, Han H, Nikitina A, Kemp ML, Wen Z, Lu H. Non-Invasive Quality Control of Organoid Cultures Using Mesofluidic CSTR Bioreactors and High-Content Imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604365. [PMID: 39091761 PMCID: PMC11291105 DOI: 10.1101/2024.07.19.604365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Human brain organoids produce anatomically relevant cellular structures and recapitulate key aspects of in vivo brain function, which holds great potential to model neurological diseases and screen therapeutics. However, the long growth time of 3D systems complicates the culturing of brain organoids and results in heterogeneity across samples hampering their applications. We developed an integrated platform to enable robust and long-term culturing of 3D brain organoids. We designed a mesofluidic bioreactor device based on a reaction-diffusion scaling theory, which achieves robust media exchange for sufficient nutrient delivery in long-term culture. We integrated this device with longitudinal tracking and machine learning-based classification tools to enable non-invasive quality control of live organoids. This integrated platform allows for sample pre-selection for downstream molecular analysis. Transcriptome analyses of organoids revealed that our mesofluidic bioreactor promoted organoid development while reducing cell death. Our platform thus offers a generalizable tool to establish reproducible culture standards for 3D cellular systems for a variety of applications beyond brain organoids.
Collapse
Affiliation(s)
- Seleipiri Charles
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
| | - Emily Jackson-Holmes
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta, Georgia 30332, U.S.A
| | - Gongchen Sun
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta, Georgia 30332, U.S.A
| | - Ying Zhou
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, U.S.A
| | - Benjamin Siciliano
- Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, 615 Michael Street, Atlanta, GA, 30322, U.S.A
| | - Weibo Niu
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, U.S.A
| | - Haejun Han
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
| | - Arina Nikitina
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta, Georgia 30332, U.S.A
| | - Melissa L Kemp
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, U.S.A
| | - Hang Lu
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta, Georgia 30332, U.S.A
| |
Collapse
|
4
|
Vijayakumar S, DiGuiseppi JA, Dabestani PJ, Ryan WG, Quevedo RV, Li Y, Diers J, Tu S, Fleegel J, Nguyen C, Rhoda LM, Imami AS, Hamoud ARA, Lovas S, McCullumsmith RE, Zallocchi M, Zuo J. In silico transcriptome screens identify epidermal growth factor receptor inhibitors as therapeutics for noise-induced hearing loss. SCIENCE ADVANCES 2024; 10:eadk2299. [PMID: 38896614 PMCID: PMC11186505 DOI: 10.1126/sciadv.adk2299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Noise-induced hearing loss (NIHL) is a common sensorineural hearing impairment that lacks U.S. Food and Drug Administration-approved drugs. To fill the gap in effective screening models, we used an in silico transcriptome-based drug screening approach, identifying 22 biological pathways and 64 potential small molecule treatments for NIHL. Two of these, afatinib and zorifertinib [epidermal growth factor receptor (EGFR) inhibitors], showed efficacy in zebrafish and mouse models. Further tests with EGFR knockout mice and EGF-morpholino zebrafish confirmed their protective role against NIHL. Molecular studies in mice highlighted EGFR's crucial involvement in NIHL and the protective effect of zorifertinib. When given orally, zorifertinib was found in the perilymph with favorable pharmacokinetics. In addition, zorifertinib combined with AZD5438 (a cyclin-dependent kinase 2 inhibitor) synergistically prevented NIHL in zebrafish. Our results underscore the potential for in silico transcriptome-based drug screening in diseases lacking efficient models and suggest EGFR inhibitors as potential treatments for NIHL, meriting clinical trials.
Collapse
Affiliation(s)
- Sarath Vijayakumar
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Joseph A. DiGuiseppi
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Parinaz Jila Dabestani
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - William G. Ryan
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA.
| | - Rene Vielman Quevedo
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Yuju Li
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Jack Diers
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Shu Tu
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Jonathan Fleegel
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Cassidy Nguyen
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Lauren M. Rhoda
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Ali Sajid Imami
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA.
| | | | - Sándor Lovas
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Robert E. McCullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA.
- Neurosciences Institute, ProMedica, Toledo, OH 43606, USA
| | - Marisa Zallocchi
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Jian Zuo
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
- Ting Therapeutics, University of California San Diego, 9310 Athena Circle, San Diego, CA 92037, USA
| |
Collapse
|
5
|
Heider J, Stahl A, Sperlich D, Hartmann SM, Vogel S, Breitmeyer R, Templin M, Volkmer H. Defined co-cultures of glutamatergic and GABAergic neurons with a mutation in DISC1 reveal aberrant phenotypes in GABAergic neurons. BMC Neurosci 2024; 25:12. [PMID: 38438989 PMCID: PMC10910844 DOI: 10.1186/s12868-024-00858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Mutations in the gene DISC1 are associated with increased risk for schizophrenia, bipolar disorder and major depression. The study of mutated DISC1 represents a well-known and comprehensively characterized approach to understand neuropsychiatric disease mechanisms. However, previous studies have mainly used animal models or rather heterogeneous populations of iPSC-derived neurons, generated by undirected differentiation, to study the effects of DISC1 disruption. Since major hypotheses to explain neurodevelopmental, psychiatric disorders rely on altered neuronal connectivity observed in patients, an ideal iPSC-based model requires accurate representation of the structure and complexity of neuronal circuitries. In this study, we made use of an isogenic cell line with a mutation in DISC1 to study neuronal synaptic phenotypes in a culture system comprising a defined ratio of NGN2 and ASCL1/DLX2 (AD2)-transduced neurons, enriched for glutamatergic and GABAergic neurons, respectively, to mimic properties of the cortical microcircuitry. RESULTS In heterozygous DISC1 mutant neurons, we replicated the expected phenotypes including altered neural progenitor proliferation as well as neurite outgrowth, deregulated DISC1-associated signaling pathways, and reduced synaptic densities in cultures composed of glutamatergic neurons. Cultures comprising a defined ratio of NGN2 and AD2 neurons then revealed considerably increased GABAergic synapse densities, which have not been observed in any iPSC-derived model so far. Increased inhibitory synapse densities could be associated with an increased efficiency of GABAergic differentiation, which we observed in AD2-transduced cultures of mutant neurons. Additionally, we found increased neuronal activity in GABAergic neurons through calcium imaging while the activity pattern of glutamatergic neurons remained unchanged. CONCLUSIONS In conclusion, our results demonstrate phenotypic differences in a co-culture comprising a defined ratio of DISC1 mutant NGN2 and AD2 neurons, as compared to culture models comprising only one neuronal cell type. Altered synapse numbers and neuronal activity imply that DISC1 impacts the excitatory/inhibitory balance in NGN2/AD2 co-cultures, mainly through increased GABAergic input.
Collapse
Affiliation(s)
- Johanna Heider
- Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Aaron Stahl
- Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Denise Sperlich
- Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Sophia-Marie Hartmann
- Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Sabrina Vogel
- Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Ricarda Breitmeyer
- Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Markus Templin
- Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Hansjürgen Volkmer
- Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany.
| |
Collapse
|
6
|
Godbole SS, Dokholyan NV. Allosteric regulation of kinase activity in living cells. eLife 2023; 12:RP90574. [PMID: 37943025 PMCID: PMC10635643 DOI: 10.7554/elife.90574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
The dysregulation of protein kinases is associated with multiple diseases due to the kinases' involvement in a variety of cell signaling pathways. Manipulating protein kinase function, by controlling the active site, is a promising therapeutic and investigative strategy to mitigate and study diseases. Kinase active sites share structural similarities, making it difficult to specifically target one kinase, and allosteric control allows specific regulation and study of kinase function without directly targeting the active site. Allosteric sites are distal to the active site but coupled via a dynamic network of inter-atomic interactions between residues in the protein. Establishing an allosteric control over a kinase requires understanding the allosteric wiring of the protein. Computational techniques offer effective and inexpensive mapping of the allosteric sites on a protein. Here, we discuss the methods to map and regulate allosteric communications in proteins, and strategies to establish control over kinase functions in live cells and organisms. Protein molecules, or 'sensors,' are engineered to function as tools to control allosteric activity of the protein as these sensors have high spatiotemporal resolution and help in understanding cell phenotypes after immediate activation or inactivation of a kinase. Traditional methods used to study protein functions, such as knockout, knockdown, or mutation, cannot offer a sufficiently high spatiotemporal resolution. We discuss the modern repertoire of tools to regulate protein kinases as we enter a new era in deciphering cellular signaling and developing novel approaches to treat diseases associated with signal dysregulation.
Collapse
Affiliation(s)
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of MedicineHersheyUnited States
- Department of Biomedical Engineering, Penn State University, University ParkHersheyUnited States
- Department of Engineering Science and Mechanics, Penn State University, University ParkHersheyUnited States
- Department of Biochemistry & Molecular Biology, Penn State College of MedicineHersheyUnited States
- Department of Chemistry, Penn State University, University ParkHersheyUnited States
| |
Collapse
|
7
|
Godbole S, Dokholyan NV. Allosteric regulation of kinase activity in living cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549709. [PMID: 37503033 PMCID: PMC10370130 DOI: 10.1101/2023.07.19.549709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The dysregulation of protein kinases is associated with multiple diseases due to the kinases' involvement in a variety of cell signaling pathways. Manipulating protein kinase function, by controlling the active site, is a promising therapeutic and investigative strategy to mitigate and study diseases. Kinase active sites share structural similarities making it difficult to specifically target one kinase, allosteric control allows specific regulation and study of kinase function without directly targeting the active site. Allosteric sites are distal to the active site but coupled via a dynamic network of inter-atomic interactions between residues in the protein. Establishing an allosteric control over a kinase requires understanding the allosteric wiring of the protein. Computational techniques offer effective and inexpensive mapping of the allosteric sites on a protein. Here, we discuss methods to map and regulate allosteric communications in proteins, and strategies to establish control over kinase functions in live cells and organisms. Protein molecules, or "sensors" are engineered to function as tools to control allosteric activity of the protein as these sensors have high spatiotemporal resolution and help in understanding cell phenotypes after immediate activation or inactivation of a kinase. Traditional methods used to study protein functions, such as knockout, knockdown, or mutation, cannot offer a sufficiently high spatiotemporal resolution. We discuss the modern repertoire of tools to regulate protein kinases as we enter a new era in deciphering cellular signaling and developing novel approaches to treat diseases associated with signal dysregulation.
Collapse
Affiliation(s)
- Shivani Godbole
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
- Department of Engineering Science and Mechanics, Penn State University, University Park, PA 16802, USA
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
- Department of Chemistry, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
8
|
Vijayakumar S, DiGuiseppi JA, Dabestani J, Ryan WG, Vielman Quevedo R, Li Y, Diers J, Tu S, Fleegel J, Nguyen C, Rhoda LM, Imami AS, Hamoud AAR, Lovas S, McCullumsmith R, Zallocchi M, Zuo J. In Silico Transcriptome-based Screens Identify Epidermal Growth Factor Receptor Inhibitors as Therapeutics for Noise-induced Hearing Loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544128. [PMID: 37333346 PMCID: PMC10274759 DOI: 10.1101/2023.06.07.544128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Noise-Induced Hearing Loss (NIHL) represents a widespread disease for which no therapeutics have been approved by the Food and Drug Administration (FDA). Addressing the conspicuous void of efficacious in vitro or animal models for high throughput pharmacological screening, we utilized an in silico transcriptome-oriented drug screening strategy, unveiling 22 biological pathways and 64 promising small molecule candidates for NIHL protection. Afatinib and zorifertinib, both inhibitors of the Epidermal Growth Factor Receptor (EGFR), were validated for their protective efficacy against NIHL in experimental zebrafish and murine models. This protective effect was further confirmed with EGFR conditional knockout mice and EGF knockdown zebrafish, both demonstrating protection against NIHL. Molecular analysis using Western blot and kinome signaling arrays on adult mouse cochlear lysates unveiled the intricate involvement of several signaling pathways, with particular emphasis on EGFR and its downstream pathways being modulated by noise exposure and Zorifertinib treatment. Administered orally, Zorifertinib was successfully detected in the perilymph fluid of the inner ear in mice with favorable pharmacokinetic attributes. Zorifertinib, in conjunction with AZD5438 - a potent inhibitor of cyclin dependent kinase 2 - produced synergistic protection against NIHL in the zebrafish model. Collectively, our findings underscore the potential application of in silico transcriptome-based drug screening for diseases bereft of efficient screening models and posit EGFR inhibitors as promising therapeutic agents warranting clinical exploration for combatting NIHL. Highlights In silico transcriptome-based drug screens identify pathways and drugs against NIHL.EGFR signaling is activated by noise but reduced by zorifertinib in mouse cochleae.Afatinib, zorifertinib and EGFR knockout protect against NIHL in mice and zebrafish.Orally delivered zorifertinib has inner ear PK and synergizes with a CDK2 inhibitor.
Collapse
|
9
|
Dubonyte U, Asenjo-Martinez A, Werge T, Lage K, Kirkeby A. Current advancements of modelling schizophrenia using patient-derived induced pluripotent stem cells. Acta Neuropathol Commun 2022; 10:183. [PMID: 36527106 PMCID: PMC9756764 DOI: 10.1186/s40478-022-01460-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/12/2022] [Indexed: 12/23/2022] Open
Abstract
Schizophrenia (SZ) is a severe psychiatric disorder, with a prevalence of 1-2% world-wide and substantial health- and social care costs. The pathology is influenced by both genetic and environmental factors, however the underlying cause still remains elusive. SZ has symptoms including delusions, hallucinations, confused thoughts, diminished emotional responses, social withdrawal and anhedonia. The onset of psychosis is usually in late adolescence or early adulthood. Multiple genome-wide association and whole exome sequencing studies have provided extraordinary insights into the genetic variants underlying familial as well as polygenic forms of the disease. Nonetheless, a major limitation in schizophrenia research remains the lack of clinically relevant animal models, which in turn hampers the development of novel effective therapies for the patients. The emergence of human induced pluripotent stem cell (hiPSC) technology has allowed researchers to work with SZ patient-derived neuronal and glial cell types in vitro and to investigate the molecular basis of the disorder in a human neuronal context. In this review, we summarise findings from available studies using hiPSC-based neural models and discuss how these have provided new insights into molecular and cellular pathways of SZ. Further, we highlight different examples of how these models have shown alterations in neurogenesis, neuronal maturation, neuronal connectivity and synaptic impairment as well as mitochondrial dysfunction and dysregulation of miRNAs in SZ patient-derived cultures compared to controls. We discuss the pros and cons of these models and describe the potential of using such models for deciphering the contribution of specific human neural cell types to the development of the disease.
Collapse
Affiliation(s)
- Ugne Dubonyte
- Department of Neuroscience and Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Andrea Asenjo-Martinez
- Department of Neuroscience and Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine and Lundbeck Foundation Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Lage
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark
- Stanley Center for Psychiatric Research and The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Agnete Kirkeby
- Department of Neuroscience and Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark.
- Department of Experimental Medical Science and Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
10
|
Antipsychotics impair regulation of glucose metabolism by central glucose. Mol Psychiatry 2022; 27:4741-4753. [PMID: 36241692 DOI: 10.1038/s41380-022-01798-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
Hypothalamic detection of elevated circulating glucose triggers suppression of endogenous glucose production (EGP) to maintain glucose homeostasis. Antipsychotics alleviate symptoms associated with schizophrenia but also increase the risk for impaired glucose metabolism. In the current study, we examined whether two acutely administered antipsychotics from different drug classes, haloperidol (first generation antipsychotic) and olanzapine (second generation antipsychotic), affect the ability of intracerebroventricular (ICV) glucose infusion approximating postprandial levels to suppress EGP. The experimental protocol consisted of a pancreatic euglycemic clamp, followed by kinomic and RNA-seq analyses of hypothalamic samples to determine changes in serine/threonine kinase activity and gene expression, respectively. Both antipsychotics inhibited ICV glucose-mediated increases in glucose infusion rate during the clamp, a measure of whole-body glucose metabolism. Similarly, olanzapine and haloperidol blocked central glucose-induced suppression of EGP. ICV glucose stimulated the vascular endothelial growth factor (VEGF) pathway, phosphatidylinositol 3-kinase (PI3K) pathway, and kinases capable of activating KATP channels in the hypothalamus. These effects were inhibited by both antipsychotics. In conclusion, olanzapine and haloperidol impair central glucose sensing. Although results of hypothalamic analyses in our study do not prove causality, they are novel and provide the basis for a multitude of future studies.
Collapse
|
11
|
Zhang X, Wolfinger A, Wu X, Alnafisah R, Imami A, Hamoud AR, Lundh A, Parpura V, McCullumsmith RE, Shukla R, O’Donovan SM. Gene Enrichment Analysis of Astrocyte Subtypes in Psychiatric Disorders and Psychotropic Medication Datasets. Cells 2022; 11:3315. [PMID: 36291180 PMCID: PMC9600295 DOI: 10.3390/cells11203315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/26/2022] Open
Abstract
Astrocytes have many important functions in the brain, but their roles in psychiatric disorders and their responses to psychotropic medications are still being elucidated. Here, we used gene enrichment analysis to assess the relationships between different astrocyte subtypes, psychiatric diseases, and psychotropic medications (antipsychotics, antidepressants and mood stabilizers). We also carried out qPCR analyses and "look-up" studies to assess the chronic effects of these drugs on astrocyte marker gene expression. Our bioinformatic analysis identified gene enrichment of different astrocyte subtypes in psychiatric disorders. The highest level of enrichment was found in schizophrenia, supporting a role for astrocytes in this disorder. We also found differential enrichment of astrocyte subtypes associated with specific biological processes, highlighting the complex responses of astrocytes under pathological conditions. Enrichment of protein phosphorylation in astrocytes and disease was confirmed by biochemical analysis. Analysis of LINCS chemical perturbagen gene signatures also found that kinase inhibitors were highly discordant with astrocyte-SCZ associated gene signatures. However, we found that common gene enrichment of different psychotropic medications and astrocyte subtypes was limited. These results were confirmed by "look-up" studies and qPCR analysis, which also reported little effect of psychotropic medications on common astrocyte marker gene expression, suggesting that astrocytes are not a primary target of these medications. Conversely, antipsychotic medication does affect astrocyte gene marker expression in postmortem schizophrenia brain tissue, supporting specific astrocyte responses in different pathological conditions. Overall, this study provides a unique view of astrocyte subtypes and the effect of medications on astrocytes in disease, which will contribute to our understanding of their role in psychiatric disorders and offers insights into targeting astrocytes therapeutically.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Alyssa Wolfinger
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Xiaojun Wu
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Rawan Alnafisah
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Ali Imami
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Abdul-rizaq Hamoud
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Anna Lundh
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Robert E. McCullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
- Promedica Neurosciences Institute, Toledo, OH 43606, USA
| | - Rammohan Shukla
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | | |
Collapse
|
12
|
Subcellular partitioning of protein kinase activity revealed by functional kinome profiling. Sci Rep 2022; 12:17300. [PMID: 36243751 PMCID: PMC9569338 DOI: 10.1038/s41598-022-21026-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/21/2022] [Indexed: 01/10/2023] Open
Abstract
Protein kinases and their substrates form signaling networks partitioned across subcellular compartments to facilitate critical biological processes. While the subcellular roles of many individual kinases have been elucidated, a comprehensive assessment of the synaptic subkinome is lacking. Further, most studies of kinases focus on transcript, protein, and/or phospho-protein expression levels, providing an indirect measure of protein kinase activity. Prior work suggests that gene expression levels are not a good predictor of protein function. Thus, we assessed global serine/threonine protein kinase activity profiles in synaptosomal, nuclear, and cytosolic fractions from rat frontal cortex homogenate using peptide arrays. Comparisons made between fractions demonstrated differences in overall protein kinase activity. Upstream kinase analysis revealed a list of cognate kinases that were enriched in the synaptosomal fraction compared to the nuclear fraction. We identified many kinases in the synaptic fraction previously implicated in this compartment, while also identifying other kinases with little or no evidence for synaptic localization. Our results show the feasibility of assessing subcellular fractions with peptide activity arrays, as well as suggesting compartment specific activity profiles associated with established and novel kinases.
Collapse
|
13
|
Pilarczyk M, Fazel-Najafabadi M, Kouril M, Shamsaei B, Vasiliauskas J, Niu W, Mahi N, Zhang L, Clark NA, Ren Y, White S, Karim R, Xu H, Biesiada J, Bennett MF, Davidson SE, Reichard JF, Roberts K, Stathias V, Koleti A, Vidovic D, Clarke DJB, Schürer SC, Ma'ayan A, Meller J, Medvedovic M. Connecting omics signatures and revealing biological mechanisms with iLINCS. Nat Commun 2022; 13:4678. [PMID: 35945222 PMCID: PMC9362980 DOI: 10.1038/s41467-022-32205-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
There are only a few platforms that integrate multiple omics data types, bioinformatics tools, and interfaces for integrative analyses and visualization that do not require programming skills. Here we present iLINCS ( http://ilincs.org ), an integrative web-based platform for analysis of omics data and signatures of cellular perturbations. The platform facilitates mining and re-analysis of the large collection of omics datasets (>34,000), pre-computed signatures (>200,000), and their connections, as well as the analysis of user-submitted omics signatures of diseases and cellular perturbations. iLINCS analysis workflows integrate vast omics data resources and a range of analytics and interactive visualization tools into a comprehensive platform for analysis of omics signatures. iLINCS user-friendly interfaces enable execution of sophisticated analyses of omics signatures, mechanism of action analysis, and signature-driven drug repositioning. We illustrate the utility of iLINCS with three use cases involving analysis of cancer proteogenomic signatures, COVID 19 transcriptomic signatures and mTOR signaling.
Collapse
Affiliation(s)
- Marcin Pilarczyk
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Mehdi Fazel-Najafabadi
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Michal Kouril
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Behrouz Shamsaei
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Juozas Vasiliauskas
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Wen Niu
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Naim Mahi
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Lixia Zhang
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Nicholas A Clark
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Yan Ren
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Shana White
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Rashid Karim
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, 45220, USA
| | - Huan Xu
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Jacek Biesiada
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
| | - Mark F Bennett
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Sarah E Davidson
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
| | - John F Reichard
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
| | - Kurt Roberts
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
| | - Vasileios Stathias
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine and Center for Computational Science, University of Miami, Miami, FL 33136, USA
| | - Amar Koleti
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine and Center for Computational Science, University of Miami, Miami, FL 33136, USA
| | - Dusica Vidovic
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine and Center for Computational Science, University of Miami, Miami, FL 33136, USA
| | - Daniel J B Clarke
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Stephan C Schürer
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine and Center for Computational Science, University of Miami, Miami, FL 33136, USA
| | - Avi Ma'ayan
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jarek Meller
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA
- LINCS Data Coordination and Integration Center (DCIC), New York, USA
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, 45220, USA
| | - Mario Medvedovic
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA.
- LINCS Data Coordination and Integration Center (DCIC), Cincinnati, USA.
- LINCS Data Coordination and Integration Center (DCIC), New York, USA.
- LINCS Data Coordination and Integration Center (DCIC), Miami, USA.
| |
Collapse
|
14
|
Fularczyk N, Di Re J, Stertz L, Walss-Bass C, Laezza F, Labate D. A Learning Based Framework for Disease Prediction from Images of Human-Derived Pluripotent Stem Cells of Schizophrenia Patients. Neuroinformatics 2022; 20:513-523. [PMID: 35064871 PMCID: PMC9304448 DOI: 10.1007/s12021-022-09561-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 11/26/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) have been employed very successfully to identify molecular and cellular features of psychiatric disorders that would be impossible to discover in traditional postmortem studies. Despite the wealth of new available information though, there is still a critical need to establish quantifiable and accessible molecular markers that can be used to reveal the biological causality of the disease. In this paper, we introduce a new quantitative framework based on supervised learning to investigate structural alterations in the neuronal cytoskeleton of hiPSCs of schizophrenia (SCZ) patients. We show that, by using Support Vector Machines or selected Artificial Neural Networks trained on image-based features associated with somas of hiPSCs derived neurons, we can predict very reliably SCZ and healthy control cells. In addition, our method reveals that [Formula: see text]III tubulin and FGF12, two critical components of the cytoskeleton, are differentially regulated in SCZ and healthy control cells, upon perturbation by GSK3 inhibition.
Collapse
Affiliation(s)
| | - Jessica Di Re
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, USA
| | - Laura Stertz
- Department of Psychiatry and Behavioral Sciences, UT Health, Houston, Texas, USA
| | - Consuelo Walss-Bass
- Department of Psychiatry and Behavioral Sciences, UT Health, Houston, Texas, USA
| | - Fernanda Laezza
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, USA
| | - Demetrio Labate
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, USA.
| |
Collapse
|
15
|
Grant CW, Barreto EF, Kumar R, Kaddurah-Daouk R, Skime M, Mayes T, Carmody T, Biernacka J, Wang L, Weinshilboum R, Trivedi MH, Bobo WV, Croarkin PE, Athreya AP. Multi-Omics Characterization of Early- and Adult-Onset Major Depressive Disorder. J Pers Med 2022; 12:jpm12030412. [PMID: 35330412 PMCID: PMC8949112 DOI: 10.3390/jpm12030412] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 01/14/2023] Open
Abstract
Age at depressive onset (AAO) corresponds to unique symptomatology and clinical outcomes. Integration of genome-wide association study (GWAS) results with additional “omic” measures to evaluate AAO has not been reported and may reveal novel markers of susceptibility and/or resistance to major depressive disorder (MDD). To address this gap, we integrated genomics with metabolomics using data-driven network analysis to characterize and differentiate MDD based on AAO. This study first performed two GWAS for AAO as a continuous trait in (a) 486 adults from the Pharmacogenomic Research Network-Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS), and (b) 295 adults from the Combining Medications to Enhance Depression Outcomes (CO-MED) study. Variants from top signals were integrated with 153 p180-assayed metabolites to establish multi-omics network characterizations of early (<age 18) and adult-onset depression. The most significant variant (p = 8.77 × 10−8) localized to an intron of SAMD3. In silico functional annotation of top signals (p < 1 × 10−5) demonstrated gene expression enrichment in the brain and during embryonic development. Network analysis identified differential associations between four variants (in/near INTU, FAT1, CNTN6, and TM9SF2) and plasma metabolites (phosphatidylcholines, carnitines, biogenic amines, and amino acids) in early- compared with adult-onset MDD. Multi-omics integration identified differential biosignatures of early- and adult-onset MDD. These biosignatures call for future studies to follow participants from childhood through adulthood and collect repeated -omics and neuroimaging measures to validate and deeply characterize the biomarkers of susceptibility and/or resistance to MDD development.
Collapse
Grants
- R01 MH124655 NIMH NIH HHS
- R01 MH113700 NIMH NIH HHS
- K23 AI143882 NIAID NIH HHS
- U19GM61388, R01GM028157, R01AA027486, R01MH108348, R24GM078233, RC2GM092729, U19AG063744, N01MH90003, R01AG04617, U01AG061359, RF1AG051550, R01MH113700, R01MH124655, K23AI143882 NIH HHS
Collapse
Affiliation(s)
- Caroline W. Grant
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55901, USA; (C.W.G.); (L.W.); (R.W.)
| | - Erin F. Barreto
- Department of Pharmacy, Mayo Clinic, Rochester, MN 55901, USA;
| | - Rakesh Kumar
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55901, USA; (R.K.); (M.S.)
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27701, USA;
- Department of Medicine, Duke University, Durham, NC 27708, USA
- Duke Institute for Brain Sciences, Duke University, Durham, NC 27710, USA
| | - Michelle Skime
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55901, USA; (R.K.); (M.S.)
| | - Taryn Mayes
- Department of Psychiatry, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (T.M.); (M.H.T.)
| | - Thomas Carmody
- Department Population and Data Sciences, University of Texas Southwestern Medical Center in Dallas, Dallas, TX 75390, USA;
| | - Joanna Biernacka
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55901, USA;
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55901, USA; (C.W.G.); (L.W.); (R.W.)
| | - Richard Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55901, USA; (C.W.G.); (L.W.); (R.W.)
| | - Madhukar H. Trivedi
- Department of Psychiatry, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (T.M.); (M.H.T.)
| | - William V. Bobo
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Paul E. Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55901, USA; (R.K.); (M.S.)
- Correspondence: (P.E.C.); (A.P.A.); Tel.: +1-507-422-6073 (A.P.A.)
| | - Arjun P. Athreya
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55901, USA; (C.W.G.); (L.W.); (R.W.)
- Correspondence: (P.E.C.); (A.P.A.); Tel.: +1-507-422-6073 (A.P.A.)
| |
Collapse
|
16
|
Mutations in DISC1 alter IP 3R and voltage-gated Ca 2+ channel functioning, implications for major mental illness. Neuronal Signal 2021; 5:NS20180122. [PMID: 34956649 PMCID: PMC8663806 DOI: 10.1042/ns20180122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
Disrupted in Schizophrenia 1 (DISC1) participates in a wide variety of
developmental processes of central neurons. It also serves critical roles that
underlie cognitive functioning in adult central neurons. Here we summarize
DISC1’s general properties and discuss its use as a model system for
understanding major mental illnesses (MMIs). We then discuss the cellular
actions of DISC1 that involve or regulate Ca2+ signaling in adult
central neurons. In particular, we focus on the tethering role DISC1 plays in
transporting RNA particles containing Ca2+ channel subunit RNAs,
including IP3R1, CACNA1C and CACNA2D1, and in transporting mitochondria into
dendritic and axonal processes. We also review DISC1’s role in modulating
IP3R1 activity within mitochondria-associated ER membrane (MAM).
Finally, we discuss DISC1-glycogen synthase kinase 3β (GSK3β)
signaling that regulates functional expression of voltage-gated Ca2+
channels (VGCCs) at central synapses. In each case, DISC1 regulates the movement
of molecules that impact Ca2+ signaling in neurons.
Collapse
|
17
|
DePasquale EAK, Alganem K, Bentea E, Nawreen N, McGuire JL, Tomar T, Naji F, Hilhorst R, Meller J, McCullumsmith RE. KRSA: An R package and R Shiny web application for an end-to-end upstream kinase analysis of kinome array data. PLoS One 2021; 16:e0260440. [PMID: 34919543 PMCID: PMC8682895 DOI: 10.1371/journal.pone.0260440] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/09/2021] [Indexed: 12/22/2022] Open
Abstract
Phosphorylation by serine-threonine and tyrosine kinases is critical for determining protein function. Array-based platforms for measuring reporter peptide signal levels allow for differential phosphorylation analysis between conditions for distinct active kinases. Peptide array technologies like the PamStation12 from PamGene allow for generating high-throughput, multi-dimensional, and complex functional proteomics data. As the adoption rate of such technologies increases, there is an imperative need for software tools that streamline the process of analyzing such data. We present Kinome Random Sampling Analyzer (KRSA), an R package and R Shiny web-application for analyzing kinome array data to help users better understand the patterns of functional proteomics in complex biological systems. KRSA is an All-In-One tool that reads, formats, fits models, analyzes, and visualizes PamStation12 kinome data. While the underlying algorithm has been experimentally validated in previous publications, we demonstrate KRSA workflow on dorsolateral prefrontal cortex (DLPFC) in male (n = 3) and female (n = 3) subjects to identify differential phosphorylation signatures and upstream kinase activity. Kinase activity differences between males and females were compared to a previously published kinome dataset (11 female and 7 male subjects) which showed similar global phosphorylation signals patterns.
Collapse
Affiliation(s)
- Erica A. K. DePasquale
- Division of Hematology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Boston, Massachusetts, United States of America
| | - Khaled Alganem
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, Ohio, United States of America
- * E-mail:
| | - Eduard Bentea
- Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nawshaba Nawreen
- Department of Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Jennifer L. McGuire
- Department of Neurosurgery, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Tushar Tomar
- PamGene International B.V., s’-Hertogenbosch, The Netherlands
| | - Faris Naji
- Tercen Data Analytics Ltd, Co Waterford, Ireland
| | - Riet Hilhorst
- PamGene International B.V., s’-Hertogenbosch, The Netherlands
| | - Jaroslaw Meller
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Department of Electrical Engineering and Computing Systems, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Department of Informatics, Nicolaus Copernicus University, Torun, Poland
| | - Robert E. McCullumsmith
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, Ohio, United States of America
- Neurosciences institute, ProMedica, Toledo, Ohio, United States of America
| |
Collapse
|
18
|
Chadha R, Alganem K, Mccullumsmith RE, Meador-Woodruff JH. mTOR kinase activity disrupts a phosphorylation signaling network in schizophrenia brain. Mol Psychiatry 2021; 26:6868-6879. [PMID: 33990769 DOI: 10.1038/s41380-021-01135-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/06/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022]
Abstract
The AKT-mTOR signaling transduction pathway plays an important role in neurodevelopment and synaptic plasticity. mTOR is a serine/threonine kinase that modulates signals from multiple neurotransmitters and phosphorylates specific proteins to regulate protein synthesis and cytoskeletal organization. There is substantial evidence demonstrating abnormalities in AKT expression and activity in different schizophrenia (SZ) models. However, direct evidence for dysregulated mTOR kinase activity and its consequences on downstream effector proteins in SZ pathophysiology is lacking. Recently, we reported reduced phosphorylation of mTOR at an activating site and abnormal mTOR complex formation in the SZ dorsolateral prefrontal cortex (DLPFC). Here, we expand on our hypothesis of disrupted mTOR signaling in the SZ brain and studied the expression and activity of downstream effector proteins of mTOR complexes and the kinase activity profiles of SZ subjects. We found that S6RP phosphorylation, downstream of mTOR complex I, is reduced, whereas PKCα phosphorylation, downstream of mTOR complex II, is increased in SZ DLPFC. In rats chronically treated with haloperidol, we showed that S6RP phosphorylation is increased in the rat frontal cortex, suggesting a potential novel mechanism of action for antipsychotics. We also demonstrated key differences in kinase signaling networks between SZ and comparison subjects for both males and females using kinome peptide arrays. We further investigated the role of mTOR kinase activity by inhibiting it with rapamycin in postmortem tissue and compared the impact of mTOR inhibition in SZ and comparison subjects using kinome arrays. We found that SZ subjects are globally more sensitive to rapamycin treatment and AMP-activated protein kinase (AMPK) contributes to this differential kinase activity. Together, our findings provide new insights into the role of mTOR as a master regulator of kinase activity in SZ and suggest potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Radhika Chadha
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA.
| | - Khaled Alganem
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA
| | - Robert E Mccullumsmith
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA
- Neurosciences Institute, ProMedica, Toledo, OH, USA
| | - James H Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
19
|
Su RC, Breidenbach JD, Alganem K, Khalaf FK, French BW, Dube P, Malhotra D, McCullumsmith R, Presloid JB, Wooten RM, Kennedy DJ, Haller ST. Microcystin-LR (MC-LR) Triggers Inflammatory Responses in Macrophages. Int J Mol Sci 2021; 22:9939. [PMID: 34576099 PMCID: PMC8472269 DOI: 10.3390/ijms22189939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022] Open
Abstract
We were the first to previously report that microcystin-LR (MC-LR) has limited effects within the colons of healthy mice but has toxic effects within colons of mice with pre-existing inflammatory bowel disease. In the current investigation, we aimed to elucidate the mechanism by which MC-LR exacerbates colitis and to identify effective therapeutic targets. Through our current investigation, we report that there is a significantly greater recruitment of macrophages into colonic tissue with pre-existing colitis in the presence of MC-LR than in the absence of MC-LR. This is seen quantitatively through IHC staining and the enumeration of F4/80-positive macrophages and through gene expression analysis for Cd68, Cd11b, and Cd163. Exposure of isolated macrophages to MC-LR was found to directly upregulate macrophage activation markers Tnf and Il1b. Through a high-throughput, unbiased kinase activity profiling strategy, MC-LR-induced phosphorylation events were compared with potential inhibitors, and doramapimod was found to effectively prevent MC-LR-induced inflammatory responses in macrophages.
Collapse
Affiliation(s)
- Robin C. Su
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (R.C.S.); (J.D.B.); (F.K.K.); (B.W.F.); (P.D.); (D.M.)
| | - Joshua D. Breidenbach
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (R.C.S.); (J.D.B.); (F.K.K.); (B.W.F.); (P.D.); (D.M.)
| | - Khaled Alganem
- Department of Neuroscience, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (K.A.); (R.M.)
| | - Fatimah K. Khalaf
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (R.C.S.); (J.D.B.); (F.K.K.); (B.W.F.); (P.D.); (D.M.)
| | - Benjamin W. French
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (R.C.S.); (J.D.B.); (F.K.K.); (B.W.F.); (P.D.); (D.M.)
| | - Prabhatchandra Dube
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (R.C.S.); (J.D.B.); (F.K.K.); (B.W.F.); (P.D.); (D.M.)
| | - Deepak Malhotra
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (R.C.S.); (J.D.B.); (F.K.K.); (B.W.F.); (P.D.); (D.M.)
| | - Robert McCullumsmith
- Department of Neuroscience, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (K.A.); (R.M.)
- Neurosciences Center, Promedica, Toledo, OH 43614, USA
| | - John B. Presloid
- Department of Medical Microbiology and Immunology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (J.B.P.); (R.M.W.)
| | - R. Mark Wooten
- Department of Medical Microbiology and Immunology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (J.B.P.); (R.M.W.)
| | - David J. Kennedy
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (R.C.S.); (J.D.B.); (F.K.K.); (B.W.F.); (P.D.); (D.M.)
| | - Steven T. Haller
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (R.C.S.); (J.D.B.); (F.K.K.); (B.W.F.); (P.D.); (D.M.)
| |
Collapse
|
20
|
Cadena M, Ning L, King A, Hwang B, Jin L, Serpooshan V, Sloan SA. 3D Bioprinting of Neural Tissues. Adv Healthc Mater 2021; 10:e2001600. [PMID: 33200587 PMCID: PMC8711131 DOI: 10.1002/adhm.202001600] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/19/2020] [Indexed: 02/06/2023]
Abstract
The human nervous system is a remarkably complex physiological network that is inherently challenging to study because of obstacles to acquiring primary samples. Animal models offer powerful alternatives to study nervous system development, diseases, and regenerative processes, however, they are unable to address some species-specific features of the human nervous system. In vitro models of the human nervous system have expanded in prevalence and sophistication, but still require further advances to better recapitulate microenvironmental and cellular features. The field of neural tissue engineering (TE) is rapidly adopting new technologies that enable scientists to precisely control in vitro culture conditions and to better model nervous system formation, function, and repair. 3D bioprinting is one of the major TE technologies that utilizes biocompatible hydrogels to create precisely patterned scaffolds, designed to enhance cellular responses. This review focuses on the applications of 3D bioprinting in the field of neural TE. Important design parameters are considered when bioprinting neural stem cells are discussed. The emergence of various bioprinted in vitro platforms are also reviewed for developmental and disease modeling and drug screening applications within the central and peripheral nervous systems, as well as their use as implants for in vivo regenerative therapies.
Collapse
Affiliation(s)
- Melissa Cadena
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Liqun Ning
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Alexia King
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Boeun Hwang
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Linqi Jin
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Steven A. Sloan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
21
|
LncRNA-AC006129.1 reactivates a SOCS3-mediated anti-inflammatory response through DNA methylation-mediated CIC downregulation in schizophrenia. Mol Psychiatry 2021; 26:4511-4528. [PMID: 32015466 DOI: 10.1038/s41380-020-0662-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/10/2019] [Accepted: 01/23/2020] [Indexed: 01/11/2023]
Abstract
Schizophrenia is a complex genetic disorder, the non-Mendelian features of which are likely complicated by epigenetic factors yet to be elucidated. Here, we performed RNA sequencing of peripheral blood RNA from monozygotic twins discordant for schizophrenia, and identified a schizophrenia-associated upregulated long noncoding RNA (lncRNA, AC006129.1) that participates in the inflammatory response by enhancing SOCS3 and CASP1 expression in schizophrenia patients and further validated this finding in AC006129.1-overexpressing mice showing schizophrenia-related abnormal behaviors. We find that AC006129.1 binds to the promoter region of the transcriptional repressor Capicua (CIC), facilitates the interactions of DNA methyltransferases with the CIC promoter, and promotes DNA methylation-mediated CIC downregulation, thereby ameliorating CIC-induced SOCS3 and CASP1 repression. Derepression of SOCS3 enhances the anti-inflammatory response by inhibiting JAK/STAT-signaling activation. Our findings reveal an epigenetic mechanism with etiological and therapeutic implications for schizophrenia.
Collapse
|
22
|
Abel ME, Zhang X, Asah SM, Wolfinger A, McCullumsmith RE, O'Donovan SM. KEOPS complex expression in the frontal cortex in major depression and schizophrenia. World J Biol Psychiatry 2021; 22:446-455. [PMID: 32914678 PMCID: PMC8005497 DOI: 10.1080/15622975.2020.1821917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Recently, the presence of a complete five subunit Kinase, Endopeptidase and Other Proteins of small Size (KEOPS) complex was confirmed in humans. The highly conserved KEOPS protein complex has established roles in tRNA modification, protein translation and telomere homeostasis in yeast, but little is known about KEOPS mRNA expression and function in human brain and disease. Here, we characterise KEOPS expression in post-mortem tissue from subjects diagnosed with major depression (MDD) and schizophrenia and assess whether KEOPS is associated with telomere length dysregulation in neuropsychiatric disorders. METHODS We assessed mRNA expression of KEOPS complex subunits TP53RK, TPRKB, GON7, LAGE3, OSGEP, and OSGEP mitochondrial ortholog OSGEPL1 in the dorsolateral prefrontal cortex (DLPFC) of subjects with MDD, schizophrenia and matched non-psychiatrically ill controls (n = 20 per group) using qPCR. We conducted bioinformatic analysis using Kaleidoscope, data mining post-mortem transcriptomic datasets to characterise KEOPS expression in human brain. Finally, we assayed relative telomere length in the DLPFC using a qPCR-based assay and carried out correlation analysis with KEOPS subunit mRNA expression to determine if the KEOPS complex is associated with telomere length dysregulation in neuropsychiatric disorders. RESULTS There were no significant changes in KEOPS mRNA expression in the DLPFC in MDD or schizophrenia compared to non-psychiatrically ill controls. Relative telomere length was not significantly altered in MDD or schizophrenia, nor was there an association between relative telomere length and KEOPS subunit gene expression in these subjects. CONCLUSIONS This study is the first to describe KEOPS complex expression in post-mortem brain and neuropsychiatric disorders. KEOPS subunit mRNA expression is not significantly altered in the DLPFC in MDD or schizophrenia. Unlike in yeast, the KEOPS complex does not appear to play a role in telomere length regulation in humans or in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Mackenzie E Abel
- Department of Neuroscience, University of Toledo, Toledo, OH, USA
| | - Xiaolu Zhang
- Department of Neuroscience, University of Toledo, Toledo, OH, USA
| | - Sophie M Asah
- Department of Neuroscience, University of Toledo, Toledo, OH, USA
| | - Alyssa Wolfinger
- Department of Neuroscience, University of Toledo, Toledo, OH, USA
| | - Robert E McCullumsmith
- Department of Neuroscience, University of Toledo, Toledo, OH, USA
- Neurosciences Institute, Promedica, Toledo, OH, USA
| | | |
Collapse
|
23
|
Lin B, Alganem K, O'Donovan SM, Jin Z, Naghavi F, Miller OA, Ortyl TC, Ruan YC, McCullumsmith RE, Du J. Activation of acid-sensing ion channels by carbon dioxide regulates amygdala synaptic protein degradation in memory reconsolidation. Mol Brain 2021; 14:78. [PMID: 33962650 PMCID: PMC8106190 DOI: 10.1186/s13041-021-00786-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/26/2021] [Indexed: 02/05/2023] Open
Abstract
Reconsolidation has been considered a process in which a consolidated memory is turned into a labile stage. Within the reconsolidation window, the labile memory can be either erased or strengthened. Manipulating acid-sensing ion channels (ASICs) in the amygdala via carbon dioxide (CO2) inhalation enhances memory retrieval and its lability within the reconsolidation window. Moreover, pairing CO2 inhalation with retrieval bears the reactivation of the memory trace and enhances the synaptic exchange of the calcium-impermeable AMPA receptors to calcium-permeable AMPA receptors. Our patch-clamp data suggest that the exchange of the AMPA receptors depends on the ubiquitin-proteasome system (UPS), via protein degradation. Ziram (50 µM), a ubiquitination inhibitor, reduces the turnover of the AMPA receptors. CO2 inhalation with retrieval boosts the ubiquitination without altering the proteasome activity. Several calcium-dependent kinases potentially involved in the CO2-inhalation regulated memory liability were identified using the Kinome assay. These results suggest that the UPS plays a key role in regulating the turnover of AMPA receptors during CO2 inhalation.
Collapse
Affiliation(s)
- Boren Lin
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, 38163, Memphis, TN, USA
- Department of Biological Sciences, The University of Toledo, 43606, Toledo, OH, USA
| | - Khaled Alganem
- Department of Neurosciences, The University of Toledo Medical Center, 43614, Toledo, OH, USA
| | - Sinead M O'Donovan
- Department of Neurosciences, The University of Toledo Medical Center, 43614, Toledo, OH, USA
| | - Zhen Jin
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, 38163, Memphis, TN, USA
| | - FarzanehSadat Naghavi
- Department of Neurosciences, The University of Toledo Medical Center, 43614, Toledo, OH, USA
| | - Olivia A Miller
- Department of Biological Sciences, The University of Toledo, 43606, Toledo, OH, USA
| | - Tyler C Ortyl
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, 38163, Memphis, TN, USA
| | - Ye Chun Ruan
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Robert E McCullumsmith
- Department of Neurosciences, The University of Toledo Medical Center, 43614, Toledo, OH, USA
- Neurosciences Institute, ProMedica, OH, 43614, Toledo, USA
| | - Jianyang Du
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, 38163, Memphis, TN, USA.
- Neuroscience Institute, The University of Tennessee Health Science Center, 38163, Memphis, TN, USA.
| |
Collapse
|
24
|
Smail MA, Reigle JK, McCullumsmith RE. Using protein turnover to expand the applications of transcriptomics. Sci Rep 2021; 11:4403. [PMID: 33623108 PMCID: PMC7902815 DOI: 10.1038/s41598-021-83886-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/08/2021] [Indexed: 01/31/2023] Open
Abstract
RNA expression and protein abundance are often at odds when measured in parallel, raising questions about the functional implications of transcriptomics data. Here, we present the concept of persistence, which attempts to address this challenge by combining protein half-life data with RNA expression into a single metric that approximates protein abundance. The longer a protein's half-life, the more influence it can have on its surroundings. This data offers a valuable opportunity to gain deeper insight into the functional meaning of transcriptome changes. We demonstrate the application of persistence using schizophrenia (SCZ) datasets, where it greatly improved our ability to predict protein abundance from RNA expression. Furthermore, this approach successfully identified persistent genes and pathways known to have impactful changes in SCZ. These results suggest that persistence is a valuable metric for improving the functional insight offered by transcriptomics data, and extended application of this concept could advance numerous research fields.
Collapse
Affiliation(s)
- Marissa A Smail
- Department of Pharmacology and Systems Physiology, University of Cincinnati, 2170 E. Galbraith Rd. Bldg E. Room 216, Cincinnati, OH, 45237-0506, USA.
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA.
| | - James K Reigle
- Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Robert E McCullumsmith
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Neurosciences Institute, ProMedica, Toledo, OH, USA
| |
Collapse
|
25
|
Shukla R, Henkel ND, Alganem K, Hamoud AR, Reigle J, Alnafisah RS, Eby HM, Imami AS, Creeden JF, Miruzzi SA, Meller J, Mccullumsmith RE. Signature-based approaches for informed drug repurposing: targeting CNS disorders. Neuropsychopharmacology 2021; 46:116-130. [PMID: 32604402 PMCID: PMC7688959 DOI: 10.1038/s41386-020-0752-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/30/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
Abstract
CNS disorders, and in particular psychiatric illnesses, lack definitive disease-altering therapeutics. The limited understanding of the mechanisms driving these illnesses with the slow pace and high cost of drug development exacerbates this issue. For these reasons, drug repurposing - both a less expensive and time-efficient practice compared to de novo drug development - has been a promising strategy to overcome the paucity of treatments available for these debilitating disorders. While empirical drug-repurposing has been a routine practice in clinical psychiatry, innovative, informed, and cost-effective repurposing efforts using big data ("omics") have been designed to characterize drugs by structural and transcriptomic signatures. These strategies, in conjunction with ontological integration, provide an important opportunity to address knowledge-based challenges associated with drug development for CNS disorders. In this review, we discuss various signature-based in silico approaches to drug repurposing, its integration with multiple omics platforms, and how this data can be used for clinically relevant, evidence-based drug repurposing. These tools provide an exciting translational avenue to merge omics-based drug discovery platforms with patient-specific disease signatures, ultimately facilitating the identification of new therapies for numerous psychiatric disorders.
Collapse
Affiliation(s)
- Rammohan Shukla
- Department of Neurosciences, University of Toledo, Toledo, OH, USA.
| | | | - Khaled Alganem
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | | | - James Reigle
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Hunter M Eby
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Ali S Imami
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Justin F Creeden
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Scott A Miruzzi
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Jaroslaw Meller
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Electrical Engineering and Computing Systems, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Informatics, Nicolaus Copernicus University, Torun, Poland
| | - Robert E Mccullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
- Neurosciences Institute, ProMedica, Toledo, OH, USA
| |
Collapse
|
26
|
Bentea E, Villers A, Moore C, Funk AJ, O’Donovan SM, Verbruggen L, Lara O, Janssen P, De Pauw L, Declerck NB, DePasquale EAK, Churchill MJ, Sato H, Hermans E, Arckens L, Meshul CK, Ris L, McCullumsmith RE, Massie A. Corticostriatal dysfunction and social interaction deficits in mice lacking the cystine/glutamate antiporter. Mol Psychiatry 2021; 26:4754-4769. [PMID: 32366950 PMCID: PMC7609546 DOI: 10.1038/s41380-020-0751-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/07/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
Abstract
The astrocytic cystine/glutamate antiporter system xc- represents an important source of extracellular glutamate in the central nervous system, with potential impact on excitatory neurotransmission. Yet, its function and importance in brain physiology remain incompletely understood. Employing slice electrophysiology and mice with a genetic deletion of the specific subunit of system xc-, xCT (xCT-/- mice), we uncovered decreased neurotransmission at corticostriatal synapses. This effect was partly mitigated by replenishing extracellular glutamate levels, indicating a defect linked with decreased extracellular glutamate availability. We observed no changes in the morphology of striatal medium spiny neurons, the density of dendritic spines, or the density or ultrastructure of corticostriatal synapses, indicating that the observed functional defects are not due to morphological or structural abnormalities. By combining electron microscopy with glutamate immunogold labeling, we identified decreased intracellular glutamate density in presynaptic terminals, presynaptic mitochondria, and in dendritic spines of xCT-/- mice. A proteomic and kinomic screen of the striatum of xCT-/- mice revealed decreased expression of presynaptic proteins and abnormal kinase network signaling, that may contribute to the observed changes in postsynaptic responses. Finally, these corticostriatal deregulations resulted in a behavioral phenotype suggestive of autism spectrum disorder in the xCT-/- mice; in tests sensitive to corticostriatal functioning we recorded increased repetitive digging behavior and decreased sociability. To conclude, our findings show that system xc- plays a previously unrecognized role in regulating corticostriatal neurotransmission and influences social preference and repetitive behavior.
Collapse
Affiliation(s)
- Eduard Bentea
- grid.8767.e0000 0001 2290 8069Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Agnès Villers
- grid.8364.90000 0001 2184 581XDepartment of Neurosciences, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Cynthia Moore
- grid.410404.50000 0001 0165 2383Research Services, Neurocytology Laboratory, Veterans Affairs Medical Center, Portland, OR USA
| | - Adam J. Funk
- grid.267337.40000 0001 2184 944XDepartment of Neurosciences, University of Toledo College of Medicine, Toledo, OH USA
| | - Sinead M. O’Donovan
- grid.267337.40000 0001 2184 944XDepartment of Neurosciences, University of Toledo College of Medicine, Toledo, OH USA
| | - Lise Verbruggen
- grid.8767.e0000 0001 2290 8069Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Olaya Lara
- grid.8767.e0000 0001 2290 8069Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Pauline Janssen
- grid.8767.e0000 0001 2290 8069Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Laura De Pauw
- grid.8767.e0000 0001 2290 8069Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Noemi B. Declerck
- grid.8767.e0000 0001 2290 8069Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Erica A. K. DePasquale
- grid.239573.90000 0000 9025 8099Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH USA
| | - Madeline J. Churchill
- grid.410404.50000 0001 0165 2383Research Services, Neurocytology Laboratory, Veterans Affairs Medical Center, Portland, OR USA
| | - Hideyo Sato
- grid.260975.f0000 0001 0671 5144Department of Medical Technology, Faculty of Medicine, Laboratory of Biochemistry and Molecular Biology, Niigata University, Niigata, Japan
| | - Emmanuel Hermans
- grid.7942.80000 0001 2294 713XInstitute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Lutgarde Arckens
- grid.5596.f0000 0001 0668 7884Laboratory of Neuroplasticity and Neuroproteomics, and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven, Belgium
| | - Charles K. Meshul
- grid.410404.50000 0001 0165 2383Research Services, Neurocytology Laboratory, Veterans Affairs Medical Center, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR USA
| | - Laurence Ris
- grid.8364.90000 0001 2184 581XDepartment of Neurosciences, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Robert E. McCullumsmith
- grid.267337.40000 0001 2184 944XDepartment of Neurosciences, University of Toledo College of Medicine, Toledo, OH USA
| | - Ann Massie
- Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| |
Collapse
|
27
|
Creeden JF, Alganem K, Imami AS, Brunicardi FC, Liu SH, Shukla R, Tomar T, Naji F, McCullumsmith RE. Kinome Array Profiling of Patient-Derived Pancreatic Ductal Adenocarcinoma Identifies Differentially Active Protein Tyrosine Kinases. Int J Mol Sci 2020; 21:ijms21228679. [PMID: 33213062 PMCID: PMC7698519 DOI: 10.3390/ijms21228679] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer remains one of the most difficult malignancies to treat. Minimal improvements in patient outcomes and persistently abysmal patient survival rates underscore the great need for new treatment strategies. Currently, there is intense interest in therapeutic strategies that target tyrosine protein kinases. Here, we employed kinome arrays and bioinformatic pipelines capable of identifying differentially active protein tyrosine kinases in different patient-derived pancreatic ductal adenocarcinoma (PDAC) cell lines and wild-type pancreatic tissue to investigate the unique kinomic networks of PDAC samples and posit novel target kinases for pancreatic cancer therapy. Consistent with previously described reports, the resultant peptide-based kinome array profiles identified increased protein tyrosine kinase activity in pancreatic cancer for the following kinases: epidermal growth factor receptor (EGFR), fms related receptor tyrosine kinase 4/vascular endothelial growth factor receptor 3 (FLT4/VEGFR-3), insulin receptor (INSR), ephrin receptor A2 (EPHA2), platelet derived growth factor receptor alpha (PDGFRA), SRC proto-oncogene kinase (SRC), and tyrosine kinase non receptor 2 (TNK2). Furthermore, this study identified increased activity for protein tyrosine kinases with limited prior evidence of differential activity in pancreatic cancer. These protein tyrosine kinases include B lymphoid kinase (BLK), Fyn-related kinase (FRK), Lck/Yes-related novel kinase (LYN), FYN proto-oncogene kinase (FYN), lymphocyte cell-specific kinase (LCK), tec protein kinase (TEC), hemopoietic cell kinase (HCK), ABL proto-oncogene 2 kinase (ABL2), discoidin domain receptor 1 kinase (DDR1), and ephrin receptor A8 kinase (EPHA8). Together, these results support the utility of peptide array kinomic analyses in the generation of potential candidate kinases for future pancreatic cancer therapeutic development.
Collapse
Affiliation(s)
- Justin F. Creeden
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (R.S.); (R.E.M.)
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (F.C.B.); (S.-H.L.)
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
- Correspondence: ; Tel.: +1-419-383-6474
| | - Khaled Alganem
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (R.S.); (R.E.M.)
| | - Ali S. Imami
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (R.S.); (R.E.M.)
| | - F. Charles Brunicardi
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (F.C.B.); (S.-H.L.)
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Shi-He Liu
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (F.C.B.); (S.-H.L.)
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Rammohan Shukla
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (R.S.); (R.E.M.)
| | - Tushar Tomar
- PamGene International BV, 5200 BJ’s-Hertogenbosch, The Netherlands; (T.T.); (F.N.)
| | - Faris Naji
- PamGene International BV, 5200 BJ’s-Hertogenbosch, The Netherlands; (T.T.); (F.N.)
| | - Robert E. McCullumsmith
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (R.S.); (R.E.M.)
- Neurosciences Institute, ProMedica, Toledo, OH 43606, USA
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW We review the ways in which stem cells are used in psychiatric disease research, including the related advances in gene editing and directed cell differentiation. RECENT FINDINGS The recent development of induced pluripotent stem cell (iPSC) technologies has created new possibilities for the study of psychiatric disease. iPSCs can be derived from patients or controls and differentiated to an array of neuronal and non-neuronal cell types. Their genomes can be edited as desired, and they can be assessed for a variety of phenotypes. This makes them especially interesting for studying genetic variation, which is particularly useful today now that our knowledge on the genetics of psychiatric disease is quickly expanding. The recent advances in cell engineering have led to powerful new methods for studying psychiatric illness including schizophrenia, bipolar disorder, and autism. There is a wide array of possible applications as illustrated by the many examples from the literature, most of which are cited here.
Collapse
Affiliation(s)
- Debamitra Das
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kyra Feuer
- Predoctoral Training Program in Human Genetics, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marah Wahbeh
- Predoctoral Training Program in Human Genetics, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dimitrios Avramopoulos
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
29
|
Guinart D, Moreno E, Galindo L, Cuenca-Royo A, Barrera-Conde M, Pérez EJ, Fernández-Avilés C, Correll CU, Canela EI, Casadó V, Cordomi A, Pardo L, de la Torre R, Pérez V, Robledo P. Altered Signaling in CB1R-5-HT2AR Heteromers in Olfactory Neuroepithelium Cells of Schizophrenia Patients is Modulated by Cannabis Use. Schizophr Bull 2020; 46:1547-1557. [PMID: 32249318 PMCID: PMC7846100 DOI: 10.1093/schbul/sbaa038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Schizophrenia (SCZ) has been associated with serotonergic and endocannabinoid systems dysregulation, but difficulty in obtaining in vivo neurological tissue has limited its exploration. We investigated CB1R-5-HT2AR heteromer expression and functionality via intracellular pERK and cAMP quantification in olfactory neuroepithelium (ON) cells of SCZ patients non-cannabis users (SCZ/nc), and evaluated whether cannabis modulated these parameters in patients using cannabis (SCZ/c). Results were compared vs healthy controls non-cannabis users (HC/nc) and healthy controls cannabis users (HC/c). Further, antipsychotic effects on heteromer signaling were tested in vitro in HC/nc and HC/c. Results indicated that heteromer expression was enhanced in both SCZ groups vs HC/nc. Additionally, pooling all 4 groups together, heteromer expression correlated with worse attentional performance and more neurological soft signs (NSS), indicating that these changes may be useful markers for neurocognitive impairment. Remarkably, the previously reported signaling properties of CB1R-5-HT2AR heteromers in ON cells were absent, specifically in SCZ/nc treated with clozapine. These findings were mimicked in cells from HC/nc exposed to clozapine, suggesting a major role of this antipsychotic in altering the quaternary structure of the CB1R-5-HT2AR heteromer in SCZ/nc patients. In contrast, cells from SCZ/c showed enhanced heteromer functionality similar to HC/c. Our data highlight a molecular marker of the interaction between antipsychotic medication and cannabis use in SCZ with relevance for future studies evaluating its association with specific neuropsychiatric alterations.
Collapse
Affiliation(s)
- Daniel Guinart
- Neuropsychiatry and Addictions Institute (INAD) of Parc de Salut Mar, Barcelona, Spain,Department of Psychiatry and Legal Medicine, Autonomous University of Barcelona, Barcelona, Spain,Department of Psychiatry, Zucker Hillside Hospital, Northwell Health, New York, NY
| | - Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of Barcelona, Barcelona, Spain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Liliana Galindo
- Neuropsychiatry and Addictions Institute (INAD) of Parc de Salut Mar, Barcelona, Spain,Department of Psychiatry, University of Cambridge, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Aida Cuenca-Royo
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Marta Barrera-Conde
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain,Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Ezequiel J Pérez
- Neuropsychiatry and Addictions Institute (INAD) of Parc de Salut Mar, Barcelona, Spain
| | | | - Christoph U Correll
- Department of Psychiatry, Zucker Hillside Hospital, Northwell Health, New York, NY,Department of Child and Adolescent Psychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Enric I Canela
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of Barcelona, Barcelona, Spain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Vicent Casadó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of Barcelona, Barcelona, Spain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Arnau Cordomi
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Leonardo Pardo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Víctor Pérez
- Neuropsychiatry and Addictions Institute (INAD) of Parc de Salut Mar, Barcelona, Spain,Department of Psychiatry and Legal Medicine, Autonomous University of Barcelona, Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental G21, Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Robledo
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain,Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain,To whom correspondence should be addressed; IMIM-Hospital del Mar Research Institute, PRBB, Calle Dr. Aiguader 88, Barcelona 08003, Spain; telephone: +34 93 316 0455; e-mail:
| |
Collapse
|
30
|
A Novel Schizophrenia Diagnostic Model Based on Statistically Significant Changes in Gene Methylation in Specific Brain Regions. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8047146. [PMID: 32104705 PMCID: PMC7037884 DOI: 10.1155/2020/8047146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/28/2019] [Accepted: 11/15/2019] [Indexed: 12/23/2022]
Abstract
Objective The present study identified methylation patterns of schizophrenia- (SCZ-) related genes in different brain regions and used them to construct a novel DNA methylation-based SCZ diagnostic model. Methods Four DNA methylation datasets representing different brain regions were downloaded from the Gene Expression Omnibus. The common differentially methylated genes (CDMGs) in all datasets were identified to perform functional enrichment analysis. The differential methylation sites of 10 CDMGs involved in the largest numbers of neurological or psychiatric-related biological processes were used to construct a DNA methylation-based diagnostic model for SCZ in the respective datasets. Results A total of 849 CDMGs were identified in the four datasets, but the methylation sites as well as degree of methylation differed across the brain regions. Functional enrichment analysis showed CDMGs were significantly involved in biological processes associated with neuronal axon development, intercellular adhesion, and cell morphology changes and, specifically, in PI3K-Akt, AMPK, and MAPK signaling pathways. Four DNA methylation-based classifiers for diagnosing SCZ were constructed in the four datasets, respectively. The sample recognition efficiency of the classifiers showed an area under the receiver operating characteristic curve of 1.00 in three datasets and >0.9 in one dataset. Conclusion DNA methylation patterns in SCZ vary across different brain regions, which may be a useful epigenetic characteristic for diagnosing SCZ. Our novel model based on SCZ-gene methylation shows promising diagnostic power.
Collapse
|