1
|
Andreini C. Twenty years in metalloprotein bioinformatics: A short history of a long journey. J Inorg Biochem 2025; 266:112854. [PMID: 39961171 DOI: 10.1016/j.jinorgbio.2025.112854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 03/01/2025]
Abstract
The study of the structure and function of metalloproteins is a central subject of inorganic biochemistry. Starting from the 2000s, computational methods have flanked experimental research by exploiting the ever-increasing computing power and the huge amount of data produced by omics technologies. In this article, we retrace the major advancements that brought bioinformatics from being of minor relevance to being an essential tool for today's inorganic biochemists, focusing on the contributions coming from the Magnetic Resonance Center (CERM) of Florence, where we have been developing for twenty years methods and resources to investigate metalloproteins with computational approaches.
Collapse
Affiliation(s)
- Claudia Andreini
- Magnetic Resonance Center, University of Florence, 50019 Sesto Fiorentino, Italy; Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
2
|
Cheng C, McCauley BS, Matulionis N, Vogelauer M, Camacho D, Christofk HR, Dang W, Irwin NAT, Kurdistani SK. Histone H3 cysteine 110 enhances iron metabolism and modulates replicative life span in Saccharomyces cerevisiae. SCIENCE ADVANCES 2025; 11:eadv4082. [PMID: 40215312 PMCID: PMC11988410 DOI: 10.1126/sciadv.adv4082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/06/2025] [Indexed: 04/14/2025]
Abstract
The discovery of histone H3 copper reductase activity provides a novel metabolic framework for understanding the functions of core histone residues, which, unlike N-terminal residues, have remained largely unexplored. We previously demonstrated that histone H3 cysteine 110 (H3C110) contributes to cupric (Cu2+) ion binding and its reduction to the cuprous (Cu1+) form. However, this residue is absent in Saccharomyces cerevisiae, raising questions about its evolutionary and functional significance. Here, we report that H3C110 has been lost in many fungal lineages despite near-universal conservation across eukaryotes. Introduction of H3C110 into S. cerevisiae increased intracellular Cu1+ levels and ameliorated the iron homeostasis defects caused by inactivation of the Cup1 metallothionein or glutathione depletion. Enhanced histone copper reductase activity also extended replicative life span under oxidative growth conditions but reduced it under fermentative conditions. Our findings suggest that a trade-off between histone copper reductase activity, iron metabolism, and life span may underlie the loss or retention of H3C110 across eukaryotes.
Collapse
Affiliation(s)
- Chen Cheng
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Brenna S. McCauley
- Huffington Center on Aging, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nedas Matulionis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Maria Vogelauer
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dimitrios Camacho
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Heather R. Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Weiwei Dang
- Huffington Center on Aging, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nicholas A. T. Irwin
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Siavash K. Kurdistani
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Mulkidjanian AY, Dibrova DV, Bychkov AY. Origin of the RNA World in Cold Hadean Geothermal Fields Enriched in Zinc and Potassium: Abiogenesis as a Positive Fallout from the Moon-Forming Impact? Life (Basel) 2025; 15:399. [PMID: 40141744 PMCID: PMC11943819 DOI: 10.3390/life15030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
The ubiquitous, evolutionarily oldest RNAs and proteins exclusively use rather rare zinc as transition metal cofactor and potassium as alkali metal cofactor, which implies their abundance in the habitats of the first organisms. Intriguingly, lunar rocks contain a hundred times less zinc and ten times less potassium than the Earth's crust; the Moon is also depleted in other moderately volatile elements (MVEs). Current theories of impact formation of the Moon attribute this depletion to the MVEs still being in a gaseous state when the hot post-impact disk contracted and separated from the nascent Moon. The MVEs then fell out onto juvenile Earth's protocrust; zinc, as the most volatile metal, precipitated last, just after potassium. According to our calculations, the top layer of the protocrust must have contained up to 1019 kg of metallic zinc, a powerful reductant. The venting of hot geothermal fluids through this MVE-fallout layer, rich in metallic zinc and radioactive potassium, both capable of reducing carbon dioxide and dinitrogen, must have yielded a plethora of organic molecules released with the geothermal vapor. In the pools of vapor condensate, the RNA-like molecules may have emerged through a pre-Darwinian selection for low-volatile, associative, mineral-affine, radiation-resistant, nitrogen-rich, and polymerizable molecules.
Collapse
Affiliation(s)
- Armen Y. Mulkidjanian
- Department of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Daria V. Dibrova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Andrey Y. Bychkov
- School of Geology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| |
Collapse
|
4
|
Merchant SS. The Elements of Life, Photosynthesis and Genomics. J Mol Biol 2025:169054. [PMID: 40024437 DOI: 10.1016/j.jmb.2025.169054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
I am a Professor of Biochemistry, Biophysics and Structural Biology and Plant and Microbial Biology at the University of California in Berkeley. I was born and raised in India, emigrated to the United States to attend university, earning a B.S. in Molecular Biology and a Ph.D. in Biochemistry at the University of Wisconsin in Madison. Following post-doctoral studies with Lawrence Bogorad at Harvard University where I became interested in genetic control of trace element quotas, I joined the department of Chemistry and Biochemistry at UCLA. One of the first to appreciate essential trace metals as potential regulators of gene expression, I articulated the details of the nutritional Cu regulon in Chlamydomonas. In parallel, I used genetic approaches to discover the genes governing missing steps in tetrapyrrole metabolism, including the attachment of heme to apocytochromes in the thylakoid lumen and the factors catalyzing the formation of ring V in chlorophyll. After biochemistry and classical genetics, I embraced genomics, taking a leadership role on the Joint Genome Institute's efforts on the Chlamydomonas genome and more recently, contributing to high quality assemblies of several genomes in the green algal radiation, and large transcriptomic and proteomic datasets - focusing on the diel metabolic cycle in synchronized cultures and acclimation to key environmental and nutritional stressors - that are well-used and appreciated by the community. A new venture in Berkeley is the promotion of Auxenochlorella protothecoides as the true "green yeast" and as a platform for engineering algae to produce useful bioproducts.
Collapse
Affiliation(s)
- Sabeeha S Merchant
- Department of Molecular and Cell Biology, University of California - Berkeley, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California - Berkeley, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
5
|
MacDiarmid CW, Taggart J, Wang Y, Vashisht A, Qing X, Wohlschlegel JA, Eide DJ. The interactome of the Bakers' yeast peroxiredoxin Tsa1 implicates it in the redox regulation of intermediary metabolism, glycolysis and zinc homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638137. [PMID: 40027620 PMCID: PMC11870615 DOI: 10.1101/2025.02.18.638137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Zinc (Zn) is an essential nutrient supporting a range of critical processes. In the yeast Saccharomyces cerevisiae, Zn deficiency induces a transcriptional response mediated by the Zap1 activator, which controls a regulon of ~80 genes. A subset support zinc homeostasis by promoting zinc uptake and its distribution between compartments, while the remainder mediate an "adaptive response" to enhance fitness of zinc deficient cells. The peroxiredoxin Tsa1 is a Zap1-regulated adaptive factor essential for the growth of Zn deficient cells. Tsa1 can function as an antioxidant peroxidase, protein chaperone, or redox sensor: the latter activity oxidizes associated proteins via a redox relay mechanism. We previously reported that in Zn deficient cells, Tsa1 inhibits pyruvate kinase (Pyk1) to conserve phosphoenolpyruvate for aromatic amino acid synthesis. However, this regulation makes a relatively minor contribution to fitness in low zinc, suggesting that Tsa1 targets other pathways important to adaptation. Consistent with this model, the redox sensor function of Tsa1 was essential for growth of ZnD cells. Using an MBP-tagged version of Tsa1, we identified a redox-sensitive non-covalent interaction with Pyk1, and applied this system to identify multiple novel interacting partners. This interactome implicates Tsa1 in the regulation of critical processes including many Zn-dependent metabolic pathways. Interestingly, Zap1 was a preferred Tsa1 target, as Tsa1 strongly promoted the oxidation of Zap1 activation domain 2, and was essential for full Zap1 activity. Our findings reveal a novel posttranslational response to Zn deficiency, overlain on and interconnected with the Zap1-mediated transcriptional response.
Collapse
Affiliation(s)
- Colin W MacDiarmid
- Department of Pediatrics, University of Wisconsin-Madison, WI 53706
- Department of Nutritional Sciences, University of Wisconsin-Madison, WI 53706
| | - Janet Taggart
- Department of Nutritional Sciences, University of Wisconsin-Madison, WI 53706
| | - Yirong Wang
- Department of Nutritional Sciences, University of Wisconsin-Madison, WI 53706
| | - Ajay Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, CA 90095
| | - Xin Qing
- Department of Nutritional Sciences, University of Wisconsin-Madison, WI 53706
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, CA 90095
| | - David J Eide
- Department of Nutritional Sciences, University of Wisconsin-Madison, WI 53706
| |
Collapse
|
6
|
Weeks AT, Bird AJ. Regulation of sod1 mRNA and protein abundance by zinc in fission yeast is dependent on the CCR4-NOT complex. J Biol Chem 2025; 301:108156. [PMID: 39761853 PMCID: PMC11830320 DOI: 10.1016/j.jbc.2025.108156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/13/2024] [Accepted: 12/30/2024] [Indexed: 02/02/2025] Open
Abstract
Zinc is an essential micronutrient that serves as a cofactor in a wide variety of enzymes, including Cu-Zn Superoxide Dismutase 1 (Sod1). We have discovered in Schizosaccharomyces pombe that Sod1 mRNA and protein levels are regulated in response to cellular zinc availability. We demonstrate that lower levels of sod1 mRNA and protein accumulate under low zinc conditions and that this regulation does not require the sod1 promoter or known factors that regulate the transcription of sod1 in response to zinc and other environmental stresses. Further analyses using yeast deletion strains and an inactive allele of Caf1 revealed that the reduced accumulation of sod1 mRNA and protein under low zinc conditions depends on the Caf1 and Ccr4 deadenylases of the CCR4-NOT complex. We also found that Caf1 and Ccr4 are both required for growth under zinc-limiting conditions. To gain additional mechanistic insight we used immunoblot analysis to map the regions required for the regulation of the Sod1 protein by zinc. We found that the sod1 ORF and 3'UTR are both necessary and sufficient for the zinc-dependent changes in Sod1 protein abundance. Our studies reveal a novel mechanism of altering mRNA and protein abundance in response to zinc status, which depends on the CCR4-NOT complex.
Collapse
Affiliation(s)
- Andrew T Weeks
- Department of Human Nutrition, Ohio State University, Columbus, Ohio, USA
| | - Amanda J Bird
- Department of Human Nutrition, Ohio State University, Columbus, Ohio, USA; Department of Molecular Genetics, Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
7
|
Helmann JD. Metals in Motion: Understanding Labile Metal Pools in Bacteria. Biochemistry 2025; 64:329-345. [PMID: 39755956 PMCID: PMC11755726 DOI: 10.1021/acs.biochem.4c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 01/07/2025]
Abstract
Metal ions are essential for all life. In microbial cells, potassium (K+) is the most abundant cation and plays a key role in maintaining osmotic balance. Magnesium (Mg2+) is the dominant divalent cation and is required for nucleic acid structure and as an enzyme cofactor. Microbes typically require the transition metals manganese (Mn), iron (Fe), copper (Cu), and zinc (Zn), although the precise set of metal ions needed to sustain life is variable. Intracellular metal pools can be conceptualized as a chemically complex mixture of rapidly exchanging (labile) ions, complemented by those reservoirs that exchange slowly relative to cell metabolism (sequestered). Labile metal pools are buffered by transient interactions with anionic metabolites and macromolecules, with the ribosome playing a major role. Sequestered metal pools include many metalloproteins, cofactors, and storage depots, with some pools redeployed upon metal depletion. Here, I review the size, composition, and dynamics of intracellular metal pools and highlight the major gaps in understanding.
Collapse
Affiliation(s)
- John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, United States
| |
Collapse
|
8
|
Lorentzon E, Lee J, Masaryk J, Keuenhof K, Karlsson N, Galipaud C, Madsen R, Höög JL, Levin DE, Tamás MJ. Direct binding of arsenicals to nuclear transport factors disrupts nucleocytoplasmic transport. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632748. [PMID: 39868121 PMCID: PMC11761705 DOI: 10.1101/2025.01.13.632748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Human exposure to arsenicals is associated with devastating diseases such as cancer and neurodegeneration. At the same time, arsenic-based drugs are used as therapeutic agents. The ability of arsenic to directly bind to proteins is correlated with its toxic and therapeutic effects highlighting the importance of elucidating arsenic-protein interactions. In this study, we took a proteomic approach and identified 174 proteins that bind to arsenic in Saccharomyces cerevisiae. Proteins involved in nucleocytoplasmic transport were markedly enriched among the arsenic-binding proteins, and we demonstrate that arsenic-binding to nuclear import factors results in their relocation from the nuclear envelope and subsequent aggregation in the cytosol. Similarly, nuclear pore proteins that make up the nuclear pore complex mislocalized and aggregated in arsenic-exposed cells. Consequently, arsenic was shown to inhibit nuclear protein import and export. We propose a model in which arsenic-binding to nuclear transport factors leads to their mislocalization and aggregation, which disrupts nucleocytoplasmic transport and causes arsenic sensitivity.
Collapse
Affiliation(s)
- Emma Lorentzon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-405 30 Göteborg, Sweden
| | - Jongmin Lee
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - Jakub Masaryk
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-405 30 Göteborg, Sweden
| | - Katharina Keuenhof
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-405 30 Göteborg, Sweden
| | - Nora Karlsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-405 30 Göteborg, Sweden
| | - Charlotte Galipaud
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-405 30 Göteborg, Sweden
| | - Rebecca Madsen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-405 30 Göteborg, Sweden
| | - Johanna L. Höög
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-405 30 Göteborg, Sweden
| | - David E. Levin
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - Markus J. Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-405 30 Göteborg, Sweden
| |
Collapse
|
9
|
Capdevila DA, Rondón JJ, Edmonds KA, Rocchio JS, Dujovne MV, Giedroc DP. Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking. Chem Rev 2024; 124:13574-13659. [PMID: 39658019 DOI: 10.1021/acs.chemrev.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Transition metals function as structural and catalytic cofactors for a large diversity of proteins and enzymes that collectively comprise the metalloproteome. Metallostasis considers all cellular processes, notably metal sensing, metalloproteome remodeling, and trafficking (or allocation) of metals that collectively ensure the functional integrity and adaptability of the metalloproteome. Bacteria employ both protein and RNA-based mechanisms that sense intracellular transition metal bioavailability and orchestrate systems-level outputs that maintain metallostasis. In this review, we contextualize metallostasis by briefly discussing the metalloproteome and specialized roles that metals play in biology. We then offer a comprehensive perspective on the diversity of metalloregulatory proteins and metal-sensing riboswitches, defining general principles within each sensor superfamily that capture how specificity is encoded in the sequence, and how selectivity can be leveraged in downstream synthetic biology and biotechnology applications. This is followed by a discussion of recent work that highlights selected metalloregulatory outputs, including metalloproteome remodeling and metal allocation by metallochaperones to both client proteins and compartments. We close by briefly discussing places where more work is needed to fill in gaps in our understanding of metallostasis.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Johnma J Rondón
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Joseph S Rocchio
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Matias Villarruel Dujovne
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
10
|
Jonak K, Suppanz I, Bender J, Chacinska A, Warscheid B, Topf U. Ageing-dependent thiol oxidation reveals early oxidation of proteins with core proteostasis functions. Life Sci Alliance 2024; 7:e202302300. [PMID: 38383455 PMCID: PMC10881836 DOI: 10.26508/lsa.202302300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024] Open
Abstract
Oxidative post-translational modifications of protein thiols are well recognized as a readily occurring alteration of proteins, which can modify their function and thus control cellular processes. The development of techniques enabling the site-specific assessment of protein thiol oxidation on a proteome-wide scale significantly expanded the number of known oxidation-sensitive protein thiols. However, lacking behind are large-scale data on the redox state of proteins during ageing, a physiological process accompanied by increased levels of endogenous oxidants. Here, we present the landscape of protein thiol oxidation in chronologically aged wild-type Saccharomyces cerevisiae in a time-dependent manner. Our data determine early-oxidation targets in key biological processes governing the de novo production of proteins, protein folding, and degradation, and indicate a hierarchy of cellular responses affected by a reversible redox modification. Comparison with existing datasets in yeast, nematode, fruit fly, and mouse reveals the evolutionary conservation of these oxidation targets. To facilitate accessibility, we integrated the cross-species comparison into the newly developed OxiAge Database.
Collapse
Affiliation(s)
- Katarzyna Jonak
- Laboratory of Molecular Basis of Aging and Rejuvenation, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Ida Suppanz
- CIBSS Centre for Integrative Biological Signalling Research, University of Freiburg, Freiburg, Germany
| | - Julian Bender
- Biochemistry II, Theodor Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Bettina Warscheid
- CIBSS Centre for Integrative Biological Signalling Research, University of Freiburg, Freiburg, Germany
- Biochemistry II, Theodor Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Ulrike Topf
- Laboratory of Molecular Basis of Aging and Rejuvenation, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
11
|
Liu C, Tang J, Chen Y, Zhang Q, Lin J, Wu S, Han J, Liu Z, Wu C, Zhuo Y, Li Y. Intracellular Zn 2+ promotes extracellular matrix remodeling in dexamethasone-treated trabecular meshwork. Am J Physiol Cell Physiol 2024; 326:C1293-C1307. [PMID: 38525543 DOI: 10.1152/ajpcell.00725.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024]
Abstract
Given the widespread application of glucocorticoids in ophthalmology, the associated elevation of intraocular pressure (IOP) has long been a vexing concern for clinicians, yet the underlying mechanisms remain inconclusive. Much of the discussion focuses on the extracellular matrix (ECM) of trabecular meshwork (TM). It is widely agreed that glucocorticoids impact the expression of matrix metalloproteinases (MMPs), leading to ECM deposition. Since Zn2+ is vital for MMPs, we explored its role in ECM alterations induced by dexamethasone (DEX). Our study revealed that in human TM cells treated with DEX, the level of intracellular Zn2+ significantly decreased, accompanied by impaired extracellular Zn2+ uptake. This correlated with changes in several Zrt-, Irt-related proteins (ZIPs) and metallothionein. ZIP8 knockdown impaired extracellular Zn2+ uptake, but Zn2+ chelation did not affect ZIP8 expression. Resembling DEX's effects, chelation of Zn2+ decreased MMP2 expression, increased the deposition of ECM proteins, and induced structural disarray of ECM. Conversely, supplementation of exogenous Zn2+ in DEX-treated cells ameliorated these outcomes. Notably, dietary zinc supplementation in mice significantly reduced DEX-induced IOP elevation and collagen content in TM, thereby rescuing the visual function of the mice. These findings underscore zinc's pivotal role in ECM regulation, providing a novel perspective on the pathogenesis of glaucoma.NEW & NOTEWORTHY Our study explores zinc's pivotal role in mitigating extracellular matrix dysregulation in the trabecular meshwork and glucocorticoid-induced ocular hypertension. We found that in human trabecular meshwork cells treated with dexamethasone, intracellular Zn2+ significantly decreased, accompanied by impaired extracellular Zn2+ uptake. Zinc supplementation rescues visual function by modulating extracellular matrix proteins and lowering intraocular pressure, offering a direction for further exploration in glaucoma management.
Collapse
Affiliation(s)
- Canying Liu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Jiahui Tang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Yuze Chen
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Qi Zhang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Jicheng Lin
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Siting Wu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Jiaxu Han
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Zhe Liu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Caiqing Wu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Yehong Zhuo
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Yiqing Li
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| |
Collapse
|
12
|
MacDiarmid CW, Taggart J, Kubisiak M, Eide DJ. Restricted glycolysis is a primary cause of the reduced growth rate of zinc-deficient yeast cells. J Biol Chem 2024; 300:107147. [PMID: 38460940 PMCID: PMC11001634 DOI: 10.1016/j.jbc.2024.107147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/23/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024] Open
Abstract
Zinc is required for many critical processes, including intermediary metabolism. In Saccharomyces cerevisiae, the Zap1 activator regulates the transcription of ∼80 genes in response to Zn supply. Some Zap1-regulated genes are Zn transporters that maintain Zn homeostasis, while others mediate adaptive responses that enhance fitness. One adaptive response gene encodes the 2-cysteine peroxiredoxin Tsa1, which is critical to Zn-deficient (ZnD) growth. Depending on its redox state, Tsa1 can function as a peroxidase, a protein chaperone, or a regulatory redox sensor. In a screen for possible Tsa1 regulatory targets, we identified a mutation (cdc19S492A) that partially suppressed the tsa1Δ growth defect. The cdc19S492A mutation reduced activity of its protein product, pyruvate kinase isozyme 1 (Pyk1), implicating Tsa1 in adapting glycolysis to ZnD conditions. Glycolysis requires activity of the Zn-dependent enzyme fructose-bisphosphate aldolase 1, which was substantially decreased in ZnD cells. We hypothesized that in ZnD tsa1Δ cells, the loss of a compensatory Tsa1 regulatory function causes depletion of glycolytic intermediates and restricts dependent amino acid synthesis pathways, and that the decreased activity of Pyk1S492A counteracted this depletion by slowing the irreversible conversion of phosphoenolpyruvate to pyruvate. In support of this model, supplementing ZnD tsa1Δ cells with aromatic amino acids improved their growth. Phosphoenolpyruvate supplementation, in contrast, had a much greater effect on growth rate of WT and tsa1Δ ZnD cells, indicating that inefficient glycolysis is a major factor limiting yeast growth. Surprisingly however, this restriction was not primarily due to low fructose-bisphosphate aldolase 1 activity, but instead occurs earlier in glycolysis.
Collapse
Affiliation(s)
- Colin W MacDiarmid
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | - Janet Taggart
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael Kubisiak
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David J Eide
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
13
|
Santos TADO, Soares LW, Oliveira LN, Moraes D, Mendes MS, Soares CMDA, Bailão AM, Bailão MGS. Zinc Starvation Induces Cell Wall Remodeling and Activates the Antioxidant Defense System in Fonsecaea pedrosoi. J Fungi (Basel) 2024; 10:118. [PMID: 38392790 PMCID: PMC10890210 DOI: 10.3390/jof10020118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
The survival of pathogenic fungi in the host after invasion depends on their ability to obtain nutrients, which include the transition metal zinc. This essential micronutrient is required to maintain the structure and function of various proteins and, therefore, plays a critical role in various biological processes. The host's nutritional immunity limits the availability of zinc to pathogenic fungi mainly by the action of calprotectin, a component of neutrophil extracellular traps. Here we investigated the adaptive responses of Fonsecaea pedrosoi to zinc-limiting conditions. This black fungus is the main etiological agent of chromoblastomycosis, a chronic neglected tropical disease that affects subcutaneous tissues. Following exposure to a zinc-limited environment, F. pedrosoi induces a high-affinity zinc uptake machinery, composed of zinc transporters and the zincophore Pra1. A proteomic approach was used to define proteins regulated by zinc deprivation. Cell wall remodeling, changes in neutral lipids homeostasis, and activation of the antioxidant system were the main strategies for survival in the hostile environment. Furthermore, the downregulation of enzymes required for sulfate assimilation was evident. Together, the adaptive responses allow fungal growth and development and reveals molecules that may be related to fungal persistence in the host.
Collapse
Affiliation(s)
| | - Lucas Weba Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lucas Nojosa Oliveira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil
| | - Dayane Moraes
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil
| | - Millena Silva Mendes
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil
| | - Célia Maria de Almeida Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil
| | - Alexandre Melo Bailão
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil
| | - Mirelle Garcia Silva Bailão
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil
| |
Collapse
|
14
|
De Guidi I, Serre C, Noble J, Ortiz-Julien A, Blondin B, Legras JL. QTL mapping reveals novel genes and mechanisms underlying variations in H2S production during alcoholic fermentation in Saccharomyces cerevisiae. FEMS Yeast Res 2024; 24:foad050. [PMID: 38124683 PMCID: PMC11090286 DOI: 10.1093/femsyr/foad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/13/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Saccharomyces cerevisiae requirement for reduced sulfur to synthesize methionine and cysteine during alcoholic fermentation, is mainly fulfilled through the sulfur assimilation pathway. Saccharomyces cerevisiae reduces sulfate into sulfur dioxide (SO2) and sulfide (H2S), whose overproduction is a major issue in winemaking, due to its negative impact on wine aroma. The amount of H2S produced is highly strain-specific and also depends on SO2 concentration, often added to grape must. Applying a bulk segregant analysis to a 96-strain-progeny derived from two strains with different abilities to produce H2S, and comparing allelic frequencies along the genome of pools of segregants producing contrasting H2S quantities, we identified two causative regions involved in H2S production in the presence of SO2. A functional genetic analysis allowed the identification of variants in four genes able to impact H2S formation, viz; ZWF1, ZRT2, SNR2, and YLR125W, and involved in functions and pathways not associated with sulfur metabolism until now. These data point out that, in wine fermentation conditions, redox status, and zinc homeostasis are linked to H2S formation while providing new insights into the regulation of H2S production, and a new vision of the interplay between the sulfur assimilation pathway and cell metabolism.
Collapse
Affiliation(s)
- Irene De Guidi
- SPO, Université de Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| | - Céline Serre
- SPO, Université de Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| | | | | | - Bruno Blondin
- SPO, Université de Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| | - Jean-Luc Legras
- SPO, Université de Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| |
Collapse
|
15
|
Kambe T, Wagatsuma T. Metalation and activation of Zn 2+ enzymes via early secretory pathway-resident ZNT proteins. BIOPHYSICS REVIEWS 2023; 4:041302. [PMID: 38510844 PMCID: PMC10903440 DOI: 10.1063/5.0176048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/21/2023] [Indexed: 03/22/2024]
Abstract
Zinc (Zn2+), an essential trace element, binds to various proteins, including enzymes, transcription factors, channels, and signaling molecules and their receptors, to regulate their activities in a wide range of physiological functions. Zn2+ proteome analyses have indicated that approximately 10% of the proteins encoded by the human genome have potential Zn2+ binding sites. Zn2+ binding to the functional site of a protein (for enzymes, the active site) is termed Zn2+ metalation. In eukaryotic cells, approximately one-third of proteins are targeted to the endoplasmic reticulum; therefore, a considerable number of proteins mature by Zn2+ metalation in the early secretory pathway compartments. Failure to capture Zn2+ in these compartments results in not only the inactivation of enzymes (apo-Zn2+ enzymes), but also their elimination via degradation. This process deserves attention because many Zn2+ enzymes that mature during the secretory process are associated with disease pathogenesis. However, how Zn2+ is mobilized via Zn2+ transporters, particularly ZNTs, and incorporated in enzymes has not been fully elucidated from the cellular perspective and much less from the biophysical perspective. This review focuses on Zn2+ enzymes that are activated by Zn2+ metalation via Zn2+ transporters during the secretory process. Further, we describe the importance of Zn2+ metalation from the physiopathological perspective, helping to reveal the importance of understanding Zn2+ enzymes from a biophysical perspective.
Collapse
Affiliation(s)
- Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Takumi Wagatsuma
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
16
|
Laveglia V, Bazayeva M, Andreini C, Rosato A. Hunting down zinc(II)-binding sites in proteins with distance matrices. Bioinformatics 2023; 39:btad653. [PMID: 37878807 PMCID: PMC10630175 DOI: 10.1093/bioinformatics/btad653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023] Open
Abstract
MOTIVATION In recent years, high-throughput sequencing technologies have made available the genome sequences of a huge variety of organisms. However, the functional annotation of the encoded proteins often still relies on low-throughput and costly experimental studies. Bioinformatics approaches offer a promising alternative to accelerate this process. In this work, we focus on the binding of zinc(II) ions, which is needed for 5%-10% of any organism's proteins to achieve their physiologically relevant form. RESULTS To implement a predictor of zinc(II)-binding sites in the 3D structures of proteins, we used a neural network, followed by a filter of the network output against the local structure of all known sites. The latter was implemented as a function comparing the distance matrices of the Cα and Cβ atoms of the sites. We called the resulting tool Master of Metals (MOM). The structural models for the entire proteome of an organism generated by AlphaFold can be used as input to our tool in order to achieve annotation at the whole organism level within a few hours. To demonstrate this, we applied MOM to the yeast proteome, obtaining a precision of about 76%, based on data for homologous proteins. AVAILABILITY AND IMPLEMENTATION Master of Metals has been implemented in Python and is available at https://github.com/cerm-cirmmp/Master-of-metals.
Collapse
Affiliation(s)
- Vincenzo Laveglia
- Department of Chemistry, University of Florence, Sesto Fiorentino 50019, Italy
| | - Milana Bazayeva
- Department of Chemistry, University of Florence, Sesto Fiorentino 50019, Italy
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
| | - Claudia Andreini
- Department of Chemistry, University of Florence, Sesto Fiorentino 50019, Italy
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Sesto Fiorentino 50019, Italy
| | - Antonio Rosato
- Department of Chemistry, University of Florence, Sesto Fiorentino 50019, Italy
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Sesto Fiorentino 50019, Italy
| |
Collapse
|
17
|
Vogelauer M, Cheng C, Karimian A, Iranpour HG, Kurdistani SK. Zinc is Essential for the Copper Reductase Activity of Yeast Nucleosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557765. [PMID: 37745536 PMCID: PMC10515886 DOI: 10.1101/2023.09.14.557765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The histone H3-H4 tetramer is a copper reductase enzyme, facilitating the production of cuprous (Cu1+) ions for distribution to copper-dependent enzymes. It was, however, unknown if this enzymatic activity occurred within nucleosomes. To investigate this, we obtained native nucleosomes from Saccharomyces cerevisiae using micrococcal nuclease digestion of chromatin in isolated nuclei and ion-exchange chromatographic purification. The purified nucleosomal fragments robustly reduced Cu2+ to Cu1+ ions, with the optimal activity dependent on the presence of zinc ions. Mutation of the histone H3 histidine 113 (H3H113) residue at the active site substantially reduced the enzymatic activity of nucleosomes, underscoring the catalytic role of histone H3. Consistently, limiting zinc ions reduced intracellular Cu1+ levels and compromised growth, phenotypes that were mitigated by genetically enhancing the copper reductase activity of histone H3. These results indicate that yeast nucleosomes possess copper reductase activity, suggesting that the fundamental unit of eukaryotic chromatin is an enzyme complex.
Collapse
Affiliation(s)
- Maria Vogelauer
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Chen Cheng
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ansar Karimian
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Hooman Golshan Iranpour
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Siavash K. Kurdistani
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
18
|
Sadoine M, De Michele R, Župunski M, Grossmann G, Castro-Rodríguez V. Monitoring nutrients in plants with genetically encoded sensors: achievements and perspectives. PLANT PHYSIOLOGY 2023; 193:195-216. [PMID: 37307576 PMCID: PMC10469547 DOI: 10.1093/plphys/kiad337] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/14/2023]
Abstract
Understanding mechanisms of nutrient allocation in organisms requires precise knowledge of the spatiotemporal dynamics of small molecules in vivo. Genetically encoded sensors are powerful tools for studying nutrient distribution and dynamics, as they enable minimally invasive monitoring of nutrient steady-state levels in situ. Numerous types of genetically encoded sensors for nutrients have been designed and applied in mammalian cells and fungi. However, to date, their application for visualizing changing nutrient levels in planta remains limited. Systematic sensor-based approaches could provide the quantitative, kinetic information on tissue-specific, cellular, and subcellular distributions and dynamics of nutrients in situ that is needed for the development of theoretical nutrient flux models that form the basis for future crop engineering. Here, we review various approaches that can be used to measure nutrients in planta with an overview over conventional techniques, as well as genetically encoded sensors currently available for nutrient monitoring, and discuss their strengths and limitations. We provide a list of currently available sensors and summarize approaches for their application at the level of cellular compartments and organelles. When used in combination with bioassays on intact organisms and precise, yet destructive analytical methods, the spatiotemporal resolution of sensors offers the prospect of a holistic understanding of nutrient flux in plants.
Collapse
Affiliation(s)
- Mayuri Sadoine
- Institute of Cell and Interaction Biology, Heinrich-Heine Universität Düsseldorf, Düsseldorf 40225, Germany
| | - Roberto De Michele
- Institute of Biosciences and Bioresources, National Research Council of Italy, Palermo 90129, Italy
| | - Milan Župunski
- Institute of Cell and Interaction Biology, Heinrich-Heine Universität Düsseldorf, Düsseldorf 40225, Germany
| | - Guido Grossmann
- Institute of Cell and Interaction Biology, Heinrich-Heine Universität Düsseldorf, Düsseldorf 40225, Germany
- Cluster of Excellence on Plant Sciences, Heinrich-Heine Universität Düsseldorf, Düsseldorf 40225, Germany
| | - Vanessa Castro-Rodríguez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga 29071, Spain
| |
Collapse
|
19
|
Strenkert D, Schmollinger S, Hu Y, Hofmann C, Holbrook K, Liu HW, Purvine SO, Nicora CD, Chen S, Lipton MS, Northen TR, Clemens S, Merchant SS. Zn deficiency disrupts Cu and S homeostasis in Chlamydomonas resulting in over accumulation of Cu and Cysteine. Metallomics 2023; 15:mfad043. [PMID: 37422438 PMCID: PMC10357957 DOI: 10.1093/mtomcs/mfad043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/06/2023] [Indexed: 07/10/2023]
Abstract
Growth of Chlamydomonas reinhardtii in zinc (Zn) limited medium leads to disruption of copper (Cu) homeostasis, resulting in up to 40-fold Cu over-accumulation relative to its typical Cu quota. We show that Chlamydomonas controls its Cu quota by balancing Cu import and export, which is disrupted in a Zn deficient cell, thus establishing a mechanistic connection between Cu and Zn homeostasis. Transcriptomics, proteomics and elemental profiling revealed that Zn-limited Chlamydomonas cells up-regulate a subset of genes encoding "first responder" proteins involved in sulfur (S) assimilation and consequently accumulate more intracellular S, which is incorporated into L-cysteine, γ-glutamylcysteine, and homocysteine. Most prominently, in the absence of Zn, free L-cysteine is increased ∼80-fold, corresponding to ∼2.8 × 109 molecules/cell. Interestingly, classic S-containing metal binding ligands like glutathione and phytochelatins do not increase. X-ray fluorescence microscopy showed foci of S accumulation in Zn-limited cells that co-localize with Cu, phosphorus and calcium, consistent with Cu-thiol complexes in the acidocalcisome, the site of Cu(I) accumulation. Notably, cells that have been previously starved for Cu do not accumulate S or Cys, causally connecting cysteine synthesis with Cu accumulation. We suggest that cysteine is an in vivo Cu(I) ligand, perhaps ancestral, that buffers cytosolic Cu.
Collapse
Affiliation(s)
- Daniela Strenkert
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Stefan Schmollinger
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Yuntao Hu
- Environmental Genomics and Systems Biology, Lawrence Berkeley National LaboratoryBerkeley CAUSA
| | | | - Kristen Holbrook
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Helen W Liu
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Samuel O Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, US Department of Energy, Richland, WA 99352, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, US Department of Energy, Richland, WA 99352, USA
| | - Si Chen
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Mary S Lipton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, US Department of Energy, Richland, WA 99352, USA
| | - Trent R Northen
- Environmental Genomics and Systems Biology, Lawrence Berkeley National LaboratoryBerkeley CAUSA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley CAUSA
| | - Stephan Clemens
- Department of Plant Physiology, University of Bayreuth, Germany
| | - Sabeeha S Merchant
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National LaboratoryBerkeley CAUSA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
20
|
Zhang Q, Lin R, Yang J, Zhao J, Li H, Liu K, Xue X, Zhao H, Han S, Zhao H. Transcriptome Analysis Reveals That C17 Mycosubtilin Antagonizes Verticillium dahliae by Interfering with Multiple Functional Pathways of Fungi. BIOLOGY 2023; 12:biology12040513. [PMID: 37106714 PMCID: PMC10136297 DOI: 10.3390/biology12040513] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Verticillium wilt is a kind of soil-borne plant fungal disease caused by Verticillium dahliae (Vd). Vd 991 is a strong pathogen causing cotton Verticillium wilt. Previously, we isolated a compound from the secondary metabolites of Bacillus subtilis J15 (BS J15), which showed a significant control effect on cotton Verticillium wilt and was identified as C17 mycosubtilin. However, the specific fungistatic mechanism by which C17 mycosubtilin antagonizes Vd 991 is not clear. Here, we first showed that C17 mycosubtilin inhibits the growth of Vd 991 and affects germination of spores at the minimum inhibitory concentration (MIC). Morphological observation showed that C17 mycosubtilin treatment caused shrinking, sinking, and even damage to spores; the hyphae became twisted and rough, the surface was sunken, and the contents were unevenly distributed, resulting in thinning and damage to the cell membrane and cell wall and swelling of mitochondria of fungi. Flow cytometry analysis with ANNEXINV-FITC/PI staining showed that C17 mycosubtilin induces necrosis of Vd 991 cells in a time-dependent manner. Differential transcription analysis showed that C17 mycosubtilin at a semi-inhibitory concentration (IC50) treated Vd 991 for 2 and 6 h and inhibited fungal growth mainly by destroying synthesis of the fungal cell membrane and cell wall, inhibiting its DNA replication and transcriptional translation process, blocking its cell cycle, destroying fungal energy and substance metabolism, and disrupting the redox process of fungi. These results directly showed the mechanism by which C17 mycosubtilin antagonizes Vd 991, providing clues for the mechanism of action of lipopeptides and useful information for development of more effective antimicrobials.
Collapse
|
21
|
Strenkert D, Schmollinger S, Hu Y, Hofmann C, Holbrook K, Liu HW, Purvine SO, Nicora CD, Chen S, Lipton MS, Northen TR, Clemens S, Merchant SS. Cysteine: an ancestral Cu binding ligand in green algae? BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532757. [PMID: 36993560 PMCID: PMC10055113 DOI: 10.1101/2023.03.15.532757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Growth of Chlamydomonas reinhardtii in zinc (Zn) limited medium leads to disruption of copper (Cu) homeostasis, resulting in up to 40-fold Cu over-accumulation relative to its typical Cu quota. We show that Chlamydomonas controls its Cu quota by balancing Cu import and export, which is disrupted in a Zn deficient cell, thus establishing a mechanistic connection between Cu and Zn homeostasis. Transcriptomics, proteomics and elemental profiling revealed that Zn-limited Chlamydomonas cells up-regulate a subset of genes encoding "first responder" proteins involved in sulfur (S) assimilation and consequently accumulate more intracellular S, which is incorporated into L-cysteine, γ-glutamylcysteine and homocysteine. Most prominently, in the absence of Zn, free L-cysteine is increased ~80-fold, corresponding to ~ 2.8 × 10 9 molecules/cell. Interestingly, classic S-containing metal binding ligands like glutathione and phytochelatins do not increase. X-ray fluorescence microscopy showed foci of S accumulation in Zn-limited cells that co-localize with Cu, phosphorus and calcium, consistent with Cu-thiol complexes in the acidocalcisome, the site of Cu(I) accumulation. Notably, cells that have been previously starved for Cu do not accumulate S or Cys, causally connecting cysteine synthesis with Cu accumulation. We suggest that cysteine is an in vivo Cu(I) ligand, perhaps ancestral, that buffers cytosolic Cu.
Collapse
|
22
|
de Cubas L, Mallor J, Herrera-Fernández V, Ayté J, Vicente R, Hidalgo E. Expression of the H2O2 Biosensor roGFP-Tpx1.C160S in Fission and Budding Yeasts and Jurkat Cells to Compare Intracellular H2O2 Levels, Transmembrane Gradients, and Response to Metals. Antioxidants (Basel) 2023; 12:antiox12030706. [PMID: 36978953 PMCID: PMC10045392 DOI: 10.3390/antiox12030706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Intracellular hydrogen peroxide (H2O2) levels can oscillate from low, physiological concentrations, to intermediate, signaling ones, and can participate in toxic reactions when overcoming certain thresholds. Fluorescent protein-based reporters to measure intracellular H2O2 have been developed in recent decades. In particular, the redox-sensitive green fluorescent protein (roGFP)-based proteins fused to peroxiredoxins are among the most sensitive H2O2 biosensors. Using fission yeast as a model system, we recently demonstrated that the gradient of extracellular-to-intracellular peroxides through the plasma membrane is around 300:1, and that the concentration of physiological H2O2 is in the low nanomolar range. Here, we have expressed the very sensitive probe roGFP2-Tpx1.C169S in two other model systems, budding yeast and human Jurkat cells. As in fission yeast, the biosensor is ~40–50% oxidized in these cell types, suggesting similar peroxide steady-state levels. Furthermore, probe oxidation upon the addition of extracellular peroxides is also quantitatively similar, suggesting comparable plasma membrane H2O2 gradients. Finally, as a proof of concept, we have applied different concentrations of zinc to all three model systems and have detected probe oxidation, demonstrating that an excess of this metal can cause fluctuations of peroxides, which are moderate in yeasts and severe in mammalian cells. We conclude that the principles governing H2O2 fluxes are very similar in different model organisms.
Collapse
Affiliation(s)
- Laura de Cubas
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Jorge Mallor
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Víctor Herrera-Fernández
- Laboratory of Molecular Physiology, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Rubén Vicente
- Laboratory of Molecular Physiology, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-316-0848; Fax: +34-93-316-0901
| |
Collapse
|
23
|
Biofabrication of Functional Pullulan by Aureobasidium pullulans under the Effect of Varying Mineral Salts and Sugar Stress Conditions. Molecules 2023; 28:molecules28062478. [PMID: 36985449 PMCID: PMC10056076 DOI: 10.3390/molecules28062478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Pullulan is a linear exopolysaccharide, produced in the fermentation media of Aureobasidium pullulans, with a variety of applications in the food and pharmaceutical industries. Pullulan derivatives have growing potential for biomedical applications, but the high cost of pullulan biofabrication currently restricts its commercial use. Better control over pullulan yield, molecular weight and melanin production by altering fermentation conditions could improve the economics. In this study, the effects of sugar and mineral salt stresses on the pullulan production of A. pullulans ATCC 42023 were examined in batch processes. The chemical structure of the recovered pullulan was characterized by FTIR and NMR spectroscopy, and the molecular weight distribution was obtained via SEC. Pullulan yield and melanin production varied when the conditions were adjusted, and pullulans with different molar masses were obtained. Higher-yield pullulan production and a lower polydispersity index were observed when CuSO4 was added to the fermentation in comparison with the control and with the addition of sugars and other salts. Biofabrication of pullulan under stress conditions is a promising strategy to enhance biopolymer yield and to obtain pullulan with a targeted molecular weight.
Collapse
|
24
|
Global Molecular Response of Paracoccidioides brasiliensis to Zinc Deprivation: Analyses at Transcript, Protein and MicroRNA Levels. J Fungi (Basel) 2023; 9:jof9030281. [PMID: 36983449 PMCID: PMC10056003 DOI: 10.3390/jof9030281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Zinc is one of the main micronutrients for all organisms. One of the defense mechanisms used by the host includes the sequestration of metals used in fungal metabolism, such as iron and zinc. There are several mechanisms that maintain the balance in the intracellular zinc supply. MicroRNAs are effector molecules of responses between the pathogen and host, favoring or preventing infection in many microorganisms. Fungi of the Paracoccidioides genus are thermodimorphic and the etiological agents of paracoccidioidomycosis (PCM). In the current pandemic scenario world mycosis studies continue to be highly important since a significant number of patients with COVID-19 developed systemic mycoses, co-infections that complicated their clinical condition. The objective was to identify transcriptomic and proteomic adaptations in Paracoccidioides brasiliensis during zinc deprivation. Nineteen microRNAs were identified, three of which were differentially regulated. Target genes regulated by those microRNAs are elements of zinc homeostasis such as ZRT1, ZRT3 and COT1 transporters. Transcription factors that have zinc in their structure are also targets of those miRNAs. Transcriptional and proteomic data suggest that P. brasiliensis undergoes metabolic remodeling to survive zinc deprivation and that miRNAs may be part of the regulatory process.
Collapse
|
25
|
Abstract
Living systems are built from a small subset of the atomic elements, including the bulk macronutrients (C,H,N,O,P,S) and ions (Mg,K,Na,Ca) together with a small but variable set of trace elements (micronutrients). Here, we provide a global survey of how chemical elements contribute to life. We define five classes of elements: those that are (i) essential for all life, (ii) essential for many organisms in all three domains of life, (iii) essential or beneficial for many organisms in at least one domain, (iv) beneficial to at least some species, and (v) of no known beneficial use. The ability of cells to sustain life when individual elements are absent or limiting relies on complex physiological and evolutionary mechanisms (elemental economy). This survey of elemental use across the tree of life is encapsulated in a web-based, interactive periodic table that summarizes the roles chemical elements in biology and highlights corresponding mechanisms of elemental economy.
Collapse
Affiliation(s)
- Kaleigh A Remick
- Department of Microbiology, Cornell University, New York, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, New York, NY, United States.
| |
Collapse
|
26
|
Dolgalev GV, Safonov TA, Arzumanian VA, Kiseleva OI, Poverennaya EV. Estimating Total Quantitative Protein Content in Escherichia coli, Saccharomyces cerevisiae, and HeLa Cells. Int J Mol Sci 2023; 24:ijms24032081. [PMID: 36768409 PMCID: PMC9916689 DOI: 10.3390/ijms24032081] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
The continuous improvement of proteomic techniques, most notably mass spectrometry, has generated quantified proteomes of many organisms with unprecedented depth and accuracy. However, there is still a significant discrepancy in the reported numbers of total protein molecules per specific cell type. In this article, we explore the results of proteomic studies of Escherichia coli, Saccharomyces cerevisiae, and HeLa cells in terms of total protein copy numbers per cell. We observe up to a ten-fold difference between reported values. Investigating possible reasons for this discrepancy, we conclude that neither an unmeasured fraction of the proteome nor biases in the quantification of individual proteins can explain the observed discrepancy. We normalize protein copy numbers in each study using a total protein amount per cell as reported in the literature and create integrated proteome maps of the selected model organisms. Our results indicate that cells contain from one to three million protein molecules per µm3 and that protein copy density decreases with increasing organism complexity.
Collapse
Affiliation(s)
| | - Taras A. Safonov
- X-BIO Institute, University of Tyumen, 6 Volodarskogo St., Tyumen 625003, Russia
| | | | | | - Ekaterina V. Poverennaya
- Institute of Biomedical Chemistry, Moscow 119281, Russia
- X-BIO Institute, University of Tyumen, 6 Volodarskogo St., Tyumen 625003, Russia
- Correspondence:
| |
Collapse
|
27
|
Duan M, Li T, Liu B, Yin S, Zang J, Lv C, Zhao G, Zhang T. Zinc nutrition and dietary zinc supplements. Crit Rev Food Sci Nutr 2023; 63:1277-1292. [PMID: 34382897 DOI: 10.1080/10408398.2021.1963664] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As the second most abundant trace element in the human body, zinc nutrition is constantly a hot topic. More than one-third population is suffering zinc deficiency, which results in various types of diseases or nutritional deficiencies. Traditional ways of zinc supplementation seem with low absorption rates and significant side effects. Zinc supplements with dietary components are easily accessible and improve zinc utilization rate significantly. Also, mechanisms of maintaining zinc homeostasis are of broad interest. The present review focuses on zinc nutrition in human health in inductive methods. Mainly elaborate on different diseases relating to zinc disorder, highlighting the impact on the immune system and the recent COVID-19. Then raise food-derived zinc-binding compounds, including protein, peptide, polysaccharide, and polyphenol, and also analyze their possibilities to serve as zinc complementary. Finally, illustrate the way to maintain zinc homeostasis and the corresponding mechanisms. The review provides data information for maintaining zinc homeostasis with the food-derived matrix.
Collapse
Affiliation(s)
- Maoping Duan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Tian Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Bo Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shuhua Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chenyan Lv
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Guanghua Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Tuo Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Department of Nutrition and Health, China Agricultural University, Beijing, China
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
28
|
Jordan MR, Gonzalez-Gutierrez G, Trinidad JC, Giedroc DP. Metal retention and replacement in QueD2 protect queuosine-tRNA biosynthesis in metal-starved Acinetobacter baumannii. Proc Natl Acad Sci U S A 2022; 119:e2213630119. [PMID: 36442121 PMCID: PMC9894224 DOI: 10.1073/pnas.2213630119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/28/2022] [Indexed: 11/29/2022] Open
Abstract
In response to bacterial infection, the vertebrate host employs the metal-sequestering protein calprotectin (CP) to withhold essential transition metals, notably Zn(II), to inhibit bacterial growth. Previous studies of the impact of CP-imposed transition-metal starvation in A. baumannii identified two enzymes in the de novo biosynthesis pathway of queuosine-transfer ribonucleic acid (Q-tRNA) that become cellularly abundant, one of which is QueD2, a 6-carboxy-5,6,7,8-tetrahydropterin (6-CPH4) synthase that catalyzes the initial, committed step of the pathway. Here, we show that CP strongly disrupts Q incorporation into tRNA. As such, we compare the AbQueD2 "low-zinc" paralog with a housekeeping, obligatory Zn(II)-dependent enzyme QueD. The crystallographic structure of Zn(II)-bound AbQueD2 reveals a distinct catalytic site coordination sphere and assembly state relative to QueD and possesses a dynamic loop, immediately adjacent to the catalytic site that coordinates a second Zn(II) in the structure. One of these loop-coordinating residues is an invariant Cys18, that protects QueD2 from dissociation of the catalytic Zn(II) while maintaining flux through the Q-tRNA biosynthesis pathway in cells. We propose a "metal retention" model where Cys18 introduces coordinative plasticity into the catalytic site which slows metal release, while also enhancing the metal promiscuity such that Fe(II) becomes an active cofactor. These studies reveal a complex, multipronged evolutionary adaptation to cellular Zn(II) limitation in a key Zn(II) metalloenzyme in an important human pathogen.
Collapse
Affiliation(s)
- Matthew R. Jordan
- Department of Chemistry, Indiana University, Bloomington, IN47405
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN47405
| | | | - Jonathan C. Trinidad
- Department of Chemistry, Indiana University, Bloomington, IN47405
- Laboratory for Biological Mass Spectrometry, Department of Chemistry, Indiana University, Bloomington, IN47405
| | - David P. Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN47405
| |
Collapse
|
29
|
Metal ion availability and homeostasis as drivers of metabolic evolution and enzyme function. Curr Opin Genet Dev 2022; 77:101987. [PMID: 36183585 DOI: 10.1016/j.gde.2022.101987] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 01/27/2023]
Abstract
Metal ions are potent catalysts and have been available for cellular biochemistry at all stages of evolution. Growing evidence suggests that metal catalysis was critical for the origin of the very first metabolic reactions. With approximately 80% of modern metabolic pathways being dependent on metal ions, metallocatalysis and homeostasis continue to be essential for intracellular metabolic networks and physiology. However, the genetic network that controls metal ion homeostasis and the impact of metal availability on metabolism is poorly understood. Here, we review recent work on gene and protein evolution relevant for better understanding metal ion biology and its role in metabolism. We highlight the importance of analysing the origin and evolution of enzyme catalysis in the context of catalytically relevant metal ions, summarise unanswered questions essential for developing a comprehensive understanding of metal ion homeostasis and advocate for the consideration of metal ion properties and availability in the design and directed evolution of novel enzymes and pathways.
Collapse
|
30
|
Kluska K, Chorążewska A, Peris-Díaz MD, Adamczyk J, Krężel A. Non-Conserved Amino Acid Residues Modulate the Thermodynamics of Zn(II) Binding to Classical ββα Zinc Finger Domains. Int J Mol Sci 2022; 23:ijms232314602. [PMID: 36498928 PMCID: PMC9735795 DOI: 10.3390/ijms232314602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Classical zinc fingers domains (ZFs) bind Zn(II) ion by a pair of cysteine and histidine residues to adopt a characteristic and stable ββα fold containing a small hydrophobic core. As a component of transcription factors, they recognize specific DNA sequences to transcript particular genes. The loss of Zn(II) disrupts the unique structure and function of the whole protein. It has been shown that the saturation of ZFs under cellular conditions is strictly related to their affinity for Zn(II). High affinity warrants their constant saturation, while medium affinity results in their transient structurization depending on cellular zinc availability. Therefore, there must be factors hidden in the sequence and structure of ZFs that impact Zn(II)-to-protein affinities to control their function. Using molecular dynamics simulations and experimental spectroscopic and calorimetric approaches, we showed that particular non-conserved residues derived from ZF sequences impact hydrogen bond formation. Our in silico and in vitro studies show that non-conserved residues can alter metal-coupled folding mechanisms and overall ZF stability. Furthermore, we show that Zn(II) binding to ZFs can also be entropically driven. This preference does not correlate either with Zn(II) binding site or with the extent of the secondary structure but is strictly related to a reservoir of interactions within the second coordination shell, which may loosen or tighten up the structure. Our findings shed new light on how the functionality of ZFs is modulated by non-coordinating residues diversity under cellular conditions. Moreover, they can be helpful for systematic backbone alteration of native ZF ββα scaffold to create artificial foldamers and proteins with improved stability.
Collapse
|
31
|
Assunção AGL. The F-bZIP-regulated Zn deficiency response in land plants. PLANTA 2022; 256:108. [PMID: 36348172 PMCID: PMC9643250 DOI: 10.1007/s00425-022-04019-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
This review describes zinc sensing and transcriptional regulation of the zinc deficiency response in Arabidopsis, and discusses how their evolutionary conservation in land plants facilitates translational approaches for improving the Zn nutritional value of crop species. Zinc is an essential micronutrient for all living organisms due to its presence in a large number of proteins, as a structural or catalytic cofactor. In plants, zinc homeostasis mechanisms comprise uptake from soil, transport and distribution throughout the plant to provide adequate cellular zinc availability. Here, I discuss the transcriptional regulation of the response to zinc deficiency and the zinc sensing mechanisms in Arabidopsis, and their evolutionary conservation in land plants. The Arabidopsis F-group basic region leucine-zipper (F-bZIP) transcription factors bZIP19 and bZIP23 function simultaneously as sensors of intracellular zinc status, by direct binding of zinc ions, and as the central regulators of the zinc deficiency response, with their target genes including zinc transporters from the ZRT/IRT-like Protein (ZIP) family and nicotianamine synthase enzymes that produce the zinc ligand nicotianamine. I note that this relatively simple mechanism of zinc sensing and regulation, together with the evolutionary conservation of F-bZIP transcription factors across land plants, offer important research opportunities. One of them is to use the F-bZIP-regulated zinc deficiency response as a tractable module for evolutionary and comparative functional studies. Another research opportunity is translational research in crop plants, modulating F-bZIP activity as a molecular switch to enhance zinc accumulation. This should become a useful plant-based solution to alleviate effects of zinc deficiency in soils, which impact crop production and crop zinc content, with consequences for human nutrition globally.
Collapse
Affiliation(s)
- Ana G L Assunção
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark.
- CIBIO-InBIO, Research Centre in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal.
| |
Collapse
|
32
|
Laveglia V, Giachetti A, Sala D, Andreini C, Rosato A. Learning to Identify Physiological and Adventitious Metal-Binding Sites in the Three-Dimensional Structures of Proteins by Following the Hints of a Deep Neural Network. J Chem Inf Model 2022; 62:2951-2960. [PMID: 35679182 PMCID: PMC9241070 DOI: 10.1021/acs.jcim.2c00522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Thirty-eight percent of protein structures in the Protein Data Bank contain at least one metal ion. However, not all these metal sites are biologically relevant. Cations present as impurities during sample preparation or in the crystallization buffer can cause the formation of protein-metal complexes that do not exist in vivo. We implemented a deep learning approach to build a classifier able to distinguish between physiological and adventitious zinc-binding sites in the 3D structures of metalloproteins. We trained the classifier using manually annotated sites extracted from the MetalPDB database. Using a 10-fold cross validation procedure, the classifier achieved an accuracy of about 90%. The same neural classifier could predict the physiological relevance of non-heme mononuclear iron sites with an accuracy of nearly 80%, suggesting that the rules learned on zinc sites have general relevance. By quantifying the relative importance of the features describing the input zinc sites from the network perspective and by analyzing the characteristics of the MetalPDB datasets, we inferred some common principles. Physiological sites present a low solvent accessibility of the aminoacids forming coordination bonds with the metal ion (the metal ligands), a relatively large number of residues in the metal environment (≥20), and a distinct pattern of conservation of Cys and His residues in the site. Adventitious sites, on the other hand, tend to have a low number of donor atoms from the polypeptide chain (often one or two). These observations support the evaluation of the physiological relevance of novel metal-binding sites in protein structures.
Collapse
Affiliation(s)
- Vincenzo Laveglia
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Andrea Giachetti
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Davide Sala
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy.,Institute for Drug Discovery, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany.,Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Claudia Andreini
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy.,Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Antonio Rosato
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy.,Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
33
|
Polar algae flaunt their zinc assets. Nat Ecol Evol 2022; 6:851-852. [PMID: 35654897 DOI: 10.1038/s41559-022-01721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Zhao J, Peng M, Chen W, Xing X, Shan Y, Fan Z, Shi Y, Li H, Yang X, Li H, Chen L. Transcriptome Analysis and Functional Validation Identify a Putative bZIP Transcription Factor, Fpkapc, that Regulates Development, Stress Responses, and Virulence in Fusarium pseudograminearum. PHYTOPATHOLOGY 2022; 112:1299-1309. [PMID: 35000433 DOI: 10.1094/phyto-12-21-0520-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fusarium pseudograminearum is a soilborne, hemibiotrophic phytopathogenic fungus that causes Fusarium crown rot and Fusarium head blight in wheat. The basic leucine zipper proteins (bZIPs) are evolutionarily conserved transcription factors that play crucial roles in a range of growth and developmental processes and the responses to biotic and abiotic stresses. However, the roles of bZIP transcription factors remains unknown in F. pseudograminearum. In this study, a bZIP transcription factor Fpkapc was identified to localize to the nucleus in F. pseudograminearum. A mutant strain (Δfpkapc) was constructed to determine the role of Fpkapc in growth and pathogenicity of F. pseudograminearum. Transcriptomic analyses revealed that many genes involved in basic metabolism and oxidation-reduction processes were downregulated, whereas many genes involved in metal iron binding were upregulated in the Δfpkapc strain, compared with the wild type (WT). Correspondingly, the mutant had severe growth defects and displayed abnormal hyphal tips. Conidiation in the Fpkapc mutant was reduced, with more conidia in smaller size and fewer septa than in the WT. Also, relative to WT, the Δfpkapc strain showed greater tolerance to ion stress, but decreased tolerance to H2O2. The mutant caused smaller disease lesions on wheat and barley plants, but significantly increased TRI gene expression, compared with the WT. In summary, Fpkapc plays multiple roles in governing growth, development, stress responses, and virulence in F. pseudograminearum.
Collapse
Affiliation(s)
- Jingya Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450000, China
| | - Mengya Peng
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450000, China
| | - Wenbo Chen
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450000, China
| | - Xiaoping Xing
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450000, China
| | - Yixuan Shan
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450000, China
| | - Zhuo Fan
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450000, China
| | - Yan Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450000, China
| | - Haiyang Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450000, China
| | - Xue Yang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450000, China
| | - Honglian Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450000, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450000, China
| | - Linlin Chen
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450000, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450000, China
| |
Collapse
|
35
|
Pasquini M, Grosjean N, Hixson KK, Nicora CD, Yee EF, Lipton M, Blaby IK, Haley JD, Blaby-Haas CE. Zng1 is a GTP-dependent zinc transferase needed for activation of methionine aminopeptidase. Cell Rep 2022; 39:110834. [PMID: 35584675 DOI: 10.1016/j.celrep.2022.110834] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/28/2022] [Accepted: 04/27/2022] [Indexed: 12/12/2022] Open
Abstract
The evolution of zinc (Zn) as a protein cofactor altered the functional landscape of biology, but dependency on Zn also created an Achilles' heel, necessitating adaptive mechanisms to ensure Zn availability to proteins. A debated strategy is whether metallochaperones exist to prioritize essential Zn-dependent proteins. Here, we present evidence for a conserved family of putative metal transferases in human and fungi, which interact with Zn-dependent methionine aminopeptidase type I (MetAP1/Map1p/Fma1). Deletion of the putative metal transferase in Saccharomyces cerevisiae (ZNG1; formerly YNR029c) leads to defective Map1p function and a Zn-deficiency growth defect. In vitro, Zng1p can transfer Zn2+ or Co2+ to apo-Map1p, but unlike characterized copper chaperones, transfer is dependent on GTP hydrolysis. Proteomics reveal mis-regulation of the Zap1p transcription factor regulon because of loss of ZNG1 and Map1p activity, suggesting that Zng1p is required to avoid a compounding effect of Map1p dysfunction on survival during Zn limitation.
Collapse
Affiliation(s)
- Miriam Pasquini
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Nicolas Grosjean
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Kim K Hixson
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Estella F Yee
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Mary Lipton
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ian K Blaby
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - John D Haley
- Department of Pathology and Biological Mass Spectrometry Facility, Stony Brook University, Stony Brook, NY 11794, USA
| | - Crysten E Blaby-Haas
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
36
|
Wagatsuma T, Shimotsuma K, Sogo A, Sato R, Kubo N, Ueda S, Uchida Y, Kinoshita M, Kambe T. Zinc transport via ZNT5-6 and ZNT7 is critical for cell surface glycosylphosphatidylinositol-anchored protein expression. J Biol Chem 2022; 298:102011. [PMID: 35525268 PMCID: PMC9168625 DOI: 10.1016/j.jbc.2022.102011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins play crucial roles in various enzyme activities, cell signaling and adhesion, and immune responses. While the molecular mechanism underlying GPI-anchored protein biosynthesis has been well studied, the role of zinc transport in this process has not yet been elucidated. Zn transporter (ZNT) proteins mobilize cytosolic zinc to the extracellular space and to intracellular compartments. Here, we report that the early secretory pathway ZNTs (ZNT5–ZNT6 heterodimers [ZNT5-6] and ZNT7–ZNT7 homodimers [ZNT7]), which supply zinc to the lumen of the early secretory pathway compartments are essential for GPI-anchored protein expression on the cell surface. We show, using overexpression and gene disruption/re-expression strategies in cultured human cells, that loss of ZNT5-6 and ZNT7 zinc transport functions results in significant reduction in GPI-anchored protein levels similar to that in mutant cells lacking phosphatidylinositol glycan anchor biosynthesis (PIG) genes. Furthermore, medaka fish with disrupted Znt5 and Znt7 genes show touch-insensitive phenotypes similar to zebrafish Pig mutants. These findings provide a previously unappreciated insight into the regulation of GPI-anchored protein expression and protein quality control in the early secretory pathway.
Collapse
Affiliation(s)
- Takumi Wagatsuma
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Keiko Shimotsuma
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Akiko Sogo
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Risa Sato
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, 980-8578 Sendai, Japan
| | - Naoya Kubo
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Sachiko Ueda
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Yasuo Uchida
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, 980-8578 Sendai, Japan
| | - Masato Kinoshita
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
37
|
Guo C, Yang X, Shi H, Chen C, Hu Z, Zheng X, Yang X, Xie C. Identification of VdASP F2-interacting protein as a regulator of microsclerotial formation in Verticillium dahliae. Microb Biotechnol 2022; 15:2040-2054. [PMID: 35478269 PMCID: PMC9249328 DOI: 10.1111/1751-7915.14066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 12/15/2022] Open
Abstract
Verticillium dahliae, a notorious phytopathogenic fungus, causes vascular wilt diseases in many plant species. The melanized microsclerotia enable V. dahliae to survive for years in soil and are crucial for its disease cycle. In a previous study, we characterized the secretory protein VdASP F2 from V. dahliae and found that VdASP F2 deletion significantly affected the formation of microsclerotia under adverse environmental conditions. In this study, we clarified that VdASP F2 is localized to the cell wall. However, the underlying mechanism of VdASP F2 in microsclerotial formation remains unclear. Transmembrane ion channel protein VdTRP was identified as a candidate protein that interacts with VdASP F2 using pull‐down assays followed by liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) analysis, and interaction of VdASP F2 and VdTRP was confirmed by bimolecular fluorescence complementary and coimmunoprecipitation assays. The deletion mutant was analysed to reveal that VdTRP is required for microsclerotial production, but it is not essential for stress resistance, carbon utilization and pathogenicity of V. dahliae. RNA‐seq revealed some differentially expressed genes related to melanin synthesis and microsclerotial formation were significantly downregulated in the VdTRP deletion mutants. Taken together, these results indicate that VdASP F2 regulates the formation of melanized microsclerotia by interacting with VdTRP.
Collapse
Affiliation(s)
- Cuimei Guo
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China.,Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Xing Yang
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China.,Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Hongli Shi
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China.,Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Chi Chen
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China.,Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Zhijuan Hu
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China.,Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Xinyao Zheng
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China.,Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Xingyong Yang
- College of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Chengjian Xie
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China.,Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| |
Collapse
|
38
|
Clemens S. The cell biology of zinc. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1688-1698. [PMID: 34727160 DOI: 10.1093/jxb/erab481] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Nearly 10% of all plant proteins belong to the zinc (Zn) proteome. They require Zn either for catalysis or as a structural element. Most of the protein-bound Zn in eukaryotic cells is found in the cytosol. The fundamental differences between transition metal cations in the stability of their complexes with organic ligands, as described by the Irving-Williams series, necessitate buffering of cytosolic Zn (the 'free Zn' pool) in the picomolar range (i.e. ~6 orders of magnitude lower than the total cellular concentration). Various metabolites and peptides, including nicotianamine, glutathione, and phytochelatins, serve as Zn buffers. They are hypothesized to supply Zn to enzymes, transporters, or the recently identified sensor proteins. Zn2+ acquisition is mediated by ZRT/IRT-like proteins. Metal tolerance proteins transport Zn2+ into vacuoles and the endoplasmic reticulum, the major Zn storage sites. Heavy metal ATPase-dependent efflux of Zn2+ is another mechanism to control cytosolic Zn. Spatially controlled Zn2+ influx or release from intracellular stores would result in dynamic modulation of cellular Zn pools, which may directly influence protein-protein interactions or the activities of enzymes involved in signaling cascades. Possible regulatory roles of such changes, as recently elucidated in mammalian cells, are discussed.
Collapse
Affiliation(s)
- Stephan Clemens
- Department of Plant Physiology and Faculty of Life Science: Food, Nutrition and Health, University of Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
| |
Collapse
|
39
|
Haidara N, Giannini M, Porrua O. Modulated termination of non-coding transcription partakes in the regulation of gene expression. Nucleic Acids Res 2022; 50:1430-1448. [PMID: 35037029 PMCID: PMC8860598 DOI: 10.1093/nar/gkab1304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 12/25/2022] Open
Abstract
Pervasive transcription is a universal phenomenon leading to the production of a plethora of non-coding RNAs. If left uncontrolled, pervasive transcription can be harmful for genome expression and stability. However, non-coding transcription can also play important regulatory roles, for instance by promoting the repression of specific genes by a mechanism of transcriptional interference. The efficiency of transcription termination can strongly influence the regulatory capacity of non-coding transcription events, yet very little is known about the mechanisms modulating the termination of non-coding transcription in response to environmental cues. Here, we address this question by investigating the mechanisms that regulate the activity of the main actor in termination of non-coding transcription in budding yeast, the helicase Sen1. We identify a phosphorylation at a conserved threonine of the catalytic domain of Sen1 and we provide evidence that phosphorylation at this site reduces the efficiency of Sen1-mediated termination. Interestingly, we find that this phosphorylation impairs termination at an unannotated non-coding gene, thus repressing the expression of a downstream gene encoding the master regulator of Zn homeostasis, Zap1. Consequently, many additional genes exhibit an expression pattern mimicking conditions of Zn excess, where ZAP1 is naturally repressed. Our findings provide a novel paradigm of gene regulatory mechanism relying on the direct modulation of non-coding transcription termination.
Collapse
Affiliation(s)
- Nouhou Haidara
- Université de Paris, CNRS, Institut Jacques Monod, F-75013 Paris, France.,Université Paris-Saclay, Gif sur Yvette, France
| | - Marta Giannini
- Université de Paris, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Odil Porrua
- Université de Paris, CNRS, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|
40
|
Metallothioneins involment in the pathogenesis of synovial tissue inflammation in rats with acute gonarthritis. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.05.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
41
|
Abstract
Metal ions are essential to all living cells, as they can serve as cofactors of enzymes to drive catalysis of biochemical reactions. We present a constraint-based model of yeast that relates metabolism with metal ions via enzymes. The model is able to capture responses of metabolism and gene expression upon iron depletion, suggesting that yeast cells allocate iron resource in the way abiding to optimization principles. Interestingly, the model predicts up-regulation of several iron-containing enzymes that coincide with experiments, which raises the possibility that the decrease in activity due to limited iron could be compensated by elevated enzyme abundance. Moreover, the model paves the way for guiding biosynthesis of high-value compounds (e.g., p-coumaric acid) that relies on iron-containing enzymes. Metal ions are vital to metabolism, as they can act as cofactors on enzymes and thus modulate individual enzymatic reactions. Although many enzymes have been reported to interact with metal ions, the quantitative relationships between metal ions and metabolism are lacking. Here, we reconstructed a genome-scale metabolic model of the yeast Saccharomyces cerevisiae to account for proteome constraints and enzyme cofactors such as metal ions, named CofactorYeast. The model is able to estimate abundances of metal ions binding on enzymes in cells under various conditions, which are comparable to measured metal ion contents in biomass. In addition, the model predicts distinct metabolic flux distributions in response to reduced levels of various metal ions in the medium. Specifically, the model reproduces changes upon iron deficiency in metabolic and gene expression levels, which could be interpreted by optimization principles (i.e., yeast optimizes iron utilization based on metabolic network and enzyme kinetics rather than preferentially targeting iron to specific enzymes or pathways). At last, we show the potential of using the model for understanding cell factories that harbor heterologous iron-containing enzymes to synthesize high-value compounds such as p-coumaric acid. Overall, the model demonstrates the dependence of enzymes on metal ions and links metal ions to metabolism on a genome scale.
Collapse
|
42
|
Alamir OF, Oladele RO, Ibe C. Nutritional immunity: targeting fungal zinc homeostasis. Heliyon 2021; 7:e07805. [PMID: 34466697 PMCID: PMC8384899 DOI: 10.1016/j.heliyon.2021.e07805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/22/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
Transition metals, such as Zn2+, are essential dietary constituents of all biological life, including mammalian hosts and the pathogens that infect them. Therefore, to thrive and cause infection, pathogens must successfully assimilate these elements from the host milieu. Consequently, mammalian immunity has evolved to actively restrict and/or pool metals to toxic concentrations in an effort to attenuate microbial pathogenicity - a process termed nutritional immunity. Despite host-induced Zn2+ nutritional immunity, pathogens such as Candida albicans, are still capable of causing disease and thus must be equipped with robust Zn2+ sensory, uptake and detoxification machinery. This review will discuss the strategies employed by mammalian hosts to limit Zn2+ during infection, and the subsequent fungal interventions that counteract Zn2+ nutritional immunity.
Collapse
Affiliation(s)
- Omran F Alamir
- Department of Natural Sciences, College of Health Sciences, The Public Authority for Applied Education and Training, Al Asimah, Kuwait
| | - Rita O Oladele
- Department of Medical Microbiology & Parasitology, College of Medicine, University of Lagos, Lagos State, Nigeria
| | - C Ibe
- Department of Microbiology, Abia State University, PMB 2000, Uturu, Abia State, Nigeria
| |
Collapse
|
43
|
Edmonds KA, Jordan MR, Giedroc DP. COG0523 proteins: a functionally diverse family of transition metal-regulated G3E P-loop GTP hydrolases from bacteria to man. Metallomics 2021; 13:6327566. [PMID: 34302342 PMCID: PMC8360895 DOI: 10.1093/mtomcs/mfab046] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/15/2021] [Indexed: 01/13/2023]
Abstract
Transition metal homeostasis ensures that cells and organisms obtain sufficient metal to meet cellular demand while dispensing with any excess so as to avoid toxicity. In bacteria, zinc restriction induces the expression of one or more Zur (zinc-uptake repressor)-regulated Cluster of Orthologous Groups (COG) COG0523 proteins. COG0523 proteins encompass a poorly understood sub-family of G3E P-loop small GTPases, others of which are known to function as metallochaperones in the maturation of cobalamin (CoII) and NiII cofactor-containing metalloenzymes. Here, we use genomic enzymology tools to functionally analyse over 80 000 sequences that are evolutionarily related to Acinetobacter baumannii ZigA (Zur-inducible GTPase), a COG0523 protein and candidate zinc metallochaperone. These sequences segregate into distinct sequence similarity network (SSN) clusters, exemplified by the ZnII-Zur-regulated and FeIII-nitrile hydratase activator CxCC (C, Cys; X, any amino acid)-containing COG0523 proteins (SSN cluster 1), NiII-UreG (clusters 2, 8), CoII-CobW (cluster 4), and NiII-HypB (cluster 5). A total of five large clusters that comprise ≈ 25% of all sequences, including cluster 3 which harbors the only structurally characterized COG0523 protein, Escherichia coli YjiA, and many uncharacterized eukaryotic COG0523 proteins. We also establish that mycobacterial-specific protein Y (Mpy) recruitment factor (Mrf), which promotes ribosome hibernation in actinomycetes under conditions of ZnII starvation, segregates into a fifth SSN cluster (cluster 17). Mrf is a COG0523 paralog that lacks all GTP-binding determinants as well as the ZnII-coordinating Cys found in CxCC-containing COG0523 proteins. On the basis of this analysis, we discuss new perspectives on the COG0523 proteins as cellular reporters of widespread nutrient stress induced by ZnII limitation.
Collapse
Affiliation(s)
- Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Matthew R Jordan
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
44
|
Theoretical Three-Dimensional Zinc Complexes with Glutathione, Amino Acids and Flavonoids. STRESSES 2021. [DOI: 10.3390/stresses1030011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Zinc plays an important role in the regulation of many cellular functions; it is a signaling molecule involved in the transduction of several cascades in response to intra and extracellular stimuli. Labile zinc is a small fraction of total intracellular zinc, that is loosely bound to proteins and is easily interchangeable. At the cellular level, several molecules can bind labile zinc and promote its passage across lipophilic membranes. Such molecules are known as ionophores. Several of these compounds are known in the scientific literature, but most of them can be harmful to human health and are therefore not allowed for medical use. We here performed a theoretical three-dimensional study of known zinc ionophores, together with a computational energetic study and propose that some dietary flavonoids, glutathione and amino acids could form zinc complexes and facilitate the transport of zinc, with the possible biological implications and potential health benefits of these natural compounds. The study is based on obtaining a molecular conformational structure of the zinc complexes with the lowest possible energy content. The discovery of novel substances that act as zinc ionophores is an attractive research topic that offers exciting opportunities in medicinal chemistry. We propose that these novel complexes could be promising candidates for drug design to provide new solutions for conditions and diseases related to zinc deficiency or impairment derived from the dysregulation of this important metal.
Collapse
|
45
|
Zlobin IE. Current understanding of plant zinc homeostasis regulation mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:327-335. [PMID: 33714765 DOI: 10.1016/j.plaphy.2021.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/02/2021] [Indexed: 05/27/2023]
Abstract
The essential nature of Zn and widespread Zn deficiency in plants under field conditions underlie the great interest of researchers in the regulation of plant Zn homeostasis. Here, the current knowledge of plant Zn homeostasis regulation, mainly in A. thaliana, is reviewed. The plant Zn homeostasis machinery is regulated largely at the transcriptional level. Local regulation in response to changes in cellular Zn status is based on the transcription factors bZIP19 and bZIP23, which sense changes in free Zn2+ concentrations in the cell. However, there are likely other unidentified ways to sense cellular free Zn2+ concentrations in addition to the well-known bZIP19 and bZIP23 factors. In recent years, the existence of a shoot-derived systemic Zn deficiency signal, which is involved in the upregulation of Zn transport from roots to shoots, was demonstrated. Additionally, rates of mRNA degradation of Zn homeostasis genes are likely regulated by changes in cellular Zn status. In addition to the regulation of Zn transport, other mechanisms for the regulation of plant Zn homeostasis exist. "Zn sparing" mechanisms could be involved in the decrease in plant Zn requirements under Zn deficiency. Additionally, autophagy is probably regulated by local Zn status and involved in Zn reutilization at the cellular level. Current issues related to studying Zn homeostasis regulation are discussed.
Collapse
Affiliation(s)
- Ilya E Zlobin
- K.A. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow, 127276, Russia.
| |
Collapse
|
46
|
Integrated multi-omics uncovers reliable potential biomarkers and adverse effects of zinc deficiency. Clin Nutr 2021; 40:2683-2696. [PMID: 33933734 DOI: 10.1016/j.clnu.2021.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/18/2021] [Accepted: 03/12/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Zinc deficiency is a worldwide public health problem. Currently, there are no established biomarkers available for the accurate diagnosis of zinc-deficiency in individuals. Additionally, a comprehensive view of the adverse effects of zinc deficiency is lacking. Our aim was to identify superior biomarkers of zinc deficiency and uncover the adverse effects of zinc deficiency. METHODS We performed multi-omics analysis using serum proteomics-metabolomics and liver proteomics on zinc-deficient rats to identify candidate biomarkers and reveal the associated adverse effects of zinc deficiency. Secondly, the candidate biomarkers were validated in two zinc-deficient populations and an RCT zinc supplementation trial on a zinc-deficient population. RESULTS Our integrated multi-omics approach revealed numerous biomarkers (>2000) and glutathione metabolism as the most important changed pathway in zinc deficiency. Three candidate biomarkers from glutathione metabolism were validated in repeated zinc-deficient rats by quantitative analysis. Only glutathione sulfotransferase omega-1 (GSTO1) (among 3 candidate biomarkers) was validated in the two zinc-deficient populations and zinc-supplemented population. Compared with serum zinc, serum GSTO1 yielded a better response to zinc supplementation and a higher correlation coefficient with zinc intake and the AUC value and has the potential for diagnosing zinc deficiency. By integrated multi-omics, we identified both established and novel adverse effects of zinc deficiency. CONCLUSIONS Our integrated multi-omics analysis revealed more complete information about zinc deficiency; GSTO1 was found to be a reliable potential biomarker for diagnosis of zinc deficiency. This trial is registered at http://www.chictr.org.cn/registry.aspx as ChiCTR1900028162.
Collapse
|
47
|
Robinson JR, Isikhuemhen OS, Anike FN. Fungal-Metal Interactions: A Review of Toxicity and Homeostasis. J Fungi (Basel) 2021; 7:225. [PMID: 33803838 PMCID: PMC8003315 DOI: 10.3390/jof7030225] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022] Open
Abstract
Metal nanoparticles used as antifungals have increased the occurrence of fungal-metal interactions. However, there is a lack of knowledge about how these interactions cause genomic and physiological changes, which can produce fungal superbugs. Despite interest in these interactions, there is limited understanding of resistance mechanisms in most fungi studied until now. We highlight the current knowledge of fungal homeostasis of zinc, copper, iron, manganese, and silver to comprehensively examine associated mechanisms of resistance. Such mechanisms have been widely studied in Saccharomyces cerevisiae, but limited reports exist in filamentous fungi, though they are frequently the subject of nanoparticle biosynthesis and targets of antifungal metals. In most cases, microarray analyses uncovered resistance mechanisms as a response to metal exposure. In yeast, metal resistance is mainly due to the down-regulation of metal ion importers, utilization of metallothionein and metallothionein-like structures, and ion sequestration to the vacuole. In contrast, metal resistance in filamentous fungi heavily relies upon cellular ion export. However, there are instances of resistance that utilized vacuole sequestration, ion metallothionein, and chelator binding, deleting a metal ion importer, and ion storage in hyphal cell walls. In general, resistance to zinc, copper, iron, and manganese is extensively reported in yeast and partially known in filamentous fungi; and silver resistance lacks comprehensive understanding in both.
Collapse
Affiliation(s)
| | - Omoanghe S. Isikhuemhen
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA; (J.R.R.); (F.N.A.)
| | | |
Collapse
|
48
|
Kambe T, Taylor KM, Fu D. Zinc transporters and their functional integration in mammalian cells. J Biol Chem 2021; 296:100320. [PMID: 33485965 PMCID: PMC7949119 DOI: 10.1016/j.jbc.2021.100320] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
Zinc is a ubiquitous biological metal in all living organisms. The spatiotemporal zinc dynamics in cells provide crucial cellular signaling opportunities, but also challenges for intracellular zinc homeostasis with broad disease implications. Zinc transporters play a central role in regulating cellular zinc balance and subcellular zinc distributions. The discoveries of two complementary families of mammalian zinc transporters (ZnTs and ZIPs) in the mid-1990s spurred much speculation on their metal selectivity and cellular functions. After two decades of research, we have arrived at a biochemical description of zinc transport. However, in vitro functions are fundamentally different from those in living cells, where mammalian zinc transporters are directed to specific subcellular locations, engaged in dedicated macromolecular machineries, and connected with diverse cellular processes. Hence, the molecular functions of individual zinc transporters are reshaped and deeply integrated in cells to promote the utilization of zinc chemistry to perform enzymatic reactions, tune cellular responsiveness to pathophysiologic signals, and safeguard cellular homeostasis. At present, the underlying mechanisms driving the functional integration of mammalian zinc transporters are largely unknown. This knowledge gap has motivated a shift of the research focus from in vitro studies of purified zinc transporters to in cell studies of mammalian zinc transporters in the context of their subcellular locations and protein interactions. In this review, we will outline how knowledge of zinc transporters has been accumulated from in-test-tube to in-cell studies, highlighting new insights and paradigm shifts in our understanding of the molecular and cellular basis of mammalian zinc transporter functions.
Collapse
Affiliation(s)
- Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kathryn M Taylor
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Dax Fu
- Department of Physiology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
49
|
Pereira CGM, Santana ERS, Ramos JER, da Silva HMBS, Nunes MAP, Forbes SC, Santos HO. Low Serum Zinc Levels and Associated Risk Factors in Hospitalized Patients Receiving Oral or Enteral Nutrition: A Case-control Study. Clin Ther 2020; 43:e39-e55. [PMID: 33388174 DOI: 10.1016/j.clinthera.2020.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023]
Abstract
PURPOSE To assess whether hospitalization and feeding strategy impact the risk of hypozincemia and associated risk factors. METHODS In this case-control study, serum zinc levels were compared between inpatients fed oral nutrition (ON) (n = 76) or enteral nutrition (EN) (n = 191) with outpatient controls (n = 1095). FINDINGS Zinc levels were significantly lower in inpatients receiving EN compared with those receiving ON (P = 0.001). Significant (P < 0.001) β-values of -11.16 and -17.58 for serum zinc concentrations were found for inpatients receiving ON or EN, respectively, compared with the outpatients. Hospitalization and old age were both independent predictors of zinc deficiency. More than 75% of patients >60 years of age fed EN had a zinc concentration <68.75 μg/dL. Low hemoglobin levels increased the risk of low zinc levels for inpatients receiving EN (P = 0.003) and ON (P = 0.026). Age (P < 0.001), noninvasive mechanical ventilatory support (P = 0.016), and critical care (P = 0.018) were risk factors for hypozincemia in patients receiving ON. Low iron levels were associated with hypozincemia (P = 0.001) in patients receiving EN. IMPLICATIONS Hospitalization and being >60 years of age were risk factors for zinc deficiency. Intensive care and noninvasive mechanical ventilatory support were risk factors for hypozincemia in hospitalized patients who were fed orally. Low hemoglobin levels increased the risk of low zinc concentrations for inpatients receiving EN and ON, and low iron levels were associated with hypozincemia only after EN.
Collapse
Affiliation(s)
- Cristina G M Pereira
- Department of Medicine, Federal University of Sergipe, Aracaju, Sergipe, Brazil; São Lucas Hospital, Aracaju, Sergipe, Brazil
| | - Erely R S Santana
- Department of Medicine, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Joane E R Ramos
- Department of Medicine, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | | | - Marco A P Nunes
- Department of Medicine, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Scott C Forbes
- Department of Physical Education, Faculty of Education, Brandon University, Brandon, Manitoba, Canada
| | - Heitor O Santos
- School of Medicine, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil.
| |
Collapse
|
50
|
Grosjean N, Blaby-Haas CE. Leveraging computational genomics to understand the molecular basis of metal homeostasis. THE NEW PHYTOLOGIST 2020; 228:1472-1489. [PMID: 32696981 DOI: 10.1111/nph.16820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Genome-based data is helping to reveal the diverse strategies plants and algae use to maintain metal homeostasis. In addition to acquisition, distribution and storage of metals, acclimating to feast or famine can involve a wealth of genes that we are just now starting to understand. The fast-paced acquisition of genome-based data, however, is far outpacing our ability to experimentally characterize protein function. Computational genomic approaches are needed to fill the gap between what is known and unknown. To avoid misconstruing bioinformatically derived data, which is the root cause of the inaccurate functional annotations that plague databases, functional inferences from diverse sources and contextualization of that evidence with a robust understanding of protein family evolution is needed. Phylogenomic- and comparative-genomic-based studies can aid in the interpretation of experimental data or provide a spark for the discovery of a new function. These analyses not only lead to novel insight into a target protein's function but can generate thought-provoking insights across protein families.
Collapse
Affiliation(s)
- Nicolas Grosjean
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | | |
Collapse
|