1
|
Li Y, Sun Y, Yu K, Li Z, Miao H, Xiao W. Keratin: A potential driver of tumor metastasis. Int J Biol Macromol 2025; 307:141752. [PMID: 40049479 DOI: 10.1016/j.ijbiomac.2025.141752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Keratins, as essential components of intermediate filaments in epithelial cells, play a crucial role in maintaining cell structure and function. In various malignant epithelial tumors, abnormal keratin expression is frequently observed and serves not only as a diagnostic marker but also closely correlates with tumor progression. Extensive research has demonstrated that keratins are pivotal in multiple stages of tumor metastasis, including responding to mechanical forces, evading the immune system, reprogramming metabolism, promoting angiogenesis, and resisting apoptosis. Here we emphasize that keratins significantly enhance the migratory and invasive capabilities of tumor cells, making them critical drivers of tumor metastasis. These findings highlight the importance of targeting keratins as a strategic approach to combat tumor metastasis, thereby advancing our understanding of their role in cancer progression and offering new therapeutic opportunities.
Collapse
Affiliation(s)
- Yuening Li
- Army Medical University, Chongqing, China
| | - Yiming Sun
- Department of General Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Kun Yu
- Department of General Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Zhixi Li
- Department of General Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China.
| | - Hongming Miao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China; Jinfeng Laboratory, Chongqing, China.
| | - Weidong Xiao
- Department of General Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China.
| |
Collapse
|
2
|
Yin G, Zhao H, Lan M. A nano drug delivery system loading drugs and chlorin e6 separately to achieve photodynamic-chemo combination therapy. Nanomedicine (Lond) 2025; 20:559-570. [PMID: 39902764 PMCID: PMC11881829 DOI: 10.1080/17435889.2025.2460960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025] Open
Abstract
AIM To develop a new drug delivery system (DDS) that can load chemotherapy agents and photosensitizer chlorin e6 (Ce6) onto the pores and surfaces of mesoporous silica nanoparticle (MSN) separately. METHODS Doxorubicin (DOX) was loaded into the pores of MSNs. Then, polyethyleneimine (PEI) was used to coat the surface of MSN to protect DOX, and then manganese dioxide (MnO2) nanoparticles were loaded through adding potassium permanganate (KMnO4) to bind with Ce6. Finally, polydopamine (PDA) was coated and coupled with hyaluronic acid (HA). RESULTS The synthesized versatile nanoparticle was pH-sensitive and exhibited positive photodynamic therapy (PDT) performance. Besides, it could be observed that the nanoparticles were efficiently taken up by tumor cells through confocal laser scanning microscopy (CLSM) and flow cytometry. Additionally, in vitro experiments suggested that the nanoparticles had pleasing toxicity to various tumor cells and equally positive therapeutic effect when curcumin replaced DOX. CONCLUSION Our work suggests that the nanoparticles designed by our strategy have satisfactory combination therapy performance and can enable more chemotherapy drugs to be used in photodynamic-chemo combination therapy.
Collapse
Affiliation(s)
- Guohao Yin
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
- Research Center of Analysis and Test, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Hongli Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
- Research Center of Analysis and Test, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
- Research Center of Analysis and Test, East China University of Science and Technology, Shanghai, People’s Republic of China
| |
Collapse
|
3
|
Kim HS, Youn YH, Kim HJ, Koo YH, Lee J, Kwon IK, Do SH. Enhanced Antitumor Efficacy of Oncolytic Vaccinia Virus Therapy Through Keratin-Mediated Delivery in Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:11470. [PMID: 39519023 PMCID: PMC11546765 DOI: 10.3390/ijms252111470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/12/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Triple-negative breast cancer (TNBC) represents an aggressive subtype characterized by high rates of recurrence and metastasis, necessitating the exploration of alternative treatment strategies. Oncolytic vaccinia virus (OVV) therapy has emerged as a promising approach, selectively infecting and destroying tumor cells. However, its efficacy is often hampered by inadequate viral distribution within the tumor microenvironment. Here, we investigate the potential of keratin (KTN) as a carrier for OVV delivery to enhance viral distribution and antitumor efficacy. In vitro assays revealed that KTN significantly improves OVV stability, leading to increased tumor cell apoptosis and necrosis. Furthermore, KTN effectively inhibits cancer cell migration by suppressing the epithelial-mesenchymal transition (EMT) process and downregulating metastasis-related proteins. These findings are corroborated in a syngeneic TNBC mouse model, where KTN-mediated OVV delivery enhances cytotoxic T cell-mediated antitumor immune responses without compromising the anti-angiogenic effects of the virus. Notably, KTN alone exhibits antitumor effects by suppressing tumor growth and metastasis, underscoring its potential as a standalone therapeutic agent. In conclusion, our study underscores the promise of KTN-mediated OVV delivery as a promising therapeutic strategy for TNBC. By improving viral distribution, suppressing EMT, and enhancing antitumor immunity, this approach holds significant potential for enhancing patient outcomes in TNBC treatment. Further investigation is warranted to explore the broader utility of KTN in various cancer therapy approaches.
Collapse
Affiliation(s)
- Hyo-Sung Kim
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yun Hee Youn
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Han-Jun Kim
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea
| | - Young-Hyun Koo
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Junho Lee
- Department of Veterinary Surgery, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Medical Device Research Center, Medical Science Research Institute, Kyung Hee University Medical Center, 23 Kyung Hee Dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sun Hee Do
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
4
|
Chai Y, Shangguan L, Yu H, Sun Y, Huang X, Zhu Y, Wang H, Liu Y. Near Infrared Light-Activatable Platelet-Mimicking NIR-II NO Nano-Prodrug for Precise Atherosclerosis Theranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304994. [PMID: 38037484 PMCID: PMC10797437 DOI: 10.1002/advs.202304994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/30/2023] [Indexed: 12/02/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease that affects arteries and is the main cause of cardiovascular disease. Atherosclerotic plaque formation is usually asymptomatic and does not manifest until the occurrence of clinical events. Therefore, early diagnosis and treatment of atherosclerotic plaques is particularly important. Here, a series of NIR-II fluorescent dyes (RBT-NH) are developed for three photoresponsive NO prodrugs (RBT-NO), which can be controllably triggered by 808 nm laser to release NO and turn on the NIR-II emission in the clinical medicine "therapeutic window". Notably, RBT3-NO is selected for its exhibited high NO releasing efficiency and superior fluorescence signal enhancement. Subsequently, a platelet-mimicking nano-prodrug system (RBT3-NO-PEG@PM) is constructed by DSPE-mPEG5k and platelet membrane (PM) for effectively targeted diagnosis and therapy of atherosclerosis in mice. The results indicate that this platelet-mimicking NO nano-prodrug system can reduce the accumulation of lipids at the sites of atherosclerotic plaques, improve the inflammatory response at the lesion sites, and promote endothelial cell migration, thereby slowing the progression of plaques.
Collapse
Affiliation(s)
- Yun Chai
- State Key Laboratory of Natural Medicines, School of EngineeringChina Pharmaceutical UniversityNanjing211198China
| | - Lina Shangguan
- State Key Laboratory of Natural Medicines, School of EngineeringChina Pharmaceutical UniversityNanjing211198China
| | - Hui Yu
- State Key Laboratory of Natural Medicines, School of EngineeringChina Pharmaceutical UniversityNanjing211198China
| | - Ye Sun
- State Key Laboratory of Natural Medicines, School of EngineeringChina Pharmaceutical UniversityNanjing211198China
| | - Xiaoyan Huang
- State Key Laboratory of Natural Medicines, School of EngineeringChina Pharmaceutical UniversityNanjing211198China
| | - Yanyan Zhu
- State Key Laboratory of Natural Medicines, School of EngineeringChina Pharmaceutical UniversityNanjing211198China
| | - Hai‐Yan Wang
- School of Mechanical EngineeringSoutheast UniversityNanjing211189China
| | - Yi Liu
- State Key Laboratory of Natural Medicines, School of EngineeringChina Pharmaceutical UniversityNanjing211198China
| |
Collapse
|
5
|
Ma X, Ma L, Tan Y, Chen X, Tong Q, Tang L, Cao X, Liu D, Li X. Biomimetic mineralization by confined diffusion with viscous hyaluronan network: Assembly of hierarchical flower-like supraparticles. Carbohydr Polym 2023; 322:121345. [PMID: 37839848 DOI: 10.1016/j.carbpol.2023.121345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 10/17/2023]
Abstract
Biomolecules-mediated biomimetic mineralization has been extensively investigated and applied to fabricate nano-assemblies with unique hierarchical architectures and salient properties. The confined-source ion diffusion plays a key role in the biomineralization process, but little investigative efforts have focused on it. Here, we developed a simple method to mimic the in vivo condition by a confined diffusion method, and hydroxyapatite nanoflower assemblies (HNAs) with exquisite hierarchical architectures were obtained. The HNAs were assembled from needle-like hybrid nanocrystals of hydroxyapatite and hyaluronan. The results revealed that the strong interactions between ions and hyaluronan led to the nucleation of hydroxyapatite and the following aggregation. The combination of the external diffusion field and the internal multiple interactions induced the self-assembling processes. Additionally, HNAs with colloid stability and excellent biocompatibility were proved to be a promising cargo carrier for intranuclear delivery. This work presents a novel biomimetic mineralization strategy based on confined diffusion system for fabricating delicate hydroxyapatite, which offers a new perspective for the development of biomimetic strategies.
Collapse
Affiliation(s)
- Xiaomin Ma
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Lei Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yunfei Tan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiangyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qiulan Tong
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Liwen Tang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiaoyu Cao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Danni Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xudong Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
6
|
Wang L, Shang Y, Zhang J, Yuan J, Shen J. Recent advances in keratin for biomedical applications. Adv Colloid Interface Sci 2023; 321:103012. [PMID: 37837703 DOI: 10.1016/j.cis.2023.103012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/16/2023]
Abstract
The development of keratin-based biomaterials provides an approach to addressing related environmental pollutants and turns waste into wealth. Keratin possesses various merits, such as biocompatibility, biodegradability, hemostasis, non-immunogenicity, antibacterial activity, antioxidation, multi-responsiveness, and abundance in nature. Additionally, keratin biomaterials have been extensively employed in various biomedical applications such as drug delivery, wound healing, and tissue engineering. This review focuses on the properties and biomedical applications of keratin biomaterials. It is anticipated to provide valuable insights for the research and development of keratin biomaterials.
Collapse
Affiliation(s)
- Lijuan Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yushuang Shang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jie Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
7
|
Zhao Z, Shan X, Zhang H, Shi X, Huang P, Sun J, He Z, Luo C, Zhang S. Nitric oxide-driven nanotherapeutics for cancer treatment. J Control Release 2023; 362:151-169. [PMID: 37633361 DOI: 10.1016/j.jconrel.2023.08.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
Nitric oxide (NO) is a gaseous molecule endowed with diverse biological functions, offering vast potential in the realm of cancer treatment. Considerable efforts have been dedicated to NO-based cancer therapy owing to its good biosafety and high antitumor activity, as well as its efficient synergistic therapy with other antitumor modalities. However, delivering this gaseous molecule effectively into tumor tissues poses a significant challenge. To this end, nano drug delivery systems (nano-DDSs) have emerged as promising platforms for in vivo efficient NO delivery, with remarkable achievements in recent years. This review aims to provide a summary of the emerging NO-driven antitumor nanotherapeutics. Firstly, the antitumor mechanism and related clinical trials of NO therapy are detailed. Secondly, the latest research developments in the stimulation of endogenous NO synthesis are presented, including the regulation of nitric oxide synthases (NOS) and activation of endogenous NO precursors. Moreover, the emerging nanotherapeutics that rely on tumor-specific delivery of NO donors are outlined. Additionally, NO-driven combined nanotherapeutics for multimodal cancer theranostics are discussed. Finally, the future directions, application prospects, and challenges of NO-driven nanotherapeutics in clinical translation are highlighted.
Collapse
Affiliation(s)
- Zhiqiang Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xinzhu Shan
- Department of State Key Laboratory of Natural and Biomimetic Drugs, College of Pharmaceutical Sciences, Peking University, Beijing 100871, PR China
| | - Hongyuan Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Peiqi Huang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
8
|
Niu J, Yuan M, Gao P, Wang L, Qi Y, Chen J, Bai K, Fan Y, Liu X. Microemulsion-Based Keratin-Chitosan Gel for Improvement of Skin Permeation/Retention and Activity of Curcumin. Gels 2023; 9:587. [PMID: 37504466 PMCID: PMC10379975 DOI: 10.3390/gels9070587] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
Curcumin (Cur) is a kind of polyphenol with a variety of topical pharmacological properties including antioxidant, analgesic and anti-inflammatory activities. However, its low water solubility and poor skin bioavailability limit its effectiveness. In the current study, we aimed to develop microemulsion-based keratin-chitosan gel for the improvement of the topical activity of Cur. The curcumin-loaded microemulsion (CME) was formulated and then loaded into the keratin-chitosan (KCS) gel to form the CME-KCS gel. The formulated CME-KCS gel was evaluated for its characterization, in vitro release, in vitro skin permeation and in vivo activity. The results showed that the developed CME-KCS gel had an orange-yellow and gel-like appearance. The particle size and zeta potential of the CME-KCS gel were 186.45 ± 0.75 nm and 9.42 ± 0.86 mV, respectively. The CME-KCS gel showed desirable viscoelasticity, spreadability, bioadhesion and controlled drug release, which was suitable for topical application. The in vitro skin permeation and retention study showed that the CME-KCS gel had better in vitro skin penetration than the Cur solution and achieved maximum skin drug retention (3.75 ± 0.24 μg/cm2). In vivo experimental results confirmed that the CME-KCS gel was more effective than curcumin-loaded microemulsion (Cur-ME) in analgesic and anti-inflammatory activities. In addition, the CME-KCS gel did not cause any erythema or edema based on a mice skin irritation test. These findings indicated that the developed CME-KCS gel could improve the skin penetration and retention of Cur and could become a promising formulation for topical delivery to treat local diseases.
Collapse
Affiliation(s)
- Jiangxiu Niu
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Ming Yuan
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Panpan Gao
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Liye Wang
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Yueheng Qi
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Jingjing Chen
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Kaiyue Bai
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Yanli Fan
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Xianming Liu
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| |
Collapse
|
9
|
Wang C, Tian G, Yu X, Zhang X. Recent Advances in Functional Nanomaterials for Catalytic Generation of Nitric Oxide: A Mini Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207261. [PMID: 36808830 DOI: 10.1002/smll.202207261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/10/2023] [Indexed: 05/18/2023]
Abstract
As a gaseous second messenger, nitric oxide (NO) plays an important role in a series of signal pathways. Research on the NO regulation for various disease treatments has aroused wide concern. However, the lack of accurate, controllable, and persistent release of NO has significantly limited the application of NO therapy. Profiting from the booming development of advanced nanotechnology, a mass of nanomaterials with the properties of controllable release have been developed to seek new and effective NO nano-delivery approaches. Nano-delivery systems that generate NO through catalytic reactions exhibit unique superiority in terms of precise and persistent release of NO. Although certain achievements have been made in the catalytically active NO delivery nanomaterials, some basic but critical issues, such as the concept of design, are of low attention. Herein, an overview of the generation of NO through catalytic reactions and the design principles of related nanomaterials are summarized. Then, the nanomaterials that generate NO through catalytic reactions are classified. Finally, the bottlenecks and perspectives are also discussed in depth for the future development of catalytical NO generation nanomaterials.
Collapse
Affiliation(s)
- Chengyan Wang
- Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Gan Tian
- Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
- Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, P. R. China
- Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing, 401329, P. R. China
| | - Xin Yu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Xiao Zhang
- Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
- Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, P. R. China
- Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing, 401329, P. R. China
| |
Collapse
|
10
|
Navale GR, Singh S, Ghosh K. NO donors as the wonder molecules with therapeutic potential: Recent trends and future perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
11
|
Nanoparticle-based delivery of nitric oxide for therapeutic applications. Ther Deliv 2022; 13:403-427. [DOI: 10.4155/tde-2022-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Nitric oxide (NO), a low molecular weight signaling molecule, plays critical roles in both cellular health and disease. There is continued interest in new modalities for the controlled therapeutic delivery of NO to cells and tissues. The physicochemical properties of NO (including its short half-life and on-demand synthesis at the point of function), however, pose considerable challenges for its specific and efficient delivery. Recently, a number of nanoparticle (NP)-based systems are described that address some of these issues by taking advantage of the unique attributes of the NP carrier to effect efficient NO delivery. This review highlights the progress that has been made over the past 5 years in the use of various constructs for the therapeutic delivery of NO.
Collapse
|
12
|
Jin H, Li M, Tian F, Yu F, Zhao W. An Overview of Antitumour Activity of Polysaccharides. Molecules 2022; 27:molecules27228083. [PMID: 36432183 PMCID: PMC9692906 DOI: 10.3390/molecules27228083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Cancer incidence and mortality are rapidly increasing worldwide; therefore, effective therapies are required in the current scenario of increasing cancer cases. Polysaccharides are a family of natural polymers that hold unique physicochemical and biological properties, and they have become the focus of current antitumour drug research owing to their significant antitumour effects. In addition to the direct antitumour activity of some natural polysaccharides, their structures offer versatility in synthesizing multifunctional nanocomposites, which could be chemically modified to achieve high stability and bioavailability for delivering therapeutics into tumor tissues. This review aims to highlight recent advances in natural polysaccharides and polysaccharide-based nanomedicines for cancer therapy.
Collapse
Affiliation(s)
- Hongzhen Jin
- College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Maohua Li
- College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Feng Tian
- College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Fan Yu
- College of Life Sciences, Nankai University, Weijin Road, Nankai District, Tianjin 300350, China
- Correspondence: (F.Y.); (W.Z.)
| | - Wei Zhao
- College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
- Correspondence: (F.Y.); (W.Z.)
| |
Collapse
|
13
|
Tang L, Chen X, Tong Q, Ran Y, Ma L, Tan Y, Yi Z, Li X. Biocompatible, bacteria-targeting resveratrol nanoparticles fabricated by Mannich molecular condensation for accelerating infected wound healing. J Mater Chem B 2022; 10:9280-9294. [PMID: 36342467 DOI: 10.1039/d2tb01697d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Excessive reactive oxygen species (ROS) and long-term inflammation can delay wound healing and cause tissue damage, while bacterial infection aggravates the wound environment further. It is impossible to resolve all these thorny problems simultaneously with a wound dressing that has only one function. The antioxidative and anti-inflammatory properties of resveratrol (Res) have been proven. However, the effect of Res is non-selective, and high levels of Res can inhibit cell growth and promote oxidation. Res is also difficult to dissolve and possesses insufficient antibacterial properties, so its role is limited. In this study, Res was assembled via Mannich reaction into nanoparticles and functionalized by phenylboric acid, giving rise to targeting bacteria and solving the water-insoluble dilemma of Res. In comparison with Trolox, the assembled Res NPs performed better at scavenging ABTS and DPPH free radicals. Furthermore, Res NPs that targeted bacteria also showed high biocompatibility at concentrations five times higher than pure Res. The activities of Res NPs were comparable to free Res in downregulating the expression of inflammatory cytokines, and reducing intracellular excessive ROS. The gel embedded with Res NPs accelerated the formation of granulation tissue, collagen deposition, and re-epithelialization, facilitating wound healing. The present study suggests that functionalized polyphenol-based materials are preferably suited to the development of tissue engineering biomaterials.
Collapse
Affiliation(s)
- Liwen Tang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. .,College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Xiangyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. .,College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Qiulan Tong
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. .,College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Yaqin Ran
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. .,College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Lei Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. .,College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Yunfei Tan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. .,College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Zeng Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. .,College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Xudong Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. .,College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
14
|
Chen Z, Yue Z, Yang K, Li S. Nanomaterials: small particles show huge possibilities for cancer immunotherapy. J Nanobiotechnology 2022; 20:484. [DOI: 10.1186/s12951-022-01692-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
AbstractWith the economy's globalization and the population's aging, cancer has become the leading cause of death in most countries. While imposing a considerable burden on society, the high morbidity and mortality rates have continuously prompted researchers to develop new oncology treatment options. Anti-tumor regimens have evolved from early single surgical treatment to combined (or not) chemoradiotherapy and then to the current stage of tumor immunotherapy. Tumor immunotherapy has undoubtedly pulled some patients back from the death. However, this strategy of activating or boosting the body's immune system hardly benefits most patients. It is limited by low bioavailability, low response rate and severe side effects. Thankfully, the rapid development of nanotechnology has broken through the bottleneck problem of anti-tumor immunotherapy. Multifunctional nanomaterials can not only kill tumors by combining anti-tumor drugs but also can be designed to enhance the body's immunity and thus achieve a multi-treatment effect. It is worth noting that the variety of nanomaterials, their modifiability, and the diversity of combinations allow them to shine in antitumor immunotherapy. In this paper, several nanobiotics commonly used in tumor immunotherapy at this stage are discussed, and they activate or enhance the body's immunity with their unique advantages. In conclusion, we reviewed recent advances in tumor immunotherapy based on nanomaterials, such as biological cell membrane modification, self-assembly, mesoporous, metal and hydrogels, to explore new directions and strategies for tumor immunotherapy.
Collapse
|
15
|
Therapeutic Textiles Functionalized with Keratin-Based Particles Encapsulating Terbinafine for the Treatment of Onychomycosis. Int J Mol Sci 2022; 23:ijms232213999. [PMID: 36430474 PMCID: PMC9699589 DOI: 10.3390/ijms232213999] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Onychomycosis is the most common nail fungal infection worldwide. There are several therapy options available for onychomycosis, such as oral antifungals, topicals, and physical treatments. Terbinafine is in the frontline for the treatment of onychomycosis; however, several adverse effects are associated to its oral administration. In this work, innovative keratin-based carriers encapsulating terbinafine were designed to overcome the drawbacks related to the use this drug. Therapeutic textiles functionalized with keratin-based particles (100% keratin; 80% keratin/20% keratin-PEG) encapsulating terbinafine were developed. The controlled release of terbinafine from the functionalized textiles was evaluated against different mimetic biologic solutions (PBS buffer-pH = 7.4, micellar solution and acidic sweat solution-pH = 4.3). The modification of keratin with polyethylene glycol (PEG) moieties favored the release of terbinafine at the end of 48 h for all the solution conditions. When the activity of functionalized textiles was tested against Trichophyton rubrum, a differentiated inhibition was observed. Textiles functionalized with 80% keratin/20% keratin-PEG encapsulating terbinafine showed a 2-fold inhibition halo compared with the textiles containing 100% keratin-encapsulating terbinafine. No activity was observed for the textiles functionalized with keratin-based particles without terbinafine. The systems herein developed revealed therapeutic potential towards nail fungal infections, taking advantage of keratin-based particles affinity to keratin structures and of the keratinase activity of T. rubrum.
Collapse
|
16
|
Gao D, Asghar S, Hu R, Chen S, Niu R, Liu J, Chen Z, Xiao Y. Recent advances in diverse nanosystems for nitric oxide delivery in cancer therapy. Acta Pharm Sin B 2022; 13:1498-1521. [PMID: 37139410 PMCID: PMC10149905 DOI: 10.1016/j.apsb.2022.11.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
Gas therapy has been proven to be a promising and advantageous treatment option for cancers. Studies have shown that nitric oxide (NO) is one of the smallest structurally significant gas molecules with great potential to suppress cancer. However, there is controversy and concern about its use as it exhibits the opposite physiological effects based on its levels in the tumor. Therefore, the anti-cancer mechanism of NO is the key to cancer treatment, and rationally designed NO delivery systems are crucial to the success of NO biomedical applications. This review summarizes the endogenous production of NO, its physiological mechanisms of action, the application of NO in cancer treatment, and nano-delivery systems for delivering NO donors. Moreover, it briefly reviews challenges in delivering NO from different nanoparticles and the issues associated with its combination treatment strategies. The advantages and challenges of various NO delivery platforms are recapitulated for possible transformation into clinical applications.
Collapse
Affiliation(s)
- Dan Gao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Sajid Asghar
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Rongfeng Hu
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, China
| | - Su Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ruixin Niu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jia Liu
- Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin 214499, China
- Corresponding authors. Tel./fax: +86 510 86700000 (Jia Liu); +86 25 85811050 (Zhipeng Chen); +86 25 83271079 (Yanyu Xiao).
| | - Zhipeng Chen
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Corresponding authors. Tel./fax: +86 510 86700000 (Jia Liu); +86 25 85811050 (Zhipeng Chen); +86 25 83271079 (Yanyu Xiao).
| | - Yanyu Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors. Tel./fax: +86 510 86700000 (Jia Liu); +86 25 85811050 (Zhipeng Chen); +86 25 83271079 (Yanyu Xiao).
| |
Collapse
|
17
|
Ma X, Chen X, Yi Z, Deng Z, Su W, Chen G, Ma L, Ran Y, Tong Q, Li X. Size Changeable Nanomedicines Assembled by Noncovalent Interactions of Responsive Small Molecules for Enhancing Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26431-26442. [PMID: 35647653 DOI: 10.1021/acsami.2c04698] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The size of nanocarriers strongly affects their performance in biological systems, especially the capacity to overcome various barriers before delivering the payloads to destinations. However, the optimum size varies at different delivery stages in cancer therapy due to the complicated tumor microenvironment. Relatively large particles are favored for long-term circulation in vivo, while smaller particles contribute to deep penetration into tumor tissues. This dilemma in the size of particles stimulates the development of stimuli-responsive size-shrinking nanocarriers. Herein, we report a facile strategy to construct a tumor-triggered tannic acid (TA) nanoassembly with improved drug delivery efficiency. Cystamine (CA), a small molecule with a disulfide bond, is thus used to mediate TA assembling via cooperative noncovalent interactions, which endows the nanoassembly with intrinsic pH/GSH dual-responsiveness. The obtained TA nanoassemblies were systematically investigated. DOX encapsulated nanoassembly labeled TCFD NP shows high drug loading efficiency, pH/GSH-responsiveness and significant size shrinkage from 122 to 10 nm with simultaneous drug release. The in vitro and in vivo experimental results demonstrate the excellent biocompatibility, sufficient intracellular delivery, enhanced tumor retention/penetration, and superior anticancer efficacy of the small-molecule-mediated nanoassembly. This noncovalent strategy provides a simple method to fabricate a tumor-triggered size-changeable delivery platform to overcome biological barriers.
Collapse
Affiliation(s)
- Xiaomin Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xiangyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Zeng Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Zhiwen Deng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Wen Su
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Guangcan Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Lei Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Yaqin Ran
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Qiulan Tong
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Xudong Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
18
|
Fasiku VO, Omolo CA, Kiruri LW, Devnarain N, Faya M, Mocktar C, Govender T. A hyaluronic acid-based nanogel for the co-delivery of nitric oxide (NO) and a novel antimicrobial peptide (AMP) against bacterial biofilms. Int J Biol Macromol 2022; 206:381-397. [PMID: 35202637 DOI: 10.1016/j.ijbiomac.2022.02.099] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/01/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023]
Abstract
Biofilms are a global health concern because they are associated with chronic and recurrent infections as well as resistance to conventional antibiotics. The aim of this study was to prepare a nanogel for the co-delivery of NO and AMPs against bacteria and biofilms. The NO-releasing nanogel was prepared by crosslinking HA solution with divinyl sulfone and extensively characterized. The nanogel was found to be biocompatible, injectable and NO release from the gel was sustained over a period of 24 h. In vitro antibacterial studies showed that the NO-AMP-loaded nanogel exhibited a broad spectrum antibacterial/antibiofilm activity. The NO-releasing nanogel had a greater antibacterial effect when compared to NO alone with MIC values of 1.56, 0.78 and 0.39 μg/ml against Escherichia coli, Methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa bacteria respectively. The antibiofilm results showed there was a 12.5 and 24-folds reduction in biofilms of MRSA, and P. aeruginosa respectively for catheters exposed to nanogel loaded with AMP/NO when compared to only NO, while a 7 and 9.4-folds reduction in biofilms of MRSA, and P. aeruginosa respectively was displayed by the nanogel loaded with only NO compared to only NO. The AMP/NO-releasing nanogel showed the potential to combat both biofilms and bacterial infections.
Collapse
Affiliation(s)
- Victoria O Fasiku
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; United States International University-Africa, School of Pharmacy and Health Sciences, Department of Pharmaceutics, P. O. Box 14634-00800, Nairobi, Kenya
| | - Lucy W Kiruri
- Department of Chemistry, Kenyatta University, P. O. Box 43844 - 00100, Nairobi, Kenya
| | - Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Mbuso Faya
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
19
|
Timorshina S, Popova E, Osmolovskiy A. Sustainable Applications of Animal Waste Proteins. Polymers (Basel) 2022; 14:polym14081601. [PMID: 35458349 PMCID: PMC9027211 DOI: 10.3390/polym14081601] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 12/19/2022] Open
Abstract
Currently, the growth of the global population leads to an increase in demand for agricultural products. Expanding the obtaining and consumption of food products results in a scale up in the amount of by-products formed, the development of processing methods for which is becoming an urgent task of modern science. Collagen and keratin make up a significant part of the animal origin protein waste, and the potential for their biotechnological application is almost inexhaustible. The specific fibrillar structure allows collagen and keratin to be in demand in bioengineering in various forms and formats, as a basis for obtaining hydrogels, nanoparticles and scaffolds for regenerative medicine and targeted drug delivery, films for the development of biodegradable packaging materials, etc. This review describes the variety of sustainable sources of collagen and keratin and the beneficial application multiformity of these proteins.
Collapse
|
20
|
Papagiannopoulos A, Sotiropoulos K. Current Advances of Polysaccharide-Based Nanogels and Microgels in Food and Biomedical Sciences. Polymers (Basel) 2022; 14:polym14040813. [PMID: 35215726 PMCID: PMC8963082 DOI: 10.3390/polym14040813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Polysaccharides are natural polymers with hydrophilic, biocompatible and biodegradable characteristics and have many opportunities in the food and pharmaceutical sectors. This review focuses on the field of nano and microstructures whose internal structure is based on networked polysaccharide chains in 3D i.e., polysaccharide nanogels (NGs) and microgels (MGs). As it is observed the number of articles on NGs and MGs in peer reviewed scientific journals has been increasing over the last two decades. At the same time, the relative contribution of polysaccharides in this field is gaining place. This review focuses on the different applied methods for the fabrication of a variety of polysaccharide-based NGs and MGs and aims to highlight the recent advances on the subject and present their potentials and properties with regards to their integration in aspects of medicinal and food sciences. The presentation of the recent advances in the application of polysaccharide NGs and MGs is divided in materials with potential as emulsion stabilizers and materials with potential as carriers of bioactives. For applications in the medical sector the division is based on the fabrication processes and includes self-assembled, electrostatically complexed/ionically crosslinked and chemically crosslinked NGs and MGs. It is concluded that many advances are expected in the application of these polysaccharide-based materials and in particular as nutrient-loaded emulsion stabilizers, viscosity modifiers and co-assembled structures in combination with proteins.
Collapse
Affiliation(s)
- Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
- Correspondence:
| | | |
Collapse
|
21
|
Drozdov AS, Nikitin PI, Rozenberg JM. Systematic Review of Cancer Targeting by Nanoparticles Revealed a Global Association between Accumulation in Tumors and Spleen. Int J Mol Sci 2021; 22:13011. [PMID: 34884816 PMCID: PMC8657629 DOI: 10.3390/ijms222313011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022] Open
Abstract
Active targeting of nanoparticles toward tumors is one of the most rapidly developing topics in nanomedicine. Typically, this strategy involves the addition of cancer-targeting biomolecules to nanoparticles, and studies on this topic have mainly focused on the localization of such formulations in tumors. Here, the analysis of the factors determining efficient nanoparticle targeting and therapy, various parameters such as types of targeting molecules, nanoparticle type, size, zeta potential, dose, and the circulation time are given. In addition, the important aspects such as how active targeting of nanoparticles alters biodistribution and how non-specific organ uptake influences tumor accumulation of the targeted nanoformulations are discussed. The analysis reveals that an increase in tumor accumulation of targeted nanoparticles is accompanied by a decrease in their uptake by the spleen. There is no association between targeting-induced changes of nanoparticle concentrations in tumors and other organs. The correlation between uptake in tumors and depletion in the spleen is significant for mice with intact immune systems in contrast to nude mice. Noticeably, modulation of splenic and tumor accumulation depends on the targeting molecules and nanoparticle type. The median survival increases with the targeting-induced nanoparticle accumulation in tumors; moreover, combinatorial targeting of nanoparticle drugs demonstrates higher treatment efficiencies. Results of the comprehensive analysis show optimal strategies to enhance the efficiency of actively targeted nanoparticle-based medicines.
Collapse
Affiliation(s)
- Andrey S. Drozdov
- Laboratory of Nanobiotechnology, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia;
| | - Petr I. Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Julian M. Rozenberg
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| |
Collapse
|
22
|
Jeong Y, Jo YK, Kim MS, Joo KI, Cha HJ. Tunicate-Inspired Photoactivatable Proteinic Nanobombs for Tumor-Adhesive Multimodal Therapy. Adv Healthc Mater 2021; 10:e2101212. [PMID: 34626527 DOI: 10.1002/adhm.202101212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/31/2021] [Indexed: 11/07/2022]
Abstract
Near-IR (NIR) light-responsive multimodal nanotherapeutics have been proposed to achieve improved therapeutic efficacy and high specificity in cancer therapy. However, their clinical application is still elusive due to poor biometabolization and short retention at the target site. Here, innovative photoactivatable vanadium-doped adhesive proteinic nanoparticles (NPs) capable of allowing biological photoabsorption and NIR-responsive anticancer therapeutic effects to realize trimodal photothermal-gas-chemo-therapy treatments in a highly biocompatible, site-specific manner are proposed. The photoactivatable tumor-adhesive proteinic NPs can enable efficient photothermal conversion via tunicate-inspired catechol-vanadium complexes as well as prolonged tumor retention by virtue of mussel protein-driven distinctive adhesiveness. The incorporation of a thermo-sensitive nitric oxide donor and doxorubicin into the photoactivatable adhesive proteinic NPs leads to synergistic anticancer therapeutic effects as a result of photothermal-triggered "bomb-like" multimodal actions. Thus, this protein-based phototherapeutic tumor-adhesive NPs have great potential as a spatiotemporally controllable therapeutic system to accomplish effective therapeutic implications for the complete ablation of cancer.
Collapse
Affiliation(s)
- Yeonsu Jeong
- Department of Chemical Engineering Pohang University of Science and Technology Pohang 37673 Korea
| | - Yun Kee Jo
- Department of Biomedical Convergence Science and Technology School of Convergence Kyungpook National University Daegu 41566 Korea
- Cell and Matrix Research Institute Kyungpook National University Daegu 41566 Korea
| | - Mou Seung Kim
- Department of Biomedical Convergence Science and Technology School of Convergence Kyungpook National University Daegu 41566 Korea
| | - Kye Il Joo
- Department of Chemical Engineering Pohang University of Science and Technology Pohang 37673 Korea
- Division of Chemical Engineering and Materials Science Ewha Womans University Seoul 03760 Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering Pohang University of Science and Technology Pohang 37673 Korea
| |
Collapse
|
23
|
Kaewruethai T, Laomeephol C, Pan Y, Luckanagul JA. Multifunctional Polymeric Nanogels for Biomedical Applications. Gels 2021; 7:228. [PMID: 34842728 PMCID: PMC8628665 DOI: 10.3390/gels7040228] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/30/2021] [Accepted: 11/13/2021] [Indexed: 12/17/2022] Open
Abstract
Currently, research in nanoparticles as a drug delivery system has broadened to include their use as a delivery system for bioactive substances and a diagnostic or theranostic system. Nanogels, nanoparticles containing a high amount of water, have gained attention due to their advantages of colloidal stability, core-shell structure, and adjustable structural components. These advantages provide the potential to design and fabricate multifunctional nanosystems for various biomedical applications. Modified or functionalized polymers and some metals are components that markedly enhance the features of the nanogels, such as tunable amphiphilicity, biocompatibility, stimuli-responsiveness, or sensing moieties, leading to specificity, stability, and tracking abilities. Here, we review the diverse designs of core-shell structure nanogels along with studies on the fabrication and demonstration of the responsiveness of nanogels to different stimuli, temperature, pH, reductive environment, or radiation. Furthermore, additional biomedical applications are presented to illustrate the versatility of the nanogels.
Collapse
Affiliation(s)
- Tisana Kaewruethai
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand; (T.K.); (C.L.)
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand
| | - Chavee Laomeephol
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand; (T.K.); (C.L.)
- Biomaterial Engineering for Medical and Health Research Unit, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China;
| | - Jittima Amie Luckanagul
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand; (T.K.); (C.L.)
- Biomaterial Engineering for Medical and Health Research Unit, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand
| |
Collapse
|
24
|
Zhao Y, Ouyang X, Peng Y, Peng S. Stimuli Responsive Nitric Oxide-Based Nanomedicine for Synergistic Therapy. Pharmaceutics 2021; 13:1917. [PMID: 34834332 PMCID: PMC8622285 DOI: 10.3390/pharmaceutics13111917] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022] Open
Abstract
Gas therapy has received widespread attention from the medical community as an emerging and promising therapeutic approach to cancer treatment. Among all gas molecules, nitric oxide (NO) was the first one to be applied in the biomedical field for its intriguing properties and unique anti-tumor mechanisms which have become a research hotspot in recent years. Despite the great progress of NO in cancer therapy, the non-specific distribution of NO in vivo and its side effects on normal tissue at high concentrations have impaired its clinical application. Therefore, it is important to develop facile NO-based nanomedicines to achieve the on-demand release of NO in tumor tissue while avoiding the leakage of NO in normal tissue, which could enhance therapeutic efficacy and reduce side effects at the same time. In recent years, numerous studies have reported the design and development of NO-based nanomedicines which were triggered by exogenous stimulus (light, ultrasound, X-ray) or tumor endogenous signals (glutathione, weak acid, glucose). In this review, we summarized the design principles and release behaviors of NO-based nanomedicines upon various stimuli and their applications in synergistic cancer therapy. We also discuss the anti-tumor mechanisms of NO-based nanomedicines in vivo for enhanced cancer therapy. Moreover, we discuss the existing challenges and further perspectives in this field in the aim of furthering its development.
Collapse
Affiliation(s)
- Yijun Zhao
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China; (Y.Z.); (X.O.)
| | - Xumei Ouyang
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China; (Y.Z.); (X.O.)
| | - Yongjun Peng
- The Department of Medical Imaging, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China
| | - Shaojun Peng
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China; (Y.Z.); (X.O.)
| |
Collapse
|
25
|
Ran Y, Su W, Ma L, Tan Y, Yi Z, Li X. Developing exquisite collagen fibrillar assemblies in the presence of keratin nanoparticles for improved cellular affinity. Int J Biol Macromol 2021; 189:380-390. [PMID: 34428491 DOI: 10.1016/j.ijbiomac.2021.08.134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 01/14/2023]
Abstract
Recently, the collagen-keratin (CK) composites have received much attention for the purpose of biomedical applications due to the intrinsic biocompatibility and biodegradability of these two proteins. However, few studies have reported the CK composites developed by the self-assembly approach and the influence of the keratin on the collagen self-assembly in vitro was still unknown. In this study, the keratin nanoparticles (KNPs) were successfully prepared by the reduction method, and we focused on investigating the effect of the varying concentrations of KNPs on the mechanism of the fibrillogenesis process of collagen. The intermolecular interaction between the two proteins revealed by the ultraviolet spectroscopy, Fourier transform-infrared (FT-IR) spectroscopy and circular dichromatic (CD) spectroscopy showed that KNPs would interact with the collagen, and keratin significantly influenced the hydrogen bonding interaction existed in collagen molecules. The SEM images exhibited the formation of exquisite fibrillar networks after incorporating the KNPs into collagen, and it was conspicuous that the KNPs could uniformly distribute on the surface of collagen fibrils via electrostatic interaction, for both of the two proteins possessed many charged moieties. In addition, the AFM images confirmed the presence of the characteristic D-periodicity of collagen fibrils, indicating that the introduction of KNPs did not disrupt the self-assembly nature of the native collagen. The cell adhesion, proliferation and migration experiments on the CK fibrils were also performed in this study. The results demonstrated that the CK composites showed a better cellular affinity compared with the collagen, thus it might be a promising candidate for the biomedical applications.
Collapse
Affiliation(s)
- Yaqin Ran
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Wen Su
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Lei Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yunfei Tan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zeng Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xudong Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
26
|
Jing YZ, Li SJ, Sun ZJ. Gas and gas-generating nanoplatforms in cancer therapy. J Mater Chem B 2021; 9:8541-8557. [PMID: 34608920 DOI: 10.1039/d1tb01661j] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gas therapy is the usage of certain gases with special therapeutic effects for the treatment of diseases. Hydrogen (H2), nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) acting as gas signalling molecules are representative gases in cancer therapy. They act directly on mitochondria or nuclei to lead to cell apoptosis. They can also alleviate immuno-suppression in the tumour microenvironment and promote phenotype conversion of tumour-associated macrophages. Moreover, the combination of gas therapy and other traditional therapy methods can reduce side effects and improve therapeutic efficacy. Here, we discuss the roles of NO, CO, H2S and H2 in cancer biology. Considering the rapidly developing nanotechnology, gas-generating nanoplatforms which can achieve targeted delivery and controlled release were also discussed. Finally, we highlight the current challenges and future opportunities of gas-based cancer therapy.
Collapse
Affiliation(s)
- Yuan-Zhe Jing
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P. R. China.
| | - Shu-Jin Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P. R. China.
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P. R. China. .,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P. R. China
| |
Collapse
|
27
|
Abstract
Keratin is a structural protein of mammalian tissues and birds, representing the principal constituent of hair, nails, skin, wool, hooves, horns, beaks, and feathers, and playing an essential role in protecting the body from external harassment. Due to its intrinsic features such as biocompatibility, biodegradability, responsiveness to specific biological environment, and physical–chemical properties, keratin has been extensively explored in the production of nanocarriers of active principles for different biomedical applications. In the present review paper, we aimed to give a literature overview of keratin-based nanoparticles produced starting from human hair, wool, and chicken feathers. Along with the chemical and structural description of keratin nanoparticles, selected in vitro and in vivo biological data are also discussed to provide a more comprehensive framework of possible fields of application of this protein. Despite the considerable number of papers describing the production and use of keratin nanoparticles as carries of anticancer and antimicrobial drugs or as hemostatic and wound healing materials, still, efforts are needed to implement keratin nanoparticles towards their clinical application.
Collapse
|
28
|
Fu J, Wu Q, Dang Y, Lei X, Feng G, Chen M, Yu XY. Synergistic Therapy Using Doxorubicin-Loading and Nitric Oxide-Generating Hollow Prussian Blue Nanoparticles with Photoacoustic Imaging Potential Against Breast Cancer. Int J Nanomedicine 2021; 16:6003-6016. [PMID: 34511902 PMCID: PMC8418369 DOI: 10.2147/ijn.s327598] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Traditional antitumor chemotherapy faces great challenges, such as multi-drug resistance (MDR) and poor penetration into tumor tissues. The newly emerging nitric oxide (NO)-based gas therapy has been recognized to reduce MDR and has improved permeation into tumor tissue. Methods In this study, NO-generating prodrug sodium nitroprusside (SNP) was doped to hollow mesoporous Prussian blue (PB) nanoparticles to fabricate NO-generating nanoparticles (NO-PB), which was further loaded with doxorubicin (DOX). Results DOX loaded NO-PB (DOX-NO-PB) was released quicker at pH 6 compared with neutral pH, suggesting NO-PB may facilitate the release of loaded drug in acidic tumor tissue. The capacity of NO production by NO-PB was measured, and the results showed the presence of NO in the culture medium from 4T1 cells incubated with NO-PB and inside the cells. NP-PB could be detected by photoacoustic imaging (PAI) in tumor tissue in 4T1 tumor bearing mice, suggesting this nanoparticle may serve as contrast agent for the noninvasive diagnosis of tumor tissues. NO-PB suppressed the growth of tissues in 4T1 tumor bearing mice. DOX-NO-PB showed more potent anti-tumor effects in 4T1 cells and tumor bearing mice compared with free DOX and NO-PB alone, indicating that the combination of DOX and NO-PB exhibited synergistic effects on tumor suppression. Conclusion This study provides a novel nanocarrier for gas therapy with additional PAI imaging capacity. This nanocarrier can be utilized for combination therapy of NO and chemotherapeutics which may serve as theranostic agents.
Collapse
Affiliation(s)
- Jijun Fu
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Qianni Wu
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yuanye Dang
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Xueping Lei
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Guining Feng
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Mingyue Chen
- Foshan Nanhai Vocational School of Health, Foshan, 528211, People's Republic of China
| | - Xi-Yong Yu
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| |
Collapse
|
29
|
Lu TY, Lu WF, Wang YH, Liao MY, Wei Y, Fan YJ, Chuang EY, Yu J. Keratin-Based Nanoparticles with Tumor-Targeting and Cascade Catalytic Capabilities for the Combinational Oxidation Phototherapy of Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38074-38089. [PMID: 34351754 DOI: 10.1021/acsami.1c10160] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photodynamic therapy (PDT) holds tantalizing prospects of a prominent cancer treatment strategy. However, its efficacy remains limited by virtue of the hypoxic tumor microenvironment and the inadequate tumor-targeted delivery of photosensitizers, and these can be further exacerbated by the lack of development of a well-controlled nitric oxide (NO) release system at the target site. Inspired by Chinese medicine, we propose a revealing new keratin application. Keratin has garnered attention as an NO generator; however, its oncological use has rarely been investigated. We hypothesized that the incorporation of a phenylboronic acid (PBA) targeting ligand/methylene blue (MB) photosensitizer with a keratin NO donor would facilitate precise tumor delivery, enhancing PDT. Herein, we demonstrated that MB@keratin/PBA/d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) nanoparticles (MB@KPTNPs) specifically targeted breast cancer cells and effectively suppressed their growth. Through MB-mediated biometabolism, the endocytic MB@KPTNPs produced a sufficient amount of intracellular NO that reduced the glutathione level while boosting the efficiency of PDT. A therapeutic combination of NO/PDT was therefore achieved, resulting in significant inhibition of both in vivo tumor growth and lung metastasis. These findings underscore the importance of utilizing keratin-based nanoparticles that simultaneously combine targeting of the tumor and self-generating NO with a cascading catalytic ability as a novel oxidation therapeutic strategy for enhancing PDT.
Collapse
Affiliation(s)
- Ting-Yu Lu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Wei-Fan Lu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Yin-Hsu Wang
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Mei-Yi Liao
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| | - Yang Wei
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 106, Taiwan
| | - Yu-Jui Fan
- School of Biomedical Engineering; and International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering; and International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
30
|
Li P, Wang Y, Jin X, Dou J, Han X, Wan X, Yuan J, Shen J. Fabrication of PCL/keratin composite scaffolds for vascular tissue engineering with catalytic generation of nitric oxide potential. J Mater Chem B 2021; 8:6092-6099. [PMID: 32555924 DOI: 10.1039/d0tb00857e] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tissue-engineered vascular grafts (TEVGs) have been proposed as a promising approach to fulfill the need for small-diameter blood vessel substitutes. However, common failure caused by thrombosis and neointimal proliferation after implantation has restricted their use in the clinic. Herein, a NO-generating scaffold for vascular tissue engineering was developed by coelectrospinning poly(ε-caprolactone) (PCL) with keratin. The morphology and surface chemical composition were characterized via SEM, ATR-FTIR spectroscopy and XPS. The biocomposite scaffold selectively enhanced the adhesion and growth of endothelial cells (ECs) while suppressing the proliferation of smooth muscle cells (SMCs) in the presence of GSH and GSNO due to the catalytic generation of NO. In addition, these mats displayed excellent blood compatibility by prolonging the blood-clotting time. In summary, these NO-generating PCL/keratin scaffolds have potential applications in vascular tissue engineering with rapid endothelialization and reduced SMC proliferation.
Collapse
Affiliation(s)
- Pengfei Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Yanfang Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Xingxing Jin
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Jie Dou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Xiao Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Xiuzhen Wan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
31
|
Yi Z, Cui X, Chen G, Chen X, Jiang X, Li X. Biocompatible, Antioxidant Nanoparticles Prepared from Natural Renewable Tea Polyphenols and Human Hair Keratins for Cell Protection and Anti-inflammation. ACS Biomater Sci Eng 2021; 7:1046-1057. [PMID: 33512989 DOI: 10.1021/acsbiomaterials.0c01616] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Excessive reactive oxygen species (ROS) can cause oxidative stress of tissues and adversely influence homeostasis of the body. Epigallocatechin gallate (EGCG) with an antioxidative effect can effectively eliminate the ROS, but an evident weakness associated with it is the relatively poor cytocompatibility. Combining with other biomacromolecules such as human hair keratin (KE) and using nanotechnology to prepare nanoparticles can improve this situation. By covalent bonding, we assembled KE and EGCG into KE-EGCG nanoparticles (NANO) with size of about 50 nm and characterized them by DLS, UV, FTIR, NMR, and XPS. Free radical scavenging experiments show that antioxidant properties of the obtained NANO are superior to that of vitamin C. Cell culture experiments also show that the NANO can effectively protect the proliferation of L929 cells and HUVEC cells. In addition, we also used RAW264.7 cells to establish a H2O2-induced cell injury model and an lipopolysaccharide-induced cellular inflammatory model to evaluate the antioxidant and anti-inflammatory properties of NANO. The results show that the NANO can effectively prevent cells from oxidative damage and reduce inflammatory expression of the cells, indicating that the NANO have a good antioxidative and anti-inflammatory effect on cells which can be applied to many diseases related to oxidative stress.
Collapse
Affiliation(s)
- Zeng Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.,College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Xinxing Cui
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.,College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Guangcan Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.,College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Xiangyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.,College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu 610041, P. R. China
| | - Xudong Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.,College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
32
|
Yang Y, Huang Z, Li LL. Advanced nitric oxide donors: chemical structure of NO drugs, NO nanomedicines and biomedical applications. NANOSCALE 2021; 13:444-459. [PMID: 33403376 DOI: 10.1039/d0nr07484e] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nitric oxide (NO), as an endogenous diatomic molecule, plays a key regulatory role in many physiological and pathological processes. This diatomic free radical has been shown to affect different physiological and cellular functions and participates in many regulatory functions ranging from changing the cardiovascular system to regulating neuronal functions. Thus, NO gas therapy as an emerging and promising treatment method has attracted increasing attention in the treatment of various pathological diseases. As is known, the physiological and pathological regulation of NO depends mainly on its location, exposure time and released dosage. However, NO gas lacks effective accumulation and controlled long-term gas releasing capacity at specific sites, resulting in limited therapeutic efficacy and potential side effects. Thus, researchers have developed various NO donors, but eventually found that it is still difficult to control the long-term release of NO. Inspired by the self-assembly properties of nanomaterials, researchers have realized that nanomaterials can be used to support NO donors to form nanomedicine to achieve spatial and temporal controlled release of NO. In this review, according to the history of the medicinal development of NO, we first summarize the chemical design of NO donors, NO prodrugs, and NO-conjugated drugs. Then, NO nanomedicines formed by various nanomaterials and NO donors depending on nanotechnology are highlighted. Finally, the biomedical applications of NO nanomedicine with optimized properties are summarized.
Collapse
Affiliation(s)
- Yueqi Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, P. R. China. and Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China.
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Li-Li Li
- Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China.
| |
Collapse
|
33
|
Shah RA, Frazar EM, Hilt JZ. Recent developments in stimuli responsive nanomaterials and their bionanotechnology applications. Curr Opin Chem Eng 2020; 30:103-111. [PMID: 34307003 PMCID: PMC8300877 DOI: 10.1016/j.coche.2020.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bionanotechnology is an ever-expanding field as innovations in nanotechnology continue to be developed based on biological systems or to be applied to address unmet needs in biology, biomedicine, etc., including various sensor and drug delivery solutions. Amidst the wide range of bionanomaterials that have been developed, stimuli responsive bionanomaterials are of particular interest and are thus emphasized within this review. Here, we have highlighted the most recent advances for stimuli responsive bionanomaterials with focus on those possessing responses based on activation, expansion/contraction and self-assembly/disassembly. The aim of this review is to bring attention to some of the most current bionanotechnology research and the interesting applications within this field.
Collapse
Affiliation(s)
- Rishabh A Shah
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Erin Molly Frazar
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - James Zach Hilt
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
34
|
Zhao Z, Moay ZK, Lai HY, Goh BHR, Chua HM, Setyawati MI, Ng KW. Characterization of Anisotropic Human Hair Keratin Scaffolds Fabricated via Directed Ice Templating. Macromol Biosci 2020; 21:e2000314. [PMID: 33146949 DOI: 10.1002/mabi.202000314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/12/2020] [Indexed: 01/18/2023]
Abstract
Human hair keratin (HHK) is successfully exploited as raw materials for 3D scaffolds for soft tissue regeneration owing to its excellent biocompatibility and bioactivity. However, most HHK scaffolds are not able to achieve the anisotropic mechanical properties of soft tissues such as tendons and ligaments due to lack of tunable, well-defined microstructures. In this study, directed ice templating method is used to fabricate anisotropic HHK scaffolds that are characterized by aligned pores (channels) in between keratin layers in the longitudinal plane. In contrast, pores in the transverse plane maintain a homogenous rounded morphology. Channel widths throughout the scaffolds range from ≈5 to ≈15 µm and are tunable by varying the freezing temperature. In comparison with HHK scaffolds with random, isotropic pore structures, the tensile strength of anisotropic HHK scaffolds is enhanced significantly by up to fourfolds (≈200 to ≈800 kPa) when the tensile load is applied in the direction parallel to the aligned pores. In vitro results demonstrate that the anisotropic HHK scaffolds are able to support human dermal fibroblast adhesion, spreading, and proliferation. The findings suggest that HHK scaffolds with well-defined, aligned microstructure hold promise as templates for soft tissues regeneration by mimicking their anisotropic properties.
Collapse
Affiliation(s)
- Zhitong Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zi Kuang Moay
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Hui Ying Lai
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Bernice Huan Rong Goh
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Huei Min Chua
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Magdiel Inggrid Setyawati
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.,Center for Nanotechnology and NanotoxicologyHarvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA, 02115, USA.,Environmental Chemistry and Materials CentreNanyang Environment and Water Research Institution, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore.,Skin Research Institute of Singapore, Biomedical Science Institutes, Immunos, 8A Biomedical Grove, Singapore, 138648, Singapore
| |
Collapse
|
35
|
Zhou W, Yang G, Ni X, Diao S, Xie C, Fan Q. Recent Advances in Crosslinked Nanogel for Multimodal Imaging and Cancer Therapy. Polymers (Basel) 2020; 12:E1902. [PMID: 32846923 PMCID: PMC7563556 DOI: 10.3390/polym12091902] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/16/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
Nanomaterials have been widely applied in the field of cancer imaging and therapy. However, conventional nanoparticles including micelles and liposomes may suffer the issue of dissociation in the circulation. In contrast, crosslinked nanogels the structures of which are covalently crosslinked have better physiological stability than micelles and liposomes, making them more suitable for cancer theranostics. In this review, we summarize recent advances in crosslinked nanogels for cancer imaging and therapy. The applications of nanogels in drug and gene delivery as well as development of novel cancer therapeutic methods are first introduced, followed by the introduction of applications in optical and multimodal imaging, and imaging-guided cancer therapy. The conclusion and future direction in this field are discussed at the end of this review.
Collapse
Affiliation(s)
| | | | | | | | - Chen Xie
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (W.Z.); (G.Y.); (X.N.); (S.D.)
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (W.Z.); (G.Y.); (X.N.); (S.D.)
| |
Collapse
|
36
|
Han X, Wang L, Du J, Dou J, Yuan J, Shen J. Keratin-dopamine conjugate nanoparticles as pH/GSH dual responsive drug carriers. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:2318-2330. [PMID: 32729373 DOI: 10.1080/09205063.2020.1803182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Drug-loaded nanoparticles have been widely used in the field of tumor treatment due to their low side effects and reduced frequency of administration. In this study, keratin-dopamine conjugate was first synthesized by amidation reaction and then formed nanoparticles by self-polymerization of dopamine segment. Keratin-dopamine conjugate nanoparticles (KNPs) exhibited pH and glutathione (GSH) dual responsiveness in the simulated tumor environment. These nanoparticles were able to load anti-cancer drug doxorubicin (DOX) through electrostatic interactions and hydrogen bonds. These drug-loaded KNPs (DKNPs) exhibited controlled drug release in a tumor simulation environment. Meanwhile, DKNPs performed a stronger inhibitory effect on tumor cells compared with human normal tissue cells. Based on the above results, keratin-dopamine conjugate based drug carriers had a broad prospect in the field of cancer treatment.
Collapse
Affiliation(s)
- Xiao Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China
| | - Lijuan Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China
| | - Jinsong Du
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China
| | - Jie Dou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China
| |
Collapse
|
37
|
Gu J, Huang Y, Yan Z, He D, Zhang Y, Xu J, Li Y, Xie X, Xie J, Shi D, Abagyan R, Zhang J, Tan Q. Biomimetic Membrane-Structured Nanovesicles Carrying a Supramolecular Enzyme to Cure Lung Cancer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31112-31123. [PMID: 32544316 DOI: 10.1021/acsami.0c06207] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Platforms for enzyme delivery must simultaneously have plasma stability, high catalytic activity, and low/no immunogenicity of the enzyme. Here, we designed a novel biomimetic membrane-structured nanovesicle (BNV) to efficiently carry supramolecular enzymes to meet the above requirements. We complexed l-asparaginase (Aase) with hydroxypropyl-β-cyclodextrin (HPCD) to form a supramolecular amphiphile (AS) by self-assembly via noncovalent reversible interactions. We then used the first synthesized polyethylene glycol (PEG 2 kDa)-decorated hyaluronan (12 kDa) and HPCD to self-assemble a semipermeable biomimetic membrane-structured nanovesicle (BNV) together with AS loading. As compared to native Aase, AS@BNV exhibited superior catalytic activity preservation, improved catalytic activity, better pharmacokinetics in rats, enhanced cytotoxic effects, increased antitumor efficacy, and decreased side effects. The underlying mechanisms, such as the autophagy inhibition action against tumor cells, protein-protein docking of the interaction between Aase-serum albumin, and decreased hepatic enzymatic activity, were investigated. This approach paves the way for new types of powerful biomimetic-, supramolecular-, and nanocarrier-based enzymatic therapies.
Collapse
Affiliation(s)
- Jing Gu
- Department of Thoracic Surgery, Daping Hospital of Army Medical University, PLA, Chongqing 400042, China
| | - Yongjia Huang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Zijun Yan
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Dan He
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yonghong Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Jingyu Xu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Yao Li
- Division of Infectious Disease, Chongqing Public Health Medical Center, Chongqing 400036, China
| | - Xuemei Xie
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Jiaxi Xie
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Da Shi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Qunyou Tan
- Department of Thoracic Surgery, Daping Hospital of Army Medical University, PLA, Chongqing 400042, China
| |
Collapse
|
38
|
Wang L, Du J, Han X, Dou J, Shen J, Yuan J. Self-crosslinked keratin nanoparticles for pH and GSH dual responsive drug carriers. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1994-2006. [PMID: 32589511 DOI: 10.1080/09205063.2020.1788371] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nano-drug delivery system (NDDS) has attracted widespread attention for their controlled drug release. In this work, keratin nanoparticles (KNPs) were prepared by self-crosslinking. No toxic chemical crosslinkers were added in the whole procedure. The morphology and size of KNPs were tested by transmission electron microscopy (TEM) and dynamic light scattering (DLS), respectively. The KNPs exhibited GSH and pH dual responsiveness as well as charge conversion, which were beneficial to tumor therapy. In addition, the anticancer drug of doxorubicin (DOX) could be loaded on KNPs by hydrophobicity and hydrogen bonds. The drug-loaded keratin nanoparticles (KDNPs) accelerated drug release under mimicked tumor microenvironments. In addition, KDNPs could effectively inhibit tumor cell growth while performing low toxicity on normal cells. Moreover, KDNPs could be uptaken by tumor cells through endocytosis. Based on the results, keratin-based nanoparticles were suitable candidates for drug microcarriers.
Collapse
Affiliation(s)
- Lijuan Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Nanjing Normal University, Nanjing, P. R. China
| | - Jinsong Du
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Nanjing Normal University, Nanjing, P. R. China
| | - Xiao Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Nanjing Normal University, Nanjing, P. R. China
| | - Jie Dou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Nanjing Normal University, Nanjing, P. R. China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Nanjing Normal University, Nanjing, P. R. China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Nanjing Normal University, Nanjing, P. R. China
| |
Collapse
|
39
|
Pieretti JC, Pelegrino MT, Nascimento MH, Tortella GR, Rubilar O, Seabra AB. Small molecules for great solutions: Can nitric oxide-releasing nanomaterials overcome drug resistance in chemotherapy? Biochem Pharmacol 2020; 176:113740. [DOI: 10.1016/j.bcp.2019.113740] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/26/2019] [Indexed: 01/05/2023]
|
40
|
Zhang H, Pei M, Liu P. pH-Activated surface charge-reversal double-crosslinked hyaluronic acid nanogels with feather keratin as multifunctional crosslinker for tumor-targeting DOX delivery. Int J Biol Macromol 2020; 150:1104-1112. [DOI: 10.1016/j.ijbiomac.2019.10.116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/29/2019] [Accepted: 10/12/2019] [Indexed: 01/19/2023]
|
41
|
Dou J, Wu Q, Li Y, Du J, Wan X, Han X, Yuan J, Meng X, Shen J. Keratin-Poly(2-methacryloxyethyl phosphatidylcholine) Conjugate-Based Micelles as a Tumor Micro-Environment-Responsive Drug-Delivery System with Long Blood Circulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3540-3549. [PMID: 32192339 DOI: 10.1021/acs.langmuir.0c00044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Drug-loaded micelles with long circulation time in blood and stimuli-responsiveness under the tumor micro-environment can significantly enhance therapeutic efficacy. In this report, human hair keratin was extracted with a reduction method and then conjugated with zwitterionic poly(2-methacryloxyethyl phosphatidylcholine, MPC) via thiol chain transfer polymerization (thiol CTP). Subsequently, keratin-polyMPC conjugates (KPC) were prepared into micelles and loaded with doxorubicin (DOX) by self-assembly. These micelles exhibited pH, glutathione (GSH), and enzyme triple-responsiveness as well as charge reversibility under the tumor micro-environment. In addition, these micelles showed high toxicity against A549 cells while low toxicity to normal cells. In vivo anticancer efficacy results revealed that these micelles showed better therapeutic efficiency than free DOX. Furthermore, these carriers exhibited prolonged circulation time, good stability, and no hemolysis in blood. Based on the results, these drug delivery systems of micelles were proper candidates as drug carriers.
Collapse
Affiliation(s)
- Jie Dou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Qiong Wu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yanmei Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jinsong Du
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xiuzhen Wan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xiao Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 East Road Zhongguancun, Beijing 100190, P. R. China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
42
|
Wang Y, Yang T, He Q. Strategies for engineering advanced nanomedicines for gas therapy of cancer. Natl Sci Rev 2020; 7:1485-1512. [PMID: 34691545 PMCID: PMC8291122 DOI: 10.1093/nsr/nwaa034] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/25/2022] Open
Abstract
As an emerging and promising treatment method, gas therapy has attracted more and more attention for treatment of inflammation-related diseases, especially cancer. However, therapeutic/therapy-assisted gases (NO, CO, H2S, H2, O2, SO2 and CO2) and most of their prodrugs lack the abilities of active intratumoral accumulation and controlled gas release, resulting in limited cancer therapy efficacy and potential side effects. Therefore, development of nanomedicines to realize tumor-targeted and controlled release of therapeutic/therapy-assisted gases is greatly desired, and also the combination of other therapeutic modes with gas therapy by multifunctional nanocarrier platforms can augment cancer therapy efficacy and also reduce their side effects. The design of nanomedicines with these functions is vitally important, but challenging. In this review, we summarize a series of engineering strategies for construction of advanced gas-releasing nanomedicines from four aspects: (1) stimuli-responsive strategies for controlled gas release; (2) catalytic strategies for controlled gas release; (3) tumor-targeted gas delivery strategies; (4) multi-model combination strategies based on gas therapy. Moreover, we highlight current issues and gaps in knowledge, and envisage current trends and future prospects of advanced nanomedicines for gas therapy of cancer. This review aims to inspire and guide the engineering of advanced gas-releasing nanomedicines.
Collapse
Affiliation(s)
- Yingshuai Wang
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Tian Yang
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Qianjun He
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
43
|
Ren X, Yi Z, Sun Z, Ma X, Chen G, Chen Z, Li X. Natural polysaccharide-incorporated hydroxyapatite as size-changeable, nuclear-targeted nanocarrier for efficient cancer therapy. Biomater Sci 2020; 8:5390-5401. [DOI: 10.1039/d0bm01320j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Nuclear-targeted, size-changeable polysaccharide hybrid hydroxyapatite nanoparticles were prepared for the delivery of doxorubicin for cancer therapy, showing low toxicity to healthy tissue cells but strong killing effect on tumor cells.
Collapse
Affiliation(s)
- Xiaoxiang Ren
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
- Department of Biomedical Engineering
| | - Zeng Yi
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Zhe Sun
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xiaomin Ma
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Guangcan Chen
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | | | - Xudong Li
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
44
|
Chu PY, Tsai SC, Ko HY, Wu CC, Lin YH. Co-Delivery of Natural Compounds with a Dual-Targeted Nanoparticle Delivery System for Improving Synergistic Therapy in an Orthotopic Tumor Model. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23880-23892. [PMID: 31192580 DOI: 10.1021/acsami.9b06155] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Various natural compounds including epigallocatechin gallate (EGCG) and curcumin (CU) have potential in developing anticancer therapy. However, their clinical use is commonly limited by instability and low tissue distribution. EGCG and CU combined treatment can improve the efficacy with synergistic effects. To improve the synergistic effect and overcome the limitations of low tissue distribution, we applied a dual cancer-targeted nanoparticle system to co-deliver EGCG and CU. Nanoparticles were composed of hyaluronic acid, fucoidan, and poly(ethylene glycol)-gelatin to encapsulate EGCG and CU. Furthermore, a dual targeting system was established with hyaluronic acid and fucoidan, which were used as agents for targeting CD44 on prostate cancer cells and P-selectin in tumor vasculature, respectively. Their effect and efficacy were investigated in prostate cancer cells and a orthotopic prostate tumor model. The EGCG/CU-loaded nanoparticles bound to prostate cancer cells, which were uptaken more into cells, leading to a better anticancer efficiency compared to the EGCG/CU combination solution. In addition, the releases of EGCG and CU were regulated by their pH value that avoided the premature release. In mice, treatment of the cancer-targeted EGCG/CU-loaded nanoparticles significantly attenuated the orthotopic tumor growth without inducing organ injuries. Overall, the dual-targeted nanoparticle system for the co-delivery of EGCG and CU greatly improved its synergistic effect in cancer therapy, indicating its great potential in developing treatments for prostate cancer therapy.
Collapse
|
45
|
Liu P, Wu Q, Li Y, Li P, Yuan J, Meng X, Xiao Y. DOX-Conjugated keratin nanoparticles for pH-Sensitive drug delivery. Colloids Surf B Biointerfaces 2019; 181:1012-1018. [PMID: 31382328 DOI: 10.1016/j.colsurfb.2019.06.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022]
Abstract
Keratin is a good candidate for drug carrier due to its good biocompatibility, low immunogenicity, redox responsiveness, and abundant renewable sources. Herein, doxorubicin (DOX) was first conjugated with keratin through a pH-sensitive hydrazone linkage, and then prepared into particulate drug carrier via desolvation method. The size, morphology, and surface potential of keratin-DOX nanoparticles (KDNPs) were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The drug release results showed that KDNPs performed an excellent pH-sensitive behavior under acidic tumor microenvironment. Cytotoxicity assay by MTT confirmed that KDNPs exhibited the enhanced cytotoxicity against A549 cells. Furthermore, KDNPs had higher therapeutic efficiency in vivo than free DOX. Hemolysis assay indicated that KDNPs was blood compatible. All the results identified that KDNPs are well suited as an ideal drug carrier.
Collapse
Affiliation(s)
- Pengcheng Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 East Road Zhongguancun, Beijing 100190, PR China
| | - Yanmei Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Pengfei Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 East Road Zhongguancun, Beijing 100190, PR China.
| | - Yinghong Xiao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
46
|
Zhang H, Liu P. One-Pot Synthesis of Chicken-Feather-Keratin-Based Prodrug Nanoparticles with High Drug Content for Tumor Intracellular DOX Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8007-8014. [PMID: 31117737 DOI: 10.1021/acs.langmuir.9b01190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
pH/reduction dual-triggered chicken-feather-keratin-based prodrug nanoparticles (C-PK/- SS-Hy-D NPs) were designed via a facile one-pot oxidation coupling reaction between the thiol-functional acid-labile prodrug M-Hy-D and the PEGylated keratin (PK) graft copolymer, for tumor intracellular doxorubicin (DOX) delivery. Due to the encapsulation of the pH and the reduction of the dual-responsive small prodrug D-Hy- SS-Hy-D, a high drug content of 45.8% was obtained in the proposed prodrug nanoparticles. They exhibited excellent pH and reduction of dual-triggered drug release, with cumulative drug release of 88.6% within 51 h in the simulated tumor intracellular microenvironment, while the premature drug leakage was only 13.7% in the simulated normal physiological medium. The in vitro experiments revealed the enhanced antitumor efficacy of the C-PK/- SS-Hy-D NPs than the free DOX at a higher dosage of >10 μg/mL.
Collapse
Affiliation(s)
- Huifang Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Peng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| |
Collapse
|
47
|
Xu Y, Ren H, Liu J, Wang Y, Meng Z, He Z, Miao W, Chen G, Li X. A switchable NO-releasing nanomedicine for enhanced cancer therapy and inhibition of metastasis. NANOSCALE 2019; 11:5474-5488. [PMID: 30855625 DOI: 10.1039/c9nr00732f] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Clinical chemotherapy for cancer is limited by the physiological barrier of tumors, resulting in low drug delivery to tumors, poor efficacy of drugs and inability to block tumor metastasis. Here we developed an intelligent switchable nitric oxide (NO)-releasing nanoparticle, IPH-NO, which loads a photosensitizer (IR780) and the chemotherapy drug paclitaxel (PTX) into NO donor-S-nitrosated human serum albumin (HSA-NO). NO exhibits two effects based on its concentration: enhancement of chemotherapy by increasing the enhanced permeability and retention (EPR) effect at low concentrations and direct killing of cancer cells at high concentrations. IPH-NO can slowly release NO in the presence of glutathione to boost tumor vascular permeability and improve drug accumulation. Near-infrared light irradiation was utilized to induce a quick release of NO that can directly kill cancer cells at high concentrations. This combination of phototherapy and NO gas therapy activated by NIR together with chemotherapy showed significant effects in tumor inhibition. Furthermore, IPH-NO blocked tumor metastasis by inhibiting epithelial mesenchymal transition. PH-NO provides a novel strategy to control NO release at tumor site for drug accumulation and combination therapies, consequently potentiating the anticancer efficacy and inhibiting tumor metastasis.
Collapse
Affiliation(s)
- Yan Xu
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
pH and folic acid dual responsive polysaccharide nanospheres used for nuclear targeted cancer chemotherapy. Colloids Surf B Biointerfaces 2019; 178:445-451. [PMID: 30921679 DOI: 10.1016/j.colsurfb.2019.03.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 02/06/2023]
Abstract
Ideal nanoscale drug delivery system (DDS) should be biocompatible, having targeted recognition and controlled release properties. In this work, monodispersed, doxorubicin (Dox) loaded chitosan (Cts) nanospheres functionalized by mesoporous SiO2 and folic acid (FA) were prepared, briefly named as DCSF NSs. The prepared raspberry-like DCSF NSs had an average size of 440 nm and drug loading efficiency (DLE) of 42.61%. The drug release results confirmed that the release of Dox could be controlled by pH change. Cell apoptosis results indicated that the obtained DCSF NSs could kill 90% of MCF-7 cells in 48 h. Confocal laser scanning microscopy (CLSM) results further revealed that folic acid could mediate the cellular uptake of DCSF NSs. These results demonstrated that the obtained DCSF NSs were pH-responsive, folic acid-triggered nuclear targeted, which can be used as ideal DDS for tumor chemotherapy.
Collapse
|
49
|
Zhang J, Ren X, Tian X, Zhang P, Chen Z, Hu X, Mei X. GSH and enzyme responsive nanospheres based on self-assembly of green tea polyphenols and BSA used for target cancer chemotherapy. Colloids Surf B Biointerfaces 2019; 173:654-661. [DOI: 10.1016/j.colsurfb.2018.10.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/03/2018] [Accepted: 10/15/2018] [Indexed: 01/30/2023]
|
50
|
Chen X, Yi Z, Chen G, Ma X, Su W, Cui X, Li X. DOX-assisted functionalization of green tea polyphenol nanoparticles for effective chemo-photothermal cancer therapy. J Mater Chem B 2019. [DOI: 10.1039/c9tb00751b] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Green tea polyphenol nanoparticles with chemotherapeutic and photothermal performance exhibited effective anti-tumor effects in vivo with intravenous injection.
Collapse
Affiliation(s)
- Xiangyu Chen
- Engineering Research Center in Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
- National Engineering Research Center for Biomaterials
| | - Zeng Yi
- Engineering Research Center in Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
- National Engineering Research Center for Biomaterials
| | - Guangcan Chen
- Engineering Research Center in Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
- National Engineering Research Center for Biomaterials
| | - Xiaomin Ma
- Engineering Research Center in Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
- National Engineering Research Center for Biomaterials
| | - Wen Su
- Engineering Research Center in Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
- National Engineering Research Center for Biomaterials
| | - Xinxing Cui
- Engineering Research Center in Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
- National Engineering Research Center for Biomaterials
| | - Xudong Li
- Engineering Research Center in Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
- National Engineering Research Center for Biomaterials
| |
Collapse
|