1
|
Liu F, Li S, Huang C, Bi Z, Xiang X, Zhang S, Yang R, Zheng L. Self-assembled nanoplatform-mediated co-delivery of brusatol to sensitize sorafenib for hepatocellular carcinoma treatment. RSC Adv 2025; 15:11675-11687. [PMID: 40230634 PMCID: PMC11995455 DOI: 10.1039/d5ra00108k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/18/2025] [Indexed: 04/16/2025] Open
Abstract
Sorafenib (Sor), recognized as a frontline multi-kinase inhibitor, constitutes the primary targeted therapy for hepatocellular carcinoma (HCC). Despite its potential, many HCC patients exhibit reduced responsiveness to Sor, thereby undermining its therapeutic efficacy. Recent studies highlight the importance of nuclear factor erythroid-2-related factor 2 (Nrf2) activation in HCC, which contributes to Sor resistance. Brusatol (Bru), a plant-derived Nrf2 inhibitor, counteracts this resistance but faces challenges due to its poor solubility in aqueous media. In this study, we developed a glutathione (GSH)-responsive nanoplatform that effectively dispersed in water for the co-delivery of Bru and Sor (B/S NP). This approach enhanced Bru's therapeutic efficacy and increased Sor sensitivity in HCC. Our nanoplatform significantly reduced Nrf2 expression, thereby increasing Sor sensitivity both in vitro and in vivo, while presenting a favorable biosafety profile. These findings suggest that the nanoplatform-mediated co-delivery of Bru and Sor offers an innovative approach to enhance Sor's effectiveness in HCC treatment.
Collapse
Affiliation(s)
- Fengrui Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Army Medical University Chongqing 400038 P. R. China
- Key Laboratory of Tongliang District People's Hospital Chongqing 402560 P. R. China
| | - Senlin Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Army Medical University Chongqing 400038 P. R. China
| | - Chengcheng Huang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Army Medical University Chongqing 400038 P. R. China
| | - Zhenfei Bi
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Army Medical University Chongqing 400038 P. R. China
| | - Xiao Xiang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Army Medical University Chongqing 400038 P. R. China
| | - Shuqi Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Army Medical University Chongqing 400038 P. R. China
| | - Ruihao Yang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Army Medical University Chongqing 400038 P. R. China
| | - Lu Zheng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Army Medical University Chongqing 400038 P. R. China
| |
Collapse
|
2
|
Safwat S, Ishak RAH, Hathout RM, Mortada ND. Bioinspired caffeic acid-laden milk protein-based nanoparticles targeting folate receptors for breast cancer treatment. Ther Deliv 2025; 16:43-61. [PMID: 39589423 PMCID: PMC11703524 DOI: 10.1080/20415990.2024.2433938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024] Open
Abstract
AIMS Breast cancer is the second leading cause of death worldwide. Conventional chemotherapeutic therapies lack the specific targeting effect toward the cancerous cells resulting in extensive side effects. Our current study endeavors to prepare novel bioinspired folic acid-functionalized caffeic acid (CA)-loaded casein nanoparticles (CS NPs) for curbing breast cancer. METHODS CA-CS NPs were prepared by simple coacervation method followed by lyophilization. Functionalized CS NPs were achieved using folic acid as the targeting moiety. Entire comparative characterization between unconjugated and conjugated NPs were implemented in terms of size, polydispersity index, surface charge, 1H-NMR, surface morphology, in-vitro drug release, sterilization, cytotoxicity, and animal studies. RESULTS Conjugated NPs attained PS = 157.23 ± 2.64 nm, PDI = 0.309 ± 0.199, ZP = -25.53 ± 2.31 mV and IC50 = 40 ± 2.9 µg/ml. Significant reduction in the biochemical marker levels of Carcino-embryonic antigen, carbohydrate antigen 15-3, and malondialdehyde while increased superoxide dismutase levels were achieved in the tumor -induced rats treated by the conjugated NPs. Histopathological examinations showed great improvement in the mammary and necrotic regions. CONCLUSION The present work paves the road of 'back to nature' approach in designing biocompatible bioinspired conjugated nanocarriers for the diagnosis and treatment of various diseases.
Collapse
Affiliation(s)
- Sally Safwat
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rania A. H. Ishak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rania M. Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nahed D. Mortada
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Hsu CY, Allela OQB, Hussein AM, Mustafa MA, Kaur M, Alaraj M, Al-Hussainy AF, Radi UK, Ubaid M, Idan AH, Alsaikhan F, Narmani A, Farhood B. Recent advances in polysaccharide-based drug delivery systems for cancer therapy: a comprehensive review. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:564-586. [PMID: 39639430 DOI: 10.1080/21691401.2024.2436350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Cancer has a high rate of incidence and mortality throughout the world. Although several conventional approaches have been developed for the treatment of cancer, such as surgery, chemotherapy, radiotherapy and thermal therapy, they have remarkable disadvantages which result in inefficient treatment of cancer. For example, immunogenicity, prolonged treatment, non-specificity, metastasis and high cost of treatment, are considered as the major drawbacks of chemotherapy. Therefore, there is a fundamental requirement for the development of breakthrough technologies for cancer suppression. Polysaccharide-based drug delivery systems (DDSs) are the most reliable drug carriers for cancer therapy. Polysaccharides, as a kind of practical biomaterials, are divided into several types, including chitosan, alginates, dextran, hyaluronic acid, cyclodextrin, pectin, etc. Polysaccharides are extracted from different natural resources (like herbal, marine, microorganisms, etc.). The potential features of polysaccharides have made them reliable candidates for therapeutics delivery to cancer sites; the simple purification, ease of modification and functionalization, hydrophilicity, serum stability, appropriate drug loading capacity, biocompatibility, bioavailability, biodegradability and stimuli-responsive and sustained drug release manner are considerable aspects of these biopolymers. This review highlights the practical applications of polysaccharides-based DDSs in pharmaceutical science and cancer therapy.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, USA
| | | | - Ali M Hussein
- Department of Biomedical Sciences, College of Applied Sciences, Cihan University-Erbil, Kurdistan Region, Iraq
| | | | - Mandeep Kaur
- Department of Chemistry, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, India
- Department of Sciences, Vivekananda Global University, Jaipur, India
| | | | | | - Usama Kadem Radi
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Asghar Narmani
- Department of Life Science Engineering, University of Tehran, Tehran, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
4
|
Zhang Y, Palanisamy S, Kwon MH, Ge Y, Kou F, Uthamapriya RA, Lee D, Lee DJ, Bao H, You S, Zhang Y. A novel targeted anticancer drug delivery strategy: Cnidium officinale polysaccharide conjugated with carboxymethyl-5-fluorouracil and folic acid for ovarian cancer therapy. Int J Biol Macromol 2024; 285:138107. [PMID: 39608520 DOI: 10.1016/j.ijbiomac.2024.138107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/26/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
To mitigate adverse reactions induced by 5-fluorouracil (5-FU), Cnidium officinale fraction 2 (F2) polysaccharides served as the macromolecular carrier, facilitating its reaction with carboxymethyl-5-fluorouracil (C-5-FU) for producing F2-C-5-FU. Subsequently, this compound could react with folic acid (FA) through the ester bond, forming F2-C-5-FU-FA, as verified through NMR analysis. The in vitro anticancer efficacy of F2-C-5-FU-FA was evaluated using SKOV-3 cells that expressed folate receptor (FR) and FR-deficient A549 cells, showing greater cytotoxicity in the SKOV-3 cell line due to the FRs on the cell membrane. In vivo experiments were conducted on SKOV-3-bearing xenograft mice using an in vivo imaging system (IVIS). Animals injected with F2-C-5-FU-FA exhibited significantly stronger targeting of tumor tissue compared to those injected with F2-C-5-FU. These findings highlighted enhanced drug delivery and accumulation in targeted tumor regions facilitated by folate-targeted conjugates. Moreover, F2-C-5FU-FA showed reduced cardiac toxicity in mice and minimal spleen accumulation, indicating a negligible effect on the immune system. Overall, this study introduced a novel strategy for achieving highly efficient anticancer drug delivery into tumor cells that express FR.
Collapse
Affiliation(s)
- Yutong Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, National Center of Important Tropical Crops Engineering and Technology Research, Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China; Sanya Research Institute, Chinese Academy of Tropical Agriculture Science, Sanya 572025, Hainan, China
| | - Subramanian Palanisamy
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Mi-Hye Kwon
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Yunfei Ge
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650 201, China
| | - Fang Kou
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Rajavel Arumugam Uthamapriya
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - DongKi Lee
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Dong-Jin Lee
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Honghui Bao
- School of Food Science and Technology & School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China; Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Sciences, Xiangyang, Hubei, China.
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea.
| | - Yanjun Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, National Center of Important Tropical Crops Engineering and Technology Research, Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China.
| |
Collapse
|
5
|
Alnasraui AHF, Joe IH, Al-Musawi S. Investigation of Folate-Functionalized Magnetic-Gold Nanoparticles Based Targeted Drug Delivery for Liver: In Vitro, In Vivo and Docking Studies. ACS Biomater Sci Eng 2024; 10:6299-6313. [PMID: 39221994 DOI: 10.1021/acsbiomaterials.4c01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Magnetic nanoparticles used for targeted drug administration present a promising approach in cancer treatment owing to its notable advantages, such as targeted and enhanced encapsulation ability and improved bio protection compared with conventional drug delivery methods. Au shell-iron core nanoparticles (Fe3O4@Au) were manufactured by a chemical process, coated with dextran to encapsulate curcumin, and functionalized for precision drug delivery using folic acid to combat liver cancer. Dynamic light scattering, scanning electron microscopy, transmission electron microscopy, vibrational spectroscopy, and magnetometry were applied to assess the synthesis of the Fe3O4@Au-DEX-CU-FA compound. The mean size, zeta potential, and polydispersity of Fe3O4@Au-DEX-CU-FA were 63.3 ± 2.33 nm, -68.3 ± 1.78 mV, and 0.041 ± 0.008, respectively. Molecular docking models were created to examine the relationship between Fe3O4@Au-CU and BCL-XL, BAK, and to identify potential binding sites. The loading efficiency and release profile tests examined the medication delivery system's ability. MTT assay was subsequently utilized to determine the optimal dosage and therapeutic efficacy of Fe3O4@Au-DEX-CU-FA on cancer SNU-449 and healthy THLE-2 cell lines. Flow cytometry demonstrated that Fe3O4@Au-DEX-CU-FA effectively induced cancer cell death. Fe3O4@Au-DEX-FA showed a regulated release profile of free curcumin at 37 °C and pH values of 7.4 and 5.4. Real-time PCR revealed increased BAK expression and decreased BCL-XL expression. Nude tumor-bearing mice were used for in vivo experiments. Fe3O4@Au-DEX-CU-FA treatment dramatically reduced the swelling size compared with free CU and control treatments. It also resulted in a longer lifespan, expanded splenocyte proliferation, increased IFN-γ levels, and decreased IL-4 levels. The regular cells showed no cytotoxic effect compared with the cancer type, confirming that Fe3O4@Au-DEX-CU-FA maintained its potent anticancer actions. The data suggests that Fe3O4@Au-DEX-CU-FA possesses a promising potential as a therapeutic agent for combating tumors.
Collapse
Affiliation(s)
- Ali Hussein F Alnasraui
- Department of Physics, University of Kerala, Thiruvananthapuram, Kerala 695015, India
- College of Biotechnology, Al-Qasim Green University, Babylon 51013, Iraq
| | - I Hubert Joe
- Department of Nanoscience and Nanotechnology, University of Kerala, Thiruvananthapuram, Kerala 695015, India
| | | |
Collapse
|
6
|
Gong T, Liu X, Wang X, Lu Y, Wang X. Applications of polysaccharides in enzyme-triggered oral colon-specific drug delivery systems: A review. Int J Biol Macromol 2024; 275:133623. [PMID: 38969037 DOI: 10.1016/j.ijbiomac.2024.133623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Enzyme-triggered oral colon-specific drug delivery system (EtOCDDS1) can withstand the harsh stomach and small intestine environments, releasing encapsulated drugs selectively in the colon in response to colonic microflora, exerting local or systematic therapeutic effects. EtOCDDS boasts high colon targetability, enhanced drug bioavailability, and reduced systemic side effects. Polysaccharides are extensively used in enzyme-triggered oral colon-specific drug delivery systems, and its colon targetability has been widely confirmed, as their properties meet the demand of EtOCDDS. Polysaccharides, known for their high safety and excellent biocompatibility, feature modifiable structures. Some remain undigested in the stomach and small intestine, whether in their natural state or after modifications, and are exclusively broken down by colon-resident microbiota. Such characteristics make them ideal materials for EtOCDDS. This article reviews the design principles of EtOCDDS as well as commonly used polysaccharides and their characteristics, modifications, applications and specific mechanism for colon targeting. The article concludes by summarizing the limitations and potential of ETOCDDS to stimulate the development of innovative design approaches.
Collapse
Affiliation(s)
- Tingting Gong
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xinxin Liu
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xi Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Yunqian Lu
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
7
|
Ding L, Agrawal P, Singh SK, Chhonker YS, Sun J, Murry DJ. Polymer-Based Drug Delivery Systems for Cancer Therapeutics. Polymers (Basel) 2024; 16:843. [PMID: 38543448 PMCID: PMC10974363 DOI: 10.3390/polym16060843] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 11/12/2024] Open
Abstract
Chemotherapy together with surgery and/or radiotherapy are the most common therapeutic methods for treating cancer. However, the off-target effects of chemotherapy are known to produce side effects and dose-limiting toxicities. Novel delivery platforms based on natural and synthetic polymers with enhanced pharmacokinetic and therapeutic potential for the treatment of cancer have grown tremendously over the past 10 years. Polymers can facilitate selective targeting, enhance and prolong circulation, improve delivery, and provide the controlled release of cargos through various mechanisms, including physical adsorption, chemical conjugation, and/or internal loading. Notably, polymers that are biodegradable, biocompatible, and physicochemically stable are considered to be ideal delivery carriers. This biomimetic and bio-inspired system offers a bright future for effective drug delivery with the potential to overcome the obstacles encountered. This review focuses on the barriers that impact the success of chemotherapy drug delivery as well as the recent developments based on natural and synthetic polymers as platforms for improving drug delivery for treating cancer.
Collapse
Affiliation(s)
- Ling Ding
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
| | - Prachi Agrawal
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.A.); (J.S.)
| | - Sandeep K. Singh
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
| | - Yashpal S. Chhonker
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
| | - Jingjing Sun
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.A.); (J.S.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Daryl J. Murry
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
8
|
Zeng D, Ma Z, Zan X, Luo T, Wang X, Gao X, Fu X. A folic acid-decorated nanoparticles loaded JQ1 for oral squamous cell carcinoma therapy. CHINESE CHEM LETT 2024; 35:108433. [DOI: 10.1016/j.cclet.2023.108433] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Ahmadi M, Ritter CA, von Woedtke T, Bekeschus S, Wende K. Package delivered: folate receptor-mediated transporters in cancer therapy and diagnosis. Chem Sci 2024; 15:1966-2006. [PMID: 38332833 PMCID: PMC10848714 DOI: 10.1039/d3sc05539f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/31/2023] [Indexed: 02/10/2024] Open
Abstract
Neoplasias pose a significant threat to aging society, underscoring the urgent need to overcome the limitations of traditional chemotherapy through pioneering strategies. Targeted drug delivery is an evolving frontier in cancer therapy, aiming to enhance treatment efficacy while mitigating undesirable side effects. One promising avenue utilizes cell membrane receptors like the folate receptor to guide drug transporters precisely to malignant cells. Based on the cellular folate receptor as a cancer cell hallmark, targeted nanocarriers and small molecule-drug conjugates have been developed that comprise different (bio) chemistries and/or mechanical properties with individual advantages and challenges. Such modern folic acid-conjugated stimuli-responsive drug transporters provide systemic drug delivery and controlled release, enabling reduced dosages, circumvention of drug resistance, and diminished adverse effects. Since the drug transporters' structure-based de novo design is increasingly relevant for precision cancer remediation and diagnosis, this review seeks to collect and debate the recent approaches to deliver therapeutics or diagnostics based on folic acid conjugated Trojan Horses and to facilitate the understanding of the relevant chemistry and biochemical pathways. Focusing exemplarily on brain and breast cancer, recent advances spanning 2017 to 2023 in conjugated nanocarriers and small molecule drug conjugates were considered, evaluating the chemical and biological aspects in order to improve accessibility to the field and to bridge chemical and biomedical points of view ultimately guiding future research in FR-targeted cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
| | - Christoph A Ritter
- Institute of Pharmacy, Section Clinical Pharmacy, University of Greifswald Greifswald Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
- Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center Ferdinand-Sauerbruch-Straße 17475 Greifswald Germany
| | - Sander Bekeschus
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
- Clinic and Policlinic for Dermatology and Venereology, Rostock University Medical Center Strempelstr. 13 18057 Rostock Germany
| | - Kristian Wende
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
| |
Collapse
|
10
|
Kumari M, Sharma S, Kanwar N, Naman S, Baldi A. Dextran-based Drug Delivery Approaches for Lung Diseases: A Review. Curr Drug Deliv 2024; 21:1474-1496. [PMID: 38243938 DOI: 10.2174/0115672018267737231116100812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 01/22/2024]
Abstract
Respiratory disorders, such as tuberculosis, cystic fibrosis, chronic obstructive pulmonary disease, asthma, lung cancer, and pulmonary inflammation, are among the most prevalent ailments in today's world. Dextran, an exopolysaccharide formed by Leuconostoc mesenteroides (slimeproducing bacteria), and its derivatives are investigated for several therapeutic utilities. Dextranbased drug delivery system can become an innovative strategy in the treatment of several respiratory ailments as it offers numerous advantages, such as mucolytic action, airway hydration, antiinflammatory properties, and radioprotective effect as compared to other polysaccharides. Being biocompatible, flexible hydrophilic nature, biodegradable, tasteless, odourless, non-mutagenic, watersoluble and non-toxic edible polymer, dextran-based drug delivery systems have been explored for a wide range of therapeutic applications, especially in lungs and respiratory diseases. The present article comprehensively discusses various derivatives of dextran with their attributes to be considered for drug delivery and extensive therapeutic benefits, with a special emphasis on the armamentarium of dextran-based formulations for the treatment of respiratory disorders and associated pathological conditions. The information provided will act as a platform for formulation scientists as important considerations in designing therapeutic approaches for lung and respiratory diseases. With an emphasis on lung illnesses, this article will offer an in-depth understanding of dextran-based delivery systems in respiratory illnesses.
Collapse
Affiliation(s)
- Manisha Kumari
- Pharma Innovation Lab, Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda-151001, Punjab, India
| | - Sanyam Sharma
- Pharma Innovation Lab, Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda-151001, Punjab, India
| | - Navjot Kanwar
- Pharma Innovation Lab, Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda-151001, Punjab, India
| | - Subh Naman
- Pharma Innovation Lab, Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda-151001, Punjab, India
| | - Ashish Baldi
- Pharma Innovation Lab, Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda-151001, Punjab, India
| |
Collapse
|
11
|
Zhao Y, Li Y, Zhu R, Feng R, Cui H, Yu X, Huang F, Zhang R, Chen X, Li L, Chen Y, Liu Y, Wang J, Du G, Liu Z. RPS15 interacted with IGF2BP1 to promote esophageal squamous cell carcinoma development via recognizing m 6A modification. Signal Transduct Target Ther 2023; 8:224. [PMID: 37264021 DOI: 10.1038/s41392-023-01428-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/23/2023] [Accepted: 03/24/2023] [Indexed: 06/03/2023] Open
Abstract
Increased rates of ribosome biogenesis have been recognized as hallmarks of many cancers and are associated with poor prognosis. Using a CRISPR synergistic activation mediator (SAM) system library targeting 89 ribosomal proteins (RPs) to screen for the most oncogenic functional RPs in human esophageal squamous cell carcinoma (ESCC), we found that high expression of RPS15 correlates with malignant phenotype and poor prognosis of ESCC. Gain and loss of function models revealed that RPS15 promotes ESCC cell metastasis and proliferation, both in vitro and in vivo. Mechanistic investigations demonstrated that RPS15 interacts with the K homology domain of insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), which recognizes and directly binds the 3'-UTR of MKK6 and MAPK14 mRNA in an m6A-dependent manner, and promotes translation of core p38 MAPK pathway proteins. By combining targeted drug virtual screening and functional assays, we found that folic acid showed a therapeutic effect on ESCC by targeting RPS15, which was augmented by the combination with cisplatin. Inhibition of RPS15 by folic acid, IGF2BP1 ablation, or SB203580 treatment were able to suppress ESCC metastasis and proliferation via the p38 MAPK signaling pathway. Thus, RPS15 promotes ESCC progression via the p38 MAPK pathway and RPS15 inhibitors may serve as potential anti-ESCC drugs.
Collapse
Affiliation(s)
- Yahui Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yang Li
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Rui Zhu
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Riyue Feng
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Heyang Cui
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518035, China
| | - Xiao Yu
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Furong Huang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ruixiang Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Xiankai Chen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Lei Li
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Yinghui Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuhao Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Jinhua Wang
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Guanhua Du
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
12
|
Wang C, Wang Q, Wang H, Li Z, Chen J, Zhang Z, Zeng H, Yu X, Yang X, Yang X, Li Z. Hydroxyethyl starch-folic acid conjugates stabilized theranostic nanoparticles for cancer therapy. J Control Release 2023; 353:391-410. [PMID: 36473606 DOI: 10.1016/j.jconrel.2022.11.059] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Small molecular prodrug-based nanomedicines with high drug-loading efficiency and tumor selectivity have attracted great attention for cancer therapy against solid tumors, including triple negative breast cancers (TNBC). However, abnormal tumor mechanical microenvironment (TMME) severely restricts antitumor efficacy of prodrug nanomedicines by limiting drug delivery and fostering cancer stem cells (CSCs). Herein, we employed carbamate disulfide bridged doxorubicin dimeric prodrug as pharmaceutical ingredient, marketed IR780 iodide as photothermal agent, and biocompatible hydroxyethyl starch-folic acid conjugates as amphiphilic surfactant to prepare a theranostic nanomedicine (FDINs), which could actively target at TNBC 4T1 tumor tissues and achieve reduction-responsive drug release with high glutathione concentration in cancer cells and CSCs. Importantly, in addition to directly causing damage to cancer cells and sensitizing chemotherapy, FDINs-mediated photothermal effect regulates aberrant TMME via reducing cancer associated fibroblasts and depleting extracellular matrix proteins, thereby normalizing intratumor vessel structure and function to facilitate drug and oxygen delivery. Furthermore, FDINs potently eliminate CSCs by disrupting unique CSCs niche and consuming intracellular GSH in CSCs. As a result, FDINs significantly suppress tumor growth in both subcutaneous and orthotopic 4T1 tumors. This study provides novel insights on rational design of prodrug nanomedicines for superior therapeutic effect against stroma- and CSCs-rich solid malignancies.
Collapse
Affiliation(s)
- Chong Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Qiang Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Huimin Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zheng Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jitang Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhijie Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Haowen Zeng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ximiao Yu
- Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xiaoquan Yang
- Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, PR China; GBA Research Innovation Institute for Nanotechnology, Guangdong 510530, PR China; Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
13
|
Ansari A, Sheriker A, Siddique MUM, Patil M, Goyal SN, Murtuja S, Ahsan MN, Hasnain MS, Nayak AK. Cancer targeting by tailor-made polysaccharides. TAILOR-MADE POLYSACCHARIDES IN DRUG DELIVERY 2023:347-376. [DOI: 10.1016/b978-0-12-821286-8.00011-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Biopolymeric Prodrug Systems as Potential Antineoplastic Therapy. Pharmaceutics 2022; 14:pharmaceutics14091773. [PMID: 36145522 PMCID: PMC9505808 DOI: 10.3390/pharmaceutics14091773] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Nowadays, cancer represents a major public health issue, a substantial economic issue, and a burden for society. Limited by numerous disadvantages, conventional chemotherapy is being replaced by new strategies targeting tumor cells. In this context, therapies based on biopolymer prodrug systems represent a promising alternative for improving the pharmacokinetic and pharmacologic properties of drugs and reducing their toxicity. The polymer-directed enzyme prodrug therapy is based on tumor cell targeting and release of the drug using polymer–drug and polymer–enzyme conjugates. In addition, current trends are oriented towards natural sources. They are biocompatible, biodegradable, and represent a valuable and renewable source. Therefore, numerous antitumor molecules have been conjugated with natural polymers. The present manuscript highlights the latest research focused on polymer–drug conjugates containing natural polymers such as chitosan, hyaluronic acid, dextran, pullulan, silk fibroin, heparin, and polysaccharides from Auricularia auricula.
Collapse
|
15
|
Liu D, Ding X, Ding J, Sun J. Polypeptoid-Assisted Formation of Supramolecular Architectures from Folic Acid for Targeted Cancer Therapy with Enhanced Efficacy. Biomacromolecules 2022; 23:2793-2802. [DOI: 10.1021/acs.biomac.2c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dandan Liu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiangmin Ding
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jian Ding
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
16
|
Khan MI, Hossain MI, Hossain MK, Rubel MHK, Hossain KM, Mahfuz AMUB, Anik MI. Recent Progress in Nanostructured Smart Drug Delivery Systems for Cancer Therapy: A Review. ACS APPLIED BIO MATERIALS 2022; 5:971-1012. [PMID: 35226465 DOI: 10.1021/acsabm.2c00002] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Traditional treatment approaches for cancer involve intravenous chemotherapy or other forms of drug delivery. These therapeutic measures suffer from several limitations such as nonspecific targeting, poor biodistribution, and buildup of drug resistances. However, significant technological advancements have been made in terms of superior modes of drug delivery over the last few decades. Technical capability in analyzing the molecular mechanisms of tumor biology, nanotechnology─particularly the development of biocompatible nanoparticles, surface modification techniques, microelectronics, and material sciences─has increased. As a result, a significant number of nanostructured carriers that can deliver drugs to specific cancerous sites with high efficiency have been developed. This particular maneuver that enables the introduction of a therapeutic nanostructured substance in the body by controlling the rate, time, and place is defined as the nanostructured drug delivery system (NDDS). Because of their versatility and ability to incorporate features such as specific targeting, water solubility, stability, biocompatibility, degradability, and ability to reverse drug resistance, they have attracted the interest of the scientific community, in general, and nanotechnologists as well as biomedical scientists. To keep pace with the rapid advancement of nanotechnology, specific technical aspects of the recent NDDSs and their prospects need to be reported coherently. To address these ongoing issues, this review article provides an overview of different NDDSs such as lipids, polymers, and inorganic nanoparticles. In addition, this review also reports the challenges of current NDDSs and points out the prospective research directions of these nanocarriers. From our focused review, we conclude that still now the most advanced and potent field of application for NDDSs is lipid-based, while other significantly potential fields include polymer-based and inorganic NDDSs. However, despite the promises, challenges remain in practical implementations of such NDDSs in terms of dosage and stability, and caution should be exercised regarding biocompatibility of materials. Considering these aspects objectively, this review on NDDSs will be particularly of interest for small-to-large scale industrial researchers and academicians with expertise in drug delivery, cancer research, and nanotechnology.
Collapse
Affiliation(s)
- Md Ishak Khan
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - M Imran Hossain
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71270, United States
| | - M Khalid Hossain
- Interdisciplinary Graduate School of Engineering Science, Kyushu University, Fukuoka 816-8580, Japan.,Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
| | - M H K Rubel
- Department of Materials Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - K M Hossain
- Department of Materials Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - A M U B Mahfuz
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka 1209, Bangladesh
| | - Muzahidul I Anik
- Department of Chemical Engineering, University of Rhode Island, South Kingston, Rhode Island 02881, United States
| |
Collapse
|
17
|
Ramalingam P, Prabakaran DS, Sivalingam K, Nallal VUM, Razia M, Patel M, Kanekar T, Krishnamoorthy D. Recent Advances in Nanomaterials-Based Drug Delivery System for Cancer Treatment. NANOTECHNOLOGY IN THE LIFE SCIENCES 2022:83-116. [DOI: 10.1007/978-3-030-80371-1_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Yang H, Wang N, Yang R, Zhang L, Jiang X. Folic Acid-Decorated β-Cyclodextrin-Based Poly(ε-caprolactone)-dextran Star Polymer with Disulfide Bond-Linker as Theranostic Nanoparticle for Tumor-Targeted MRI and Chemotherapy. Pharmaceutics 2021; 14:52. [PMID: 35056948 PMCID: PMC8778171 DOI: 10.3390/pharmaceutics14010052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/09/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022] Open
Abstract
β-cyclodextrin(βCD)-based star polymers have attracted much interest because of their unique structures and potential biomedical and biological applications. Herein, a well-defined folic acid (FA)-conjugated and disulfide bond-linked star polymer ((FA-Dex-SS)-βCD-(PCL)14) was synthesized via a couple reaction between βCD-based 14 arms poly(ε-caprolactone) (βCD-(PCL)14) and disulfide-containing α-alkyne dextran (alkyne-SS-Dex), and acted as theranostic nanoparticles for tumor-targeted MRI and chemotherapy. Theranostic nanoparticles were obtained by loading doxorubicin (DOX), and superparamagnetic iron oxide (SPIO) particles were loaded into the star polymer nanoparticles to obtain ((FA-Dex-SS)-βCD-(PCL)14@DOX-SPIO) theranostic nanoparticles. In vitro drug release studies showed that approximately 100% of the DOX was released from disulfide bond-linked theranostic nanoparticles within 24 h under a reducing environment in the presence of 10.0 mM GSH. DOX and SPIO could be delivered into HepG2 cells efficiently, owing to the folate receptor-mediated endocytosis process of the nanoparticles and glutathione (GSH), which triggered disulfide-bonds cleaving. Moreover, (FA-Dex-SS)-βCD-(PCL)14@DOX-SPIO showed strong MRI contrast enhancement properties. In conclusion, folic acid-decorated reduction-sensitive star polymeric nanoparticles are a potential theranostic nanoparticle candidate for tumor-targeted MRI and chemotherapy.
Collapse
Affiliation(s)
- Huikang Yang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Yuexiu District, Guangzhou 510640, China; (H.Y.); (N.W.); (R.Y.)
| | - Nianhua Wang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Yuexiu District, Guangzhou 510640, China; (H.Y.); (N.W.); (R.Y.)
| | - Ruimeng Yang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Yuexiu District, Guangzhou 510640, China; (H.Y.); (N.W.); (R.Y.)
| | - Liming Zhang
- School of Materials Science and Engineering, Sun Yat-sen University, Haizhu District, Guangzhou 510275, China
| | - Xinqing Jiang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Yuexiu District, Guangzhou 510640, China; (H.Y.); (N.W.); (R.Y.)
| |
Collapse
|
19
|
Guan J, Wu Y, Wang H, Zeng H, Li Z, Yang X. A DiR loaded tumor targeting theranostic cisplatin-icodextrin prodrug nanoparticle for imaging guided chemo-photothermal cancer therapy. NANOSCALE 2021; 13:19399-19411. [PMID: 34755744 DOI: 10.1039/d1nr05824j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Imaging-guided diagnosis and chemo-photothermal combination therapy have promising applications for the treatment of cancer. Nevertheless, the accurate diagnosis and efficient treatment of tumors are not yet satisfactory. Herein, a tumor targeting DiR loaded cisplatin-icodextrin prodrug nanoparticle, with selective drug release, was fabricated as a multifunctional theranostic nanoplatform for chemo-photothermal combination therapy. By loading DiR into the hydrophobic domain of folic acid-icodextrin-polycaprolactone (FA-ICO-PCL, FIP) and cisplatin-icodextrin-polycaprolactone (Pt-ICO-PCL, PtIP) co-assembly, the resultant DiR@(PtIP + FIP) (DPtFIP) NPs had a diameter of around 70 nm and showed excellent tumor targeting ability and negligible side effects. Moreover, the DPtFIP NPs achieved real-time NIR fluorescence imaging of solid tumors with high contrast. By the accurate tumor imaging, local laser irradiation dramatically enhanced the chemotherapy for triple-negative breast cancer. Such a biocompatible nanotherapeutic holds great potential for tumor diagnosis and imaging-guided combinational cancer therapy.
Collapse
Affiliation(s)
- Jiankun Guan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Yuxin Wu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Huimin Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Haowen Zeng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Wuhan Institute of Biotechnology, High Tech Road 666, East Lake high tech Zone, Wuhan, 430040, P. R. China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- GBA Research Innovation Institute for Nanotechnology, Guangdong, 510530, P. R. China
| |
Collapse
|
20
|
Zhai M, Gong P, Li H, Peng J, Xu W, Song S, Liu X, Liu J, Liu J, Liu Z. Metastable interface biomimetic synthesis of a smart nanosystem for enhanced starvation/gas therapy. J Colloid Interface Sci 2021; 599:149-157. [PMID: 33940438 DOI: 10.1016/j.jcis.2021.04.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/26/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022]
Abstract
Glucose oxidase (GOx)-mediated starvation therapy holds great promise in cancer treatment. However, the worse hypoxia conditions result into low therapeutic efficiency, and undegradability of carriers poses potential threats to living bodies. To address this, herein a bioinspired MnO2 nanosystem with controllable surface was developed for highly efficient starvation/gas synergistic enhanced therapy. Biomimetic design and further surface modification unprecedentedly endowed the nanosystem with ultrahigh loading capacity for GOx and l-Arginine (l-Arg) and special selectivity toward cancer cells. Especially, the dissipative O2 during starvation therapy was well replenished by a positive cycle formed by the nanosystem, which continuously reproduced O2 and accelerated glucose consumption. The abundant H2O2 was further used to oxidize l-Arg into nitric oxide to realize gas therapy. In vitro and in vivo testing confirmed that this new treatment effectively blocked the nutrition and energy sources of cells to obtain excellent therapeutic effect. We reported the first experimental item of this nanosystem for inhibiting cancer cell migration. Considering the novel design concept with facile biomimetic methods, effective co-loading of endogenous substances, and good anti-tumor and anti-migration effects, this work provided new theoretical and experimental basis for starvation therapy and inspired people to design more delicate platform for cancer treatment.
Collapse
Affiliation(s)
- Mingzhu Zhai
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Peiwei Gong
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China; State Key Laboratory of Solidification Processing, Center of Advanced Lubrication, and Seal Materials, Northwestern Polytechnical University, 517, Xi'an 710072, PR China.
| | - Hui Li
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Jingyi Peng
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Wenyu Xu
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Shaohua Song
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Xicheng Liu
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Jianxi Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication, and Seal Materials, Northwestern Polytechnical University, 517, Xi'an 710072, PR China.
| | - Jinfeng Liu
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Zhe Liu
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China.
| |
Collapse
|
21
|
Das R, Mukhopadhyay B. A brief insight to the role of glyconanotechnology in modern day diagnostics and therapeutics. Carbohydr Res 2021; 507:108394. [PMID: 34265516 DOI: 10.1016/j.carres.2021.108394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/17/2022]
Abstract
Carbohydrate-protein and carbohydrate-carbohydrate interactions are very important for various biological processes. Although the magnitude of these interactions is low compared to that of protein-protein interaction, the magnitude can be boosted by multivalent approach known as glycocluster effect. Nanoparticle platform is one of the best ways to present diverse glycoforms in multivalent manner and thus, the field of glyconanotechnology has emerged as an important field of research considering their potential applications in diagnostics and therapeutics. Considerable advances in the field have been achieved through development of novel techniques, use of diverse metallic and non-metallic cores for better efficacy and application of ever-increasing number of carbohydrate ligands for site-specific interaction. The present review encompasses the recent developments in the area of glyconanotechnology and their future promise as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Rituparna Das
- Sweet Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India.
| | - Balaram Mukhopadhyay
- Sweet Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India.
| |
Collapse
|
22
|
Zhao CL, Gao YZ, Wu MY, Zhang HT, Wu YX. Biocompatible, Hemocompatible and Antibacterial Acylated Dextran-g-polyisobutylene Graft Copolymers with Silver Nanoparticles. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2621-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
Mainini F, De Santis F, Fucà G, Di Nicola M, Rivoltini L, Eccles M. Nanobiotechnology and Immunotherapy: Two Powerful and Cooperative Allies against Cancer. Cancers (Basel) 2021; 13:3765. [PMID: 34359665 PMCID: PMC8345046 DOI: 10.3390/cancers13153765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
A number of novel cancer therapies have recently emerged that have rapidly moved from the bench to the clinic. Onco-immunotherapies, such as immune checkpoint blockade inhibitors and adoptive cell therapies, have revolutionized the field, since they provide a way to induce strong anti-tumor immune responses, which are able to fight cancer effectively. However, despite showing great efficacy in hematological and some solid tumors, unresponsiveness, development of therapy resistance and the development of serious adverse effects, limit their capacity to impact the vast majority of tumors. Nanoparticle-based delivery systems are versatile vehicles for a wide variety of molecular cargoes and provide an innovative strategy to improve conventional onco-immunotherapies. They can be finely tuned to release their contents in the tumor microenvironment, or to deliver combinations of adjuvants and antigens in the case of nanovaccines. In this review, we summarize the recent advancements in the field of nanobiotechnology, to remodel the tumor microenvironment and to enhance immunotherapies.
Collapse
Affiliation(s)
- Francesco Mainini
- Immunotherapy and Innovative Therapeutics Unit, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (F.M.); (F.D.S.); (G.F.); (M.D.N.)
| | - Francesca De Santis
- Immunotherapy and Innovative Therapeutics Unit, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (F.M.); (F.D.S.); (G.F.); (M.D.N.)
| | - Giovanni Fucà
- Immunotherapy and Innovative Therapeutics Unit, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (F.M.); (F.D.S.); (G.F.); (M.D.N.)
| | - Massimo Di Nicola
- Immunotherapy and Innovative Therapeutics Unit, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (F.M.); (F.D.S.); (G.F.); (M.D.N.)
| | - Licia Rivoltini
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Michael Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
24
|
Ying K, Bai B, Gao X, Xu Y, Wang H, Xie B. Orally Administrable Therapeutic Nanoparticles for the Treatment of Colorectal Cancer. Front Bioeng Biotechnol 2021; 9:670124. [PMID: 34307319 PMCID: PMC8293278 DOI: 10.3389/fbioe.2021.670124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common and lethal human malignancies worldwide; however, the therapeutic outcomes in the clinic still are unsatisfactory due to the lack of effective and safe therapeutic regimens. Orally administrable and CRC-targetable drug delivery is an attractive approach for CRC therapy as it improves the efficacy by local drug delivery and reduces systemic toxicity. Currently, chemotherapy remains the mainstay modality for CRC therapy; however, most of chemo drugs have low water solubility and are unstable in the gastrointestinal tract (GIT), poor intestinal permeability, and are susceptible to P-glycoprotein (P-gp) efflux, resulting in limited therapeutic outcomes. Orally administrable nanoformulations hold the great potential for improving the bioavailability of poorly permeable and poorly soluble therapeutics, but there are still limitations associated with these regimes. This review focuses on the barriers for oral drug delivery and various oral therapeutic nanoparticles for the management of CRC.
Collapse
Affiliation(s)
- Kangkang Ying
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission (NHC), Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bingjun Bai
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xing Gao
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuzi Xu
- Department of Oral Implantology and Prosthodontics, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Hangxiang Wang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission (NHC), Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Binbin Xie
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission (NHC), Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Zhao J, Zhang L, Qi Y, Liao K, Wang Z, Wen M, Zhou D. NIR Laser Responsive Nanoparticles for Ovarian Cancer Targeted Combination Therapy with Dual-Modal Imaging Guidance. Int J Nanomedicine 2021; 16:4351-4369. [PMID: 34234430 PMCID: PMC8254569 DOI: 10.2147/ijn.s299376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/01/2021] [Indexed: 01/04/2023] Open
Abstract
Purpose Multifunctional nanoparticles with targeted therapeutic function and diagnostic-imaging are of great interest in the domain of precision therapy. NIR laser responsive nanoparticles (PLGA-PEG-FA encapsulating Bi2S3, PFP, and Dox (designed as FBPD NPs)) are synthesized for ovarian cancer targeted combination therapy with CT/PA dual-modal imaging guidance (PA: photoacoustic; CT: X-ray computed tomography). Methods and Results The FBPD NPS prepared by the double emulsification method revealed excellent dispersity, great stability, outstanding optical properties. The temperature of FBPD NPs increased rapidly after laser irradiation, inducing liquid-to-gas conversion of perfluoropentane (PFP), and promoting the release of Dox up to 86.7%. These FBPD NPs demonstrated their outstanding imaging capability for both PA and CT imaging both in vitro and in vivo, providing the potential for therapeutic guidance and monitoring. Assisted by folic acid, these nanoparticles could highly enrich in ovarian tumor tissue and the accumulation peaked at 3 h after intravenous administration. The desirable photothermal-conversion efficiency of the nanoparticles combined with chemotherapy achieved highly efficient therapy, which was demonstrated both in vitro and in vivo. Conclusion We successfully constructed multifunctional theranostic FBPD NPs for highly efficient PTT/chemotherapy combined therapy with dual CT/PA imaging guidance/monitoring. The unique nanoparticles with multiple abilities pave an emerging way toward precise treatment of ovarian cancer.
Collapse
Affiliation(s)
- Jiawen Zhao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Liang Zhang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yingjie Qi
- Department of Intensive Care Unit (ICU), Dianjiang People's Hospital of Chongqing, Chongqing, People's Republic of China
| | - Kui Liao
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhigang Wang
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Ming Wen
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Di Zhou
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
26
|
Li X, Lu S, Mu X, Li T, Sun S, Zhao Y, Hai J, Wang B. Red-light-responsive coordination polymers nanorods: New strategy for ultrasensitive photothermal detection of targeted cancer cells. Biosens Bioelectron 2021; 190:113417. [PMID: 34134071 DOI: 10.1016/j.bios.2021.113417] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022]
Abstract
The development of highly sensitive and simple detection methods for cancer cells is an important challenge to achieve early cancer diagnosis and effective treatment. In this paper, folic acid (FA)-conjugated platinum (IV) methylene blue (MB) coordination polymers nanorods (denoted as FA-PtCPs NRs) were developed by the photochemical method. The structure of the PtCPs NRs was investigated using the meta-dynamics and genetic algorithms (MTD-GC) method, and it was found that the coordination bond was formed between platinum (IV) and N atoms of MB. The field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM) indicated that the morphology of PtCPs NRs was rod-like. The resulting FA-PtCPs NRs was used for the specific and ultra-sensitive temperature detection of cancer cells based on PtCPs NRs as a signal trigger unit and FA as a target recognition tool. After three-step reaction, oxidized 3,3',5,5'-tetramethylbenzidine (ox-TMB) with photothermal effect was obtained. Under 660 nm laser irradiation, such detection platform can convert the molecular recognition signal between FA and folate receptor (FR) of cancer cells into readable temperature value, which can be directly read by an ordinary thermometer, with a detection limit as low as 2 cells/mL. In addition, FA-PtCPs NRs could be used as fluorescent probes for in-situ bioimaging. Therefore, this photothermal sensing platform has a broad prospect in the field of point-of-care detection of cancer cells.
Collapse
Affiliation(s)
- Xinyue Li
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu Lanzhou, 730000, PR China
| | - Siyu Lu
- Green Catalysis Center, And College of Chemistry, Zhengzhou University, Zhengzhou, 450000, People's Republic of China
| | - Xijiao Mu
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu Lanzhou, 730000, PR China
| | - Tianrong Li
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu Lanzhou, 730000, PR China
| | - Shihao Sun
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu Lanzhou, 730000, PR China
| | - Yang Zhao
- School of Life Sciences, Lanzhou University, Gansu, Lanzhou, 730000, China
| | - Jun Hai
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu Lanzhou, 730000, PR China.
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu Lanzhou, 730000, PR China.
| |
Collapse
|
27
|
Curcio M, Paolì A, Cirillo G, Di Pietro S, Forestiero M, Giordano F, Mauro L, Amantea D, Di Bussolo V, Nicoletta FP, Iemma F. Combining Dextran Conjugates with Stimuli-Responsive and Folate-Targeting Activity: A New Class of Multifunctional Nanoparticles for Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1108. [PMID: 33922934 PMCID: PMC8145397 DOI: 10.3390/nano11051108] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/06/2023]
Abstract
Nanoparticles with active-targeting and stimuli-responsive behavior are a promising class of engineered materials able to recognize the site of cancer disease, targeting the drug release and limiting side effects in the healthy organs. In this work, new dual pH/redox-responsive nanoparticles with affinity for folate receptors were prepared by the combination of two amphiphilic dextran (DEX) derivatives. DEXFA conjugate was obtained by covalent coupling of the polysaccharide with folic acid (FA), whereas DEXssPEGCOOH derived from a reductive amination step of DEX was followed by condensation with polyethylene glycol 600. After self-assembling, nanoparticles with a mean size of 50 nm, able to be destabilized in acidic pH and reducing media, were obtained. Doxorubicin was loaded during the self-assembling process, and the release experiments showed the ability of the proposed system to modulate the drug release in response to different pH and redox conditions. Finally, the viability and uptake experiments on healthy (MCF-10A) and metastatic cancer (MDA-MB-231) cells proved the potential applicability of the proposed system as a new drug vector in cancer therapy.
Collapse
Affiliation(s)
- Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.); (A.P.); (G.C.); (M.F.); (F.G.); (L.M.); (D.A.); (F.I.)
| | - Alessandro Paolì
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.); (A.P.); (G.C.); (M.F.); (F.G.); (L.M.); (D.A.); (F.I.)
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.); (A.P.); (G.C.); (M.F.); (F.G.); (L.M.); (D.A.); (F.I.)
| | - Sebastiano Di Pietro
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 33, 56126 Pisa, Italy; (S.D.P.); (V.D.B.)
| | - Martina Forestiero
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.); (A.P.); (G.C.); (M.F.); (F.G.); (L.M.); (D.A.); (F.I.)
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.); (A.P.); (G.C.); (M.F.); (F.G.); (L.M.); (D.A.); (F.I.)
| | - Loredana Mauro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.); (A.P.); (G.C.); (M.F.); (F.G.); (L.M.); (D.A.); (F.I.)
| | - Diana Amantea
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.); (A.P.); (G.C.); (M.F.); (F.G.); (L.M.); (D.A.); (F.I.)
| | - Valeria Di Bussolo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 33, 56126 Pisa, Italy; (S.D.P.); (V.D.B.)
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.); (A.P.); (G.C.); (M.F.); (F.G.); (L.M.); (D.A.); (F.I.)
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.); (A.P.); (G.C.); (M.F.); (F.G.); (L.M.); (D.A.); (F.I.)
| |
Collapse
|
28
|
Luo Q, Wang W, Tan J, Yuan Q. Surface Modified Persistent Luminescence Probes for Biosensing and Bioimaging: A Review. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qiang Luo
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 China
| | - Wenjie Wang
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 China
| | - Jie Tan
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 China
| | - Quan Yuan
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 China
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 China
| |
Collapse
|
29
|
Lv R, Li G, Lu S, Wang T. Synthesis of Multi-Functional Carbon Quantum Dots for Targeted Antitumor Therapy. J Fluoresc 2021; 31:339-348. [PMID: 33389420 DOI: 10.1007/s10895-020-02661-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/03/2020] [Indexed: 01/23/2023]
Abstract
Carbon dots are nano-sized photoluminescence materials which have good biocompatibility and low cytotoxicity, while the previously synthesized carbon dots lack tumor targeting capability and therapy function so that it cannot achieve the purpose of diagnosis and treatment. Herein, a new kind of multi-functional carbon dots (GFCDs) is promising to be applied in tumor cells imaging and clinical targeted therapy. Gallic acid (GA) was used as the carbon resource and antitumor active molecule, folic acid (FA) was used as the nitrogen resource and tumor targeting molecule, and citric acid monohydrate (CA) was used as the auxiliary carbon source. Multi-functional GACDs were synthesized by a simple one-step microwave-assisted procedure and analyzed with UV - vis spectrophotometer, fourier transform infrared spectrometer, transmission electron microscopy and X-ray photoelectron spectrometer. Results show that the diameter of GFCDs is about 3 nm. And GFCDs are pale-yellow under natural light which turn blue under 360 nm UV lamp. Besides ester bond is the connecting mode between functional molecules. In addition, the results of in vitro cell imaging experiments and in vivo antitumor experiments demonstrate the targeting imaging and antitumor abilities towards Hela cells. The synthesis route and properties of GFCDs.
Collapse
Affiliation(s)
- Rongyao Lv
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Genrong Li
- Chongqing Academy of Metrology and Quality Inspection, Chongqing, 401123, People's Republic of China
| | - Shuting Lu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Ting Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.
| |
Collapse
|
30
|
Zhang Z, Wang R, Huang X, Zhu W, He Y, Liu W, Liu F, Feng F, Qu W. A Simple Aggregation-Induced Emission Nanoprobe with Deep Tumor Penetration for Hypoxia Detection and Imaging-Guided Surgery in Vivo. Anal Chem 2020; 93:1627-1635. [PMID: 33377760 DOI: 10.1021/acs.analchem.0c04101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The pan-cancer detection and precise visualization of tiny tumors in surgery still face great challenges. As tumors grow aggressively, hypoxia is a common feature of solid tumors and has supplied a general way for detecting tumors. Herein, we report a simple aggregation-induced emission nanoprobe-TPE-4NE-O that can specifically switch on their fluorescence in the presence of cytochrome P450 reductase, a reductase which is overexpressed under hypoxia conditions. The probe can selectively light up the hypoxia cells and has shown enhanced deep tumor penetration via charge conversion both in vitro and in vivo. After being modified with FA-DSPE-PEG, higher tumor uptake can be seen and FA-DSPE/TPE-4NE-O showed specific visualization to the hypoxia cancer cells. Excitingly, much brighter fluorescence was accumulated at the tumors in the FA-DSPE/TPE-4NE-O group, even though the tumor was as small as 2.66 mm. The excellent performance of FA-DSPE/TPE-4NE-O in detecting tiny tumors has made it possible for imaging-guided tumor resection. More importantly, the probe exhibited good biocompatibility with negligible organ damage and eliminated a hemolysis risk. The simple but promising probe has supplied a new strategy for pan-cancer detection and tiny tumor visualization, which have shown great potential in clinical translation.
Collapse
Affiliation(s)
- Zhongtao Zhang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Ruyi Wang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoxian Huang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Wanfang Zhu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Yanjun He
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
| | - Fulei Liu
- The Joint Laboratory of China Pharmaceutical University and Taian City Central Hospital, Taian City Central Hospital, Taian 271000, China.,Pharmaceutical Department, Taian City Central Hospital, Taian 271000, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China.,Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China.,Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
31
|
Gierlich P, Mata AI, Donohoe C, Brito RMM, Senge MO, Gomes-da-Silva LC. Ligand-Targeted Delivery of Photosensitizers for Cancer Treatment. Molecules 2020; 25:E5317. [PMID: 33202648 PMCID: PMC7698280 DOI: 10.3390/molecules25225317] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising cancer treatment which involves a photosensitizer (PS), light at a specific wavelength for PS activation and oxygen, which combine to elicit cell death. While the illumination required to activate a PS imparts a certain amount of selectivity to PDT treatments, poor tumor accumulation and cell internalization are still inherent properties of most intravenously administered PSs. As a result, common consequences of PDT include skin photosensitivity. To overcome the mentioned issues, PSs may be tailored to specifically target overexpressed biomarkers of tumors. This active targeting can be achieved by direct conjugation of the PS to a ligand with enhanced affinity for a target overexpressed on cancer cells and/or other cells of the tumor microenvironment. Alternatively, PSs may be incorporated into ligand-targeted nanocarriers, which may also encompass multi-functionalities, including diagnosis and therapy. In this review, we highlight the major advances in active targeting of PSs, either by means of ligand-derived bioconjugates or by exploiting ligand-targeting nanocarriers.
Collapse
Affiliation(s)
- Piotr Gierlich
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James’s Hospital, D08W9RT Dublin, Ireland;
| | - Ana I. Mata
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
| | - Claire Donohoe
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James’s Hospital, D08W9RT Dublin, Ireland;
| | - Rui M. M. Brito
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
- BSIM Therapeutics, Instituto Pedro Nunes, 3030-199 Coimbra, Portugal
| | - Mathias O. Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James’s Hospital, D08W9RT Dublin, Ireland;
| | - Lígia C. Gomes-da-Silva
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
| |
Collapse
|
32
|
Karaosmanoglu S, Zhou M, Shi B, Zhang X, Williams GR, Chen X. Carrier-free nanodrugs for safe and effective cancer treatment. J Control Release 2020; 329:805-832. [PMID: 33045313 DOI: 10.1016/j.jconrel.2020.10.014] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022]
Abstract
Clinical applications of many anti-cancer drugs are restricted due to their hydrophobic nature, requiring use of harmful organic solvents for administration, and poor selectivity and pharmacokinetics resulting in off-target toxicity and inefficient therapies. A wide variety of carrier-based nanoparticles have been developed to tackle these issues, but such strategies often fail to encapsulate drug efficiently and require significant amounts of inorganic and/or organic nanocarriers which may cause toxicity problems in the long term. Preparation of nano-formulations for the delivery of water insoluble drugs without using carriers is thus desired, requiring elegantly designed strategies for products with high quality, stability and performance. These strategies include simple self-assembly or involving chemical modifications via coupling drugs together or conjugating them with various functional molecules such as lipids, carbohydrates and photosensitizers. During nanodrugs synthesis, insertion of redox-responsive linkers and tumor targeting ligands endows them with additional characteristics like on-target delivery, and conjugation with immunotherapeutic reagents enhances immune response alongside therapeutic efficacy. This review aims to summarize the methods of making carrier-free nanodrugs from hydrophobic drug molecules, evaluating their performance, and discussing the advantages, challenges, and future development of these strategies.
Collapse
Affiliation(s)
- Sena Karaosmanoglu
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| | - Mengjiao Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, PR China
| | - Bingyang Shi
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Xiujuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, PR China.
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK.
| |
Collapse
|
33
|
Xiang Y, Huang W, Huang C, Long J, Zhou Y, Liu Y, Tang S, He DX, Tan XW, Wei H, Yu CY. Facile Fabrication of Nanoparticles with Dual-Targeting Ligands for Precise Hepatocellular Carcinoma Therapy In Vitro and In Vivo. Mol Pharm 2020; 17:3223-3235. [PMID: 32658485 DOI: 10.1021/acs.molpharmaceut.0c00327] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Efficient hepatocellular carcinoma (HCC) therapy remains a significant challenge due to the unsatisfactory targeting efficiency of nanoparticles (NPs) with either a passive targeting or a single active targeting property. Although a dual-targeting mechanism-based strategy can promote the partial targeting efficiency, most of the reported NPs with dual-targeting properties generally suffer from sophisticated chemical design, multistep synthesis, and purification procedures, leading to batch-to-batch variation and difficulties in scalable production. To develop a facile yet efficient strategy toward dual-targeting ligand-functionalized NPs for precise HCC therapy and potential clinical translation, folic acid (FA) was readily introduced as a hydrophobic and targeting component to a hydrophilic macromolecular prodrug, galactosylated chitosan-5-fluorouracil acetic acid (GC-FU), to afford FA-GC-FU formulation that can self-assemble into NPs driven by the solubility variation of FA and GC-FU without the necessity of previously used physical cross-linking. The resulting nanoparticles of FA-GC-FU can target the overexpressed asialoglycoprotein receptors (ASGPRs) and folate receptors (FRs) on the surface of HCC cells, respectively, via the FA and lactobionic acid (LA) residues exposed on the surface of the NPs, leading to the maximized targeting efficiency of HCC and minimized nonspecific uptake by normal hepatocytes in vitro and in vivo. Therefore, this study not only developed a simple yet efficient strategy toward a facile fabrication of NPs with dual-targeting ligands but also presented a precise therapeutic platform for HCC with great potential for clinical translation.
Collapse
Affiliation(s)
- Ya Xiang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, and Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Wen Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, and Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Cong Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, and Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Jinrong Long
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, and Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Yangchun Zhou
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, and Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Yufeng Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, and Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Siyue Tang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, and Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Dong-Xiu He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, and Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Xiang-Wen Tan
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, and Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, and Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, and Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| |
Collapse
|
34
|
Wong KH, Lu A, Chen X, Yang Z. Natural Ingredient-Based Polymeric Nanoparticles for Cancer Treatment. Molecules 2020; 25:E3620. [PMID: 32784890 PMCID: PMC7463484 DOI: 10.3390/molecules25163620] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/04/2020] [Accepted: 08/08/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is a global health challenge. There are drawbacks to conventional chemotherapy such as poor bioavailability, development of drug resistance and severe side effects. Novel drug delivery system may be an alternative to optimize therapeutic effects. When such systems consist of natural materials, they offer important advantages: they are usually highly biocompatible, biodegradable, nontoxic and nonimmunogenic. Furthermore, natural materials can be easily modified for conjugation with a wide range of therapeutic agents and targeting ligands, according to the therapeutic purpose. This article reviews different natural ingredients and their applications in drug delivery systems for cancer therapy. Firstly, an overview of the polysaccharides and protein-based polymers that have been extensively investigated for drug delivery are described. Secondly, recent advances in using various natural ingredient-based polymeric nanoparticles for cancer therapy are reviewed. The characteristics of these delivery systems are summarized, followed by a discussion of future development and clinical potential. This review aims to summarize current knowledge and provide a basis for developing effective tailor-made formulations for cancer therapy in the future.
Collapse
Affiliation(s)
- Ka Hong Wong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (K.H.W.); (A.L.); (X.C.)
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (K.H.W.); (A.L.); (X.C.)
- Changshu Research Institute, Hong Kong Baptist University, Changshu Economic and Technological Development (CETD) Zone, Changshu 215500, China
| | - Xiaoyu Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (K.H.W.); (A.L.); (X.C.)
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (K.H.W.); (A.L.); (X.C.)
- Changshu Research Institute, Hong Kong Baptist University, Changshu Economic and Technological Development (CETD) Zone, Changshu 215500, China
| |
Collapse
|
35
|
Wang Q, Guan J, Wan J, Li Z. Disulfide based prodrugs for cancer therapy. RSC Adv 2020; 10:24397-24409. [PMID: 35516223 PMCID: PMC9055211 DOI: 10.1039/d0ra04155f] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/19/2020] [Indexed: 12/26/2022] Open
Abstract
Advances in the tumor microenvironment have facilitated the development of novel anticancer drugs and delivery vehicles for improved therapeutic efficacy and decreased side effects. Disulfide bonds with unique chemical and biophysical properties can be used as cleavable linkers for the delivery of chemotherapeutic drugs. Accordingly, small molecule-, peptide-, polymer- and protein-based multifunctional prodrugs bearing cleavable disulfide bonds are well accepted in clinical settings. Herein, we first briefly introduce a number of prodrugs and divide them into three categories, namely, disulfide-containing small molecule conjugates, disulfide-containing cytotoxic agent-targeted fluorescent agent conjugates, and disulfide-containing cytotoxic agent-macromolecule conjugates. Then, we discuss the complex redox environment and the underlying mechanism of free drug release from disulfide based prodrugs in in vivo settings. Based on these insights, we analyze the impact of electronics, steric hindrance and substituent position of the disulfide linker on the extracellular stability and intracellular cleavage rate of disulfide containing prodrugs. Current challenges and future opportunities for the disulfide linker are provided at the end.
Collapse
Affiliation(s)
- Qiang Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology 1037 Luoyu Road Wuhan 430074 China
| | - Jiankun Guan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology 1037 Luoyu Road Wuhan 430074 China
| | - Jiangling Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology 1037 Luoyu Road Wuhan 430074 China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology 1037 Luoyu Road Wuhan 430074 China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
36
|
Yadav S, Sharma AK, Kumar P. Nanoscale Self-Assembly for Therapeutic Delivery. Front Bioeng Biotechnol 2020; 8:127. [PMID: 32158749 PMCID: PMC7051917 DOI: 10.3389/fbioe.2020.00127] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/10/2020] [Indexed: 12/23/2022] Open
Abstract
Self-assembly is the process of association of individual units of a material into highly arranged/ordered structures/patterns. It imparts unique properties to both inorganic and organic structures, so generated, via non-covalent interactions. Currently, self-assembled nanomaterials are finding a wide variety of applications in the area of nanotechnology, imaging techniques, biosensors, biomedical sciences, etc., due to its simplicity, spontaneity, scalability, versatility, and inexpensiveness. Self-assembly of amphiphiles into nanostructures (micelles, vesicles, and hydrogels) happens due to various physical interactions. Recent advancements in the area of drug delivery have opened up newer avenues to develop novel drug delivery systems (DDSs) and self-assembled nanostructures have shown their tremendous potential to be used as facile and efficient materials for this purpose. The main objective of the projected review is to provide readers a concise and straightforward knowledge of basic concepts of supramolecular self-assembly process and how these highly functionalized and efficient nanomaterials can be useful in biomedical applications. Approaches for the self-assembly have been discussed for the fabrication of nanostructures. Advantages and limitations of these systems along with the parameters that are to be taken into consideration while designing a therapeutic delivery vehicle have also been outlined. In this review, various macro- and small-molecule-based systems have been elaborated. Besides, a section on DNA nanostructures as intelligent materials for future applications is also included.
Collapse
Affiliation(s)
| | | | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR Institute of Genomics and Integrative Biology, Delhi, India
| |
Collapse
|
37
|
Yan Y, Dong Y, Yue S, Qiu X, Sun H, Zhong Z. Dually Active Targeting Nanomedicines Based on a Direct Conjugate of Two Purely Natural Ligands for Potent Chemotherapy of Ovarian Tumors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46548-46557. [PMID: 31763810 DOI: 10.1021/acsami.9b17223] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Actively targeted nanomedicines have promised to revolutionize cancer treatment; however, their clinical translation has been limited by either low targetability, use of unsafe materials, or tedious fabrication. Here, we developed CD44 and folate receptor (FR) dually targeted nanoparticulate doxorubicin (HA/FA-NP-DOX) based on a direct conjugate of two purely natural ligands, hyaluronic acid and folic acid (FA), for safe, highly specific, and potent treatment of ovarian tumors in vivo. HA/FA-NP-DOX had a small size and high DOX loading, wherein the particle size decreased from 115, 93, to 89 nm with increasing degree of substitution of FA from 6.4, 8.5, to 11.1, while increased from 80, 93, to 103 nm with increasing DOX loading from 15.0, 23.1, to 31.4 wt %. Interestingly, HA/FA-NP-DOX exhibited excellent lyophilization redispersibility and long-term storage stability with negligible drug leakage while it released 91% of DOX in 48 h at pH 5.0. Cellular studies corroborated that HA/FA-NP-DOX possessed high selectivity to both CD44 and FR, resulting in strong killing of CD44- and FR-positive SKOV-3 ovarian cancer cells while low toxicity against CD44- and FR-negative L929 fibroblast cells. In vivo studies revealed a long elimination half-life of 5.6 h, an elevated tumor accumulation of 12.0% ID/g, and an effective inhibition of the SKOV-3 ovarian tumor for HA/FA-NP-DOX, leading to significant survival benefits over free DOX·HCl and phosphate-buffered saline controls. These dually targeted nanomedicines are simple and safe, providing a potentially translatable treatment for CD44- and FR-positive malignancies.
Collapse
Affiliation(s)
- Yu Yan
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| | - Yangyang Dong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| | - Shujing Yue
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| | - Xinyun Qiu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| | - Huanli Sun
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| |
Collapse
|
38
|
Chen F, Huang G, Huang H. Preparation and application of dextran and its derivatives as carriers. Int J Biol Macromol 2019; 145:827-834. [PMID: 31756474 DOI: 10.1016/j.ijbiomac.2019.11.151] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/28/2019] [Accepted: 11/18/2019] [Indexed: 12/23/2022]
Abstract
As a natural and renewable biological macromolecule, dextran not only has excellent biodegradability, but also has good biocompatibility. Dextran and its derivatives are functional polymers for the construction of targeted drug delivery systems. Herein, the application of dextran as prodrug and nanoparticle/nanogel/microsphere/micelle carrier for targeting drug delivery system was summarized. It is clarified that dextran is an important biomaterial with application value.
Collapse
Affiliation(s)
- Fang Chen
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Hualiang Huang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430073, China
| |
Collapse
|
39
|
Wintgens V, Guigner JM, Miskolczy Z, Amiel C, Biczók L. 4-Sulfonatocalixarene-induced nanoparticle formation of methylimidazolium-conjugated dextrans: Utilization for drug encapsulation. Carbohydr Polym 2019; 223:115071. [DOI: 10.1016/j.carbpol.2019.115071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/06/2019] [Accepted: 07/06/2019] [Indexed: 01/03/2023]
|
40
|
Zhao M, Li J, Chen D, Hu H. A Valid Bisphosphonate Modified Calcium Phosphate-Based Gene Delivery System: Increased Stability and Enhanced Transfection Efficiency In Vitro and In Vivo. Pharmaceutics 2019; 11:pharmaceutics11090468. [PMID: 31514452 PMCID: PMC6781291 DOI: 10.3390/pharmaceutics11090468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 12/28/2022] Open
Abstract
Calcium phosphate (CaP) nanoparticles, as a promising vehicle for gene delivery, have been widely used owing to their biocompatibility, biodegradability and adsorptive capacity for nucleic acids. Unfortunately, their utility in vivo has been profoundly restricted due to numerous technical barriers such as the lack of tissue specificity and limited transfection efficiency, as well as uncontrollable aggregation over time. To address these issues, an effective conjugate folate-polyethylene glycol-pamidronate (shortened as FA-PEG-Pam) was designed and coated on the surface of CaP/NLS/pDNA (CaP/NDs), forming a versatile gene carrier FA-PEG-Pam/CaP/NDs. Inclusion of FA-PEG-Pam significantly reduced the size of CaP nanoparticles, thus inhibiting the aggregation of CaP nanoparticles. FA-PEG-Pam/CaP/NDs showed better cellular uptake than mPEG-Pam/CaP/NDs, which could be attributed to the high-affinity interactions between FA and highly expressed FR. Meanwhile, FA-PEG-Pam/CaP/NDs had low cytotoxicity and desired effect on inducing apoptosis (71.1%). Furthermore, FA-PEG-Pam/CaP/NDs showed admirable transfection efficiency (63.5%) due to the presence of NLS peptides. What’s more, in vivo studies revealed that the hybrid nanoparticles had supreme antitumor activity (IR% = 58.7%) among the whole preparations. Altogether, FA-PEG-Pam/CaP/NDs was expected to be a hopeful strategy for gene delivery.
Collapse
Affiliation(s)
- Ming Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China.
| | - Ji Li
- School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China.
| | - Dawei Chen
- School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China.
| | - Haiyang Hu
- School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
41
|
Polymeric nanoparticles as carrier for targeted and controlled delivery of anticancer agents. Ther Deliv 2019; 10:527-550. [DOI: 10.4155/tde-2019-0044] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In recent decades, many novel methods by using nanoparticles (NPs) have been investigated for diagnosis, drug delivery and treatment of cancer. Accordingly, the potential of NPs as carriers is very significant for the delivery of anticancer drugs, because cancer treatment with NPs has led to the improvement of some of the drug delivery limitations such as low blood circulation time and bioavailability, lack of water solubility, drug adverse effect. In addition, the NPs protect drugs against enzymatic degradation and can lead to the targeted and/or controlled release of the drug. The present review focuses on the potential of NPs that can help the targeted and/or controlled delivery of anticancer agents for cancer therapy.
Collapse
|
42
|
Yu G, Ning Q, Mo Z, Tang S. Intelligent polymeric micelles for multidrug co-delivery and cancer therapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1476-1487. [DOI: 10.1080/21691401.2019.1601104] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Guangping Yu
- Learning Key Laboratory for Pharmacoproteomics of Hunan Province, Institute of Pharmacy and Pharmacology, University of South China, Henyang, China
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - Zhongcheng Mo
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical school, University of South China, Henyang, China
| | - Shengsong Tang
- Learning Key Laboratory for Pharmacoproteomics of Hunan Province, Institute of Pharmacy and Pharmacology, University of South China, Henyang, China
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
43
|
Xiao C, Hu H, Yang H, Li S, Zhou H, Ruan J, Zhu Y, Yang X, Li Z. Colloidal hydroxyethyl starch for tumor-targeted platinum delivery. NANOSCALE ADVANCES 2019; 1:1002-1012. [PMID: 36133197 PMCID: PMC9473228 DOI: 10.1039/c8na00271a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/23/2018] [Indexed: 05/06/2023]
Abstract
Cis-platinum has been widely used as a first-line chemotherapy agent in clinics for more than 40 years. Although considerable efforts have been expended for developing platinum-based nano drug delivery systems (NDDS) to resolve the problems of low water solubility, short half-life, and severe side effects of cis-platinum, it remains challenging to apply these nanoplatforms to cancer treatments in clinics on account of the issues related to safety, complex fabrication procedures, and limited cellular uptake. Herein, we constructed a novel cis-platinum delivery system with hydroxyethyl starch (HES), which is a semisynthetic polysaccharide that has been used worldwide as colloidal plasma volume expanders (PVE) in clinics for several decades. By combining TEM, AFM, and DLS, we have found that HES particles are colloidal nanoparticles in solution, with diameters ranging from 15 to 40 nm as a function of molecular weight. We further revealed that HES adopted a hyperbranched colloidal structure with rather compact conformation. These results demonstrate that HES is a promising nanocarrier to deliver drug molecules. Taking advantage of the poly-hydroxyl sites of HES, we constructed a novel HES-based cis-platinum delivery nanoplatform. HES was directly conjugated with cis-platinum prodrug via an ester bond and decorated with an active targeting molecule, lactobionic acid (LA), contributing toward higher in vitro antitumor activity against hepatoma carcinoma cells as compared to cis-platinum. These results have significant implications for the clinically used plasma volume expander-HES and shed light on the clinical translation of HES-based nano drug delivery systems.
Collapse
Affiliation(s)
- Chen Xiao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86 27 87792234 +86 27 87792234
- Department of Nanomedicine and Biopharmaceutics, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Hang Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86 27 87792234 +86 27 87792234
- Department of Nanomedicine and Biopharmaceutics, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Hai Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86 27 87792234 +86 27 87792234
- Department of Nanomedicine and Biopharmaceutics, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Si Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86 27 87792234 +86 27 87792234
- Department of Nanomedicine and Biopharmaceutics, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Hui Zhou
- Department of Nanomedicine and Biopharmaceutics, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Jian Ruan
- Wuhan HUST Life Science & Technology Co., Ltd Wuhan 430223 China
| | - Yuting Zhu
- Wuhan HUST Life Science & Technology Co., Ltd Wuhan 430223 China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86 27 87792234 +86 27 87792234
- Department of Nanomedicine and Biopharmaceutics, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology Wuhan 430074 China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86 27 87792234 +86 27 87792234
- Department of Nanomedicine and Biopharmaceutics, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology Wuhan 430074 China
- Wuhan Institute of Biotechnology High Tech Road 666, East Lake High Tech Zone Wuhan 430040 China
| |
Collapse
|