1
|
Tantray J, Patel A, Parveen H, Prajapati B, Prajapati J. Nanotechnology-based biomedical devices in the cancer diagnostics and therapy. Med Oncol 2025; 42:50. [PMID: 39828813 DOI: 10.1007/s12032-025-02602-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Nanotechnology has significantly transformed the field of cancer diagnostics and therapeutics by introducing advanced biomedical devices. These nanotechnology-based devices exhibit remarkable capabilities in detecting and treating various cancers, addressing the limitations of traditional approaches, such as limited specificity and sensitivity. This review aims to explore the advancements in nanotechnology-driven biomedical devices, emphasizing their role in the diagnosis and treatment of cancer. Through a comprehensive analysis, we evaluate various nanotechnology-based devices across different cancer types, detailing their diagnostic and therapeutic effectiveness. The review also discusses FDA-approved nanotechnology products, patents, and regulatory trends, highlighting the innovation and clinical impact in oncology. Nanotechnology-based devices, including nanobots, smart pills, and multifunctional nanoparticles, enable precise targeting and treatment, reducing adverse effects on healthy tissues. Devices such as DNA-based nanorobots, quantum dots, and biodegradable stents offer noninvasive diagnostic and therapeutic options, showing high efficacy in preclinical and clinical settings. FDA-approved products underscore the acceptance of these technologies. Nanotechnology-based biomedical devices offer a promising future for oncology, with the potential to revolutionize cancer care through early detection, targeted treatment, and minimal side effects. Continued research and technological improvements are essential to fully realize their potential in personalized cancer therapy.
Collapse
Affiliation(s)
- Junaid Tantray
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Akhilesh Patel
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Hiba Parveen
- Faculty of Pharmacy, Veer Madho Singh Bhandari Uttrakhand Technical University, Dehradun, India
| | - Bhupendra Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | - Jigna Prajapati
- Faculty of Computer Application, Ganpat University, Mehsana, Gujarat, 384012, India.
| |
Collapse
|
2
|
Liu X, Hyun Kim J, Li X, Liu R. Application of mesenchymal stem cells exosomes as nanovesicles delivery system in the treatment of breast cancer. Int J Pharm 2024; 666:124732. [PMID: 39304093 DOI: 10.1016/j.ijpharm.2024.124732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
As people's living standards continue to improve and human life span expectancy increases, the incidence and mortality rates of breast cancer are continuously rising. Early detection of breast cancer and targeted therapy for different breast cancer subtypes can significantly reduce the mortality rate and alleviate the suffering of patients. Exosomes are extracellular vesicles secreted by various cells in the body. They participate in physiological and pathological responses by releasing active substances and play an important role in regulating intercellular communication. In recent years, research on exosomes has gradually expanded, and their special membrane structure and targetable characteristics are being increasingly applied in various clinical studies. Mesenchymal stem cells (MSCs)-derived exosomes play an important role in regulating the progression of breast cancer. In this review, we summarize the current treatment methods for breast cancer, the connection between MSCs, exosomes, and breast cancer, as well as the application of exosomes derived from MSCs from different sources in cancer treatment. We highlight how the rational design of modified MSCs-derived exosomes (MSCs-Exos) delivery systems can overcome the uncertainties of stem cell therapy and overcome the clinical translation challenges of nanomaterials. This work aims to promote future research on the application of MSCs-Exos in breast cancer treatment.
Collapse
Affiliation(s)
- Xiaofan Liu
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea; Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - June Hyun Kim
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea
| | - Xuemei Li
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| | - Rui Liu
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea.
| |
Collapse
|
3
|
Zhang L, Qiang W, Li MQ, Wang SJ, Jia W, Wang R, Bai SW, Wang QF, Wang HY. A drug delivery system of HIF-1α siRNA nanoparticles loaded by mesenchymal stem cells on choroidal neovascularization. Nanomedicine (Lond) 2024; 19:2171-2185. [PMID: 39225143 PMCID: PMC11485800 DOI: 10.1080/17435889.2024.2393075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Aim: To assess mesenchymal stem cells (MSCs) as carriers for HIF-1α siRNA-loaded nanoparticles (NPs) for targeted therapy of experimental choroidal neovascularization (CNV).Materials & methods: A poly (lactic-co-glycolic acid) (PLGA)-core/lipid-shell hybrid NP was designed. The transfection efficacy of MSCs with the hybrid NPs was assessed. Mice were intravenously injected with MSCs after laser photocoagulation and CNV was assessed at 7 days post-injection.Results & conclusion: The transfection efficiency of hybrid NPs into MSCs was 72.7%. HIF-1α mRNA expression in 661w cells co-cultured with MSC-hybrid-siRNA NPs was significantly lower. Intravenous delivery of MSC-hybrid-siRNA NPs greatly reduced CNV area and length. Intravenous injection of MSC-hybrid-siRNA NPs achieved therapeutic efficacy in reducing CNV area. The MSC-mediated homing enabled targeted inhibition of ocular angiogenesis.
Collapse
Affiliation(s)
- Lei Zhang
- Xi'an Key Laboratory of Digital Medical Technology of Ophthalmologic Imaging, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, Shaanxi, China
| | - Wei Qiang
- Xi'an Key Laboratory of Digital Medical Technology of Ophthalmologic Imaging, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, Shaanxi, China
| | - Mu-Qiong Li
- Department of Pharmaceutical Chemistry & Analysis Pharmacy, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Si-Jia Wang
- Institute of Biomedical Photonics & Sensors, School of Life Science & Technology, Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi Province, China
| | - Wei Jia
- Xi'an Key Laboratory of Digital Medical Technology of Ophthalmologic Imaging, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, Shaanxi, China
| | - Ru Wang
- Xi'an Key Laboratory of Digital Medical Technology of Ophthalmologic Imaging, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, Shaanxi, China
| | - Shu-Wei Bai
- Xi'an Key Laboratory of Digital Medical Technology of Ophthalmologic Imaging, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, Shaanxi, China
| | - Qian-Feng Wang
- Medical College of Optometry & Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong Province, China
| | - Hai-Yan Wang
- Xi'an Key Laboratory of Digital Medical Technology of Ophthalmologic Imaging, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, Shaanxi, China
| |
Collapse
|
4
|
Rodriguez-Mayor AV, Ochoa ME, Farfán-Paredes M, Bañuelos-Hernández AE, Pérez-Hernández N, Farfán N, Santillan R. Diorganotin (IV) amino acid complexes as potential anticancer agents. Synthesis, structural characterization, and in vitro assays. J Inorg Biochem 2024; 257:112602. [PMID: 38772186 DOI: 10.1016/j.jinorgbio.2024.112602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024]
Abstract
Nine new organotin (IV) derivatives from L-amino acids (l-lysine, L-ornithine, L-glutamic acid, and L-aspartic acid) were synthesized by one-pot ultrasound-assisted methodology. All compounds were characterized by ATR-FTIR (Attenuated Total Reflectance-Fourier Transform Infrared), LRMS (Low-Resolution Mass Spectrometry), and solution NMR (1H, 13C, 119Sn Nuclear Magnetic Resonance) spectroscopies. Complexes Bu2Sn(Lys) (1), Ph2Sn(Lys) (2), Bu2Sn(Orn) (3), and Ph2Sn (Glu-OMe) (6a) were crystallized, and the structures were established by single-crystal X-ray diffraction analysis. Diffraction results evidenced that complexes 1 to 3 were five-coordinated mononuclear species while the phenyl substituted derivative Ph2Sn (Glu-OMe) (6a) forms a polymeric network via Sn-O-Sn bridging whereby the tin atom is six-coordinated. In turn, 119Sn NMR results revealed that all tin complexes exist as mononuclear penta-coordinated species in solution. The tin derivatives were screened for ADME (Adsorption, Distribution, Metabolism, and Excretion) properties via the freely available tools SWISS ADME, and the results were analyzed hereafter. The antiproliferative activity of the complexes was tested against three human cancer cell lines: colorectal adenocarcinoma HT-29, breast adenocarcinoma MDA-MB-231, and chondrosarcoma SW-1353 using a non-tumoral cell line of human osteoblast as control, demonstrating selective inhibitory activities against cancer cells. Hence, these compounds could be a promising alternative to classical chemotherapy agents.
Collapse
Affiliation(s)
- A Verónica Rodriguez-Mayor
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, Av, Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, México
| | - Ma Eugenia Ochoa
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, Av, Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, México
| | - Mónica Farfán-Paredes
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, Av, Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, México
| | - A Ernesto Bañuelos-Hernández
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Gustavo A. Madero, C.P. 07738 Ciudad de México, México
| | - Nury Pérez-Hernández
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Gustavo A. Madero, C.P. 07738 Ciudad de México, México
| | - Norberto Farfán
- Facutad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, México, D.F., México
| | - Rosa Santillan
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, Av, Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, México.
| |
Collapse
|
5
|
Sindeeva OA, Demina PA, Kozyreva ZV, Terentyeva DA, Gusliakova OI, Muslimov AR, Sukhorukov GB. Single Mesenchymal Stromal Cell Migration Tracking into Glioblastoma Using Photoconvertible Vesicles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1215. [PMID: 39057891 PMCID: PMC11279842 DOI: 10.3390/nano14141215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Reliable cell labeling and tracking techniques are imperative for elucidating the intricate and ambiguous interactions between mesenchymal stromal cells (MSCs) and tumors. Here, we explore fluorescent photoconvertible nanoengineered vesicles to study mMSC migration in brain tumors. These 3 μm sized vesicles made of carbon nanoparticles, Rhodamine B (RhB), and polyelectrolytes are readily internalized by cells. The dye undergoes photoconversion under 561 nm laser exposure with a fluorescence blue shift upon demand. The optimal laser irradiation duration for photoconversion was 0.4 ms, which provided a maximal blue shift of the fluorescent signal label without excessive laser exposure on cells. Vesicles modified with an extra polymer layer demonstrated enhanced intracellular uptake without remarkable effects on cell viability, motility, or proliferation. The optimal ratio of 20 vesicles per mMSC was determined. Moreover, the migration of individual mMSCs within 2D and 3D glioblastoma cell (EPNT-5) colonies over 2 days and in vivo tumor settings over 7 days were traced. Our study provides a robust nanocomposite platform for investigating MSC-tumor dynamics and offers insights into envisaged therapeutic strategies. Photoconvertible vesicles also present an indispensable tool for studying complex fundamental processes of cell-cell interactions for a wide range of problems in biomedicine.
Collapse
Affiliation(s)
- Olga A. Sindeeva
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skoltech, 3 Nobel Str., 121205 Moscow, Russia; (Z.V.K.); (D.A.T.); (O.I.G.)
| | - Polina A. Demina
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia;
| | - Zhanna V. Kozyreva
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skoltech, 3 Nobel Str., 121205 Moscow, Russia; (Z.V.K.); (D.A.T.); (O.I.G.)
| | - Daria A. Terentyeva
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skoltech, 3 Nobel Str., 121205 Moscow, Russia; (Z.V.K.); (D.A.T.); (O.I.G.)
| | - Olga I. Gusliakova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skoltech, 3 Nobel Str., 121205 Moscow, Russia; (Z.V.K.); (D.A.T.); (O.I.G.)
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia;
| | - Albert R. Muslimov
- Center for Molecular and Cell Technologies, Saint Petersburg State Chemical and Pharmaceutical University, 14 Professora Popova Str., lit. A, 197022 St. Petersburg, Russia;
| | - Gleb B. Sukhorukov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skoltech, 3 Nobel Str., 121205 Moscow, Russia; (Z.V.K.); (D.A.T.); (O.I.G.)
- Life Improvement by Future Technology (LIFT) Center, 121205 Moscow, Russia
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
6
|
Prasad R, Jyothi VGS, Kommineni N, Bulusu RT, Mendes B, Lovell JF, Conde J. Biomimetic Ghost Nanomedicine-Based Optotheranostics for Cancer. NANO LETTERS 2024; 24:8217-8231. [PMID: 38848540 PMCID: PMC11247544 DOI: 10.1021/acs.nanolett.4c01534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Theranostic medicine combines diagnostics and therapeutics, focusing on solid tumors at minimal doses. Optically activated photosensitizers are significant examples owing to their photophysical and chemical properties. Several optotheranostics have been tested that convert light to imaging signals, therapeutic radicals, and heat. Upon light exposure, conjugated photosensitizers kill tumor cells by producing reactive oxygen species and heat or by releasing cancer antigens. Despite clinical trials, these molecularly conjugated photosensitizers require protection from their surroundings and a localized direction for site-specific delivery during blood circulation. Therefore, cell membrane biomimetic ghosts have been proposed for precise and safe delivery of these optically active large molecules, which are clinically relevant because of their biocompatibility, long circulation time, bypass of immune cell recognition, and targeting ability. This review focuses on the role of biomimetic nanoparticles in the treatment and diagnosis of tumors through light-mediated diagnostics and therapy, providing insights into their preclinical and clinical status.
Collapse
Affiliation(s)
- Rajendra Prasad
- School
of Biochemical Engineering, Indian Institute
of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Vaskuri G. S. Jyothi
- Department
of Pharmaceutical Sciences, University of
Tennessee Health Science Center (UTHSC), Memphis, Tennessee 38163, United States
| | - Nagavendra Kommineni
- Center
for Biomedical Research, Population Council, New York, New York 10065, United States
| | - Ravi Teja Bulusu
- Department
of Pharmaceutical Sciences, Florida A&M
University, Tallahassee, Florida 32307, United States
| | - Bárbara
B. Mendes
- NOVA
Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisbon 1169-056, Portugal
- ToxOmics,
NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisbon, 1169-056, Portugal
| | - Jonathan F. Lovell
- Department
of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - João Conde
- NOVA
Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisbon 1169-056, Portugal
- ToxOmics,
NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisbon, 1169-056, Portugal
| |
Collapse
|
7
|
Ho YK, Woo JY, Loke KM, Deng LW, Too HP. Enhanced anti-tumor efficacy with multi-transgene armed mesenchymal stem cells for treating peritoneal carcinomatosis. J Transl Med 2024; 22:463. [PMID: 38750559 PMCID: PMC11097589 DOI: 10.1186/s12967-024-05278-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have garnered significant interest for their tumor-tropic property, making them potential therapeutic delivery vehicles for cancer treatment. We have previously shown the significant anti-tumour activity in mice preclinical models and companion animals with naturally occurring cancers using non-virally engineered MSCs with a therapeutic transgene encoding cytosine deaminase and uracil phosphoribosyl transferase (CDUPRT) and green fluorescent protein (GFP). Clinical studies have shown improved response rate with combinatorial treatment of 5-fluorouracil and Interferon-beta (IFNb) in peritoneal carcinomatosis (PC). However, high systemic toxicities have limited the clinical use of such a regime. METHODS In this study, we evaluated the feasibility of intraperitoneal administration of non-virally engineered MSCs to co-deliver CDUPRT/5-Flucytosine prodrug system and IFNb to potentially enhance the cGAS-STING signalling axis. Here, MSCs were engineered to express CDUPRT or CDUPRT-IFNb. Expression of CDUPRT and IFNb was confirmed by flow cytometry and ELISA, respectively. The anti-cancer efficacy of the engineered MSCs was evaluated in both in vitro and in vivo model. ES2, HT-29 and Colo-205 were cocultured with engineered MSCs at various ratio. The cell viability with or without 5-flucytosine was measured with MTS assay. To further compare the anti-cancer efficacy of the engineered MSCs, peritoneal carcinomatosis mouse model was established by intraperitoneal injection of luciferase expressing ES2 stable cells. The tumour burden was measured through bioluminescence tracking. RESULTS Firstly, there was no changes in phenotypes of MSCs despite high expression of the transgene encoding CDUPRT and IFNb (CDUPRT-IFNb). Transwell migration assays and in-vivo tracking suggested the co-expression of multiple transgenes did not impact migratory capability of the MSCs. The superiority of CDUPRT-IFNb over CDUPRT expressing MSCs was demonstrated in ES2, HT-29 and Colo-205 in-vitro. Similar observations were observed in an intraperitoneal ES2 ovarian cancer xenograft model. The growth of tumor mass was inhibited by ~ 90% and 46% in the mice treated with MSCs expressing CDUPRT-IFNb or CDUPRT, respectively. CONCLUSIONS Taken together, these results established the effectiveness of MSCs co-expressing CDUPRT and IFNb in controlling and targeting PC growth. This study lay the foundation for the development of clinical trial using multigene-armed MSCs for PC.
Collapse
Affiliation(s)
- Yoon Khei Ho
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore.
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- AGeM Bio, Singapore, 119276, Singapore.
- Singapore Innovate, Singapore, 059911, Singapore.
| | - Jun Yung Woo
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kin Man Loke
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lih-Wen Deng
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Heng-Phon Too
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
8
|
Zhang N, Sun Q, Li J, Li J, Tang L, Zhao Q, Pu Y, Liang G, He B, Gao W, Chen J. A lipid/PLGA nanocomplex to reshape tumor immune microenvironment for colon cancer therapy. Regen Biomater 2024; 11:rbae036. [PMID: 38628547 PMCID: PMC11018539 DOI: 10.1093/rb/rbae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 04/19/2024] Open
Abstract
Immune checkpoint blockade therapy provides a new strategy for tumor treatment; however, the insufficient infiltration of cytotoxic T cells and immunosuppression in tumor microenvironment lead to unsatisfied effects. Herein, we reported a lipid/PLGA nanocomplex (RDCM) co-loaded with the photosensitizer Ce6 and the indoleamine 2,3-dioxygenase (IDO) inhibitor 1MT to improve immunotherapy of colon cancer. Arginine-glycine-aspartic acid (RGD) as the targeting moiety was conjugated on 1,2-distearoyl-snglycero-3-phosphoethanolamine lipid via polyethylene glycol (PEG), and programmed cell death-ligand 1 (PD-L1) peptide inhibitor DPPA (sequence: CPLGVRGK-GGG-d(NYSKPTDRQYHF)) was immobilized on the terminal group of PEG via matrix metalloproteinase 2 sensitive peptide linker. The Ce6 and 1MT were encapsulated in PLGA nanoparticles. The drug loaded nanoparticles were composited with RGD and DPPA modified lipid and lecithin to form lipid/PLGA nanocomplexes. When the nanocomplexes were delivered to tumor, DPPA was released by the cleavage of a matrix metalloproteinase 2-sensitive peptide linker for PD-L1 binding. RGD facilitated the cellular internalization of nanocomplexes via avβ3 integrin. Strong immunogenic cell death was induced by 1O2 generated from Ce6 irradiation under 660 nm laser. 1MT inhibited the activity of IDO and reduced the inhibition of cytotoxic T cells caused by kynurenine accumulation in the tumor microenvironment. The RDCM facilitated the maturation of dendritic cells, inhibited the activity of IDO, and markedly recruited the proportion of tumor-infiltrating cytotoxic T cells in CT26 tumor-bearing mice, triggering a robust immunological memory effect, thus effectively preventing tumor metastasis. The results indicated that the RDCM with dual IDO and PD-L1 inhibition effects is a promising platform for targeted photoimmunotherapy of colon cancer.
Collapse
Affiliation(s)
- Nan Zhang
- Henan Academy of Sciences, Zhengzhou 450046, China
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qiqi Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Junhua Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Jing Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Lei Tang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Quan Zhao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | | | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Wenxia Gao
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Jianlin Chen
- School of Laboratory Medicine, Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu 610500, China
| |
Collapse
|
9
|
Wang J, Deng G, Wang S, Li S, Song P, Lin K, Xu X, He Z. Enhancing regenerative medicine: the crucial role of stem cell therapy. Front Neurosci 2024; 18:1269577. [PMID: 38389789 PMCID: PMC10881826 DOI: 10.3389/fnins.2024.1269577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Stem cells offer new therapeutic avenues for the repair and replacement of damaged tissues and organs owing to their self-renewal and multipotent differentiation capabilities. In this paper, we conduct a systematic review of the characteristics of various types of stem cells and offer insights into their potential applications in both cellular and cell-free therapies. In addition, we provide a comprehensive summary of the technical routes of stem cell therapy and discuss in detail current challenges, including safety issues and differentiation control. Although some issues remain, stem cell therapy demonstrates excellent potential in the field of regenerative medicine and provides novel tactics and methodologies for managing a wider spectrum of illnesses and traumas.
Collapse
Affiliation(s)
- Jipeng Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Deng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuyi Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuang Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Peng Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kun Lin
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoxiang Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zuhong He
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Labra-Vázquez P, Rocha E, Xiao Y, Tassé M, Duhayon C, Farfán N, Santillan R, Gibot L, Lacroix PG, Malfant I. A Trojan horse approach for enhancing the cellular uptake of a ruthenium nitrosyl complex. Dalton Trans 2023; 52:18177-18193. [PMID: 37997689 DOI: 10.1039/d3dt03480a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Ruthenium nitrosyl (RuNO) complexes continue to attract significant research interest due to several appealing features that make these photoactivatable nitric oxide (NO˙) donors attractive for applications in photoactivated chemotherapy. Interesting examples of molecular candidates capable of delivering cytotoxic concentrations of NO˙ in aqueous media have been discussed. Nevertheless, the question of whether most of these highly polar and relatively large molecules are efficiently incorporated by cells remains largely unanswered. In this paper, we present the synthesis and the chemical, photophysical and photochemical characterization of RuNO complexes functionalized with 17α-ethinylestradiol (EE), a semisynthetic steroidal hormone intended to act as a molecular Trojan horse for the targeted delivery of RuNO complexes. The discussion is centered around two main molecular targets, one containing EE (EE-Phtpy-RuNO) and a reference compound lacking this biological recognition fragment (Phtpy-RuNO). While both complexes displayed similar optical absorption profiles and NO˙ release efficiencies in aqueous media, important differences were found regarding their cellular uptake towards dermal fibroblasts, with EE-Phtpy-RuNO gratifyingly displaying a remarkable 10-fold increase in cellular uptake when compared to Phtpy-RuNO, thus demonstrating the potential drug-targeting capabilities of this biomimetic steroidal conjugate.
Collapse
Affiliation(s)
- Pablo Labra-Vázquez
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077, Toulouse, France.
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Erika Rocha
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Yue Xiao
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077, Toulouse, France.
| | - Marine Tassé
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077, Toulouse, France.
| | - Carine Duhayon
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077, Toulouse, France.
| | - Norberto Farfán
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Rosa Santillan
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740, 07000, Ciudad de México, Mexico
| | - Laure Gibot
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse, III - Paul Sabatier, France
| | - Pascal G Lacroix
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077, Toulouse, France.
| | - Isabelle Malfant
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077, Toulouse, France.
| |
Collapse
|
11
|
Soliman AH, Youness RA, Sebak AA, Handoussa H. Phytochemical-derived tumor-associated macrophage remodeling strategy using Phoenix dactylifera L. boosted photodynamic therapy in melanoma via H19/iNOS/PD-L1 axis. Photodiagnosis Photodyn Ther 2023; 44:103792. [PMID: 37689125 DOI: 10.1016/j.pdpdt.2023.103792] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND The tumor microenvironment (TME) represents a barrier to PDT efficacy among melanoma patients. The aim of this study is to employ a novel muti-tactic TME-remodeling strategy via repolarization of tumor-associated macrophages (TAMs), the main TME immune cells in melanoma, from the pro-tumor M2 into the antitumor M1 phenotype using Phoenix dactylifera L. (date palm) in combination with PDT. METHODS Screening of different date cultivars was employed to choose extracts of selective toxicity to melanoma and TAMs, not normal macrophages. Potential extracts were then fractionated and characterized by gas chromatography-mass spectrometry (GC-MS). Finally, the efficacy and the potential molecular mechanism of the co-treatment were portrayed via quantitative real-time polymerase chain reaction (qRT-PCR) analysis. RESULTS Initial screening resulted in the selection of the two Phoenix dactylifera L. cultivars Safawi and Sukkari methanolic extracts. Sukkari showed superior capacity to revert TAM phenotype into M1 as well as more prominent upregulation of M1 markers and repression of melanoma immunosuppressive markers relative to positive control (resiquimod). Molecularly, it was shown that PDT of melanoma cells in the presence of the secretome of repolarized TAMs surpassed the monotherapy via the modulation of the H19/iNOS/PD-L1immune-regulatory axis. CONCLUSION This study highlights the potential utilization of nutraceuticals in combination with PDT in the treatment of melanoma to provide a dual activity through alleviating the immune suppressive TME and potentiating the anti-tumor responses.
Collapse
Affiliation(s)
- Aya H Soliman
- Department of Pharmaceutical Biology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, Main Entrance El Tagamoa El Khames, New Cairo 11511, Egypt.
| | - Rana A Youness
- Department of Pharmaceutical Biology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, Main Entrance El Tagamoa El Khames, New Cairo 11511, Egypt; Department of Biology and Biochemistry, Faculty of Biotechnology, German International University, New Administrative Capital, New Cairo 11835, Egypt
| | - Aya A Sebak
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, New Cairo 11511, Egypt.
| | - Heba Handoussa
- Department of Pharmaceutical Biology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, Main Entrance El Tagamoa El Khames, New Cairo 11511, Egypt
| |
Collapse
|
12
|
Azizi M, Shahgolzari M, Fathi-Karkan S, Ghasemi M, Samadian H. Multifunctional plant virus nanoparticles: An emerging strategy for therapy of cancer. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1872. [PMID: 36450366 DOI: 10.1002/wnan.1872] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022]
Abstract
Cancer therapy requires sophisticated treatment strategies to obtain the highest success. Nanotechnology is enabling, revolutionizing, and multidisciplinary concepts to improve conventional cancer treatment modalities. Nanomaterials have a central role in this scenario, explaining why various nanomaterials are currently being developed for cancer therapy. Viral nanoparticles (VNPs) have shown promising performance in cancer therapy due to their unique features. VNPs possess morphological homogeneity, ease of functionalization, biocompatibility, biodegradability, water solubility, and high absorption efficiency that are beneficial for cancer therapy applications. In the current review paper, we highlight state-of-the-art properties and potentials of plant viruses, strategies for multifunctional plant VNPs formulations, potential applications and challenges in VNPs-based cancer therapy, and finally practical solutions to bring potential cancer therapy one step closer to real applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Mehdi Azizi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehdi Shahgolzari
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sonia Fathi-Karkan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Maryam Ghasemi
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hadi Samadian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
13
|
Lara-Vega I, Vega-López A. Combinational photodynamic and photothermal - based therapies for melanoma in mouse models. Photodiagnosis Photodyn Ther 2023; 43:103596. [PMID: 37148952 DOI: 10.1016/j.pdpdt.2023.103596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Melanoma is a highly metastatic skin cancer with limited response to current therapies in advanced patients. To overcome resistance, novel treatments based on photodynamic and photothermal therapies (PDT and PTT, respectively) have been developed to treat melanoma in preclinical murine models. Despite success inhibiting implanted tumors' growth, there has been limited evaluation of their long-term effectiveness in preventing metastasis, recurrence, or improving survival rates. METHODS Combined and multidrug therapies based on PDT and/or PTT to treat cutaneous malignant melanoma in the preclinical mouse model were reviewed from 2016 onwards. PubMed® was the database in which the search was performed using mesh search algorithms resulting in fifty-one studies that comply with strict inclusion rules of screening. RESULTS B16 melanoma-bearing C57BLACK6 mice model was the most used to evaluate immunotherapies, chemotherapies, and targeted therapies in combination with PDT and/or PTT. Combined therapies demonstrated a synergistic effect, resulting in intense antitumor activity. The most extensively studied protocol for developing metastatic models involved the intravenous administration of malignant cells, with some combined therapies being tested. Furthermore, the review presents the composition of the nanostructures utilized for delivering the drugs and light-responsive agents and the treatment plans for each combined approach. CONCLUSIONS The identified mechanisms to simulate metastatic melanoma models and the therapeutic combinations may aid in evaluating the systemic protection of combined PDT and PTT-based therapies, particularly in conducting short-term preclinical experiments. Such simulations could have relevance to clinical studies.
Collapse
Affiliation(s)
- Israel Lara-Vega
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Mexico City C. P. 07738, Mexico
| | - Armando Vega-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Mexico City C. P. 07738, Mexico.
| |
Collapse
|
14
|
Azizi M, Jahanban-Esfahlan R, Samadian H, Hamidi M, Seidi K, Dolatshahi-Pirouz A, Yazdi AA, Shavandi A, Laurent S, Be Omide Hagh M, Kasaiyan N, Santos HA, Shahbazi MA. Multifunctional nanostructures: Intelligent design to overcome biological barriers. Mater Today Bio 2023; 20:100672. [PMID: 37273793 PMCID: PMC10232915 DOI: 10.1016/j.mtbio.2023.100672] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/24/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023] Open
Abstract
Over the past three decades, nanoscience has offered a unique solution for reducing the systemic toxicity of chemotherapy drugs and for increasing drug therapeutic efficiency. However, the poor accumulation and pharmacokinetics of nanoparticles are some of the key reasons for their slow translation into the clinic. The is intimately linked to the non-biological nature of nanoparticles and the aberrant features of solid cancer, which together significantly compromise nanoparticle delivery. New findings on the unique properties of tumors and their interactions with nanoparticles and the human body suggest that, contrary to what was long-believed, tumor features may be more mirage than miracle, as the enhanced permeability and retention based efficacy is estimated to be as low as 1%. In this review, we highlight the current barriers and available solutions to pave the way for approved nanoformulations. Furthermore, we aim to discuss the main solutions to solve inefficient drug delivery with the use of nanobioengineering of nanocarriers and the tumor environment. Finally, we will discuss the suggested strategies to overcome two or more biological barriers with one nanocarrier. The variety of design formats, applications and implications of each of these methods will also be evaluated.
Collapse
Affiliation(s)
- Mehdi Azizi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Samadian
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoud Hamidi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles-BioMatter Unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Khaled Seidi
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Amirhossein Ahmadieh Yazdi
- Department of Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amin Shavandi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles-BioMatter Unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons – UMONS, Mons, Belgium
| | - Mahsa Be Omide Hagh
- Immunology Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahid Kasaiyan
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3508 GA, Utrecht, Netherlands
| | - Hélder A. Santos
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
| |
Collapse
|
15
|
Wang X, Sun Y, Wangpraseurt D. Engineered photoresponsive biohybrids for tumor therapy. SMART MEDICINE 2023; 2:e20220041. [PMID: 39188274 PMCID: PMC11235730 DOI: 10.1002/smmd.20220041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/30/2023] [Indexed: 08/28/2024]
Abstract
Engineered biohybrids have recently emerged as innovative biomimetic platforms for cancer therapeutic applications. Particularly, engineered photoresponsive biohybrids hold tremendous potential against tumors due to their intriguing biomimetic properties, photoresponsive ability, and enhanced biotherapeutic functions. In this review, the design principles of engineered photoresponsive biohybrids and their latest progresses for tumor therapy are summarized. Representative engineered photoresponsive biohybrids are highlighted including biomolecules-associated, cell membrane-based, eukaryotic cell-based, bacteria-based, and algae-based photoresponsive biohybrids. Representative tumor therapeutic modalities of the engineered photoresponsive biohybrids are presented, including photothermal therapy, photodynamic therapy, synergistic therapy, and tumor therapy combined with tissue regeneration. Moreover, the challenges and future perspectives of these photoresponsive biohybrids for clinical practice are discussed.
Collapse
Affiliation(s)
- Xiaocheng Wang
- Department of NanoEngineeringUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Yazhi Sun
- Department of NanoEngineeringUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Daniel Wangpraseurt
- Department of NanoEngineeringUniversity of California San DiegoSan DiegoCaliforniaUSA
- Scripps Institution of OceanographyUniversity of California San DiegoSan DiegoCaliforniaUSA
| |
Collapse
|
16
|
Caverzán MD, Beaugé L, Oliveda PM, Cesca González B, Bühler EM, Ibarra LE. Exploring Monocytes-Macrophages in Immune Microenvironment of Glioblastoma for the Design of Novel Therapeutic Strategies. Brain Sci 2023; 13:brainsci13040542. [PMID: 37190507 DOI: 10.3390/brainsci13040542] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Gliomas are primary malignant brain tumors. These tumors seem to be more and more frequent, not only because of a true increase in their incidence, but also due to the increase in life expectancy of the general population. Among gliomas, malignant gliomas and more specifically glioblastomas (GBM) are a challenge in their diagnosis and treatment. There are few effective therapies for these tumors, and patients with GBM fare poorly, even after aggressive surgery, chemotherapy, and radiation. Over the last decade, it is now appreciated that these tumors are composed of numerous distinct tumoral and non-tumoral cell populations, which could each influence the overall tumor biology and response to therapies. Monocytes have been proved to actively participate in tumor growth, giving rise to the support of tumor-associated macrophages (TAMs). In GBM, TAMs represent up to one half of the tumor mass cells, including both infiltrating macrophages and resident brain microglia. Infiltrating macrophages/monocytes constituted ~ 85% of the total TAM population, they have immune functions, and they can release a wide array of growth factors and cytokines in response to those factors produced by tumor and non-tumor cells from the tumor microenvironment (TME). A brief review of the literature shows that this cell population has been increasingly studied in GBM TME to understand its role in tumor progression and therapeutic resistance. Through the knowledge of its biology and protumoral function, the development of therapeutic strategies that employ their recruitment as well as the modulation of their immunological phenotype, and even the eradication of the cell population, can be harnessed for therapeutic benefit. This revision aims to summarize GBM TME and localization in tumor niches with special focus on TAM population, its origin and functions in tumor progression and resistance to conventional and experimental GBM treatments. Moreover, recent advances on the development of TAM cell targeting and new cellular therapeutic strategies based on monocyte/macrophages recruitment to eradicate GBM are discussed as complementary therapeutics.
Collapse
|
17
|
Lu J, Gao X, Wang S, He Y, Ma X, Zhang T, Liu X. Advanced strategies to evade the mononuclear phagocyte system clearance of nanomaterials. EXPLORATION (BEIJING, CHINA) 2023; 3:20220045. [PMID: 37323617 PMCID: PMC10191055 DOI: 10.1002/exp.20220045] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/12/2022] [Indexed: 06/17/2023]
Abstract
Nanomaterials are promising carriers to improve the bioavailability and therapeutic efficiency of drugs by providing preferential drug accumulation at their sites of action, but their delivery efficacy is severely limited by a series of biological barriers, especially the mononuclear phagocytic system (MPS)-the first and major barrier encountered by systemically administered nanomaterials. Herein, the current strategies for evading the MPS clearance of nanomaterials are summarized. First, engineering nanomaterials methods including surface modification, cell hitchhiking, and physiological environment modulation to reduce the MPS clearance are explored. Second, MPS disabling methods including MPS blockade, suppression of macrophage phagocytosis, and macrophages depletion are examined. Last, challenges and opportunities in this field are further discussed.
Collapse
Affiliation(s)
- Junjie Lu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of EducationCollege of Chemistry and Materials ScienceNorthwest UniversityXi'anChina
| | - Xiao Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China of the Ministry of EducationSchool of MedicineNorthwest UniversityXi'anChina
| | - Siyao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China of the Ministry of EducationSchool of MedicineNorthwest UniversityXi'anChina
| | - Yuan He
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of EducationCollege of Chemistry and Materials ScienceNorthwest UniversityXi'anChina
| | - Xiaowei Ma
- National Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural UniversityBeijingChina
| | - Tingbin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of EducationCollege of Chemistry and Materials ScienceNorthwest UniversityXi'anChina
| | - Xiaoli Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China of the Ministry of EducationSchool of MedicineNorthwest UniversityXi'anChina
- Institute of Regenerative and Reconstructive MedicineMed‐X InstituteNational Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
18
|
Fan X, Wang K, Lu Q, Lu Y, Sun J. Cell-Based Drug Delivery Systems Participate in the Cancer Immunity Cycle for Improved Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205166. [PMID: 36437050 DOI: 10.1002/smll.202205166] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Immunotherapy aims to activate the cancer patient's immune system for cancer therapy. The whole process of the immune system against cancer referred to as the "cancer immunity cycle", gives insight into how drugs can be designed to affect every step of the anticancer immune response. Cancer immunotherapy such as immune checkpoint inhibitor (ICI) therapy, cancer vaccines, as well as small molecule modulators has been applied to fight various cancers. However, the effect of immunotherapy in clinical applications is still unsatisfactory due to the limited response rate and immune-related adverse events. Mounting evidence suggests that cell-based drug delivery systems (DDSs) with low immunogenicity, superior targeting, and prolonged circulation have great potential to improve the efficacy of cancer immunotherapy. Therefore, with the rapid development of cell-based DDSs, understanding their important roles in various stages of the cancer immunity cycle guides the better design of cell-based cancer immunotherapy. Herein, an overview of how cell-based DDSs participate in cancer immunotherapy at various stages is presented and an outlook on possible challenges of clinical translation and application in future development.
Collapse
Affiliation(s)
- Xiaoyuan Fan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Kaiyuan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Qi Lu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Yutong Lu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| |
Collapse
|
19
|
Advanced Surgical Technologies for Lung Cancer Treatment: Current Status and Perspectives. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
|
20
|
Wang X, Du J, Zhou F, Ye Q, Chen Y, Sun D, Chen H, Lv Y, Sun X. Enhanced Nuclear Accumulation of Doxorubicin Delivered by pH-Triggered Polydopamine-Shelled Mesoporous Silica for Chemo-Photothermal Therapy. AAPS PharmSciTech 2022; 24:3. [PMID: 36417018 DOI: 10.1208/s12249-022-02469-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Adequate delivery of therapeutic agents to their intended molecular targets is crucial in tumor therapy. Versatile drug carriers need to overcome the challenges coming from the systemic circulation, membrane barriers, and endo-lysosomal degradation. Herein, hyaluronic acid-conjugated polydopamine (HA-PDA)-shelled mesoporous silica nanoparticles encapsulated with doxorubicin (MSNs-DOX) were successfully fabricated for targeted tumor therapy. Compared with reported studies focusing on the pH-sensitive release in tumors, we especially revealed the significant role of lysosomal release in DOX nuclear accumulation. After active targeting and CD44-mediated endocytosis in tumor cells, the PDA layer of the nanoparticles would be peeled off to trigger drug release owing to MSNs gatekeeper in acidic lysosomes. Subsequently, DOX molecules passively diffused into nuclei. The intracellular DOX transportation was evidenced by DOX accumulation in nuclei, lysosomal location of nanoparticles, and lysosome acidification inhibition test. After discharging of the cargoes from nanoparticles, PDA shells from residual nanoparticles were able to produce localized hyperthermia under NIR irradiation entrapped in lysosomes, inducing synergistic chemo-photothermal effect. Under NIR treatment, HA-PDA@MSNs-DOX presented a prominent tumor inhibition rate without obvious side effects. This study indicated the potent nuclear delivery and synergetic chemo-photothermal therapy achieved by HA-PDA-shelled MSNs.
Collapse
Affiliation(s)
- Xiaoling Wang
- Department of Pharmacy, Zhejiang University City College, Hangzhou, China.,Department of Pharmacy, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiangyue Du
- Department of General Practice, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Zhou
- Personalized Prescribing Inc., North York, ON, Canada
| | - Qing Ye
- Department of Pharmacy, Zhejiang University City College, Hangzhou, China
| | - Ying Chen
- Department of Pharmacy, Zhejiang University City College, Hangzhou, China
| | - Dujuan Sun
- Department of Pharmacy, Zhejiang University City College, Hangzhou, China
| | - Haimin Chen
- Department of Pharmacy, Zhejiang University City College, Hangzhou, China
| | - Yuanyuan Lv
- Department of Pharmacy, Zhejiang University City College, Hangzhou, China
| | - Xiaoyi Sun
- Department of Pharmacy, Zhejiang University City College, Hangzhou, China.
| |
Collapse
|
21
|
Zhang L, Liu Y, Huang H, Xie H, Zhang B, Xia W, Guo B. Multifunctional nanotheranostics for near infrared optical imaging-guided treatment of brain tumors. Adv Drug Deliv Rev 2022; 190:114536. [PMID: 36108792 DOI: 10.1016/j.addr.2022.114536] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 02/08/2023]
Abstract
Malignant brain tumors, a heterogeneous group of primary and metastatic neoplasms in the central nervous system (CNS), are notorious for their highly invasive and devastating characteristics, dismal prognosis and low survival rate. Recently, near-infrared (NIR) optical imaging modalities including fluorescence imaging (FLI) and photoacoustic imaging (PAI) have displayed bright prospect in innovation of brain tumor diagnoses, due to their merits, like noninvasiveness, high spatiotemporal resolution, good sensitivity and large penetration depth. Importantly, these imaging techniques have been widely used to vividly guide diverse brain tumor therapies in a real-time manner with high accuracy and efficiency. Herein, we provide a systematic summary of the state-of-the-art NIR contrast agents (CAs) for brain tumors single-modal imaging (e.g., FLI and PAI), dual-modal imaging (e.g., FLI/PAI, FLI/magnetic resonance imaging (MRI) and PAI/MRI) and triple-modal imaging (e.g., MRI/FLI/PAI and MRI/PAI/computed tomography (CT) imaging). In addition, we update the most recent progress on the NIR optical imaging-guided therapies, like single-modal (e.g., photothermal therapy (PTT), chemotherapy, surgery, photodynamic therapy (PDT), gene therapy and gas therapy), dual-modal (e.g., PTT/chemotherapy, PTT/surgery, PTT/PDT, PDT/chemotherapy, PTT/chemodynamic therapy (CDT) and PTT/gene therapy) and triple-modal (e.g., PTT/PDT/chemotherapy, PTT/PDT/surgery, PTT/PDT/gene therapy and PTT/gene/chemotherapy). Finally, we discuss the opportunities and challenges of the CAs and nanotheranostics for future clinic translation.
Collapse
Affiliation(s)
- Li Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yue Liu
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Haiyan Huang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Hui Xie
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Baozhu Zhang
- Department of Oncology, People's Hospital of Shenzhen Baoan District, The Second Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518101, China
| | - Wujiong Xia
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
22
|
Wang Y, Fang J, Liu B, Shao C, Shi Y. Reciprocal regulation of mesenchymal stem cells and immune responses. Cell Stem Cell 2022; 29:1515-1530. [DOI: 10.1016/j.stem.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
|
23
|
Chinchulkar SA, Patra P, Dehariya D, Yu A, Rengan AK. Polydopamine nanocomposites and their biomedical applications: A review. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Paloma Patra
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad Sangareddy India
| | - Dheeraj Dehariya
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad Sangareddy India
| | - Aimin Yu
- Faculty of Science Engineering and Technology Department of Chemistry, Biotechnology Swinburne University of Technology Hawthorn Victoria Australia
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad Sangareddy India
| |
Collapse
|
24
|
Wu H, Wei M, Xu Y, Li Y, Zhai X, Su P, Ma Q, Zhang H. PDA-Based Drug Delivery Nanosystems: A Potential Approach for Glioma Treatment. Int J Nanomedicine 2022; 17:3751-3775. [PMID: 36065287 PMCID: PMC9440714 DOI: 10.2147/ijn.s378217] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/22/2022] [Indexed: 01/03/2023] Open
Abstract
Glioma is characterized by high mortality and low postoperative survival. Despite the availability of various therapeutic approaches and molecular typing, the treatment failure rate and the recurrence rate of glioma remain high. Given the limitations of existing therapeutic tools, nanotechnology has emerged as an alternative treatment option. Nanoparticles, such as polydopamine (PDA)-based nanoparticles, are embodied with reliable biodegradability, efficient drug loading rate, relatively low toxicity, considerable biocompatibility, excellent adhesion properties, precisely targeted delivery, and strong photothermal conversion properties. Therefore, they can further enhance the therapeutic effects in patients with glioma. Moreover, polydopamine contains pyrocatechol, amino and carboxyl groups, active double bonds, catechol, and other reactive groups that can react with biofunctional molecules containing amino, aldehyde, or sulfhydryl groups (main including, self-polymerization, non-covalent self-assembly, π-π stacking, electrostatic attraction interaction, chelation, coating and covalent co-assembly), which form a reversible dynamic covalent Schiff base bond that is extremely sensitive to pH values. Meanwhile, PDA has excellent adhesion capability that can be further functionally modified. Consequently, the aim of this review is to summarize the application of PDA-based NPs in glioma and to acquire insight into the therapeutic effect of the drug-loaded PDA-based nanocarriers (PDA NPs). A wealthy understanding and argument of these sides is anticipated to afford a better approach to develop more reasonable and valid PDA-based cancer nano-drug delivery systems. Finally, we discuss the expectation for the prospective application of PDA in this sphere and some individual viewpoints.
Collapse
Affiliation(s)
- Hao Wu
- Neurosurgery, Graduate School of Dalian Medical University, Dalian, People’s Republic of China
| | - Min Wei
- Neurosurgery, Graduate School of Dalian Medical University, Dalian, People’s Republic of China
| | - Yu Xu
- Nanotechnology, Jinling Institute of Technology, Nanjing, People’s Republic of China
| | - Yuping Li
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xue Zhai
- Department of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing, People’s Republic of China
| | - Peng Su
- Department of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing, People’s Republic of China
| | - Qiang Ma
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Hengzhu Zhang
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
25
|
Wu H, Wei M, Xu Y, Li Y, Zhai X, Su P, Ma Q, Zhang H. PDA-Based Drug Delivery Nanosystems: A Potential Approach for Glioma Treatment. Int J Nanomedicine 2022; Volume 17:3751-3775. [DOI: https:/doi.org/10.2147/ijn.s378217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
|
26
|
Yun K, Guo J, Zhu R, Wang T, Zhang X, Pan H, Pan W. Design of ROS-Responsive Hyaluronic Acid-Methotrexate Conjugates for Synergistic Chemo-Photothermal Therapy for Cancer. Mol Pharm 2022; 19:3323-3335. [PMID: 35900105 DOI: 10.1021/acs.molpharmaceut.2c00472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Combining chemotherapy with photothermal therapy (PTT) for cancer treatment could overcome the inherent limitations of both single-modality chemotherapy and PTT. However, the obstacle of accurate drug delivery to tumor sites based on chemo-photothermal remains challenging. This article describes development of a reactive oxygen species (ROS)-responsive hyaluronic acid-based nanoparticle to overcome these drawbacks. Herein, HA-TK-MTX (HTM) was synthesized by a ROS-responsive cleaved thioketal moiety linker (TK) of methotrexate (MTX) and hyaluronic acid (HA). Through hydrophobic interaction and π-π stacking interaction, a photothermal agent IR780 was integrated into the HTM, and the IR780/HTM nanoparticles (IHTM NPs) were obtained. The IHTM NPs show high photostability, excellent photothermal performance, remarkable tumor-targeting ability, and ROS sensibility. Due to the accurate drug delivery ability and superior chemo-photothermal treatment effect of IHTM NPs, the tumor inhibition rate reached 70.95% for 4T1 tumor-bearing mice. This work serves as a precedent for the chemo-photothermal therapy of cancer by rationally designing ROS-responsive nanoparticles.
Collapse
Affiliation(s)
- Kaiqing Yun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Juntong Guo
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Renfang Zhu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Tianyi Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xiaoyan Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Hao Pan
- College of Pharmacy, Liaoning University, Shenyang 110036, China
| | - Weisan Pan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
27
|
Ratkaj I, Mušković M, Malatesti N. Targeting Microenvironment of Melanoma and Head and Neck Cancers
in Photodynamic Therapy. Curr Med Chem 2022; 29:3261-3299. [DOI: 10.2174/0929867328666210709113032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 11/22/2022]
Abstract
Background:
Photodynamic therapy (PDT), in comparison to other skin cancers,
is still far less effective for melanoma, due to the strong absorbance and the role of
melanin in cytoprotection. The tumour microenvironment (TME) has a significant role in
tumour progression, and the hypoxic TME is one of the main reasons for melanoma progression
to metastasis and its resistance to PDT. Hypoxia is also a feature of solid tumours
in the head and neck region that indicates negative prognosis.
Objective:
The aim of this study was to individuate and describe systematically the main
strategies in targeting the TME, especially hypoxia, in PDT against melanoma and head
and neck cancers (HNC), and assess the current success in their application.
Methods:
PubMed was used for searching, in MEDLINE and other databases, for the
most recent publications on PDT against melanoma and HNC in combination with the
TME targeting and hypoxia.
Results:
In PDT for melanoma and HNC, it is very important to control hypoxia levels,
and amongst the different approaches, oxygen self-supply systems are often applied. Vascular
targeting is promising, but to improve it, optimal drug-light interval, and formulation
to increase the accumulation of the photosensitiser in the tumour vasculature, have to
be established. On the other side, the use of angiogenesis inhibitors, such as those interfering
with VEGF signalling, is somewhat less successful than expected and needs to be
further investigated.
Conclusion:
The combination of PDT with immunotherapy by using multifunctional nanoparticles
continues to develop and seems to be the most promising for achieving a
complete and lasting antitumour effect.
Collapse
Affiliation(s)
- Ivana Ratkaj
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Martina Mušković
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Nela Malatesti
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
28
|
Mesenchymal stem cells: A living carrier for active tumor-targeted delivery. Adv Drug Deliv Rev 2022; 185:114300. [PMID: 35447165 DOI: 10.1016/j.addr.2022.114300] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/22/2022] [Accepted: 04/12/2022] [Indexed: 12/16/2022]
Abstract
The strategy of using mesenchymal stem cells (MSCs) as a living carrier for active delivery of therapeutic agents targeting tumor sites has been attempted in a wide range of studies to validate the feasibility and efficacy for tumor treatment. This approach reveals powerful tumor targeting and tumor penetration. In addition, MSCs have been confirmed to actively participate in immunomodulation of the tumor microenvironment. Thus, MSCs are not inert delivery vehicles but have a strong impact on the fate of tumor cells. In this review, these active properties of MSCs are addressed to highlight the advantages and challenges of using MSCs for tumor-targeted delivery. In addition, some of the latest examples of using MSCs to carry a variety of anti-tumor agents for tumor-targeted therapy are summarized. Recent technologies to improve the performance and safety of this delivery strategy will be introduced. The advances, applications, and challenges summarized in this review will provide a general understanding of this promising strategy for actively delivering drugs to tumor tissues.
Collapse
|
29
|
Feng C, Li Y, Ferdows BE, Patel DN, Ouyang J, Tang Z, Kong N, Chen E, Tao W. Emerging vaccine nanotechnology: From defense against infection to sniping cancer. Acta Pharm Sin B 2022; 12:2206-2223. [PMID: 35013704 PMCID: PMC8730377 DOI: 10.1016/j.apsb.2021.12.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/24/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Looking retrospectively at the development of humanity, vaccination is an unprecedented medical landmark that saves lives by harnessing the human immune system. During the ongoing coronavirus disease 2019 (COVID-19) pandemic, vaccination is still the most effective defense modality. The successful clinical application of the lipid nanoparticle-based Pfizer/BioNTech and Moderna mRNA COVID-19 vaccines highlights promising future of nanotechnology in vaccine development. Compared with conventional vaccines, nanovaccines are supposed to have advantages in lymph node accumulation, antigen assembly, and antigen presentation; they also have, unique pathogen biomimicry properties because of well-organized combination of multiple immune factors. Beyond infectious diseases, vaccine nanotechnology also exhibits considerable potential for cancer treatment. The ultimate goal of cancer vaccines is to fully mobilize the potency of the immune system as a living therapeutic to recognize tumor antigens and eliminate tumor cells, and nanotechnologies have the requisite properties to realize this goal. In this review, we summarize the recent advances in vaccine nanotechnology from infectious disease prevention to cancer immunotherapy and highlight the different types of materials, mechanisms, administration methods, as well as future perspectives.
Collapse
Affiliation(s)
- Chan Feng
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Yongjiang Li
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pharmacy, the Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Bijan Emiliano Ferdows
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dylan Neal Patel
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jiang Ouyang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zhongmin Tang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Enguo Chen
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Corresponding authors. Fax: +001 857 307 2337 (Wei Tao).
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Corresponding authors. Fax: +001 857 307 2337 (Wei Tao).
| |
Collapse
|
30
|
Sangam S, Jindal S, Agarwal A, Banerjee BD, Prasad P, Mukherjee M. Graphene quantum dots-porphyrins/phthalocyanines multifunctional hybrid systems: from interfacial dialogue to applications. Biomater Sci 2022; 10:1647-1679. [DOI: 10.1039/d2bm00016d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Engineered well-ordered hybrid nanomaterials are at a symbolically pivotal point, just ahead of a long-anticipated human race transformation. Incorporating newer carbon nanomaterials like graphene quantum dots (GQDs) with tetrapyrrolic porphyrins...
Collapse
|
31
|
Bagno LL, Salerno AG, Balkan W, Hare JM. Mechanism of Action of Mesenchymal Stem Cells (MSCs): impact of delivery method. Expert Opin Biol Ther 2021; 22:449-463. [PMID: 34882517 DOI: 10.1080/14712598.2022.2016695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Mesenchymal stromal cells (MSCs; AKA mesenchymal stem cells) stimulate healing and reduce inflammation. Promising therapeutic responses are seen in many late-phase clinical trials, but others have not satisfied their primary endpoints, making translation of MSCs into clinical practice difficult. These inconsistencies may be related to the route of MSC delivery, lack of product optimization, or varying background therapies received in clinical trials over time. AREAS COVERED Here we discuss the different routes of MSC delivery, highlighting the proposed mechanism(s) of therapeutic action as well as potential safety concerns. PubMed search criteria used: MSC plus: local administration; routes of administration; delivery methods; mechanism of action; therapy in different diseases. EXPERT OPINION Direct injection of MSCs using a controlled local delivery approach appears to have benefits in certain disease states, but further studies are required to make definitive conclusions regarding the superiority of one delivery method over another.
Collapse
Affiliation(s)
- Luiza L Bagno
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alessandro G Salerno
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Medicine, University of Miami Miller School of Medicine, Miami
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Medicine, University of Miami Miller School of Medicine, Miami
| |
Collapse
|
32
|
Light-guided tumor diagnosis and therapeutics: from nanoclusters to polyoxometalates. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Machuca A, Garcia-Calvo E, Anunciação DS, Luque-Garcia JL. Integration of Transcriptomics and Metabolomics to Reveal the Molecular Mechanisms Underlying Rhodium Nanoparticles-Based Photodynamic Cancer Therapy. Pharmaceutics 2021; 13:pharmaceutics13101629. [PMID: 34683922 PMCID: PMC8539937 DOI: 10.3390/pharmaceutics13101629] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Rhodium nanoparticles have recently been described as promising photosensitizers due to their low toxicity in the absence of near-infrared irradiation, but their high cytotoxicity when irradiated. Irradiation is usually carried out with a laser source, which allows the treatment to be localized in a specific area, thus avoiding undesirable side effects on healthy tissues. In this study, a multi-omics approach based on the combination of microarray-based transcriptomics and mass spectrometry-based untargeted and targeted metabolomics has provided a global picture of the molecular mechanisms underlying the anti-tumoral effect of rhodium nanoparticle-based photodynamic therapy. The results have shown the ability of these nanoparticles to promote apoptosis by suppressing or promoting anti- and pro-apoptotic factors, respectively, and by affecting the energy machinery of tumor cells, mainly blocking the β-oxidation, which is reflected in the accumulation of free fatty acids and in the decrease in ATP, ADP and NAD+ levels.
Collapse
Affiliation(s)
- Andres Machuca
- Department Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (A.M.); (E.G.-C.)
| | - Estefania Garcia-Calvo
- Department Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (A.M.); (E.G.-C.)
| | - Daniela S. Anunciação
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus A. C. Simões, 57072-900 Maceió, Brazil;
| | - Jose L. Luque-Garcia
- Department Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (A.M.); (E.G.-C.)
- Correspondence: ; Tel.: +34-913-944-212
| |
Collapse
|
34
|
Yu TT, Sang XY, Han N, Peng XC, Li QR, Xu X, Xiao RC, Xu HZ, Chen X, Wang MF, Li TF. Macrophages mediated delivery of chlorin e6 and treatment of lung cancer by photodynamic reprogramming. Int Immunopharmacol 2021; 100:108164. [PMID: 34562845 DOI: 10.1016/j.intimp.2021.108164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 12/18/2022]
Abstract
Photodynamic therapy (PDT) is an emerging anti-tumor strategy.Photosensitizer chlorin e6 (Ce6) can induce photodynamic effect to selectively damage lung cancer cells.In order to further improve its tumor targeting ability, macrophages can be applied as carrier to deliver Ce6 to lung cancer.Tumor associated macrophages (TAM) are important immunocytes in lung cancer immune microenvironment. TAM play crucial role in tumor promotion due to the Immunosuppressive property, reprogramming phenotype of TAM therefore has become a promising strategy.Based on this, in the present study, we suppose that TAM can be used as carrier to deliver Ce6 to lung cancer and be reprogrammed to M1 phenotype by photodynamic action to mediate anti-lung cancer efficacy.The results showed TAM could load with Ce6 and keep viability in the absence of near infrared irradiation (NIR).Moreover, Its viability decreased little within 10 h after NIR.Ce6-loaded TAM could deliver Ce6 to lung cancer cells and retain some drugs in TAM per se.After NIR, phagocytosis of macrophages was enhanced. The expressions of GBP5, iNOS and MHC-II was up-regulated, which indicated TAM were polarized to M1 phenotype.Finally, the study also found the reprogrammed macrophages could inhibit the proliferation and promote the apoptosis of lung cancer cells.These results suggested that macrophages could deliver Ce6 to lung cancer and exhibit anti-lung cancer effect through photodynamic reprogramming.This study provides a novel approach for combining photodynamic action with anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Ting-Ting Yu
- Department of respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China
| | - Xue-Yu Sang
- Department of respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China
| | - Ning Han
- Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China
| | - Xing-Chun Peng
- Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China
| | - Qi-Rui Li
- Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China
| | - Xiang Xu
- Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China
| | - Rong-Cheng Xiao
- Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China
| | - Hua-Zhen Xu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China
| | - Xiao Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China
| | - Mei-Fang Wang
- Department of respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China.
| | - Tong-Fei Li
- Department of respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China.
| |
Collapse
|
35
|
Du Y, Wang S, Zhang M, Chen B, Shen Y. Cells-Based Drug Delivery for Cancer Applications. NANOSCALE RESEARCH LETTERS 2021; 16:139. [PMID: 34478000 PMCID: PMC8417195 DOI: 10.1186/s11671-021-03588-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 08/03/2021] [Indexed: 05/04/2023]
Abstract
The application of cells as carriers to encapsulate chemotherapy drugs is of great significance in antitumor therapy. The advantages of reducing systemic toxicity, enhancing targeting and enhancing the penetrability of drugs to tumor cells make it have great potential for clinical application in the future. Many studies and advances have been made in the encapsulation of drugs by using erythrocytes, white blood cells, platelets, immune cells and even tumor cells. The results showed that the antitumor effect of cell encapsulation chemotherapy drugs was better than that of single chemotherapy drugs. In recent years, the application of cell-based vectors in cancer has become diversified. Both chemotherapeutic drugs and photosensitizers can be encapsulated, so as to achieve multiple antitumor effects of chemotherapy, photothermal therapy and photodynamic therapy. A variety of ways of coordinated treatment can produce ideal results even in the face of multidrug-resistant and metastatic tumors. However, it is regrettable that this technology is only used in vitro for the time being. Standard answers have not yet been obtained for the preservation of drug-loaded cells and the safe way of infusion into human body. Therefore, the successful application of drug delivery technology in clinical still faces many challenges in the future. In this paper, we discuss the latest development of different cell-derived drug delivery systems and the challenges it will face in the future.
Collapse
Affiliation(s)
- Ying Du
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, School of Medicine, Southeast University, Ding JiaQiao Street 87, Nanjing, 210009, People's Republic of China
| | - Shujun Wang
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, School of Medicine, Southeast University, Ding JiaQiao Street 87, Nanjing, 210009, People's Republic of China
| | - Meilin Zhang
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, School of Medicine, Southeast University, Ding JiaQiao Street 87, Nanjing, 210009, People's Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, School of Medicine, Southeast University, Ding JiaQiao Street 87, Nanjing, 210009, People's Republic of China.
| | - Yanfei Shen
- Department of Chemistry and Chemical Engineering, Southeast University School of Medicine, Ding JiaQiao Street 87, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
36
|
Efficient Delivery of Chlorin e6 by Polyglycerol-Coated Iron Oxide Nanoparticles with Conjugated Doxorubicin for Enhanced Photodynamic Therapy of Melanoma. Mol Pharm 2021; 18:3601-3615. [PMID: 34388342 DOI: 10.1021/acs.molpharmaceut.1c00510] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chlorin e6 (Ce6) is a promising photosensitizer for tumor photodynamic therapy (PDT). However, the efficacy of Ce6 PDT is limited by Ce6's poor water solubility, rapid blood clearance, and inadequate accumulation in the tumor tissue. This problem is tackled in this work, wherein functionalized superparamagnetic iron oxide nanoparticles (IO-NPs) were used as carriers to deliver Ce6 to melanoma. The IO-NPs were coated with polyglycerol (PG) to afford good aqueous solubility. The chemotherapeutic agent doxorubicin (DOX) was attached to the PG coating via the hydrazone bond to afford affinity to the cell membrane and thereby promote the cell uptake. The hydrophobic nature of DOX also induced the aggregation of IO-NPs to form nanoclusters. Ce6 was then loaded onto the IO nanoclusters through physical adsorption and coordination with surface iron atoms, yielding the final composites IO-PG-DOX-Ce6. In vitro experiments showed that IO-PG-DOX-Ce6 markedly increased Ce6 uptake in mouse melanoma cells, leading to much-enhanced photocytotoxicity characterized by intensified reactive oxygen species production, loss of viability, DNA damage, and stimulation of tumor cell immunogenicity. In vivo experiments corroborated the in vitro findings and demonstrated prolonged blood clearance of IO-PG-DOX-Ce6. Importantly, IO-PG-DOX-Ce6 markedly increased the Ce6 distribution and retention in mouse subcutaneous melanoma grafts and significantly improved the efficacy of Ce6-mediated PDT. No apparent vital organ damage was observed at the same time. In conclusion, the IO-PG-DOX NPs provide a simple and safe delivery platform for efficient tumor enrichment of Ce6, thereby enhancing antimelanoma PDT.
Collapse
|
37
|
Mesenchymal Stem Cell-Based Therapy as an Alternative to the Treatment of Acute Respiratory Distress Syndrome: Current Evidence and Future Perspectives. Int J Mol Sci 2021; 22:ijms22157850. [PMID: 34360616 PMCID: PMC8346146 DOI: 10.3390/ijms22157850] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) represents a current challenge for medicine due to its incidence, morbidity and mortality and, also, the absence of an optimal treatment. The COVID-19 outbreak only increased the urgent demand for an affordable, safe and effective treatment for this process. Early clinical trials suggest the therapeutic usefulness of mesenchymal stem cells (MSCs) in acute lung injury (ALI) and ARDS. MSC-based therapies show antimicrobial, anti-inflammatory, regenerative, angiogenic, antifibrotic, anti-oxidative stress and anti-apoptotic actions, which can thwart the physiopathological mechanisms engaged in ARDS. In addition, MSC secretome and their derived products, especially exosomes, may reproduce the therapeutic effects of MSC in lung injury. This last strategy of treatment could avoid several safety issues potentially associated with the transplantation of living and proliferative cell populations and may be formulated in different forms. However, the following diverse limitations must be addressed: (i) selection of the optimal MSC, bearing in mind both the heterogeneity among donors and across different histological origins, (ii) massive obtention of these biological products through genetic manipulations of the most appropriate MSC, (iii) bioreactors that allow their growth in 3D, (iv) ideal culture conditions and (v) adequate functional testing of these obtaining biological products before their clinical application.
Collapse
|
38
|
Mercer-Smith AR, Findlay IA, Bomba HN, Hingtgen SD. Intravenously Infused Stem Cells for Cancer Treatment. Stem Cell Rev Rep 2021; 17:2025-2041. [PMID: 34138421 DOI: 10.1007/s12015-021-10192-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 01/14/2023]
Abstract
Despite the recent influx of immunotherapies and small molecule drugs to treat tumors, cancer remains a leading cause of death in the United States, in large part due to the difficulties of treating metastatic cancer. Stem cells, which are inherently tumoritropic, provide a useful drug delivery vehicle to target both primary and metastatic tumors. Intravenous infusions of stem cells carrying or secreting therapeutic payloads show significant promise in the treatment of cancer. Stem cells may be engineered to secrete cytotoxic products, loaded with oncolytic viruses or nanoparticles containing small molecule drugs, or conjugated with immunotherapies. Herein we describe these preclinical and clinical studies, discuss the distribution and migration of stem cells following intravenous infusion, and examine both the limitations of and the methods to improve the migration and therapeutic efficacy of tumoritropic, therapeutic stem cells.
Collapse
Affiliation(s)
- Alison R Mercer-Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599, USA
| | - Ingrid A Findlay
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599, USA
| | - Hunter N Bomba
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599, USA
| | - Shawn D Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599, USA. .,Department of Neurosurgery, The University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599, USA.
| |
Collapse
|
39
|
Rawal S, Patel M. Bio-Nanocarriers for Lung Cancer Management: Befriending the Barriers. NANO-MICRO LETTERS 2021; 13:142. [PMID: 34138386 PMCID: PMC8196938 DOI: 10.1007/s40820-021-00630-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/23/2021] [Indexed: 05/03/2023]
Abstract
Lung cancer is a complex thoracic malignancy developing consequential to aberrations in a myriad of molecular and biomolecular signaling pathways. It is one of the most lethal forms of cancers accounting to almost 1.8 million new annual incidences, bearing overall mortality to incidence ratio of 0.87. The dismal prognostic scenario at advanced stages of the disease and metastatic/resistant tumor cell populations stresses the requisite of advanced translational interdisciplinary interventions such as bionanotechnology. This review article deliberates insights and apprehensions on the recent prologue of nanobioengineering and bionanotechnology as an approach for the clinical management of lung cancer. The role of nanobioengineered (bio-nano) tools like bio-nanocarriers and nanobiodevices in secondary prophylaxis, diagnosis, therapeutics, and theranostics for lung cancer management has been discussed. Bioengineered, bioinspired, and biomimetic bio-nanotools of considerate translational value have been reviewed. Perspectives on existent oncostrategies, their critical comparison with bio-nanocarriers, and issues hampering their clinical bench side to bed transformation have also been summarized.
Collapse
Affiliation(s)
- Shruti Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382 481, India
| | - Mayur Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382 481, India.
| |
Collapse
|
40
|
Cheng J, Wang S, Zhao H, Liu Y, Yang X. Exploring the self-assembly mechanism and effective synergistic antitumor chemophototherapy of a biodegradable and glutathione responsive ursolic acid prodrug mediated photosensitive nanodrug. Biomater Sci 2021; 9:3762-3775. [PMID: 33871500 DOI: 10.1039/d1bm00369k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Supermolecularly assembled photochemotherapeutic nanocomposites composed of pure drug small molecules are promising for synergistically improved tumor therapy, yet potential multiple challenges remain to be addressed. Herein, we rationally designed a novel multifunctional small molecule disulfide modified natural pentacyclic triterpene of ursolic acid (UASS) that simultaneously possesses self-assembly ability, glutathione (GSH) responsivity, anticancer activity, biocompatibility and biodegradability and further constructed carrier-free GSH-sensitive photosensitive nanocomposite UASS-Ce6 NPs for safe and synergistically improved chemophototherapy. Specifically, UASS-Ce6 NPs exhibit improved 1O2 generation by reducing the energy gap (ΔEST) of Ce6 as determined by density functional theory. Meanwhile, molecular dynamics simulation revealed the possible reasons why free UASS self-assembles and UASS-Ce6 NPs with different assembled morphologies may be primarily attributed to the coplanar arrangement of UASS dimer units. Importantly, via noncovalent π-stacking and hydrophobic interactions, the resulting co-assemblies showed improved water solubility, increased intercellular ROS generation, desirable GSH sensibility, excellent biocompatibility, and enhanced tumor accumulation accompanied by rapid biodegradation, thus leading to significant in vitro and in vivo synergistic antitumor efficacy with favorable biosafety. This study provides a promising insight into the development of a self-assembled active single component platform with desirable stimuli responsiveness and biosafety toward synergistic antitumor therapy based on terpenoid natural small molecules.
Collapse
Affiliation(s)
- Jianjun Cheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin, Heilongjiang, China.
| | - Shu Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin, Heilongjiang, China.
| | - Haitian Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin, Heilongjiang, China.
| | - Yan Liu
- Department of Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin, Heilongjiang, China.
| |
Collapse
|
41
|
Fernández-Francos S, Eiro N, Costa LA, Escudero-Cernuda S, Fernández-Sánchez ML, Vizoso FJ. Mesenchymal Stem Cells as a Cornerstone in a Galaxy of Intercellular Signals: Basis for a New Era of Medicine. Int J Mol Sci 2021; 22:ijms22073576. [PMID: 33808241 PMCID: PMC8036553 DOI: 10.3390/ijms22073576] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Around 40% of the population will suffer at some point in their life a disease involving tissue loss or an inflammatory or autoimmune process that cannot be satisfactorily controlled with current therapies. An alternative for these processes is represented by stem cells and, especially, mesenchymal stem cells (MSC). Numerous preclinical studies have shown MSC to have therapeutic effects in different clinical conditions, probably due to their mesodermal origin. Thereby, MSC appear to play a central role in the control of a galaxy of intercellular signals of anti-inflammatory, regenerative, angiogenic, anti-fibrotic, anti-oxidative stress effects of anti-apoptotic, anti-tumor, or anti-microbial type. This concept forces us to return to the origin of natural physiological processes as a starting point to understand the evolution of MSC therapy in the field of regenerative medicine. These biological effects, demonstrated in countless preclinical studies, justify their first clinical applications, and draw a horizon of new therapeutic strategies. However, several limitations of MSC as cell therapy are recognized, such as safety issues, handling difficulties for therapeutic purposes, and high economic cost. For these reasons, there is an ongoing tendency to consider the use of MSC-derived secretome products as a therapeutic tool, since they reproduce the effects of their parent cells. However, it will be necessary to resolve key aspects, such as the choice of the ideal type of MSC according to their origin for each therapeutic indication and the implementation of new standardized production strategies. Therefore, stem cell science based on an intelligently designed production of MSC and or their derivative products will be able to advance towards an innovative and more personalized medical biotechnology.
Collapse
Affiliation(s)
| | - Noemi Eiro
- Research Unit, Fundación Hospital de Jove, 33290 Gijón, Spain; (S.F.-F.); (L.A.C.)
- Correspondence: (N.E.); (F.J.V.); Tel.: +34-985320050 (ext. 84216)
| | - Luis A. Costa
- Research Unit, Fundación Hospital de Jove, 33290 Gijón, Spain; (S.F.-F.); (L.A.C.)
| | - Sara Escudero-Cernuda
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, 33006 Oviedo, Spain; (S.E.-C.); (M.L.F.-S.)
| | - María Luisa Fernández-Sánchez
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, 33006 Oviedo, Spain; (S.E.-C.); (M.L.F.-S.)
| | - Francisco J. Vizoso
- Research Unit, Fundación Hospital de Jove, 33290 Gijón, Spain; (S.F.-F.); (L.A.C.)
- Correspondence: (N.E.); (F.J.V.); Tel.: +34-985320050 (ext. 84216)
| |
Collapse
|
42
|
Zhang T, Huang T, Su Y, Gao J. Mesenchymal Stem Cells‐Based Targeting Delivery System: Therapeutic Promises and Immunomodulation against Tumor. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tianyuan Zhang
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug Research College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| | - Ting Huang
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug Research College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| | - Yuanqin Su
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug Research College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| | - Jianqing Gao
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug Research College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
- Cancer Center of Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| |
Collapse
|
43
|
Zhang M, Qin X, Xu W, Wang Y, Song Y, Garg S, Luan Y. Engineering of a dual-modal phototherapeutic nanoplatform for single NIR laser-triggered tumor therapy. J Colloid Interface Sci 2021; 594:493-501. [PMID: 33774405 DOI: 10.1016/j.jcis.2021.03.050] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/27/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022]
Abstract
Theranostic nanoplatforms integrating simultaneously photodynamic therapy (PDT) and photothermal therapy (PTT) exhibit intrinsic advantages in tumor therapy due to distinct mechanisms of action. However, it is challenging to achieve PDT and PTT under single near-infrared (NIR) laser irradiation with a nanoplatform utilizing conventional organic photodynamic agent and inorganic photothermal agent owing to the difference in inherent excitation wavelengths. Particularly, the single NIR light (660 nm)-triggered PTT and PDT nanoplatform, constructed from chlorin e6 (Ce6) and copper sulfide (CuS) nanoparticles (NPs), has never been reported. Herein, we, for the first time, designed and established a dual-modal phototherapeutic nanoplatform that achieved both PTT and PDT under single NIR laser (660 nm) irradiation for Ce6 and CuS NPs with the strategy of core-shell structured CuS@Carbon integrated with Ce6. Introducing of carbon shell not only endows small CuS NPs with excellent tumor accumulation, but also significantly strengthens the photothermal performance of CuS NPs, realizing efficient photothermal performance under 660 nm laser irradiation. Moreover, Ce6 in carbon shell endowed the nanoplatform with photodynamic effect under 660 nm laser irradiation. The as-prepared Ce6/CuS@Carbon nanoplatform thus achieved dual-modal phototherapy under single NIR laser irradiation, significantly inhibiting tumor growth with minimal adverse effects and superior biosafety.
Collapse
Affiliation(s)
- Mengzhu Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaohan Qin
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wei Xu
- Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong 250014, China
| | - Yibing Wang
- Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong 250014, China.
| | - Yunmei Song
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Sanjay Garg
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Yuxia Luan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
44
|
Su Y, Zhang T, Huang T, Gao J. Current advances and challenges of mesenchymal stem cells-based drug delivery system and their improvements. Int J Pharm 2021; 600:120477. [PMID: 33737099 DOI: 10.1016/j.ijpharm.2021.120477] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) have recently emerged as a promising living carrier for targeted drug delivery. A wealth of literature has shown evidence for great advances in MSCs-based drug delivery system (MSCs-DDS) in the treatment of various diseases. Nevertheless, as this field of study rapidly advances, several challenges associated with this delivery strategy have arisen, mainly due to the inherent limitations of MSCs. To this end, several novel technologies are being developed in parallel to improve the efficiency or safety of this system. In this review, we introduce recent advances and summarize the present challenges of MSCs-DDS. We also highlight some potential technologies to improve MSCs-DDS, including nanotechnology, genome engineering technology, and biomimetic technology. Finally, prospects for application of artificially improved MSCs-DDS are addressed. The technologies summarized in this review provide a general guideline for the improvement of MSCs-DDS.
Collapse
Affiliation(s)
- Yuanqin Su
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ting Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
45
|
Feng S, Ren Y, Li H, Tang Y, Yan J, Shen Z, Zhang H, Chen F. Cancer Cell-Membrane Biomimetic Boron Nitride Nanospheres for Targeted Cancer Therapy. Int J Nanomedicine 2021; 16:2123-2136. [PMID: 33731994 PMCID: PMC7959002 DOI: 10.2147/ijn.s266948] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 02/14/2021] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Nanomaterial-based drug-delivery systems allowing for effective targeted delivery of smallmolecule chemodrugs to tumors have revolutionized cancer therapy. Recently, as novel nanomaterials with outstanding physicochemical properties, boron nitride nanospheres (BNs) have emerged as a promising candidate for drug delivery. However, poor dispersity and lack of tumor targeting severely limit further applications. In this study, cancer cell-membrane biomimetic BNs were designed for targeted anticancer drug delivery. METHODS Cell membrane extracted from HeLa cells (HM) was used to encapsulate BNs by physical extrusion. Doxorubicin (Dox) was loaded onto HM-BNs as a model drug. RESULTS The cell-membrane coating endowed the BNs with excellent dispersibility and cytocompatibility. The drug-release profile showed that the Dox@HM-BNs responded to acid pH, resulting in rapid Dox release. Enhanced cellular uptake of Dox@HM-BNs by HeLa cells was revealed because of the homologous targeting of cancer-cell membranes. CCK8 and live/dead assays showed that Dox@HM-BNs had stronger cytotoxicity against HeLa cells, due to self-selective cellular uptake. Finally, antitumor investigation using the HeLa tumor model demonstrated that Dox@HM-BNs possessed much more efficient tumor inhibition than free Dox or Dox@BNs. CONCLUSION These findings indicate that the newly developed HM-BNs are promising as an efficient tumor-selective drug-delivery vehicle for tumor therapy.
Collapse
Affiliation(s)
- Shini Feng
- School of Life Sciences, Shanghai University, Shanghai, 200444, People’s Republic of China
| | - Yajing Ren
- School of Life Sciences, Shanghai University, Shanghai, 200444, People’s Republic of China
| | - Hui Li
- School of Life Sciences, Shanghai University, Shanghai, 200444, People’s Republic of China
| | - Yunfei Tang
- School of Life Sciences, Shanghai University, Shanghai, 200444, People’s Republic of China
| | - Jinyu Yan
- School of Life Sciences, Shanghai University, Shanghai, 200444, People’s Republic of China
| | - Zeyuan Shen
- School of Life Sciences, Shanghai University, Shanghai, 200444, People’s Republic of China
| | - Huijie Zhang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, People’s Republic of China
| | - Fuxue Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, People’s Republic of China
| |
Collapse
|
46
|
Ibarra LE. Cellular Trojan horses for delivery of nanomedicines to brain tumors: where do we stand and what is next? Nanomedicine (Lond) 2021; 16:517-522. [PMID: 33634710 DOI: 10.2217/nnm-2021-0034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Luis Exequiel Ibarra
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto, Córdoba 5800, Argentina.,Departamento de Biología Molecular, Facultad de Ciencias Exactas Fisicoquímicas y Naturales, UNRC, Río Cuarto, Córdoba 5800, Argentina
| |
Collapse
|
47
|
Lu J, Cai L, Dai Y, Liu Y, Zuo F, Ni C, Shi M, Li J. Polydopamine-Based Nanoparticles for Photothermal Therapy/Chemotherapy and their Synergistic Therapy with Autophagy Inhibitor to Promote Antitumor Treatment. CHEM REC 2021; 21:781-796. [PMID: 33634962 DOI: 10.1002/tcr.202000170] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
Polydopamine (PDA) has attracted much attention recently due to its strong adhesion capability to most substrates. After combining with organic (such as organic metal framework, micelles, hydrogel, polypeptide copolymer) or inorganic nanomaterials (such as gold, silicon, carbon), polydopamine-based nanoparticles (PDA NPs) exhibit the merging of characteristics. Until now, the preparation methods, polymerization mechanism, and photothermal therapy (PTT) or chemotherapy (CT) applications of PDA NPs have been reported detailly. Since the PTT or CT treatment process is often accompanied by exogenous stimuli, tumor cells usually induce pro-survival autophagy to protect the cells from further damage, which will weaken the therapeutic effect. Therefore, an in-depth understanding of PDA NPs modulated PTT, CT, and autophagy is required. However, this association is rarely reviewed. Herein, we briefly described the relationship between PTT/CT, autophagy, and tumor treatment. Then, the outstanding performances of PDA NPs in PTT/CT and their combination with autophagy inhibitors for tumor synergistic therapy have been summarized. This work is expected to shed light on the multi-strategy antitumor therapy applications of PDA NPs.
Collapse
Affiliation(s)
- Jiahui Lu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.,Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Lulu Cai
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.,Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Yue Dai
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.,Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Yawen Liu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Fengmei Zuo
- Jiangsu Vocational College of Medicine, Yancheng, 224000, Jiangsu Province, China
| | - Chen Ni
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Meilin Shi
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Jingjing Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.,Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| |
Collapse
|
48
|
Izci M, Maksoudian C, Manshian BB, Soenen SJ. The Use of Alternative Strategies for Enhanced Nanoparticle Delivery to Solid Tumors. Chem Rev 2021; 121:1746-1803. [PMID: 33445874 PMCID: PMC7883342 DOI: 10.1021/acs.chemrev.0c00779] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 02/08/2023]
Abstract
Nanomaterial (NM) delivery to solid tumors has been the focus of intense research for over a decade. Classically, scientists have tried to improve NM delivery by employing passive or active targeting strategies, making use of the so-called enhanced permeability and retention (EPR) effect. This phenomenon is made possible due to the leaky tumor vasculature through which NMs can leave the bloodstream, traverse through the gaps in the endothelial lining of the vessels, and enter the tumor. Recent studies have shown that despite many efforts to employ the EPR effect, this process remains very poor. Furthermore, the role of the EPR effect has been called into question, where it has been suggested that NMs enter the tumor via active mechanisms and not through the endothelial gaps. In this review, we provide a short overview of the EPR and mechanisms to enhance it, after which we focus on alternative delivery strategies that do not solely rely on EPR in itself but can offer interesting pharmacological, physical, and biological solutions for enhanced delivery. We discuss the strengths and shortcomings of these different strategies and suggest combinatorial approaches as the ideal path forward.
Collapse
Affiliation(s)
- Mukaddes Izci
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Christy Maksoudian
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Bella B. Manshian
- Translational
Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Stefaan J. Soenen
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| |
Collapse
|
49
|
Powsner EH, Harris JC, Day ES. Biomimetic Nanoparticles for the Treatment of Hematologic Malignancies. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Emily H. Powsner
- Department of Biomedical Engineering University of Delaware 161 Colburn Lab Newark DE 19716 USA
| | - Jenna C. Harris
- Department of Materials Science and Engineering University of Delaware 127 The Green Newark DE 19716 USA
| | - Emily S. Day
- Department of Biomedical Engineering University of Delaware 161 Colburn Lab Newark DE 19716 USA
- Department of Materials Science and Engineering University of Delaware 127 The Green Newark DE 19716 USA
- Center for Translational Cancer Research Helen F. Graham Cancer Center and Research Institute 4701 Ogletown Stanton Road Newark DE 19713 USA
| |
Collapse
|
50
|
Luo GF, Chen WH, Zeng X, Zhang XZ. Cell primitive-based biomimetic functional materials for enhanced cancer therapy. Chem Soc Rev 2021; 50:945-985. [PMID: 33226037 DOI: 10.1039/d0cs00152j] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cell primitive-based functional materials that combine the advantages of natural substances and nanotechnology have emerged as attractive therapeutic agents for cancer therapy. Cell primitives are characterized by distinctive biological functions, such as long-term circulation, tumor specific targeting, immune modulation etc. Moreover, synthetic nanomaterials featuring unique physical/chemical properties have been widely used as effective drug delivery vehicles or anticancer agents to treat cancer. The combination of these two kinds of materials will catalyze the generation of innovative biomaterials with multiple functions, high biocompatibility and negligible immunogenicity for precise cancer therapy. In this review, we summarize the most recent advances in the development of cell primitive-based functional materials for cancer therapy. Different cell primitives, including bacteria, phages, cells, cell membranes, and other bioactive substances are introduced with their unique bioactive functions, and strategies in combining with synthetic materials, especially nanoparticulate systems, for the construction of function-enhanced biomaterials are also summarized. Furthermore, foreseeable challenges and future perspectives are also included for the future research direction in this field.
Collapse
Affiliation(s)
- Guo-Feng Luo
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | | | | | | |
Collapse
|