1
|
Wang Z, Gu S, Ma Y, Duo H, Wu W, Yang Q, Hou X. An efficient PCN-224/graphene aerogel-based extraction method for monitoring the degradation of organophosphorus pesticides in juice. J Chromatogr A 2024; 1738:465500. [PMID: 39509855 DOI: 10.1016/j.chroma.2024.465500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/21/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024]
Abstract
An efficient PCN-224/graphene aerogel modified silica (PCN-224/GA@Sil)-based extraction method was established for monitoring the degradation process of two organophosphorus pesticides (OPPs) in juice. PCN-224/GA@Sil exhibited higher surface area (307.35 m2 g-1) than graphene oxide modified silica (254.09 m2 g-1). The introduction of PCN-224 endowed the sorbent with excellent adsorption specificity towards OPPs due to the ZrˑˑˑS/O coordination bond. PCN-224 exhibited relatively higher theoretical adsorption energies of PCN-224 towards fenitrothion and fenthion were 0.68 eV and -0.31 eV. The established PCN-224/GA@Sil-HPLC method showed the linearity of 0.2-500 μg L-1 for analytes. The matrix effects in juice were 9.68 % and 3.61 % for fenitrothion and fenthion. Finally, it was used for the sample pretreatment of juice preventing interference from food matrices to monitor the degradation of two OPPs. A combination method of ultrasound and xenon lamp was adopted to degrade fenitrothion and fenthion displaying the synergistic effect (SE=2.12, 1.39).
Collapse
Affiliation(s)
- Zirou Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Sitian Gu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu Ma
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huixiao Duo
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiudan Hou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
2
|
Loze M, Brandès S, Fleurat-Lessard P, Desbois N, Blondeau-Patissier V, Gros CP, André L. CoCorrole-Functionalized PCN-222 for Carbon Monoxide Selective Adsorption. Chemistry 2024; 30:e202402148. [PMID: 38962899 DOI: 10.1002/chem.202402148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/05/2024]
Abstract
The high risk of CO poisoning justifies the need for indoor air quality control and warning systems based on the detection of low concentrations (ppm-ppb) of CO. Cobalt corrole complexes selectively bind CO vs. O2, CO2, N2, opening new fields of applications. By combining the CO chemisorption properties of cobalt corroles with the known sorption capacity of MOFs, we hope to obtain high performance sensing materials for CO detection. In addition, the exposed metal sites of MOFs lead to CO2 physisorption, allowing the co-detection of CO and CO2. In this work, PCN-222, a stable Zr-based MOF made from Ni(TCPP) with natural vacancies, has been used as a porous matrix for the grafting of electron-poor metallocorroles. The materials were characterized by powder XRD, SEM and optical microscopy, BET analyses and gas adsorption measurements at 298 K. No degradation of the crystalline structure of PCN-222 was observed. At 1 atm, the adsorbed CO(g) volumes measured for the best materials were 12.15 cm3 g-1 and 14.01 cm3 g-1 for CoCorr2@PCN-222 and CoCorr3@PCN-222 respectively, and both materials exhibited high CO chemisorption and selectivity against O2, N2, and CO2 at low pressure due to the highest energy of the chemisorption process vs physisorption.
Collapse
Affiliation(s)
- Margerie Loze
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB, UMR CNRS 6302, Université de Bourgogne, 9, Avenue Alain Savary, BP 47870, 21078, Dijon Cedex, France
| | - Stéphane Brandès
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB, UMR CNRS 6302, Université de Bourgogne, 9, Avenue Alain Savary, BP 47870, 21078, Dijon Cedex, France
| | - Paul Fleurat-Lessard
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB, UMR CNRS 6302, Université de Bourgogne, 9, Avenue Alain Savary, BP 47870, 21078, Dijon Cedex, France
| | - Nicolas Desbois
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB, UMR CNRS 6302, Université de Bourgogne, 9, Avenue Alain Savary, BP 47870, 21078, Dijon Cedex, France
| | - Virginie Blondeau-Patissier
- Institut FEMTO-ST, UMR CNRS 6174, Université de Franche-Comté, 26, chemin de l'épitaphe, 25030, Besançon Cedex, France
| | - Claude P Gros
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB, UMR CNRS 6302, Université de Bourgogne, 9, Avenue Alain Savary, BP 47870, 21078, Dijon Cedex, France
| | - Laurie André
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB, UMR CNRS 6302, Université de Bourgogne, 9, Avenue Alain Savary, BP 47870, 21078, Dijon Cedex, France
| |
Collapse
|
3
|
Wu X, Geng C, Cheng W, Wang Z, Zhang Y, Wu D, Tang X. An ultrasensitive electrochemical method for rapid detection of mercury based on nanoporous gold capped with a novel Zr-MOF-SH/reduced graphene oxide aerogel composites. J Food Sci 2024; 89:6016-6030. [PMID: 39136979 DOI: 10.1111/1750-3841.17268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 10/09/2024]
Abstract
In this work, an ultrasensitive electrochemical sensor based on Zr-MOF-SH/rGA/NPG was developed for the first time for the rapid determination of mercury ions. First, nanoporous gold (NPG) film was covered on the glassy carbon electrode (GCE) to offer a desirable substrate. Then, Zr-MOF-SH/rGA composites were dropped on the NPG film to form a modified electrode. Mercapto functionalized MOFs (Zr-MOF-SH) showed strong adsorption capability toward mercury ions, and the unique structure of reduced graphene oxide aerogel (rGA) provided various sites for coupling with Zr-MOF-SH as well as improved the electrochemical activity. As a consequence of the synergistic effect of Zr-MOF-SH, rGA, and NPG, the optimized Zr-MOF-SH/rGA/NPG/GCE sensor showed excellent detection performance toward mercury ions with a linear range from 0 to 200 nM and a low limit of detection of 1.4 nM. Meanwhile, the fabricated electrochemical sensor exhibited outstanding stability, reproducibility, and anti-interference ability. To verify the practical applicability, the Zr-MOF-SH/rGA/NPG/GCE was applied for the determination of mercury ions in real rice samples with desirable recovery rates ranging from 98.8% to 108.3%.
Collapse
Affiliation(s)
- Xi Wu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Chenggang Geng
- Changzhou Food and Drug Fiber Quality Supervision and Inspection Center, Changzhou, China
| | - Weiwei Cheng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Zhenjiong Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Yan Zhang
- Hebei Key Laboratory of Food Safety, Hebei Food Inspection and Research Institute, Shijiazhuang, China
| | - Di Wu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| |
Collapse
|
4
|
Zhong Y, Zhang W, Xiao H, Kong Y, Huang W, Bai D, Yu S, Gao J, Wang X. Customizable Zr-MOF nanoantidote-based multieffective arsenic detoxification and its extended low-toxic therapy. Acta Biomater 2024; 182:228-244. [PMID: 38761962 DOI: 10.1016/j.actbio.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/22/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Arsenic (As) poisoning has become a global public problem threatening human health. Chelation therapy (CT) is the preferred treatment for arsenic poisoning. Nevertheless, efficient and safe arsenic removal in vivo remains a daunting challenge due to the limitations of chelators, including weak affinity, poor cell membrane penetration, and short half-life. Herein, a mercapto-functionalized and size-tunable hierarchical porous Zr-MOF (UiO-66-TC-SH) is developed, which possesses abundant arsenic chemisorption sites, effective cell uptake ability, and long half-life, thereby efficiently removing toxic arsenic in vivo. Moreover, the strong binding affinity of UiO-66-TC-SH for arsenic reduces systemic toxicity caused by off-target effects. In animal trials, UiO-66-TC-SH decreases the blood arsenic levels of acute arsenic poisoning mice to a normal value within 48 h, and the efficacy is superior to clinical drugs 2,3-dimercaptopropanesulfonic acid sodium salt (DMPS). Meanwhile, UiO-66-TC-SH also significantly mitigates the arsenic accumulation in the metabolic organs of chronic arsenic poisoning mice. Surprisingly, UiO-66-TC-SH also accelerates the metabolism of arsenic in organs of tumor-bearing mice and alleviates the side effects of arsenic drugs antitumor therapy. STATEMENT OF SIGNIFICANCE: Arsenic (As) contamination has become a global problem threatening public health. The present clinical chelation therapy (CT) still has some limitations, including the weak affinity, poor cell membrane permeability and short half-life of hydrophilic chelators. Herein, a metal-organic framework (MOF)-based multieffective arsenic removal strategy in vivo is proposed for the first time. Mercapto-functionalized and size-tunable hierarchical porous Zr-MOF nanoantidote (denoted as UiO-66-TC-SH) is accordingly designed and synthesized. After injection, UiO-66-TC-SH can form Zr-O-As bonds and As-S bonds with arsenic, thus enhancing arsenic adsorption capacity, cycling stability and systemic safety simultaneously. The acute arsenic poisoning model results indicate that UiO-66-TC-SH shows superior efficacy to the clinical drug sodium dimercaptopropanesulfonate (DMPS). More meaningfully, we find that UiO-66-TC-SH also accelerates the metabolism of arsenic in organs of tumor-bearing mice and alleviates side effects of arsenic drugs anti-tumor therapy.
Collapse
Affiliation(s)
- Yanhua Zhong
- School of Chemistry and Chemical Engineering of Nanchang University, Nanchang 330088, China
| | - Wei Zhang
- School of Chemistry and Chemical Engineering of Nanchang University, Nanchang 330088, China; Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Hong Xiao
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, China
| | - Yijie Kong
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, China
| | - Wenjing Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, China
| | - Danmeng Bai
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, China
| | - Simin Yu
- School of Chemistry and Chemical Engineering of Nanchang University, Nanchang 330088, China
| | - Jie Gao
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, China
| | - Xiaolei Wang
- School of Chemistry and Chemical Engineering of Nanchang University, Nanchang 330088, China; The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, China.
| |
Collapse
|
5
|
Abazari R, Sanati S, Bajaber MA, Javed MS, Junk PC, Nanjundan AK, Qian J, Dubal DP. Design and Advanced Manufacturing of NU-1000 Metal-Organic Frameworks with Future Perspectives for Environmental and Renewable Energy Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306353. [PMID: 37997226 DOI: 10.1002/smll.202306353] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Metal-organic frameworks (MOFs) represent a relatively new family of materials that attract lots of attention thanks to their unique features such as hierarchical porosity, active metal centers, versatility of linkers/metal nodes, and large surface area. Among the extended list of MOFs, Zr-based-MOFs demonstrate comparably superior chemical and thermal stabilities, making them ideal candidates for energy and environmental applications. As a Zr-MOF, NU-1000 is first synthesized at Northwestern University. A comprehensive review of various approaches to the synthesis of NU-1000 MOFs for obtaining unique surface properties (e.g., diverse surface morphologies, large surface area, and particular pore size distribution) and their applications in the catalysis (electro-, and photo-catalysis), CO2 reduction, batteries, hydrogen storage, gas storage/separation, and other environmental fields are presented. The review further outlines the current challenges in the development of NU-1000 MOFs and their derivatives in practical applications, revealing areas for future investigation.
Collapse
Affiliation(s)
- Reza Abazari
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Soheila Sanati
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Majed A Bajaber
- Chemistry Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Peter C Junk
- College of Science and Engineering, James Cook University, Townsville, 4811, Australia
| | - Ashok Kumar Nanjundan
- Schole of Engineering, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, China
| | - Deepak P Dubal
- Centre for Materials Science, School of Chemistry & Physics, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| |
Collapse
|
6
|
Rajendran HK, Deen MA, Ray JP, Singh A, Narayanasamy S. Harnessing the Chemical Functionality of Metal-Organic Frameworks Toward Removal of Aqueous Pollutants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:3963-3983. [PMID: 38319923 DOI: 10.1021/acs.langmuir.3c02668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Wastewater treatment has been bestowed with a plethora of materials; among them, metal-organic frameworks (MOFs) are one such kind with exceptional properties. Besides their application in gas adsorption and storage, they are applied in many fields. In orientation toward wastewater treatment, MOFs have been and are being successfully employed to capture a variety of aqueous pollutants, including both organic and inorganic ones. This review sheds light on the postsynthetic modifications (PSMs) performed over MOFs to adsorb and degrade recalcitrant. Modifications performed on the metal nodes and the linkers have been explained with reference to some widely used chemical modifications like alkylation, amination, thiol addition, tandem modifications, and coordinate modifications. The boost in pollutant removal efficacy, reaction rate, adsorption capacity, and selectivity for the modified MOFs is highlighted. The rationale and the robustness of micromotor MOFs, i.e., MOFs with motor activity, and their potential application in the capture of toxic pollutants are also presented for readers. This review also discusses the challenges and future recommendations to be considered in performing PSM over a MOF concerning wastewater treatment.
Collapse
Affiliation(s)
- Harish Kumar Rajendran
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Mohammed Askkar Deen
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Jyoti Prakash Ray
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Anushka Singh
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Selvaraju Narayanasamy
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
7
|
Lv P, Chang S, Qin R, Zhou J, Wang W, Hong Q, Mei J, Yang S. Different roles of FeS and FeS 2 on magnetic FeS x for the selective adsorption of Hg 2+ from waste acids in smelters: Reaction mechanism, kinetics, and structure-activity relationship. CHEMOSPHERE 2024; 349:140917. [PMID: 38070609 DOI: 10.1016/j.chemosphere.2023.140917] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/24/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
Magnetic FeSx was developed as a high-performance sorbent for selectively adsorbing Hg2+ from waste acids in smelters. However, further improvement of its ability for Hg2+ adsorption was extremely restricted due to the lack of reaction mechanisms and structure-activity relationships. In this study, the roles of FeS and FeS2 on magnetic FeSx for Hg2+ adsorption were investigated with alternate adsorption of Hg2+ without/with Cl-. The structure-activity relationship of magnetic FeSx for Hg2+ adsorption and the negative effect of acid erosion were elucidated using kinetic analysis. FeS can react with Hg2+ with 1:1 stoichiometric ratio to form HgS, while FeS2 can react with Hg2+ in the presence of Cl- with novel 1:3 stoichiometric ratio to form Hg3S2Cl2. The rate of magnetic FeSx for Hg2+ adsorption was related to the instantaneous amounts of FeS and threefold FeS2 on magnetic FeSx and the amount of Hg2+ adsorbed. Meanwhile, its capacity for Hg2+ adsorption was related to the initial sum of FeS amount and threefold FeS2 amount on the surface and their ratios by acid erosion. Then, magnetic FeSx-400 was devised with adsorption rate of 2.12 mg g-1 min-1 and capacity of 1092 mg g-1 to recover Hg2+ from waste acids for centralized control.
Collapse
Affiliation(s)
- Pengjian Lv
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Shuai Chang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Ruiyang Qin
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Jiajiong Zhou
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Weicheng Wang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Qianqian Hong
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Jian Mei
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Shijian Yang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China.
| |
Collapse
|
8
|
Karbalaee Hosseini A, Tadjarodi A. Novel Zn metal-organic framework with the thiazole sites for fast and efficient removal of heavy metal ions from water. Sci Rep 2023; 13:11430. [PMID: 37454199 PMCID: PMC10349873 DOI: 10.1038/s41598-023-38523-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
Pollution of water by heavy metal ions such as Pb2+ and Hg2+ is considered as an important issue, because of the potential toxic effects these ions impose on environmental ecosystems and human health. A new Zn-based metal-organic framework, [Zn2(DPTTZ) (OBA)2] (IUST-2), was synthesized through a solvothermal method by the reaction of 2, 5-di (4- pyridyl) thiazolo [5, 4-d] thiazole ligand (DPTTZ), the "V-shape" 4,4'-oxybis (benzoic acid) ligand (OBA) and zinc nitrate (Zn(NO3)2·6H2O). This novel MOF has been characterized by several analysis techniques such as fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA), powder x-ray diffraction (PXRD), thermogravimetry analysis (TGA), differential thermal analysis (DTA), field emission scanning electron microscopy (FE-SEM), Brunauer-Emmett-Teller (BET) surface area analysis and single-crystal X-ray diffraction (SXRD). This 3D MOF was tested for removing Pb2+ and Hg2+ ions from water. The factors that were investigated on the elimination of Pb2+ and Hg2+ ions were of pH, adsorption time, and the effect of initial ions concentration. According to the results, this particular Zn-MOF had significant performance in eliminating Pb2+ and Hg2+ ions from water with a removal efficiency of more than 97% and 87% within 3 min, respectively.
Collapse
Affiliation(s)
- Akram Karbalaee Hosseini
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology (IUST), Tehran, 16846-13114, Iran
| | - Azadeh Tadjarodi
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology (IUST), Tehran, 16846-13114, Iran.
| |
Collapse
|
9
|
Chang S, Lv P, Qin R, Mei J, Hong Q, Yang S. Rapid and Selective Removal of Hg 2+ by Copper Sulfides under Strongly Acidic Conditions: Mechanism, Kinetics, and Its Application in Recovering Hg from Waste Acids of Smelters. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Shuai Chang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Pengjian Lv
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Ruiyang Qin
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jian Mei
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Qianqian Hong
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Shijian Yang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
10
|
Jia C, He T, Wang GM. Zirconium-based metal-organic frameworks for fluorescent sensing. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Zhang X, Han R. Adsorption of 2,4-dichlorophenoxyacetic acid by UiO-66-NH 2 obtained in a green way. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90738-90751. [PMID: 35879633 DOI: 10.1007/s11356-022-22127-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
In this study, a zirconium elemental organic framework (UiO-66-NH2) was prepared by a green synthesis method and showed a good adsorption performance for removing 2,4-dichlorophenoxyacetic acid (2,4-D) from water. UiO-66-NH2 was analyzed by a variety of characterization methods and the adsorption properties of 2,4-D on UiO-66-NH2 were investigated by static adsorption experiments. The results showed that the adsorption of 2,4-D had a wide pH range (2-10) and good salt tolerance with the adsorption equilibrium time about 2 h. The maximum adsorption capacity from Langmuir was up to 652 mg g-1 at 303 K. The isotherms can be described by Langmuir model and the adsorption kinetics was consistent with pseudo-second-order kinetic model and Elovich model. The regeneration efficiency was still 95% after 5 cycles with 0.01 mol L-1 NaOH as desorption solution. The feasibility of practical application of UiO-66-NH2 was explored by simulating actual wastewater at different pH. UiO-66-NH2 is promising to remove 2,4-D from water.
Collapse
Affiliation(s)
- Xiaoting Zhang
- College of Chemistry, Zhengzhou University, No 100 of Ke Xue Road, Zhengzhou, 450001, People's Republic of China
| | - Runping Han
- College of Chemistry, Zhengzhou University, No 100 of Ke Xue Road, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
12
|
Sajjadinezhad SM, Tanner K, Harvey PD. Metal-porphyrinic framework nanotechnologies in modern agricultural management. J Mater Chem B 2022; 10:9054-9080. [PMID: 36321474 DOI: 10.1039/d2tb01516a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Metal-porphyrinic frameworks are an important subclass of metal-organic frameworks (MOFs). These porous materials exhibit a large number of applications for sustainable development and related environmental considerations. Their attractive features include (1) as a free base or metalated with zinc(II) or iron(II or III), they are environmentally benign, and (2) they absorb visible light and are emissive and semi-conducting, making them convenient tools for sensing agrochemicals. But the key feature that makes these nano-sized pristine materials or their composites in many ways superior to most MOFs is their ability to photo-generate reactive oxygen species with visible light, including singlet oxygen. This review describes important issues related to agriculture, including controlled delivery of pesticides and agrochemicals, detection of pesticides and pathogenic metals, elimination of pesticides and toxic metals, and photodynamic antimicrobial activity, and has an important implication for food safety. This comprehensive review presents the progress of the rather rapid developments of these functional and increasingly nano-sized materials and composites in the area of sustainable agriculture.
Collapse
Affiliation(s)
| | - Kevin Tanner
- Département de Chimie, Université de Sherbrooke, Sherbrooke, PQ, J1K 2R1, Canada.
| | - Pierre D Harvey
- Département de Chimie, Université de Sherbrooke, Sherbrooke, PQ, J1K 2R1, Canada.
| |
Collapse
|
13
|
Xu C, He M, Chen B, Hu B. Magnetic porous coordination networks for preconcentration of various metal ions from environmental water followed by inductively coupled plasma mass spectrometry detection. Talanta 2022; 245:123470. [PMID: 35427948 DOI: 10.1016/j.talanta.2022.123470] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/28/2022] [Accepted: 04/07/2022] [Indexed: 12/29/2022]
Abstract
Magnetic composites of Fe3O4@SiO2@PCN-224 (MPCN-224) was obtained by one-pot method with the interaction between PCN-224 monomer and silicon layer on magnetic core. MPCN-224 exhibited a core-shell structure with the specific surface area of 1114 m2 g-1 and good adsorption performance for various metal ions. With MPCN-224 used as the sorbent, a method combing magnetic solid phase extraction (MSPE) with inductively coupled plasma mass spectrometry (ICPMS) detection was established for the enrichment and determination of trace Cr(III), Zn(II), Pb(II) and Bi(III) in environmental water samples. Under the optimized conditions, the developed method exhibited low detection limits of 0.94-11.4 ng L-1 and wide linear range for target four metal ions. The analysis speed was fast (2/5 min for adsorption and desorption respectively). The MPCN-224 sorbent could be reused for at least 12 times, and the regeneration can be achieved easily by adjusting solution pH. The sorbent and the MSPE-ICPMS method have a great potential for adsorption and determination of trace metal ions in environmental water samples.
Collapse
Affiliation(s)
- Chi Xu
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
14
|
Zhou S, Fu J, Zhao P, Tang S, Wu X, Yang Z, Zhang Z. Hollow magnetic molecularly imprinted polymer based on metal‐organic framework for capture of ciprofloxacin. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202200029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shu Zhou
- College of Chemistry and Chemical Engineering Jishou University Hunan P. R. China
| | - Jinli Fu
- College of Chemistry and Chemical Engineering Jishou University Hunan P. R. China
| | - Pengfei Zhao
- College of Chemistry and Chemical Engineering Jishou University Hunan P. R. China
| | - Sisi Tang
- College of Chemistry and Chemical Engineering Jishou University Hunan P. R. China
| | - Xiaodan Wu
- College of Chemistry and Chemical Engineering Jishou University Hunan P. R. China
| | - Zhaoxia Yang
- College of Chemistry and Chemical Engineering Jishou University Hunan P. R. China
| | - Zhaohui Zhang
- College of Chemistry and Chemical Engineering Jishou University Hunan P. R. China
- College of Pharmaceutical Sciences Jishou University Jishou P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics Hunan University Changsha P. R. China
| |
Collapse
|
15
|
Qin R, Chang S, Mei J, Hong Q, Yang S. Selective removal of Hg 2+ from acidic wastewaters using sulfureted Fe 2TiO 5: Underlying mechanism and its application as a regenerable sorbent for recovering Hg from waste acids of smelters. WATER RESEARCH 2022; 221:118796. [PMID: 35780764 DOI: 10.1016/j.watres.2022.118796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
The selective removal of Hg2+ from waste acids containing high concentrations of other metal cations, such as Cu2+, Zn2+, and Cd2+, which are discharged from nonferrous metal smelting industries, is in great demand. Herein, sulfureted Fe2TiO5 was developed as a regenerable magnetic sorbent to recover Hg2+ from waste acids for centralized control. Sulfureted Fe2TiO5 exhibited an excellent ability for Hg2+ removal with the capacity of 292-317 mg g-1 and the rate of 49.5-57.6 mg g-1 h-1 at pH=2-4. Meanwhile, it exhibited an excellent selectivity for Hg2+ removal that not only the coexisting Cu2+, Zn2+, and Cd2+ can scarcely be adsorbed but also Hg2+ adsorption was hardly inhibited. The mechanism and kinetic studies indicated that the Fe2+ in the FeS2 coated on sulfureted Fe2TiO5 was exchanged with Hg2+ adsorbed at a Fe2+ to Hg2+ mole ratio of 1:2. Meanwhile, most of the Hg2+ removed by sulfureted Fe2TiO5 can be thermally desorbed primarily as ultra-high concentrations of gaseous Hg0, which can finally be recovered as liquid Hg0 for centralized control in combination with existing Hg0-recovery devices in smelters. Moreover, the spent sulfureted Fe2TiO5 could be regenerated for duty-cycle operations with re-sulfuration without a remarkable degradation of the Hg2+-removal performance. Therefore, Hg2+ recovery using sulfureted Fe2TiO5 may be a promising, low-cost, and environmentally friendly technology for the centralized control of Hg2+ in waste acids discharged from smelters.
Collapse
Affiliation(s)
- Ruiyang Qin
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Shuai Chang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Jian Mei
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Qianqian Hong
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Shijian Yang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
16
|
Gao L, Hu X, Qin S, Chu H, Tang Y, Li X, Wang B. One-pot synthesis of a novel chiral Zr-based metal-organic framework for capillary electrochromatographic enantioseparation. Electrophoresis 2022; 43:1161-1173. [PMID: 35312084 DOI: 10.1002/elps.202200020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/21/2022] [Indexed: 12/29/2022]
Abstract
A novel chiral stationary phase (CSP) of Zr-based metal-organic framework, l-Cys-PCN-224, was prepared by one-pot method and applied for the enantioseparation by capillary electrochromatography. The CSP was characterized by X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, Fourier-transform infrared spectra, nitrogen adsorption/desorption, circular dichroism spectrum, zeta-potential, and so on. The results revealed that the CSP had good crystallinity, high specific surface area (2580 m2 /g), and good thermal stability. Meanwhile, the cross-section of l-Cys-PCN-224-bonded open-tubular (OT) column was observed by a scanning electron microscope, which proved the successful bonding of l-Cys-PCN-224 particles to the inner wall. Relative standard deviations of the column efficiencies were 3.87%-9.14%, and not obviously changed after 200 runs, which indicated that l-Cys-PCN-224-bonded OT column had the better stability and reproducibility. Excellent chiral separation performance was verified with nine kinds of natural amino acids including acidic, neutral, and basic as the analytes. All amino acids studied achieved good separation with the resolution of 1.38-13.9 and selector factor of 1.11-3.71. These results demonstrated that the CSP had an excellent potential in the chiral separation field.
Collapse
Affiliation(s)
- Lidi Gao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, P. R. China
| | - Xingfang Hu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, P. R. China
| | - Shili Qin
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, P. R. China
| | - Hongtao Chu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, P. R. China
| | - Yimin Tang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, P. R. China
| | - Xue Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, P. R. China
| | - Binbin Wang
- College of food and Bioengineering, Qiqihar University, Qiqihar, P. R. China
| |
Collapse
|
17
|
Li J, Li Y, Cui K, Li H, Feng J, Pu X, Xiong W, Liu N, Yuan G. Novel MOFs-based ion-imprinted polymer for selective separation of cobalt ions from waste battery leaching solution. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Zhang L, Wang H, Zhang Q, Wang W, Yang C, Du T, Yue T, Zhu M, Wang J. Demand-oriented construction of Mo 3S 13-LDH: A versatile scavenger for highly selective and efficient removal of toxic Ag(I), Hg(II), As(III), and Cr(VI) from water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153334. [PMID: 35074376 DOI: 10.1016/j.scitotenv.2022.153334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Inspired by the classic ion-exchange reaction, a single phase material of Mg0.66Al0.34(OH)2(Mo3S13)0.03(NO3)0.14(CO3)0.07·H2O (Mo3S13-LDH) was masterly constructed by intercalating Mo3S132- into the MgAl-LDH gallery. Prepared Mo3S13-LDH displays excellent binding affinity and high selectivity for Ag(I) and Hg(II) in a mixed solution, in which an apparent selectivity order of Hg(II) > Ag(I) ≫ Pb(II), Cu(II), Ni(II), Co(II), Cd(II), and Mn(II) is observed. Enormous capture capacities (qmAg = 446.4 mg/g, qmHg = 354.6 mg/g) and fast equilibration time (within 60 min) place Mo3S13-LDH in the upper ranks of materials for such removal. For oxoanions, As(III) (HAsO32-) and Cr(VI) (CrO42-) can be specifically trapped by Mo3S13-LDH with comparable loading ability (qmAs = 61.8 mg/g, qmCr = 90.6 mg/g) in the coexistence of multiple interfering anions. Notably, high Hg(II) and Cr(VI) concentrations are finally reduced below the safe limit of drinking water. The excellent capture capacity of Mo3S13-LDH benefits from the rational design by following two aspects: (i) the multiple sulfur ligands in Mo3S132- groups give place to various capture modes and different affinity orders for target ions, and (ii) large-sized Mo3S132- groups widen the interlayer spacing of LDH, thereby accelerating the mass transfer process. Furthermore, the satisfactory structural stability of Mo3S13-LDH is also reflected through the unchanged hexagonal prismatic shape after adsorption. All of these highlight the great potential of Mo3S13-LDH for the application in water remediation.
Collapse
Affiliation(s)
- Liang Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Huiting Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Qingzhe Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wenze Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Chengyuan Yang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Mingqiang Zhu
- College of Mechanical and Electronic Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| |
Collapse
|
19
|
Wang RD, He M, Li Z, Niu Z, Zhu RR, Zhang WQ, Zhang S, Du L, Zhao QH. A Novel Coordination Polymer as Adsorbent Used to Remove Hg(II) and Pb(II) from Water with Different Adsorption Mechanisms. ACS OMEGA 2022; 7:10187-10195. [PMID: 35382326 PMCID: PMC8973041 DOI: 10.1021/acsomega.1c06606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/04/2022] [Indexed: 05/10/2023]
Abstract
Under the hydrothermal condition, a new type of two-dimensional coordination polymer ([Cd(D-Cam)(3-bpdb)]n, Cd-CP) has been constructed. It is composed of D-(+)-Camphoric-Cd(II) (D-cam-Cd(II)) one-dimensional chain and bridging 1,4-bis(3-pyridyl)-2,3-diaza-1,3-butadiene (3-bpdb) ligands. Cd-CP has a good removal effect for Hg(II) and Pb(II), and the maximum adsorption capacity is 545 and 450 mg/g, respectively. Interestingly, thermodynamic studies have shown that the adsorption processes of Hg(II) and Pb(II) on Cd-CP use completely different thermodynamic mechanisms, in which the adsorption of Hg(II) is due to a strong electrostatic interaction with Cd-CP, while that of Pb(II) is through a weak coordination with Cd-CP. Moreover, Cd-CP has a higher affinity for Hg(II), and when Hg(II) and Pb(II) coexist, Cd-CP preferentially adsorbs Hg(II).
Collapse
Affiliation(s)
- Rui-Dong Wang
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, People’s Republic
of China
| | - Mei He
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, People’s Republic
of China
| | - Zhihao Li
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, People’s Republic
of China
| | - Zongling Niu
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, People’s Republic
of China
| | - Rong-Rong Zhu
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, People’s Republic
of China
| | - Wen-Qian Zhang
- College
of Pharmaceutical Engineering, Xinyang Agricultural
and Forestry University, Henan, 464000, People’s Republic
of China
| | - Suoshu Zhang
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, People’s Republic
of China
| | - Lin Du
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, People’s Republic
of China
- Key
Laboratory of Medicinal Chemistry for Natural Resource, Ministry of
Education, Yunnan Research & Development Center for Natural Products, Yunnan University, Kunming 650091, People’s Republic of China
| | - Qi-Hua Zhao
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, People’s Republic
of China
- Key
Laboratory of Medicinal Chemistry for Natural Resource, Ministry of
Education, Yunnan Research & Development Center for Natural Products, Yunnan University, Kunming 650091, People’s Republic of China
| |
Collapse
|
20
|
Zhang XJ, Morishita D, Aoki T, Itoh Y, Yano K, Araoka F, Aida T. Anomalous Chiral Transfer: Supramolecular Polymerization in a Chiral Medium of a Mesogenic Molecule. Chem Asian J 2022; 17:e202200223. [PMID: 35338598 DOI: 10.1002/asia.202200223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/23/2022] [Indexed: 11/08/2022]
Abstract
Here, we report a medium-to-polymer anomalous chiral transfer in supramolecular polymerization of a tetraphenylporphyrinbased achiral hydrogen-bonding monomer ( TPP ) in a chiral medium of 5-cyanobiphenyl CB* . A mixture of TPP in ( R )- CB* ([ TPP ] = 7.7 mol%) at 40 °C gave a columnar oblique LC mesophase, where the individual columns were composed of an optically active helical supramolecular polymer of TPP as a consequence of a successful medium-to-polymer chiral transfer. Meanwhile, upon dilution of CB* with achiral 5-cyanobiphenyl CB , the optical activity of the system showed an anomalous bell-shaped dependency on the composition of CB* / CB , where the g abs value of 0.049 at CB* / CB = 50/50 was 6.0 times larger than the g abs value of CB* alone. Such anomalous chiroptical amplification in CD is most likely due to a change in the stacking geometry of TPP in the oblique columnar LC upon lateral compression.
Collapse
Affiliation(s)
- Xu-Jie Zhang
- The University of Tokyo: Tokyo Daigaku, Department of Chemistry and Biotechnology, JAPAN
| | - Daiki Morishita
- The University of Tokyo: Tokyo Daigaku, Department of Chemistry and Biotechnology, JAPAN
| | - Tsubasa Aoki
- The University of Tokyo: Tokyo Daigaku, Department of Chemistry and Biotechnology, JAPAN
| | - Yoshimitsu Itoh
- The University of Tokyo: Tokyo Daigaku, Department of Chemistry and Biotechnology, JAPAN
| | - Keiichi Yano
- The University of Tokyo: Tokyo Daigaku, Department of Chemistry and Biotechnology, JAPAN
| | | | - Takuzo Aida
- School of Engineering, U. Tokyo, Dept. Chemistry and Biotechnology, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Tokyo, JAPAN
| |
Collapse
|
21
|
Liu P, Yang P, Yang J, Gu J. One-pot synthesis of sulfonic acid functionalized Zr-MOFs for rapid and specific removal of radioactive Ba 2. Chem Commun (Camb) 2021; 57:5822-5825. [PMID: 34002199 DOI: 10.1039/d1cc01740c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Efficient decontamination of radioactive Ba2+ is of great significance to human health and environmental safety. Herein, an adsorbent based on the sulfonic acid functionalized Zr-MOF has been successfully developed, which could efficiently decontaminate radioactive Ba2+ with excellent selectivity, recyclability, a high adsorption capacity up to 60.8 mg g-1 as well as a short adsorption kinetic time of less than 5 min. This outstanding adsorption performance is attributed to the strong affinity between Ba2+ and high density -SO3H active sites in MOFs which were introduced by an in situ ligand modification strategy during the assembly of MOFs.
Collapse
Affiliation(s)
- Peijia Liu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Pengfei Yang
- Skshu Paint Co., Ltd, Fujian Key Laboratory of Architectural Coating, 518 North Liyuan Avenue, Licheng District Putian, Fujian, 351100, China
| | - Jian Yang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jinlou Gu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
22
|
Koschnick C, Stäglich R, Scholz T, Terban MW, von Mankowski A, Savasci G, Binder F, Schökel A, Etter M, Nuss J, Siegel R, Germann LS, Ochsenfeld C, Dinnebier RE, Senker J, Lotsch BV. Understanding disorder and linker deficiency in porphyrinic zirconium-based metal-organic frameworks by resolving the Zr 8O 6 cluster conundrum in PCN-221. Nat Commun 2021; 12:3099. [PMID: 34035286 PMCID: PMC8149457 DOI: 10.1038/s41467-021-23348-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/21/2021] [Indexed: 11/09/2022] Open
Abstract
Porphyrin-based metal–organic frameworks (MOFs), exemplified by MOF-525, PCN-221, and PCN-224, are promising systems for catalysis, optoelectronics, and solar energy conversion. However, subtle differences between synthetic protocols for these three MOFs give rise to vast discrepancies in purported product outcomes and description of framework topologies. Here, based on a comprehensive synthetic and structural analysis spanning local and long-range length scales, we show that PCN-221 consists of Zr6O4(OH)4 clusters in four distinct orientations within the unit cell, rather than Zr8O6 clusters as originally published, and linker vacancies at levels of around 50%, which may form in a locally correlated manner. We propose disordered PCN-224 (dPCN-224) as a unified model to understand PCN-221, MOF-525, and PCN-224 by varying the degree of orientational cluster disorder, linker conformation and vacancies, and cluster–linker binding. Our work thus introduces a new perspective on network topology and disorder in Zr-MOFs and pinpoints the structural variables that direct their functional properties. Zirconium-based metal–organic frameworks have defective structures that are useful in catalysis and gas storage. Here, the authors study the interplay between cluster disorder and linker vacancies in PCN-221 and propose a new structure model with tilted Zr6O4(OH)4 clusters rather than Zr8O6 clusters.
Collapse
Affiliation(s)
- Charlotte Koschnick
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart, 70569, Germany.,Department of Chemistry, University of Munich, Butenandtstraße 5-13, Munich, 81377, Germany.,e-conversion, Lichtenbergstraße 4a, Garching, 85748, Germany.,Center for Nanoscience, Schellingstraße 4, Munich, 80799, Germany
| | - Robert Stäglich
- Department of Inorganic Chemistry, University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany.,North Bavarian NMR Center, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - Tanja Scholz
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart, 70569, Germany
| | - Maxwell W Terban
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart, 70569, Germany
| | - Alberto von Mankowski
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart, 70569, Germany.,Department of Chemistry, University of Munich, Butenandtstraße 5-13, Munich, 81377, Germany.,e-conversion, Lichtenbergstraße 4a, Garching, 85748, Germany.,Center for Nanoscience, Schellingstraße 4, Munich, 80799, Germany
| | - Gökcen Savasci
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart, 70569, Germany.,Department of Chemistry, University of Munich, Butenandtstraße 5-13, Munich, 81377, Germany.,Center for Nanoscience, Schellingstraße 4, Munich, 80799, Germany
| | - Florian Binder
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart, 70569, Germany.,Department of Chemistry, University of Munich, Butenandtstraße 5-13, Munich, 81377, Germany
| | - Alexander Schökel
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, Hamburg, 22607, Germany
| | - Martin Etter
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, Hamburg, 22607, Germany
| | - Jürgen Nuss
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart, 70569, Germany
| | - Renée Siegel
- Department of Inorganic Chemistry, University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany.,North Bavarian NMR Center, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - Luzia S Germann
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart, 70569, Germany.,Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, H3A 0B8, QC, Canada
| | - Christian Ochsenfeld
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart, 70569, Germany.,Department of Chemistry, University of Munich, Butenandtstraße 5-13, Munich, 81377, Germany.,Center for Nanoscience, Schellingstraße 4, Munich, 80799, Germany
| | - Robert E Dinnebier
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart, 70569, Germany
| | - Jürgen Senker
- Department of Inorganic Chemistry, University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany. .,North Bavarian NMR Center, Universitätsstraße 30, Bayreuth, 95447, Germany.
| | - Bettina V Lotsch
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart, 70569, Germany. .,Department of Chemistry, University of Munich, Butenandtstraße 5-13, Munich, 81377, Germany. .,e-conversion, Lichtenbergstraße 4a, Garching, 85748, Germany. .,Center for Nanoscience, Schellingstraße 4, Munich, 80799, Germany.
| |
Collapse
|
23
|
Abstract
Metal Organic Frameworks (MOFs) are noted as exceptional candidates towards the detection and removal of specific analytes. MOFs were reported in particular for the detection/removal of environmental contaminants, such as heavy metal ions, toxic anions, hazardous gases, explosives, etc. Among heavy metal ions, mercury has been noted as a global hazard because of its high toxicity in the elemental (Hg0), divalent cationic (Hg2+), and methyl mercury (CH3Hg+) forms. To secure the environment and living organisms, many countries have imposed stringent regulations to monitor mercury at all costs. Regarding the detection/removal requirements of mercury, researchers have proposed and reported all kinds of MOFs-based luminescent/non-luminescent probes towards mercury. This review provides valuable information about the MOFs which have been engaged in detection and removal of elemental mercury and Hg2+ ions. Moreover, the involved mechanisms or adsorption isotherms related to sensors or removal studies are clarified for the readers. Finally, advantages and limitations of MOFs in mercury detection/removal are described together with future scopes.
Collapse
|
24
|
Yang C, Tian J, Jiang F, Chen Q, Hong M. Functionalized Metal-Organic Frameworks for Hg(II) and Cd(II) Capture: Progresses and Challenges. CHEM REC 2021; 21:1455-1472. [PMID: 33605537 DOI: 10.1002/tcr.202000187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Mercury and cadmium are deemed to be the most harmful heavy metal ions for elimination due to their persistent bio-accumulative and bio-expanding toxic effects. Although many technologies have been developed for capturing Hg(II) and Cd(II) ions from aqueous solution, developing efficient and practical capature technology remains a big challenge. Metal-organic frameworks (MOFs) have been considered as the most promising adsorbents for Hg(II) and Cd(II) removal due to their high porosity and easy functionalization, and various of MOF-based adsorbents based on different synthetic strategies have been prepared and studied. In this article, the progresses of MOF-based absorbents for Hg(II) and Cd(II) capture are described according to the synthetic strategies and the types of functional groups, and the comparison and practical analysis of various adsorbents are also presented.
Collapse
Affiliation(s)
- Changyin Yang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Jiayue Tian
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.,College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Feilong Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Qihui Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| |
Collapse
|
25
|
Zhang Y, Khan AR, Yang X, Fu M, Wang R, Chi L, Zhai G. Current advances in versatile metal-organic frameworks for cancer therapy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Xu GR, An ZH, Xu K, Liu Q, Das R, Zhao HL. Metal organic framework (MOF)-based micro/nanoscaled materials for heavy metal ions removal: The cutting-edge study on designs, synthesis, and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213554] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
27
|
Viltres H, López YC, Gupta NK, Leyva C, Paz R, Gupta A, Sengupta A. Functional metal-organic frameworks for metal removal from aqueous solutions. SEPARATION & PURIFICATION REVIEWS 2020. [DOI: 10.1080/15422119.2020.1839909] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Herlys Viltres
- Centro De Investigación En Ciencia Aplicada Y Tecnología Avanzada, Instituto Politécnico Nacional, CDMX, Mexico
| | - Yeisy C. López
- Centro De Investigación En Ciencia Aplicada Y Tecnología Avanzada, Instituto Politécnico Nacional, CDMX, Mexico
- Laboratorio De Bioninorgánica, Facultad De Química, Universidad De La Habana, Havana, Cuba
| | - Nishesh Kumar Gupta
- University of Science and Technology (UST), Daejeon, Republic of Korea
- Department of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang, Republic of Korea
| | - Carolina Leyva
- Centro De Investigación En Ciencia Aplicada Y Tecnología Avanzada, Instituto Politécnico Nacional, CDMX, Mexico
| | - Roxana Paz
- Centro De Investigación En Ciencia Aplicada Y Tecnología Avanzada, Instituto Politécnico Nacional, CDMX, Mexico
| | - Anjali Gupta
- Department of Chemistry, Dayalbagh Educational Institute, Agra, India
| | - Arijit Sengupta
- Radiochemistry Division, Bhabha Atomic Research Center, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
28
|
Recent Advances in Porphyrin-Based Materials for Metal Ions Detection. Int J Mol Sci 2020; 21:ijms21165839. [PMID: 32823943 PMCID: PMC7461582 DOI: 10.3390/ijms21165839] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/31/2022] Open
Abstract
Porphyrins have planar and conjugated structures, good optical properties, and other special functional properties. Owing to these excellent properties, in recent years, porphyrins and their analogues have emerged as a multifunctional platform for chemical sensors. The rich chemistry of these molecules offers many possibilities for metal ions detection. This review mainly discusses two types of molecular porphyrin and porphyrin composite sensors for metal ions detection, because porphyrins can be functionalized to improve their functional properties, which can introduce more chemical and functional sites. According to the different application materials, the section of porphyrin composite sensors is divided into five sub-categories: (1) porphyrin film, (2) porphyrin metal complex, (3) metal–organic frameworks, (4) graphene materials, and (5) other materials, respectively.
Collapse
|
29
|
Lin G, Wang C, Li X, Xi Y, Wang W, Zhang L, Chang J. Synthesis of coordination polymer by 2,2′-dithiodipropionic acid and selective removal of Hg(ii)/Pb(ii) in wastewater. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.08.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Shi M, Lin D, Huang R, Qi W, Su R, He Z. Construction of a Mercapto-Functionalized Zr-MOF/Melamine Sponge Composite for the Efficient Removal of Oils and Heavy Metal Ions from Water. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00731] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mingbo Shi
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, PR China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Daiwu Lin
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Renliang Huang
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China
| | - Rongxin Su
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, PR China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
31
|
Yang P, Zhuang Q, Li Y, Gu J. Green separation of rare earth elements by valence-selective crystallization of MOFs. Chem Commun (Camb) 2019; 55:14902-14905. [DOI: 10.1039/c9cc07849e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A green valence-selective crystallization strategy of MOFs is developed for the precise separation of Ce element at room temperature.
Collapse
Affiliation(s)
- Pengfei Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Qixin Zhuang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yongsheng Li
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jinlou Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
32
|
Yang P, Shu Y, Zhuang Q, Li Y, Gu J. A robust MOF-based trap with high-density active alkyl thiol for the super-efficient capture of mercury. Chem Commun (Camb) 2019; 55:12972-12975. [DOI: 10.1039/c9cc06255f] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A robust Zr-MSA MOF trap with high-density active alkyl thiol is successfully constructed for the super-efficient capture of mercury.
Collapse
Affiliation(s)
- Pengfei Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yufang Shu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Qixin Zhuang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yongsheng Li
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jinlou Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|