1
|
Fu W, Liu Z, Li D, Pan B. Chemistry for water treatment under nanoconfinement. WATER RESEARCH 2025; 275:123173. [PMID: 39864357 DOI: 10.1016/j.watres.2025.123173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
The global freshwater crisis, exacerbated by escalating pollution, poses a significant threat to human health. Addressing this challenge required innovative strategies to develop highly efficient and process-adaptable materials for water decontamination. In this regard, nanomaterials with confinement structures have emerged as a promising solution, outperforming traditional nanomaterials in terms of efficiency, selectivity, stability, and process adaptability, thereby serving as an ideal platform for designing novel functional materials for sustainable water treatment. This Review focuses on recent advancements and employment of nanoconfinement effects in various water treatment processes, emphasizing the fundamental chemistry underlying nanoconfinement effects. Also, the existing knowledge gaps related to nanoconfinement effects and future prospects for expanding their applications in diverse water treatment scenarios are discussed.
Collapse
Affiliation(s)
- Wanyi Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Ziyao Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Dan Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Guha R, Vargas S, Spotte-Smith EWC, Epstein AR, Venetos M, Kingsbury R, Wen M, Blau SM, Persson KA. HEPOM: Using Graph Neural Networks for the Accelerated Predictions of Hydrolysis Free Energies in Different pH Conditions. J Chem Inf Model 2025; 65:3963-3975. [PMID: 40183476 PMCID: PMC12042266 DOI: 10.1021/acs.jcim.4c02443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/25/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025]
Abstract
Hydrolysis is a fundamental family of chemical reactions where water facilitates the cleavage of bonds. The process is ubiquitous in biological and chemical systems, owing to water's remarkable versatility as a solvent. However, accurately predicting the feasibility of hydrolysis through computational techniques is a difficult task, as subtle changes in reactant structure like heteroatom substitutions or neighboring functional groups can influence the reaction outcome. Furthermore, hydrolysis is sensitive to the pH of the aqueous medium, and the same reaction can have different reaction properties at different pH conditions. In this work, we have combined reaction templates and high-throughput ab initio calculations to construct a diverse data set of hydrolysis free energies. The developed framework automatically identifies reaction centers, generates hydrolysis products, and utilizes a trained graph neural network (GNN) model to predict ΔG values for all potential hydrolysis reactions in a given molecule. The long-term goal of the work is to develop a data-driven, computational tool for high-throughput screening of pH-specific hydrolytic stability and the rapid prediction of reaction products, which can then be applied in a wide array of applications including chemical recycling of polymers and ion-conducting membranes for clean energy generation and storage.
Collapse
Affiliation(s)
- Rishabh
D. Guha
- Materials
Science Division, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Santiago Vargas
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, 1 Cyclotron
Road, Berkeley, California 94720, United States
| | - Evan Walter Clark Spotte-Smith
- Department
of Materials Science and Engineering, Carnegie
Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alexander Rizzolo Epstein
- Department
of Materials Science and Engineering, University
of California, 210 Hearst
Memorial Mining Building, Berkeley, California 94720, United States
| | - Maxwell Venetos
- Materials
Science Division, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, 210 Hearst
Memorial Mining Building, Berkeley, California 94720, United States
| | - Ryan Kingsbury
- Department
of Civil and Environmental Engineering, Princeton University, 86 Olden Street, Princeton, New Jersey 08544, United States
| | - Mingjian Wen
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu 610054, China
| | - Samuel M. Blau
- Energy
Storage and Distributed Resources, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kristin A. Persson
- Materials
Science Division, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, 210 Hearst
Memorial Mining Building, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Yuan Y, Li J, Zhu Y, Qiao Y, Kang Z, Wang Z, Tian X, Huang H, Lai W. Water in Electrocatalysis. Angew Chem Int Ed Engl 2025; 64:e202425590. [PMID: 39980470 DOI: 10.1002/anie.202425590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/06/2025] [Accepted: 02/20/2025] [Indexed: 02/22/2025]
Abstract
Renewable electricity-powered electrocatalysis technologies occupy a central position in clean energy conversion and the pursuit of a net-zero carbon emission future. Water can serve multiple roles in electrocatalytic reactions, for instance, as a reaction medium, reactant, modifier, promoter, etc. This significantly influences the mass transport, active site, intermediate adsorption and reaction kinetics, ultimately determining the electrocatalytic performance (e.g., activity, selectivity, and stability) as well as device efficiency. As the heart location where electrocatalytic reactions occur, the typical electrical-double layer is established at a water-electrode interface. Therefore, the comprehension and regulation of water are crucial topics in electrocatalysis, which encourages us to organize this review. We begin with the fundamental understanding on structure of water and its behavior under electrochemical conditions. Subsequently, we delve into the "water effect" by elucidating specific functions of water in electrocatalysis. Recent advances in manipulating water to enhance electrocatalytic efficiency of representative reactions such as hydrogen evolution/oxidation, oxygen evolution/reduction, CO2 reduction, N2 reduction and organic electrosynthesis, are also highlighted. We finally discuss the remaining challenges and future opportunities in this field.
Collapse
Affiliation(s)
- Yuliang Yuan
- School of Marine Science and Engineering, State Key Laboratory of Tropic Ocean Engineering Materials and Materials Evaluation, Hainan University, Haikou, Hainan, 570228, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Jin Li
- School of Marine Science and Engineering, State Key Laboratory of Tropic Ocean Engineering Materials and Materials Evaluation, Hainan University, Haikou, Hainan, 570228, P. R. China
| | - Yiting Zhu
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P. R. China
| | - Yan Qiao
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Zhenye Kang
- School of Marine Science and Engineering, State Key Laboratory of Tropic Ocean Engineering Materials and Materials Evaluation, Hainan University, Haikou, Hainan, 570228, P. R. China
| | - Zhitong Wang
- School of Marine Science and Engineering, State Key Laboratory of Tropic Ocean Engineering Materials and Materials Evaluation, Hainan University, Haikou, Hainan, 570228, P. R. China
| | - Xinlong Tian
- School of Marine Science and Engineering, State Key Laboratory of Tropic Ocean Engineering Materials and Materials Evaluation, Hainan University, Haikou, Hainan, 570228, P. R. China
| | - Hongwen Huang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Wenchuan Lai
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P. R. China
| |
Collapse
|
4
|
Negi A, Chauhan A, Dogra A, Thakur A, Sharma V, Kumar S, Chaudhary GR. Evolving trends in the solvent strategies for preparing semiconducting nanomaterials for multifarious applications. Adv Colloid Interface Sci 2025; 342:103524. [PMID: 40300488 DOI: 10.1016/j.cis.2025.103524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 05/01/2025]
Abstract
Semiconducting nanomaterials have been widely explored for various applications due to their remarkable coordination between electronic and morphological attributes. The extent of their potential applications transcends from various environmental remediation applications like sensing and photocatalysis to several complex applications like energy storage/production and drug delivery processes. The properties of semiconducting nanomaterials can be effectively tuned by changing the solvent strategies. A solvent can effectively interfere in the nucleation process and hence can significantly influence the shape and size of nanomaterials, which is directly related to other important properties. In this review article, we have holistically discussed and categorized different solvents and encompassed their role in the preparation strategies of different semiconducting nanomaterials. We have tried to explain the evolution of solvent strategies based on the reported literature, that is the evolution from conventional solvents to more advanced and nascent solvent strategies like ionic liquids and deep eutectic solvents. After adequate comparison, we have concluded that the change or rather advancements in the solvent strategies have dramatically enhanced and transformed the properties and potential of several semiconducting nanomaterials in the domains such as photocatalysis, sensing, biomedical and electrochemical applications. We anticipate that this review article will encourage researchers across the globe to explore and develop novel solvent strategies and assess their effect on the properties of different classes of materials.
Collapse
Affiliation(s)
- Archana Negi
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Aman Chauhan
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Arshia Dogra
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Aanchal Thakur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Vandana Sharma
- Maharaja Lakshman Sen Memorial College, Sundernagar, Mandi 175018, India
| | - Sandeep Kumar
- Department of Physics, Punjab Engineering College (Deemed to be University), Chandigarh 160012, India.
| | - Ganga Ram Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
5
|
Katrak VK, Patel NA, Ijardar SP. The Physicochemical Properties and Plausible Implication of Deep Eutectic Solvents in Analytical Techniques. Crit Rev Anal Chem 2025:1-24. [PMID: 40203288 DOI: 10.1080/10408347.2025.2486209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Volatile organic solvents and fluoride-containing ionic liquids (ILs) have few drawbacks like toxicity, non-biodegradability, and environmental issues. Even though ILs are considered as new safest solvent for their lower volatility. They pose toxicity and sustainability concerns. Deep eutectic solvents (DESs) have garnered significant attention as substitutes for these solvents, addressing their drawbacks and aligning with specific principles of green chemistry, such as reduced toxicity, biodegradability, and the use of renewable resources. This review thoroughly explains the emergence and inception of DESs through their development. It deals with the physicochemical properties like density, polarity, and viscosity. The factors dealing with variation in density and viscosity of DES have been discussed. The preparation and operation of DESs, encompassing their various variants such as hydrophobic and hydrophilic types are examined to provide a comprehensive grasp of their chemical properties. Beyond basic characteristics, the article delves into a few specific DES applications to demonstrate their flexibility. DESs show promising multifarious utility, ranging from acting as extractant to critical roles in sorbent-based extractions, solvent-based extractions, and their role in various analytical techniques. The article covers the opportunities and difficulties associated with DESs, offering a prospective viewpoint on future advancements and difficulties. The review outlines different facets of DES research, emphasizing the level of knowledge at the moment and their potential influence in the emerging subject of DESs.
Collapse
Affiliation(s)
- Vahishta K Katrak
- Department of Chemistry, Veer Narmad South Gujarat University, Surat, India
| | - Nensi A Patel
- Department of Chemistry, Veer Narmad South Gujarat University, Surat, India
| | - Sushma P Ijardar
- Department of Chemistry, Veer Narmad South Gujarat University, Surat, India
| |
Collapse
|
6
|
Yu Z, Li Y, Du S, Zhang Z, Cheng X, Wang Q, Chen Y. Voltammetry of monovalent cations at the 2D/3D water interface formed by using a slit-like graphene-membrane nanofluidic device. Analyst 2025; 150:1071-1075. [PMID: 39969220 DOI: 10.1039/d4an01486c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Herein, we demonstrate that two-dimensional (2D) graphene-nanoconfined water in a slit-like graphene-membrane nanofluidic device can form a 2D/3D water interface with a 3D bulk aqueous phase and a preference for protons over other monovalent cations for transfer across such a novel 2D/3D water interface. This provides a new approach to studying 2D graphene-nanoconfined water.
Collapse
Affiliation(s)
- Zhenmei Yu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology (SIT), Shanghai 201418, China.
| | - Yan Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology (SIT), Shanghai 201418, China.
| | - Siran Du
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology (SIT), Shanghai 201418, China.
| | - Zengtao Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology (SIT), Shanghai 201418, China.
| | - Xiqing Cheng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology (SIT), Shanghai 201418, China.
| | - Qingwei Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology (SIT), Shanghai 201418, China.
| | - Yong Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology (SIT), Shanghai 201418, China.
| |
Collapse
|
7
|
Zhao W, Yin P, Wang Z, Huang J, Fu Y, Hu W. Recent advances in regulation methods for selective separation and precise control of two-dimensional (2D) lamellar membranes. Adv Colloid Interface Sci 2024; 334:103330. [PMID: 39486346 DOI: 10.1016/j.cis.2024.103330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Selective separation and precise control of the structure and surface characterization for two-dimensional (2D) membranes is the key technology that needs to be revealed for further development of the material in practical application. Current researches focus on the cross-linking and modification of single nanosheet to improve and manipulate the performance of 2D lamellar membranes. In this paper, the selectivity principles such as size exclusion, charge properties, and surface chemical affinity in the separation process of 2D membranes were comprehensively and systematically reviewed, as well as the preparation of hybrid membranes combining the advantages of various raw materials. We also analyzed the practical application of the separation principles in relevant researches and discussed the development directions of 2D membranes. These inductions have certain summary and guiding significance for the selective regulation and goal-oriented design of 2D membranes.
Collapse
Affiliation(s)
- Weixuan Zhao
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Ping Yin
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zulin Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Junnan Huang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yiming Fu
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, 999077, Hong Kong, China
| | - Wenjihao Hu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| |
Collapse
|
8
|
Lamaire A, Wieme J, Vandenhaute S, Goeminne R, Rogge SMJ, Van Speybroeck V. Water motifs in zirconium metal-organic frameworks induced by nanoconfinement and hydrophilic adsorption sites. Nat Commun 2024; 15:9997. [PMID: 39557894 PMCID: PMC11574101 DOI: 10.1038/s41467-024-54358-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 11/04/2024] [Indexed: 11/20/2024] Open
Abstract
The intricate hydrogen-bonded network of water gives rise to various structures with anomalous properties at different thermodynamic conditions. Nanoconfinement can further modify the water structure and properties, and induce specific water motifs, which are instrumental for technological applications such as atmospheric water harvesting. However, so far, a causal relationship between nanoconfinement and the presence of specific hydrophilic adsorption sites is lacking, hampering the further design of nanostructured materials for water templating. Therefore, this work investigates the organisation of water in zirconium-based metal-organic frameworks (MOFs) with varying topologies, pore sizes, and chemical composition, to extract design rules to shape water. The highly tuneable pores and hydrophilicity of MOFs makes them ideally suited for this purpose. We find that small nanopores favour orderly water clusters that nucleate at hydrophilic adsorption sites. Favourably positioning the secondary adsorption sites, hydrogen-bonded to the primary adsorption sites, allows larger clusters to form at moderate adsorption conditions. To disentangle the importance of nanoconfinement and hydrophilic nucleation sites in this process, we introduce an analytical model with precise control of the adsorption sites. This sheds a new light on design parameters to induce specific water clusters and hydrogen-bonded networks, thus rationalising the application space of water in nanoconfinement.
Collapse
Affiliation(s)
- Aran Lamaire
- Center for Molecular Modeling (CMM), Ghent University, Zwijnaarde, Belgium
| | - Jelle Wieme
- Center for Molecular Modeling (CMM), Ghent University, Zwijnaarde, Belgium
| | - Sander Vandenhaute
- Center for Molecular Modeling (CMM), Ghent University, Zwijnaarde, Belgium
| | - Ruben Goeminne
- Center for Molecular Modeling (CMM), Ghent University, Zwijnaarde, Belgium
| | - Sven M J Rogge
- Center for Molecular Modeling (CMM), Ghent University, Zwijnaarde, Belgium
| | | |
Collapse
|
9
|
Ciocarlan RG, Farrando-Perez J, Arenas-Esteban D, Houlleberghs M, Daemen LL, Cheng Y, Ramirez-Cuesta AJ, Breynaert E, Martens J, Bals S, Silvestre-Albero J, Cool P. Tuneable mesoporous silica material for hydrogen storage application via nano-confined clathrate hydrate construction. Nat Commun 2024; 15:8697. [PMID: 39379386 PMCID: PMC11461665 DOI: 10.1038/s41467-024-52893-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
Safe storage and utilisation of hydrogen is an ongoing area of research, showing potential to enable hydrogen becoming an effective fuel, substituting current carbon-based sources. Hydrogen storage is associated with a high energy cost due to its low density and boiling point, which drives a high price. Clathrates (gas hydrates) are water-based (ice-like) structures incorporating small non-polar compounds such as H2 in cages formed by hydrogen bonded water molecules. Since only water is required to construct the cages, clathrates have been identified as a potential solution for safe storage of hydrogen. In bulk, pure hydrogen clathrate (H2O-H2) only forms in harsh conditions, but confined in nanospaces the properties of water are altered and hydrogen storage at mild pressure and temperature could become possible. Here, specifically a hydrophobic mesoporous silica is proposed as a host material, providing a suitable nano-confinement for ice-like clathrate hydrate. The hybrid silica material shows an important decrease of the pressure required for clathrate formation (approx. 20%) compared to the pure H2O-H2 system. In-situ inelastic neutron scattering (INS) and neutron diffraction (ND) provided unique insights into the interaction of hydrogen with the complex surface of the hybrid material and demonstrated the stability of nano-confined hydrogen clathrate hydrate.
Collapse
Affiliation(s)
- Radu-George Ciocarlan
- Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
| | - Judit Farrando-Perez
- The Advanced Materials Laboratory (LMA) - Department of Inorganic Chemistry - IUMA, University of Alicante (UA), Alicante, Spain
| | - Daniel Arenas-Esteban
- Electron Microscopy for Materials Science (EMAT), NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Maarten Houlleberghs
- Centre for Surface Chemistry and Catalysis, NMRCoRe - NMR - XRAY - EM Platform for Convergence Research, Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, Leuven, Belgium
| | - Luke L Daemen
- Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Yongqiang Cheng
- Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Eric Breynaert
- Centre for Surface Chemistry and Catalysis, NMRCoRe - NMR - XRAY - EM Platform for Convergence Research, Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, Leuven, Belgium
| | - Johan Martens
- Centre for Surface Chemistry and Catalysis, NMRCoRe - NMR - XRAY - EM Platform for Convergence Research, Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, Leuven, Belgium
| | - Sara Bals
- Electron Microscopy for Materials Science (EMAT), NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Joaquin Silvestre-Albero
- The Advanced Materials Laboratory (LMA) - Department of Inorganic Chemistry - IUMA, University of Alicante (UA), Alicante, Spain
| | - Pegie Cool
- Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium.
| |
Collapse
|
10
|
Lamata-Bermejo I, Keil W, Nolkemper K, Heske J, Kossmann J, Elgabarty H, Wortmann M, Chorążewski M, Schmidt C, Kühne TD, López-Salas N, Odziomek M. Understanding the Wettability of C 1N 1 (Sub)Nanopores: Implications for Porous Carbonaceous Electrodes. Angew Chem Int Ed Engl 2024:e202411493. [PMID: 39195352 DOI: 10.1002/anie.202411493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
Understanding how water interacts with nanopores of carbonaceous electrodes is crucial for energy storage and conversion applications. A high surface area of carbonaceous materials does not necessarily need to translate to a high electrolyte-solid interface area. Herein, we study the interaction of water with nanoporous C1N1 materials to explain their very low specific capacitance in aqueous electrolytes despite their high surface area. Water was used to probe chemical environments, provided by pores of different sizes, in 1H MAS NMR experiments. We observe that regardless of their high hydrophilicity, only a negligible portion of water can enter the nanopores of C1N1, in contrast to a reference pure carbon material with a similar pore structure. The common paradigm that water easily enters hydrophilic pores does not apply to C1N1 nanopores below a few nanometers. Calorimetric and sorption experiments demonstrated strong water adsorption on the C1N1 surface, which restricts water mobility across the interface and impedes its penetration into the nanopores.
Collapse
Affiliation(s)
- Irene Lamata-Bermejo
- Department of Chemistry, Physical Chemistry, University of Paderborn, Warburger Str. 100, D-33098, Paderborn, Germany
| | - Waldemar Keil
- Department of Chemistry, Physical Chemistry, University of Paderborn, Warburger Str. 100, D-33098, Paderborn, Germany
| | - Karlo Nolkemper
- Department of Chemistry, Theoretical Chemistry, and Center for Sustainable Systems Design, University of Paderborn, Warburger Str. 100, D-33098, Paderborn, Germany
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Julian Heske
- Department of Chemistry, Theoretical Chemistry, and Center for Sustainable Systems Design, University of Paderborn, Warburger Str. 100, D-33098, Paderborn, Germany
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Janina Kossmann
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Hossam Elgabarty
- Department of Chemistry, Theoretical Chemistry, and Center for Sustainable Systems Design, University of Paderborn, Warburger Str. 100, D-33098, Paderborn, Germany
| | - Martin Wortmann
- Faculty of Physics, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Mirosław Chorążewski
- Institute of Chemistry, University of Silesia, Ul. Szkolna 9, 40-006, Katowice, Poland
| | - Claudia Schmidt
- Department of Chemistry, Physical Chemistry, University of Paderborn, Warburger Str. 100, D-33098, Paderborn, Germany
| | - Thomas D Kühne
- Department of Chemistry, Theoretical Chemistry, and Center for Sustainable Systems Design, University of Paderborn, Warburger Str. 100, D-33098, Paderborn, Germany
| | - Nieves López-Salas
- Department of Chemistry, Physical Chemistry, University of Paderborn, Warburger Str. 100, D-33098, Paderborn, Germany
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Mateusz Odziomek
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
11
|
Bui KQ, Bao Le TT, Barbosa GD, Papavassiliou DV, Razavi S, Striolo A. Molecular Density Fluctuations Control Solubility and Diffusion for Confined Aqueous Hydrogen. J Phys Chem Lett 2024:8114-8124. [PMID: 39087860 DOI: 10.1021/acs.jpclett.4c01684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Hydrogen's contribution to a sustainable energy transformation requires intermittent storage technologies, e.g., underground hydrogen storage (UHS). Toward designing UHS sites, atomistic molecular dynamics (MD) simulations are used here to quantify thermodynamic and transport properties for confined aqueous H2. Slit-shaped pores of width 10 and 20 Å are carved out of kaolinite. Within these pores, water yields pronounced hydration layers. Molecular H2 distributes along these hydration layers, yielding solubilities up to ∼25 times those in the bulk. Hydrogen accumulates near the siloxane surface, where water density fluctuates significantly. On the contrary, a dense hydration layer forms on the gibbsite surface, which is, for the most part, depleted of H2. Although confinement reduces water mobility, the diffusion of aqueous H2 increases as the kaolinite pore width decreases, also a consequence of water density fluctuations. These results relate to H2 permeability in underground hydrogen storage sites.
Collapse
Affiliation(s)
- Khang Quang Bui
- School of Sustainable Chemical, Biological, and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Tran Thi Bao Le
- School of Sustainable Chemical, Biological, and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Gabriel D Barbosa
- School of Sustainable Chemical, Biological, and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Dimitrios V Papavassiliou
- School of Sustainable Chemical, Biological, and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Sepideh Razavi
- School of Sustainable Chemical, Biological, and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Alberto Striolo
- School of Sustainable Chemical, Biological, and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
12
|
Houlleberghs M, Radhakrishnan S, Chandran CV, Morais AF, Martens JA, Breynaert E. Harnessing Nuclear Magnetic Resonance Spectroscopy to Decipher Structure and Dynamics of Clathrate Hydrates in Confinement: A Perspective. Molecules 2024; 29:3369. [PMID: 39064947 PMCID: PMC11279878 DOI: 10.3390/molecules29143369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
This perspective outlines recent developments in the field of NMR spectroscopy, enabling new opportunities for in situ studies on bulk and confined clathrate hydrates. These hydrates are crystalline ice-like materials, built up from hydrogen-bonded water molecules, forming cages occluding non-polar gaseous guest molecules, including CH4, CO2 and even H2 and He gas. In nature, they are found in low-temperature and high-pressure conditions. Synthetic confined versions hold immense potential for energy storage and transportation, as well as for carbon capture and storage. Using previous studies, this report highlights static and magic angle spinning NMR hardware and strategies enabling the study of clathrate hydrate formation in situ, in bulk and in nano-confinement. The information obtained from such studies includes phase identification, dynamics, gas exchange processes, mechanistic studies and the molecular-level elucidation of the interactions between water, guest molecules and confining interfaces.
Collapse
Affiliation(s)
- Maarten Houlleberghs
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F—Box 2461, 3001 Leuven, Belgium
| | - Sambhu Radhakrishnan
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F—Box 2461, 3001 Leuven, Belgium
- NMR/X-ray Platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F—Box 2461, 3001 Leuven, Belgium
| | - C. Vinod Chandran
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F—Box 2461, 3001 Leuven, Belgium
- NMR/X-ray Platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F—Box 2461, 3001 Leuven, Belgium
| | - Alysson F. Morais
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F—Box 2461, 3001 Leuven, Belgium
- NMR/X-ray Platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F—Box 2461, 3001 Leuven, Belgium
| | - Johan A. Martens
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F—Box 2461, 3001 Leuven, Belgium
| | - Eric Breynaert
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F—Box 2461, 3001 Leuven, Belgium
- NMR/X-ray Platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F—Box 2461, 3001 Leuven, Belgium
| |
Collapse
|
13
|
Kummamuru NB, Ciocarlan RG, Houlleberghs M, Martens J, Breynaert E, Verbruggen SW, Cool P, Perreault P. Surface modification of mesostructured cellular foam to enhance hydrogen storage in binary THF/H 2 clathrate hydrate. SUSTAINABLE ENERGY & FUELS 2024; 8:2824-2838. [PMID: 38933237 PMCID: PMC11197926 DOI: 10.1039/d4se00114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/12/2024] [Indexed: 06/28/2024]
Abstract
This study introduces solid-state tuning of a mesostructured cellular foam (MCF) to enhance hydrogen (H2) storage in clathrate hydrates. Grafting of promoter-like molecules (e.g., tetrahydrofuran) at the internal surface of the MCF resulted in a substantial improvement in the kinetics of formation of binary H2-THF clathrate hydrate. Identification of the confined hydrate as sII clathrate hydrate and enclathration of H2 in its small cages was performed using XRD and high-pressure 1H NMR spectroscopy respectively. Experimental findings show that modified MCF materials exhibit a ∼1.3 times higher H2 storage capacity as compared to non-modified MCF under the same conditions (7 MPa, 265 K, 100% pore volume saturation with a 5.56 mol% THF solution). The enhancement in H2 storage is attributed to the hydrophobicity originating from grafting organic molecules onto pristine MCF, thereby influencing water interactions and fostering an environment conducive to H2 enclathration. Gas uptake curves indicate an optimal tuning point for higher H2 storage, favoring a lower density of carbon per nm2. Furthermore, a direct correlation emerges between higher driving forces and increased H2 storage capacity, culminating at 0.52 wt% (46.77 mmoles of H2 per mole of H2O and 39.78% water-to-hydrate conversions) at 262 K for the modified MCF material with fewer carbons per nm2. Notably, the substantial H2 storage capacity achieved without energy-intensive processes underscores solid-state tuning's potential for H2 storage in the synthesized hydrates. This study evaluated two distinct kinetic models to describe hydrate growth in MCF. The multistage kinetic model showed better predictive capabilities for experimental data and maintained a low average absolute deviation. This research provides valuable insights into augmenting H2 storage capabilities and holds promising implications for future advancements.
Collapse
Affiliation(s)
- Nithin B Kummamuru
- Sustainable Energy Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp Groenenborgerlaan 171 2020 Antwerpen Belgium
- Laboratory for the Electrification of Chemical Processes and Hydrogen (ElectrifHy), University of Antwerp Olieweg 97 2020 Antwerp Belgium
| | - Radu-George Ciocarlan
- Department of Chemistry, University of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
| | - Maarten Houlleberghs
- KU Leuven, Centre for Surface Chemistry and Catalysis-Characterization and Application Team (COK-KAT) Celestijnenlaan 200F - Box 2461 Leuven 3001 Belgium
| | - Johan Martens
- KU Leuven, Centre for Surface Chemistry and Catalysis-Characterization and Application Team (COK-KAT) Celestijnenlaan 200F - Box 2461 Leuven 3001 Belgium
- NMR/X-Ray Platform for Convergence Research (NMRCoRe) Celestijnenlaan 200F - Box 2461 Leuven 3001 Belgium
| | - Eric Breynaert
- KU Leuven, Centre for Surface Chemistry and Catalysis-Characterization and Application Team (COK-KAT) Celestijnenlaan 200F - Box 2461 Leuven 3001 Belgium
- NMR/X-Ray Platform for Convergence Research (NMRCoRe) Celestijnenlaan 200F - Box 2461 Leuven 3001 Belgium
| | - Sammy W Verbruggen
- Sustainable Energy Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp Groenenborgerlaan 171 2020 Antwerpen Belgium
- NANOlab Center of Excellence, University of Antwerp Groenenborgerlaan 171 2020 Antwerpen Belgium
| | - Pegie Cool
- Department of Chemistry, University of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
| | - Patrice Perreault
- Laboratory for the Electrification of Chemical Processes and Hydrogen (ElectrifHy), University of Antwerp Olieweg 97 2020 Antwerp Belgium
- University of Antwerp, BlueApp Olieweg 97 2020 Antwerpen Belgium
| |
Collapse
|
14
|
Morais AF, Radhakrishnan S, Arbiv G, Dom D, Duerinckx K, Chandran CV, Martens JA, Breynaert E. Noncontact In Situ Multidiagnostic NMR/Dielectric Spectroscopy. Anal Chem 2024; 96:5071-5077. [PMID: 38513052 DOI: 10.1021/acs.analchem.3c03007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Introduction of a dielectric material in a nuclear magnetic resonance (NMR) probe head modifies the frequency response of the probe circuit, a phenomenon revealed by detuning of the probe. For NMR spectroscopy, this detuning is corrected for by tuning and matching the probe head prior to the NMR measurement. The magnitude of the probe detuning, "the dielectric shift", provides direct access to the dielectric properties of the sample, enabling NMR spectrometers to simultaneously perform both dielectric and NMR spectroscopy. By measuring sample dielectric permittivity as a function of frequency, dielectric permittivity spectroscopy can be performed using the new methodology. As a proof of concept, this was evaluated on methanol, ethanol, 1-propanol, 1-pentanol, and 1-octanol using a commercial cross-polarization magic angle spinning (CPMAS) NMR probe head. The results accurately match the literature data collected by standard dielectric spectroscopy techniques. Subsequently, the method was also applied to investigate the solvent-surface interactions of water confined in the micropores of an MFI-type, hydrophilic zeolite with a Si/Al ratio of 11.5. In the micropores, water adsorbs to Bro̷nsted acid sites and defect sites, resulting in a drastically decreased dielectric permittivity of the nanoconfined water. Theoretical background for the new methodology is provided using an effective electric circuit model of a CPMAS probe head with a solenoid coil, describing the detuning resulting from the insertion of dielectric samples in the probe head.
Collapse
Affiliation(s)
- Alysson F Morais
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - Sambhu Radhakrishnan
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - Gavriel Arbiv
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- Center for Molecular Water Science (CMWS), Notkestraße 85, 22607 Hamburg, Germany
| | - Dirk Dom
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - Karel Duerinckx
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - C Vinod Chandran
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - Johan A Martens
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - Eric Breynaert
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- Center for Molecular Water Science (CMWS), Notkestraße 85, 22607 Hamburg, Germany
| |
Collapse
|
15
|
Tang Q, Wang Y, Chen N, Pu B, Qing Y, Zhang M, Bai J, Yang Y, Cui J, Liu Y, Zhou B, Yang W. Ultra-Efficient Synthesis of Nb 4 C 3 T x MXene via H 2 O-Assisted Supercritical Etching for Li-Ion Battery. SMALL METHODS 2024; 8:e2300836. [PMID: 37926701 DOI: 10.1002/smtd.202300836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/05/2023] [Indexed: 11/07/2023]
Abstract
Nb4 C3 Tx MXene has shown extraordinary promise for various applications owing to its unique physicochemical properties. However, it can only be synthesized by the traditional HF-based etching method, which uses large amounts of hazardous HF and requires a long etching time (> 96 h), thus limiting its practical application. Here, an ultra-efficient and environmental-friendly H2 O-assisted supercritical etching method is proposed for the preparation of Nb4 C3 Tx MXene. Benefiting from the synergetic effect between supercritical CO2 (SPC-CO2 ) and subcritical H2 O (SBC-H2 O), the etching time for Nb4 C3 Tx MXene can be dramatically shortened to 1 h. The as-synthesized Nb4 C3 Tx MXene possesses uniform accordion-like morphology and large interlayer spacing. When used as anode for Li-ion battery, the Nb4 C3 Tx MXene delivers a high reversible specific capacity of 430 mAh g-1 at 0.1 A g-1 , which is among the highest values achieved in pure-MXene-based anodes. The superior lithium storage performance of the Nb4 C3 Tx MXene can be ascribed to its high conductivity, fast Li+ diffusion kinetics and good structural stability.
Collapse
Affiliation(s)
- Qi Tang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yongbin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Ningjun Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Ben Pu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yue Qing
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Mingzhe Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Jia Bai
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yi Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Jin Cui
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yan Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Bin Zhou
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu, 610200, P. R. China
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
16
|
Yabalak E, Aminzai MT, Gizir AM, Yang Y. A Review: Subcritical Water Extraction of Organic Pollutants from Environmental Matrices. Molecules 2024; 29:258. [PMID: 38202840 PMCID: PMC10780272 DOI: 10.3390/molecules29010258] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/26/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Most organic pollutants are serious environmental concerns globally due to their resistance to biological, chemical, and photolytic degradation. The vast array of uses of organic compounds in daily life causes a massive annual release of these substances into the air, water, and soil. Typical examples of these substances include pesticides, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). Since they are persistent and hazardous in the environment, as well as bio-accumulative, sensitive and efficient extraction and detection techniques are required to estimate the level of pollution and assess the ecological consequences. A wide variety of extraction methods, including pressurized liquid extraction, microwave-assisted extraction, supercritical fluid extraction, and subcritical water extraction, have been recently used for the extraction of organic pollutants from the environment. However, subcritical water has proven to be the most effective approach for the extraction of a wide range of organic pollutants from the environment. In this review article, we provide a brief overview of the subcritical water extraction technique and its application to the extraction of PAHs, PCBs, pesticides, pharmaceuticals, and others form environmental matrices. Furthermore, we briefly discuss the influence of key extraction parameters, such as extraction time, pressure, and temperature, on extraction efficiency and recovery.
Collapse
Affiliation(s)
- Erdal Yabalak
- Department of Nanotechnology and Advanced Materials, Mersin University, TR-33343 Mersin, Türkiye
| | - Mohammad Tahir Aminzai
- Department of Organic Chemistry, Faculty of Chemistry, Kabul University, Kabul 1006, Afghanistan;
| | - Ahmet Murat Gizir
- Department of Chemistry, Faculty of Science, Mersin University, TR-33343 Mersin, Türkiye;
| | - Yu Yang
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
17
|
Shelyapina MG, Nefedov DY, Antonenko AO, Valkovskiy GA, Yocupicio-Gaxiola RI, Petranovskii V. Nanoconfined Water in Pillared Zeolites Probed by 1H Nuclear Magnetic Resonance. Int J Mol Sci 2023; 24:15898. [PMID: 37958879 PMCID: PMC10648503 DOI: 10.3390/ijms242115898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Here, we report the results of our 1H nuclear magnetic resonance study of the dynamics of water molecules confined in zeolites (mordenite and ZSM-5 structures) with hierarchical porosity (micropores in zeolite lamella and mesopores formed by amorphous SiO2 in the inter-lamellar space). 1H nuclear magnetic resonance (NMR) spectra show that water experiences complex behavior within the temperature range from 173 to 298 K. The temperature dependence of 1H spin-lattice relaxation evidences the presence of three processes with different activation energies: freezing (about 30 kJ/mol), fast rotation (about 10 kJ/mol), and translational motion of water molecules (23.6 and 26.0 kJ/mol for pillared mordenite and ZSM-5, respectively). For translational motion, the activation energy is markedly lower than for water in mesoporous silica or zeolites with similar mesopore size but with disordered secondary porosity. This indicates that the process of water diffusion in zeolites with hierarchical porosity is governed not only by the presence of mesopores, but also by the mutual arrangement of meso- and micropores. The translational motion of water molecules is determined mainly by zeolite micropores.
Collapse
Affiliation(s)
- Marina G. Shelyapina
- Faculty of Physics, Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg 199034, Russia; (D.Y.N.); (A.O.A.); (G.A.V.)
| | - Denis Y. Nefedov
- Faculty of Physics, Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg 199034, Russia; (D.Y.N.); (A.O.A.); (G.A.V.)
| | - Anastasiia O. Antonenko
- Faculty of Physics, Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg 199034, Russia; (D.Y.N.); (A.O.A.); (G.A.V.)
| | - Gleb A. Valkovskiy
- Faculty of Physics, Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg 199034, Russia; (D.Y.N.); (A.O.A.); (G.A.V.)
| | - Rosario I. Yocupicio-Gaxiola
- Tecnológico Nacional de México, Instituto Tecnológico Superior de Guasave, Carretera a La Brecha Sin Número, Ejido Burrioncito, Guasave 81149, Sinaloa, Mexico;
| | - Vitalii Petranovskii
- Center for Nanoscience and Nanotechnology, National Autonomous University of Mexico (CNyN, UNAM), Ensenada 22860, Baja California, Mexico;
| |
Collapse
|
18
|
Asselman K, Kirschhock C, Breynaert E. Illuminating the Black Box: A Perspective on Zeolite Crystallization in Inorganic Media. Acc Chem Res 2023; 56:2391-2402. [PMID: 37566703 PMCID: PMC10515482 DOI: 10.1021/acs.accounts.3c00269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Indexed: 08/13/2023]
Abstract
ConspectusSince the discovery of synthetic zeolites in the 1940s and their implementation in major industrial processes involving adsorption, catalytic conversion, and ion exchange, material scientists have targeted the rational design of zeolites: controlling synthesis to crystallize zeolites with predetermined properties. Decades later, the fundamentals of zeolite synthesis remain largely obscured in a black box, rendering rational design elusive. A major prerequisite to rational zeolite design is to fully understand, and control, the elementary processes governing zeolite nucleation, growth, and stability. The molecular-level investigation of these processes has been severely hindered by the complex multiphasic media in which aluminosilicate zeolites are typically synthesized. This Account documents our recent progress in crystallizing zeolites from synthesis media based on hydrated silicate ionic liquids (HSIL), a synthesis approach facilitating the evaluation of the individual impacts of synthesis parameters such as cation type, water content, and alkalinity on zeolite nucleation, growth, and phase selection. HSIL-based synthesis allows straightforward elucidation of the relationship between the characteristics of the synthesis medium and the properties and structure of the crystalline product. This assists in deriving new insights in zeolite crystallization in an inorganic aluminosilicate system, thus improving the conceptual understanding of nucleation and growth in the context of inorganic zeolite synthesis in general. This Account describes in detail what hydrated silicate ionic liquids are, how they form, and how they assist in improving our understanding of zeolite genesis on a molecular level. It describes the development of ternary phase diagrams for inorganic aluminosilicate zeolites via a systematic screening of synthesis compositions. By evaluating obtained crystal structure properties such as framework composition, topology, and extraframework cation distributions, critical questions are dealt with: Which synthesis variables govern the aluminum content of crystallizing zeolites? How does the aluminum content in the framework determine the expression of different topologies? The crucial role of the alkali cation, taking center stage in all aspects of crystallization, phase selection, and, by extension, transformation is also discussed. New criteria and models for phase selection are proposed, assisting in overcoming the need for excessive trial and error in the development of future synthesis protocols.Recent progress in the development of a toolbox enabling liquid-state characterization of these precursor media has been outlined, setting the stage for the routine monitoring of zeolite crystallization in real time. Current endeavors on and future needs for the in situ investigation of zeolite crystallization are highlighted. Finally, experimentally accessible parameters providing opportunities for modeling zeolite nucleation and growth are identified. Overall, this work provides a perspective toward future developments, identifying research areas ripe for investigation and discovery.
Collapse
Affiliation(s)
- Karel Asselman
- Center
for Surface Chemistry and Catalysis − Characterization and
Application Team (COK-KAT), KU Leuven, 3001 Leuven, Belgium
| | - Christine Kirschhock
- Center
for Surface Chemistry and Catalysis − Characterization and
Application Team (COK-KAT), KU Leuven, 3001 Leuven, Belgium
| | - Eric Breynaert
- Center
for Surface Chemistry and Catalysis − Characterization and
Application Team (COK-KAT), KU Leuven, 3001 Leuven, Belgium
- NMR/X-ray
Platform for Convergence Research (NMRCoRe), KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
19
|
Prelac M, Palčić I, Cvitan D, Anđelini D, Repajić M, Ćurko J, Kovačević TK, Goreta Ban S, Užila Z, Ban D, Major N. From Waste to Green: Water-Based Extraction of Polyphenols from Onion Peel and Their Adsorption on Biochar from Grapevine Pruning Residues. Antioxidants (Basel) 2023; 12:1697. [PMID: 37760000 PMCID: PMC10525769 DOI: 10.3390/antiox12091697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Onion peels (OP) are rich in bioactive compounds with a plethora of benefits for human health, but this valuable material is often wasted and underutilized due to its inedibility. Likewise, grapevine pruning residues are commonly treated as agricultural waste, but biochar (BC) obtained from this material has favorable characteristics as an adsorbent. This study investigated the potential of BC in removal of targeted polyphenolic compounds from OP extracts. The OP extracts were obtained adhering to green chemistry principles using deionized water amplified by three methods: maceration (MAC), ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE). The extraction efficiency on the polyphenolic profile and antioxidant capacity was investigated with different extraction temperatures and solid-to-liquid (s/l) ratios. For further analysis, UAE at 90 °C with an s/l ratio of 1:100 was used due to higher polyphenolic compound yield. The BC adsorption capacity of individual polyphenols was fitted with the Langmuir and Freundlich isotherm models. Quercetin-3,4'-diglucoside obtained the highest R2 coefficient in both models, and the highest qmax value. The optimum conditions in the dosage experiment suggested an amount of 0.5 g of BC using 3 g/L extracts. The studied BC showed a high affinity for targeted phytochemicals from OP extracts, indicating its potential to be applied for the green adsorption of valuable polyphenolic compounds.
Collapse
Affiliation(s)
- Melissa Prelac
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (N.M.)
| | - Igor Palčić
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (N.M.)
| | - Danko Cvitan
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (N.M.)
| | - Dominik Anđelini
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (N.M.)
| | - Maja Repajić
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (J.Ć.)
| | - Josip Ćurko
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (J.Ć.)
| | - Tvrtko Karlo Kovačević
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (N.M.)
| | - Smiljana Goreta Ban
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (N.M.)
| | - Zoran Užila
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (N.M.)
| | - Dean Ban
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (N.M.)
| | - Nikola Major
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (N.M.)
| |
Collapse
|
20
|
Radhakrishnan S, Lejaegere C, Duerinckx K, Lo WS, Morais AF, Dom D, Chandran CV, Hermans I, Martens JA, Breynaert E. Hydrogen bonding to oxygen in siloxane bonds drives liquid phase adsorption of primary alcohols in high-silica zeolites. MATERIALS HORIZONS 2023; 10:3702-3711. [PMID: 37401863 PMCID: PMC10463557 DOI: 10.1039/d3mh00888f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
Upon liquid phase adsorption of C1-C5 primary alcohols on high silica MFI zeolites (Si/Al = 11.5-140), the concentration of adsorbed molecules largely exceeds the concentration of traditional adsorption sites: Brønsted acid and defect sites. Combining quantitative in situ1H MAS NMR, qualitative multinuclear NMR and IR spectroscopy, hydrogen bonding of the alcohol function to oxygen atoms of the zeolite siloxane bridges (Si-O-Si) was shown to drive the additional adsorption. This mechanism co-exists with chemi- and physi-sorption on Brønsted acid and defect sites and does not exclude cooperative effects from dispersive interactions.
Collapse
Affiliation(s)
- Sambhu Radhakrishnan
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001-Heverlee, Belgium.
- NMRCoRe - NMR/X-Ray platform for Convergence Research, KU Leuven, Celestijnenlaan 200F Box 2461, 3001-Heverlee, Belgium
| | - Charlotte Lejaegere
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001-Heverlee, Belgium.
| | - Karel Duerinckx
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001-Heverlee, Belgium.
- NMRCoRe - NMR/X-Ray platform for Convergence Research, KU Leuven, Celestijnenlaan 200F Box 2461, 3001-Heverlee, Belgium
| | - Wei-Shang Lo
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | - Alysson F Morais
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001-Heverlee, Belgium.
- NMRCoRe - NMR/X-Ray platform for Convergence Research, KU Leuven, Celestijnenlaan 200F Box 2461, 3001-Heverlee, Belgium
| | - Dirk Dom
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001-Heverlee, Belgium.
- NMRCoRe - NMR/X-Ray platform for Convergence Research, KU Leuven, Celestijnenlaan 200F Box 2461, 3001-Heverlee, Belgium
| | - C Vinod Chandran
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001-Heverlee, Belgium.
- NMRCoRe - NMR/X-Ray platform for Convergence Research, KU Leuven, Celestijnenlaan 200F Box 2461, 3001-Heverlee, Belgium
| | - Ive Hermans
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001-Heverlee, Belgium.
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
- Department of Chemical and Biological Engineering, Wisconsin Energy Institute, University of Wisconsin-Madison, 1552 University Ave, Madison, WI 53726, USA
| | - Johan A Martens
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001-Heverlee, Belgium.
- NMRCoRe - NMR/X-Ray platform for Convergence Research, KU Leuven, Celestijnenlaan 200F Box 2461, 3001-Heverlee, Belgium
| | - Eric Breynaert
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001-Heverlee, Belgium.
- NMRCoRe - NMR/X-Ray platform for Convergence Research, KU Leuven, Celestijnenlaan 200F Box 2461, 3001-Heverlee, Belgium
| |
Collapse
|
21
|
Sit I, Fashina BT, Baldo AP, Leung K, Grassian VH, Ilgen AG. Formic and acetic acid p Ka values increase under nanoconfinement. RSC Adv 2023; 13:23147-23157. [PMID: 37533784 PMCID: PMC10390803 DOI: 10.1039/d2ra07944e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/22/2023] [Indexed: 08/04/2023] Open
Abstract
Organic acids are prevalent in the environment and their acidity and the corresponding dissociation constants can change under varying environmental conditions. The impact of nanoconfinement (when acids are confined within nanometer-scale domains) on physicochemical properties of chemical species is poorly understood and is an emerging field of study. By combining infrared and Raman spectroscopies with molecular dynamics (MD) simulations, we quantified the effect of nanoconfinement in silica nanopores on one of the fundamental chemical reactions-the dissociation of organic acids. The pKa of formic and acetic acids confined within cylindrical silica nanopores with 4 nm diameters were measured. MD models were constructed to calculate the shifts in the pKa values of acetic acid nanoconfined within 1, 2, 3, and 4 nm silica slit pores. Both experiments and MD models indicate a decrease in the apparent acid dissociation constants (i.e., increase in the pKa values) when organic acids are nanoconfined. Therefore, nanoconfinement stabilizes the protonated species. We attribute this observation to (1) a decrease in the average dielectric response of nanoconfined aqueous solutions where charge screening may be decreased; or (2) an increase in proton concentration inside nanopores, which would shift the equilibrium towards the protonated form. Overall, the results of this study provide the first quantification of the pKa values for nanoconfined formic and acetic acids and pave the way for a unifying theory predicting the impact of nanoconfinement on acid-base chemistry.
Collapse
Affiliation(s)
- Izaac Sit
- Department of Nanoengineering, University of California San Diego La Jolla CA 92093 USA
| | - Bidemi T Fashina
- Geochemistry Department, Sandia National Laboratories Albuquerque NM 87123 USA
| | - Anthony P Baldo
- Geochemistry Department, Sandia National Laboratories Albuquerque NM 87123 USA
| | - Kevin Leung
- Geochemistry Department, Sandia National Laboratories Albuquerque NM 87123 USA
| | - Vicki H Grassian
- Department of Chemistry & Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Anastasia G Ilgen
- Geochemistry Department, Sandia National Laboratories Albuquerque NM 87123 USA
| |
Collapse
|
22
|
Matsuura H, Takano K, Shirakashi R. Slow water dynamics in dehydrated human Jurkat T cells evaluated by dielectric spectroscopy with the Bruggeman-Hanai equation. RSC Adv 2023; 13:20934-20940. [PMID: 37441032 PMCID: PMC10334875 DOI: 10.1039/d3ra02892e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
The picosecond orientational dynamics of intracellular water was measured by dielectric spectroscopy, with the aim of revealing the effects of cryoprotective agents (CPAs) on biological cells. As a first step, Jurkat cells (human T lymphocyte cells) suspended in aqueous sucrose solutions of different concentrations ranging from 0.3 M (isotonic) to 0.9 M (hypertonic) were examined at 25 °C with a frequency range up to 43.5 GHz. The Bruggeman-Hanai equation was employed to obtain a cellular dielectric spectrum without extracellular contributions from the measured complex permittivity of the cell suspensions. By analyzing the γ process around 1010 Hz based on the Debye relaxation function, two types of water (bulk-like water and hydration water with slower molecular dynamics) were observed. An increase in the fraction of intracellular slower water was observed in the dehydrated cells which had a highly concentrated environment of biomolecules.
Collapse
Affiliation(s)
- Hiroaki Matsuura
- Institute of Industrial Science, The University of Tokyo Meguro Tokyo 153-8505 Japan
- Research Fellow of the Japan Society for the Promotion of Science Chiyoda Tokyo 102-0083 Japan
| | - Kiyoshi Takano
- Institute of Industrial Science, The University of Tokyo Meguro Tokyo 153-8505 Japan
| | - Ryo Shirakashi
- Institute of Industrial Science, The University of Tokyo Meguro Tokyo 153-8505 Japan
| |
Collapse
|
23
|
Wei D, Lu HY, Miao HZ, Feng CG, Lin GQ, Liu Y. Pd-catalyzed intermolecular consecutive double Heck reaction "on water" under air: facile synthesis of substituted indenes. RSC Adv 2023; 13:19312-19316. [PMID: 37377870 PMCID: PMC10291873 DOI: 10.1039/d3ra03510g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
An efficient and environmentally benign method for the preparation of substituted indene derivatives has been developed by using water as the sole solvent. This reaction proceeded under air, tolerated a wide range of functional-groups and was easily scaled up. Bioactive natural products like indriline were synthesized via the developed protocol. Preliminary results demonstrate that the enantioselective variant can also be achieved.
Collapse
Affiliation(s)
- Dong Wei
- State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai 200092 China
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Han-Yu Lu
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Han-Zhe Miao
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Chen-Guo Feng
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Guo-Qiang Lin
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Yingbin Liu
- State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
| |
Collapse
|
24
|
Bañuelos JL, Borguet E, Brown GE, Cygan RT, DeYoreo JJ, Dove PM, Gaigeot MP, Geiger FM, Gibbs JM, Grassian VH, Ilgen AG, Jun YS, Kabengi N, Katz L, Kubicki JD, Lützenkirchen J, Putnis CV, Remsing RC, Rosso KM, Rother G, Sulpizi M, Villalobos M, Zhang H. Oxide- and Silicate-Water Interfaces and Their Roles in Technology and the Environment. Chem Rev 2023; 123:6413-6544. [PMID: 37186959 DOI: 10.1021/acs.chemrev.2c00130] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Interfacial reactions drive all elemental cycling on Earth and play pivotal roles in human activities such as agriculture, water purification, energy production and storage, environmental contaminant remediation, and nuclear waste repository management. The onset of the 21st century marked the beginning of a more detailed understanding of mineral aqueous interfaces enabled by advances in techniques that use tunable high-flux focused ultrafast laser and X-ray sources to provide near-atomic measurement resolution, as well as by nanofabrication approaches that enable transmission electron microscopy in a liquid cell. This leap into atomic- and nanometer-scale measurements has uncovered scale-dependent phenomena whose reaction thermodynamics, kinetics, and pathways deviate from previous observations made on larger systems. A second key advance is new experimental evidence for what scientists hypothesized but could not test previously, namely, interfacial chemical reactions are frequently driven by "anomalies" or "non-idealities" such as defects, nanoconfinement, and other nontypical chemical structures. Third, progress in computational chemistry has yielded new insights that allow a move beyond simple schematics, leading to a molecular model of these complex interfaces. In combination with surface-sensitive measurements, we have gained knowledge of the interfacial structure and dynamics, including the underlying solid surface and the immediately adjacent water and aqueous ions, enabling a better definition of what constitutes the oxide- and silicate-water interfaces. This critical review discusses how science progresses from understanding ideal solid-water interfaces to more realistic systems, focusing on accomplishments in the last 20 years and identifying challenges and future opportunities for the community to address. We anticipate that the next 20 years will focus on understanding and predicting dynamic transient and reactive structures over greater spatial and temporal ranges as well as systems of greater structural and chemical complexity. Closer collaborations of theoretical and experimental experts across disciplines will continue to be critical to achieving this great aspiration.
Collapse
Affiliation(s)
- José Leobardo Bañuelos
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Eric Borguet
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Gordon E Brown
- Department of Earth and Planetary Sciences, The Stanford Doerr School of Sustainability, Stanford University, Stanford, California 94305, United States
| | - Randall T Cygan
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - James J DeYoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Patricia M Dove
- Department of Geosciences, Department of Chemistry, Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Marie-Pierre Gaigeot
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Julianne M Gibbs
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2Canada
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Anastasia G Ilgen
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Young-Shin Jun
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Nadine Kabengi
- Department of Geosciences, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lynn Katz
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Kubicki
- Department of Earth, Environmental & Resource Sciences, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Johannes Lützenkirchen
- Karlsruher Institut für Technologie (KIT), Institut für Nukleare Entsorgung─INE, Eggenstein-Leopoldshafen 76344, Germany
| | - Christine V Putnis
- Institute for Mineralogy, University of Münster, Münster D-48149, Germany
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Kevin M Rosso
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Gernot Rother
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Marialore Sulpizi
- Department of Physics, Ruhr Universität Bochum, NB6, 65, 44780, Bochum, Germany
| | - Mario Villalobos
- Departamento de Ciencias Ambientales y del Suelo, LANGEM, Instituto De Geología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
25
|
Ni L, Yu C, Xie Y, Wei Q, Liu D, Tan X, Ding Y, Qiu J. pH-Switchable Pickering miniemulsion enabled by carbon quantum dots for quasi-homogenized biphasic catalytic system. Chem Commun (Camb) 2023; 59:3261-3264. [PMID: 36815681 DOI: 10.1039/d2cc06973c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A quasi-homogenized miniemulsion system enabled by carbon quantum dot solid nanoparticles for biphasic catalysis is proposed, which breaks existing limits for an immiscibly biphasic system and overcomes issues for large-sized solid particle-stabilized emulsion droplets. The presented Pickering miniemulsion features pH-responsive behavior, finally triggering facile product separation and catalyst recycling in one reaction vessel.
Collapse
Affiliation(s)
- Lin Ni
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Chang Yu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Yuanyang Xie
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Qianbing Wei
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Dongming Liu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Xinyi Tan
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Yiwang Ding
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Jieshan Qiu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
26
|
Both AK, Choudhry D, Cheung CL. Valorization of hemp fibers into biocomposites via one‐step pectin‐based green fabrication process. J Appl Polym Sci 2023. [DOI: 10.1002/app.53586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Avinash Kumar Both
- Department of Chemistry University of Nebraska‐Lincoln Lincoln Nebraska USA
| | - Deepa Choudhry
- Department of Chemistry University of Nebraska‐Lincoln Lincoln Nebraska USA
| | - Chin Li Cheung
- Department of Chemistry University of Nebraska‐Lincoln Lincoln Nebraska USA
| |
Collapse
|
27
|
Vanderschaeghe H, Houlleberghs M, Verheyden L, Dom D, Chandran CV, Radhakrishnan S, Martens JA, Breynaert E. Absolute Quantification of Residual Solvent in Mesoporous Silica Drug Formulations Using Magic-Angle Spinning NMR Spectroscopy. Anal Chem 2022; 95:1880-1887. [PMID: 36579853 DOI: 10.1021/acs.analchem.2c03646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Porous silica is used as a drug delivery agent to improve the bioavailability of sparsely soluble compounds. In this approach, the active pharmaceutical ingredient (API) is commonly loaded into the porous silica by incipient wetness impregnation using organic solvents. Subsequent solvent elimination is critical as the residual solvent concentration cannot exceed threshold values set by health and safety regulations (e.g., EMA/CHMP/ICH/82260/2006). For dichloromethane and methanol, for example, residual concentrations must be below 600 and 3000 ppm, respectively. Today, EU and USA Pharmacopoeias recommend tedious procedures for residual solvent quantification, requiring extraction of the solvent and subsequent quantification using capillary gas chromatography with static headspace sampling (sHS-GC). This work presents a new method based on the combination of standard addition and absolute quantification using magic-angle spinning nuclear magnetic resonance spectroscopy (MAS qNMR). The methodology was originally developed for absolute quantification of water in zeolites and has now been validated for quantification of residual solvent in drug formations using mesoporous silica loaded with ibuprofen dissolved in DCM and MeOH as test samples. Interestingly, formulations prepared using as-received or predried mesoporous silica contained 5465 versus 484.9 ppm DCM, respectively. This implies that the initial water content of the silica carrier can impact the residual solvent concentration in drug-loaded materials. This observation could provide new options to minimize the occurrence of these undesired solvents in the final formulation.
Collapse
Affiliation(s)
- Hannah Vanderschaeghe
- Center for Surface Chemistry and Catalysis (COK-kat), KU Leuven, Celestijnenlaan 200F, Box 2461, 3001Heverlee, Belgium
| | - Maarten Houlleberghs
- Center for Surface Chemistry and Catalysis (COK-kat), KU Leuven, Celestijnenlaan 200F, Box 2461, 3001Heverlee, Belgium
| | - Loes Verheyden
- Center for Surface Chemistry and Catalysis (COK-kat), KU Leuven, Celestijnenlaan 200F, Box 2461, 3001Heverlee, Belgium
| | - Dirk Dom
- Center for Surface Chemistry and Catalysis (COK-kat), KU Leuven, Celestijnenlaan 200F, Box 2461, 3001Heverlee, Belgium
- NMR/X-ray platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F, Box 2461, 3001Heverlee, Belgium
| | - C Vinod Chandran
- Center for Surface Chemistry and Catalysis (COK-kat), KU Leuven, Celestijnenlaan 200F, Box 2461, 3001Heverlee, Belgium
- NMR/X-ray platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F, Box 2461, 3001Heverlee, Belgium
| | - Sambhu Radhakrishnan
- Center for Surface Chemistry and Catalysis (COK-kat), KU Leuven, Celestijnenlaan 200F, Box 2461, 3001Heverlee, Belgium
- NMR/X-ray platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F, Box 2461, 3001Heverlee, Belgium
| | - Johan A Martens
- Center for Surface Chemistry and Catalysis (COK-kat), KU Leuven, Celestijnenlaan 200F, Box 2461, 3001Heverlee, Belgium
| | - Eric Breynaert
- Center for Surface Chemistry and Catalysis (COK-kat), KU Leuven, Celestijnenlaan 200F, Box 2461, 3001Heverlee, Belgium
- NMR/X-ray platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F, Box 2461, 3001Heverlee, Belgium
| |
Collapse
|
28
|
Tang B, Liu Y, Lian Y, Liu H. Radical annulation using a radical reagent as a two-carbon unit. Org Biomol Chem 2022; 20:9272-9281. [PMID: 36383141 DOI: 10.1039/d2ob01833k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Radical annulation has emerged as one of the most efficient and straightforward methods for synthesizing cyclic/polycyclic compounds as the core structures can be constructed through a single procedure comprising multiple bond-forming steps. Particularly, radical annulation using a radical reagent as a cyclization partner and two-carbon unit greatly expands the diversity of cyclic skeletons and the functionality of radical reagents. We herein have highlighted the representative processes reported in the past decade for radical annulation using a radical reagent as a two-carbon unit, including [2 + 2 + 2], [3 + 2], [4 + 2], and [5 + 2] modes, with an emphasis on their reaction mechanisms. These studies not only pave the way toward annulation but also provide insight into the exploration of a new reaction mode for radical chemistry.
Collapse
Affiliation(s)
- Boxiao Tang
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University, Huaihua 418000, China.
| | - Yilin Liu
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University, Huaihua 418000, China.
| | - Yan Lian
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University, Huaihua 418000, China.
| | - Hongxin Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
29
|
Deng Q, Gu J, Zhang H, Zhang Y, Meng X. Sustainable access to benzothiophene derivatives bearing a trifluoromethyl group via a three-component domino reaction in water. Org Biomol Chem 2022; 20:7424-7428. [PMID: 35822661 DOI: 10.1039/d2ob01034h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A catalyst-free three-component domino reaction was developed for the synthesis of benzothiophene fused pyrrolidones bearing a CF3 group for the first time. The notable advantages of this strategy over the existing methods include the use of water as a solvent at room temperature, transition metal-free conditions, a broad substrate scope, and easy scale-up synthesis. More importantly, the benzothiophene derivatives have been found to show potent anticancer activities using the Cell Counting Kit-8 (CCK-8) assay.
Collapse
Affiliation(s)
- Qingsong Deng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering Tianjin University of Technology, Tianjin 300384, P.R. China.
| | - Jun Gu
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, NO.1399 Shichang West Road, Suzhou 215228, China
| | - Huan Zhang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering Tianjin University of Technology, Tianjin 300384, P.R. China.
| | - Youlai Zhang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering Tianjin University of Technology, Tianjin 300384, P.R. China.
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering Tianjin University of Technology, Tianjin 300384, P.R. China.
| |
Collapse
|
30
|
Park SH, Radhakrishnan S, Choi W, Chandran CV, Kemp KC, Breynaert E, Bell RG, Kirschhock CEA, Hong SB. Hydrogen-Bonded Water-Aminium Assemblies for Synthesis of Zeotypes with Ordered Heteroatoms. J Am Chem Soc 2022; 144:18054-18061. [PMID: 36136766 DOI: 10.1021/jacs.2c07661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Water plays a central role in the crystallization of a variety of organic, inorganic, biological, and hybrid materials. This is also true for zeolites and zeolite-like materials, an important class of industrial catalysts and adsorbents. Water is always present during their hydrothermal synthesis, either with or without organic species as structure-directing agents. Apart from its role as a solvent or a catalyst, structure direction by water in zeolite synthesis has never been clearly elucidated. Here, we report the crystallization of phosphate-based molecular sieves using rationally designed, hydrogen-bonded water-aminium assemblies, resulting in molecular sieves exhibiting the crystallographic ordering of heteroatoms. We demonstrate that a 1:1 assembly of water and diprotonated N,N-dimethyl-1,2-ethanediamine acts as a structure-directing agent in the synthesis of a silicoaluminophosphate material with phillipsite (PHI) topology, using SMARTER crystallography, which combines single-crystal X-ray diffraction and nuclear magnetic resonance spectroscopy, as well as ab initio molecular dynamics simulations. The molecular arrangement of the hydrogen-bonded assembly matches well with the shape and size of subunits in the PHI structure, and their charge distributions result in the strict ordering of framework tetrahedral atoms. This concept of structure direction by water-containing supramolecular assemblies should be applicable to the synthesis of many classes of porous materials.
Collapse
Affiliation(s)
- Sung Hwan Park
- Center for Ordered Nanoporous Materials Synthesis, Division of Environmental Science and Engineering, POSTECH, Pohang 37673, Korea
| | - Sambhu Radhakrishnan
- Center for Surface Chemistry and Catalysis, Characterization and Application Team (COK-kat), KU Leuven, Celestijnenlaan 200 F - box 2461, 3001 Heverlee, Belgium.,NMR/X-ray platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200 F - box 2461, 3001 Heverlee, Belgium
| | - Wanuk Choi
- Center for Ordered Nanoporous Materials Synthesis, Division of Environmental Science and Engineering, POSTECH, Pohang 37673, Korea
| | - C Vinod Chandran
- Center for Surface Chemistry and Catalysis, Characterization and Application Team (COK-kat), KU Leuven, Celestijnenlaan 200 F - box 2461, 3001 Heverlee, Belgium.,NMR/X-ray platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200 F - box 2461, 3001 Heverlee, Belgium
| | - Kingsley Christian Kemp
- Center for Ordered Nanoporous Materials Synthesis, Division of Environmental Science and Engineering, POSTECH, Pohang 37673, Korea
| | - Eric Breynaert
- Center for Surface Chemistry and Catalysis, Characterization and Application Team (COK-kat), KU Leuven, Celestijnenlaan 200 F - box 2461, 3001 Heverlee, Belgium.,NMR/X-ray platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200 F - box 2461, 3001 Heverlee, Belgium
| | - Robert G Bell
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Christine E A Kirschhock
- Center for Surface Chemistry and Catalysis, Characterization and Application Team (COK-kat), KU Leuven, Celestijnenlaan 200 F - box 2461, 3001 Heverlee, Belgium
| | - Suk Bong Hong
- Center for Ordered Nanoporous Materials Synthesis, Division of Environmental Science and Engineering, POSTECH, Pohang 37673, Korea
| |
Collapse
|
31
|
Water as a Probe for Standardization of Near-Infrared Spectra by Mutual-Individual Factor Analysis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186069. [PMID: 36144801 PMCID: PMC9503549 DOI: 10.3390/molecules27186069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022]
Abstract
The standardization of near-infrared (NIR) spectra is essential in practical applications, because various instruments are generally employed. However, standardization is challenging due to numerous perturbations, such as the instruments, testing environments, and sample compositions. In order to explain the spectral changes caused by the various perturbations, a two-step standardization technique was presented in this work called mutual–individual factor analysis (MIFA). Taking advantage of the sensitivity of a water probe to perturbations, the spectral information from a water spectral region was gradually divided into mutual and individual parts. With aquaphotomics expertise, it can be found that the mutual part described the overall spectral features among instruments, whereas the individual part depicted the difference of component structural changes in the sample caused by operation and the measurement conditions. Furthermore, the spectral difference was adjusted by the coefficients in both parts. The effectiveness of the method was assessed by using two NIR datasets of corn and wheat, respectively. The results showed that the standardized spectra can be successfully predicted by using the partial least squares (PLS) models developed with the spectra from the reference instrument. Consequently, the MIFA offers a viable solution to standardize the spectra obtained from several instruments when measurements are affected by multiple factors.
Collapse
|
32
|
Houlleberghs M, Verheyden L, Voorspoels F, Chandran CV, Duerinckx K, Radhakrishnan S, Martens JA, Breynaert E. Dispersing carbomers, mixing technology matters! RSC Adv 2022; 12:7830-7834. [PMID: 35424734 PMCID: PMC8982170 DOI: 10.1039/d2ra00176d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/25/2022] [Indexed: 11/21/2022] Open
Abstract
Mixing dry carbomer powder with water using magneto-hydrodynamic mixing yielded carbomer dispersions with higher viscosity and increased storage modulus as compared to conventional high shear mixing. 1H NMR spectroscopy demonstrated this to be induced by a different water distribution, accompanied by lower ionization and higher degradation of the polymer in case of high shear mixing. This investigation reveals 1H MAS NMR to provide suitable sensitivity and resolution to detect structural changes induced in organic polymers during their hydration. Magnetohydrodynamic mixing yields carbomer dispersions with higher viscosity and higher storage modulus as compared to high shear mixing. 1H NMR reveals molecular level differences in water distribution, polymer degradation and charge stabilization.![]()
Collapse
Affiliation(s)
- Maarten Houlleberghs
- Characterization and Application Team (COK-kat), KU Leuven 3001 Heverlee Belgium
| | - Loes Verheyden
- Characterization and Application Team (COK-kat), KU Leuven 3001 Heverlee Belgium
| | - Filip Voorspoels
- Master of Bioscience Engineering: Catalytic Technology KU Leuven Belgium
| | - C Vinod Chandran
- Characterization and Application Team (COK-kat), KU Leuven 3001 Heverlee Belgium .,NMR-Xray platform for Convergence Research (NMRCoRe), KU Leuven 3001 Heverlee Belgium
| | - Karel Duerinckx
- Characterization and Application Team (COK-kat), KU Leuven 3001 Heverlee Belgium .,NMR-Xray platform for Convergence Research (NMRCoRe), KU Leuven 3001 Heverlee Belgium
| | - Sambhu Radhakrishnan
- Characterization and Application Team (COK-kat), KU Leuven 3001 Heverlee Belgium .,NMR-Xray platform for Convergence Research (NMRCoRe), KU Leuven 3001 Heverlee Belgium
| | - Johan A Martens
- Characterization and Application Team (COK-kat), KU Leuven 3001 Heverlee Belgium .,NMR-Xray platform for Convergence Research (NMRCoRe), KU Leuven 3001 Heverlee Belgium
| | - Eric Breynaert
- Characterization and Application Team (COK-kat), KU Leuven 3001 Heverlee Belgium .,NMR-Xray platform for Convergence Research (NMRCoRe), KU Leuven 3001 Heverlee Belgium
| |
Collapse
|
33
|
Papadopoulou E, Megaridis CM, Walther JH, Koumoutsakos P. Nanopumps without Pressure Gradients: Ultrafast Transport of Water in Patterned Nanotubes. J Phys Chem B 2022; 126:660-669. [DOI: 10.1021/acs.jpcb.1c07562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ermioni Papadopoulou
- Computational Science and Engineering Laboratory, ETH Zürich, Zürich CH-8092, Switzerland
| | - Constantine M. Megaridis
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Jens H. Walther
- Computational Science and Engineering Laboratory, ETH Zürich, Zürich CH-8092, Switzerland
- Department of Mechanical Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Petros Koumoutsakos
- Computational Science and Engineering Laboratory, ETH Zürich, Zürich CH-8092, Switzerland
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
34
|
You Q, Liao M, Feng H, Huang J. Microwave-assisted decarboxylative reactions: advanced strategies for sustainable organic synthesis. Org Biomol Chem 2022; 20:8569-8583. [DOI: 10.1039/d2ob01677j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent advances in the microwave-assisted decarboxylative reactions of carboxylic acids and their derivatives, including transition-metal-catalyzed and metal-free approaches, are summarized.
Collapse
Affiliation(s)
- Qingqing You
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
- China State Institute of Pharmaceutical Industry, Shanghai Institute of Pharmaceutical Industry, State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai 201203, China
| | - Mingjie Liao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
- China State Institute of Pharmaceutical Industry, Shanghai Institute of Pharmaceutical Industry, State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai 201203, China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Junhai Huang
- China State Institute of Pharmaceutical Industry, Shanghai Institute of Pharmaceutical Industry, State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai 201203, China
| |
Collapse
|
35
|
Papadopoulou E, Zavadlav J, Podgornik R, Praprotnik M, Koumoutsakos P. Tuning the Dielectric Response of Water in Nanoconfinement through Surface Wettability. ACS NANO 2021; 15:20311-20318. [PMID: 34813279 DOI: 10.1021/acsnano.1c08512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The tunable polarity of water can be exploited in emerging technologies including catalysis, gas storage, and green chemistry. Recent experimental and theoretical studies have shown that water can be rendered into an effectively apolar solvent under nanoconfinement. We furthermore demonstrate, through molecular simulations, that the static dielectric constant of water can be modified by changing the wettability of the confining material. We find the out-of-plane dielectric response to be highly sensitive to the level of confinement and can be reduced up to 40× , in accordance with experimental data. By altering the surface wettability from superhydrophilic to superhydrophobic, we observe a 36% increase for the out-of-plane and a 31% decrease for the in-plane dielectric constants. Our findings demonstrate the feasibility of tunable water polarity, a phenomenon with great potential for scientific and technological impact.
Collapse
Affiliation(s)
- Ermioni Papadopoulou
- Computational Science and Engineering Laboratory, ETH-Zurich, Clausiusstrasse 33, CH-8092 Zurich, Switzerland
| | - Julija Zavadlav
- Professorship of Multiscale Modeling of Fluid Materials, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstrasse 15, DE-85748 Garching near Munich, Germany
| | - Rudolf Podgornik
- School of Physical Sciences and Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Wenzhou Institute of the University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Matej Praprotnik
- Laboratory for Molecular Modeling, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia
| | - Petros Koumoutsakos
- Computational Science and Engineering Laboratory, ETH-Zurich, Clausiusstrasse 33, CH-8092 Zurich, Switzerland
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
36
|
Haris NIN, Sobri S, Yusof YA, Kassim NK. Innovative Method for Longer Effective Corrosion Inhibition Time: Controlled Release Oil Palm Empty Fruit Bunch Hemicellulose Inhibitor Tablet. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5657. [PMID: 34640054 PMCID: PMC8510072 DOI: 10.3390/ma14195657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023]
Abstract
This study aims to develop a controlled release oil palm empty fruit bunch hemicellulose (EFB-H) inhibitor tablet for mild steel in 1 M HCl. As plant extracts tend to deteriorate at longer immersion time, limiting its industrial applicability, we attempted to lengthen the inhibition time by forming a controlled release inhibitor tablet. Electrochemical methods (potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS)) were employed to investigate the efficiency and mechanism of the inhibition. An optimum dosage and immersion time was determined via Response Surface Methodology (RSM). EFB-H tablet was formulated using D-optimal mixture design, and its anticorrosion action at extended immersion time was compared with EFB-H powder. PDP measurement revealed that EFB-H is a mixed type inhibitor. RSM optimization unveiled that the optimum point for a maximum inhibition efficiency (87.11%) was at 0.33 g of EFB-H and 120 h of immersion time. Tablet T3 with EFB-H to gum Arabic to hydroxypropyl methylcellulose ratio of 66:0:34 portrayed the best tensile strength (0.243 MPa), disintegration time (152 min) and dissolution behavior. EFB-H tablet exhibited a longer-lasting inhibition effect than powder, which was 360 h as compared to 120 h for powder. Overall, EFB-H tablet has been successfully developed, and its enhanced effective inhibition time has been experimentally proven.
Collapse
Affiliation(s)
| | - Shafreeza Sobri
- Institute of Advanced Technology, Universiti Putra Malaysia, Selangor 43400, Malaysia;
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Selangor 43400, Malaysia
| | - Yus Aniza Yusof
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Selangor 43400, Malaysia;
| | - Nur Kartinee Kassim
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Selangor 43400, Malaysia;
| |
Collapse
|
37
|
Muñoz-Santiburcio D, Marx D. Confinement-Controlled Aqueous Chemistry within Nanometric Slit Pores. Chem Rev 2021; 121:6293-6320. [PMID: 34006106 DOI: 10.1021/acs.chemrev.0c01292] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this Focus Review, we put the spotlight on very recent insights into the fascinating world of wet chemistry in the realm offered by nanoconfinement of water in mechanically rather rigid and chemically inert planar slit pores wherein only monolayer and bilayer water lamellae can be hosted. We review the effect of confinement on different aspects such as hydrogen bonding, ion diffusion, and charge defect migration of H+(aq) and OH-(aq) in nanoconfined water depending on slit pore width. A particular focus is put on the strongly modulated local dielectric properties as quantified in terms of anisotropic polarization fluctuations across such extremely confined water films and their putative effects on chemical reactions therein. The stunning findings disclosed only recently extend wet chemistry in particular and solvation science in general toward extreme molecular confinement conditions.
Collapse
Affiliation(s)
- Daniel Muñoz-Santiburcio
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.,CIC nanoGUNE BRTA, Tolosa Hiribidea 76, 20018 San Sebastián, Spain
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
38
|
Uhlig MR, Benaglia S, Thakkar R, Comer J, Garcia R. Atomically resolved interfacial water structures on crystalline hydrophilic and hydrophobic surfaces. NANOSCALE 2021; 13:5275-5283. [PMID: 33624666 DOI: 10.1039/d1nr00351h] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Hydration layers are formed on hydrophilic crystalline surfaces immersed in water. Their existence has also been predicted for hydrophobic surfaces, yet the experimental evidence is controversial. Using 3D-AFM imaging, we probed the interfacial water structure of hydrophobic and hydrophilic surfaces with atomic-scale spatial resolution. We demonstrate that the atomic-scale structure of interfacial water on crystalline surfaces presents two antagonistic arrangements. On mica, a common hydrophilic crystalline surface, the interface is characterized by the formation of 2 to 3 hydration layers separated by approximately 0.3 nm. On hydrophobic surfaces such as graphite or hexagonal boron nitride (h-BN), the interface is characterized by the formation of 2 to 4 layers separated by about 0.5 nm. The latter interlayer distance indicates that water molecules are expelled from the vicinity of the surface and replaced by hydrocarbon molecules. This creates a new 1.5-2 nm thick interface between the hydrophobic surface and the bulk water. Molecular dynamics simulations reproduced the experimental data and confirmed the above interfacial water structures.
Collapse
Affiliation(s)
- Manuel R Uhlig
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| | - Simone Benaglia
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| | - Ravindra Thakkar
- Nanotechnology Innovation Center of Kansas State, Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Jeffrey Comer
- Nanotechnology Innovation Center of Kansas State, Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| |
Collapse
|
39
|
Senanayake HS, Greathouse JA, Ilgen AG, Thompson WH. Simulations of the IR and Raman spectra of water confined in amorphous silica slit pores. J Chem Phys 2021; 154:104503. [PMID: 33722003 DOI: 10.1063/5.0040739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Water in nano-scale confining environments is a key element in many biological, material, and geological systems. The structure and dynamics of the liquid can be dramatically modified under these conditions. Probing these changes can be challenging, but vibrational spectroscopy has emerged as a powerful tool for investigating their behavior. A critical, evolving component of this approach is a detailed understanding of the connection between spectroscopic features and molecular-level details. In this paper, this issue is addressed by using molecular dynamics simulations to simulate the linear infrared (IR) and Raman spectra for isotopically dilute HOD in D2O confined in hydroxylated amorphous silica slit pores. The effect of slit-pore width and hydroxyl density on the silica surface on the vibrational spectra is also investigated. The primary effect of confinement is a blueshift in the frequency of OH groups donating a hydrogen bond to the silica surface. This appears as a slight shift in the total (measurable) spectra but is clearly seen in the distance-based IR and Raman spectra. Analysis indicates that these changes upon confinement are associated with the weaker hydrogen-bond accepting properties of silica oxygens compared to water molecules.
Collapse
Affiliation(s)
| | - Jeffery A Greathouse
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Anastasia G Ilgen
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Ward H Thompson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
40
|
Hybridized Nanogenerators for Multifunctional Self-Powered Sensing: Principles, Prototypes, and Perspectives. iScience 2020; 23:101813. [PMID: 33305177 PMCID: PMC7708823 DOI: 10.1016/j.isci.2020.101813] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sensors are a key component of the Internet of Things (IoTs) to collect information of environments or objects. Considering the tremendous number and complex working conditions of sensors, multifunction and self-powered feathers are two basic requirements. Nanogenerators are a kind of devices based on the triboelectric, piezoelectric, or pyroelectric effects to harvest ambient energy and then converting to electricity. The hybridized nanogenerators that combined multiple effects in one device have great potential in multifunctional self-powered sensors because of the unique superiority such as generating electrical signals directly, responding to diverse stimuli, etc. This review aims at introducing the latest advancements of hybridized nanogenerators for multifunctional self-powered sensing. Firstly, the principles and sensor prototypes based on TENG are summarized. To avoid signal interference and energy insufficiently, the multifunctional self-powered sensors based on hybridized nanogenerators are reviewed. At last, the challenges and future development of multifunctional self-powered sensors have prospected.
Collapse
|
41
|
Osta O, Bombled M, Partouche D, Gallier F, Lubin-Germain N, Brodie-Linder N, Alba-Simionesco C. Direct Synthesis of Mesoporous Organosilica and Proof-of-Concept Applications in Lysozyme Adsorption and Supported Catalysis. ACS OMEGA 2020; 5:18842-18848. [PMID: 32775886 PMCID: PMC7408230 DOI: 10.1021/acsomega.0c01996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Mesoporous materials represent a useful alternative for exploiting the effects of confinement on molecular trapping and catalysis. Their efficiency often depends on the interactions between the surface and the targeted molecules. One way to enhance these interactions is to adjust the hydrophobic/hydrophilic balance of the surface. In the case of mesoporous silica, the incorporation of organic groups is an efficient solution to adapt the material for specific applications. In this work, we have used the co-condensation method to control the hydrophobicity of mesoporous organosilica. The obtained materials are methyl- or phenyl-containing silica with a pore size between 3 and 5 nm. The surface chemistry control has shown the enhanced performance of the materials in two proof-of-concept (PoC) applications: lysozyme adsorption and supported catalysis. The lysozyme adsorption is observed to be over 3 times more efficient with the phenyl-functionalized material than MCM-41, due to π-π interactions. For the catalysis, copper(II) was immobilized on the organosilica surface. In this case, the presence of methyl groups significantly enhanced the product yield for the catalyzed synthesis of a triazole derivative; this was attributed to the enhanced hydrophobic surface-reactant interactions. It was also found that the materials have a higher water adsorption capacity and an improved resistance to hydrolysis. The modulation of water properties in confinement with hydrophobic surfaces, consistently with the water as tuneable solvent (WaTuSo) concept, is a crucial aspect in the efficiency of mesoporous materials for dedicated applications.
Collapse
Affiliation(s)
- Oriana Osta
- Université
Paris-Saclay, CEA, CNRS, LLB, 91191 Gif-sur-Yvette, France
| | - Marianne Bombled
- Université
Paris-Saclay, CEA, CNRS, LLB, 91191 Gif-sur-Yvette, France
| | - David Partouche
- Université
Paris-Saclay, CEA, CNRS, LLB, 91191 Gif-sur-Yvette, France
- Université
Paris-Saclay, Synchrotron Soleil, 91190 Saint-Aubin, France
| | - Florian Gallier
- CY
Cergy Paris Université, CNRS, BioCIS, 95000 Cergy-Pontoise, France
- Université
Paris-Saclay, CNRS, BioCIS, 91190 Châtenay-Malabry, France
| | - Nadège Lubin-Germain
- CY
Cergy Paris Université, CNRS, BioCIS, 95000 Cergy-Pontoise, France
- Université
Paris-Saclay, CNRS, BioCIS, 91190 Châtenay-Malabry, France
| | - Nancy Brodie-Linder
- Université
Paris-Saclay, CEA, CNRS, LLB, 91191 Gif-sur-Yvette, France
- CY
Cergy Paris Université, CNRS, BioCIS, 95000 Cergy-Pontoise, France
- Université
Paris-Saclay, CNRS, BioCIS, 91190 Châtenay-Malabry, France
| | | |
Collapse
|