1
|
Du Nguyen D, Shuklin F, Barulina E, Albitskaya H, Novikov S, Chernov AI, Kim I, Barulin A. Recent advances in dynamic single-molecule analysis platforms for diagnostics: Advantages over bulk assays and miniaturization approaches. Biosens Bioelectron 2025; 278:117361. [PMID: 40117897 DOI: 10.1016/j.bios.2025.117361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/23/2025]
Abstract
Single-molecule science is a unique technique for unraveling molecular biophysical processes. Sensitivity to single molecules provides the capacity for the early diagnosis of low biomarker amounts. Furthermore, the miniaturization of instruments for portable diagnostic tools toward point-of-care testing (POCT) is a crucial development in this field. Herein, we discuss recent developments in single-molecule sensing platforms and their advantages for diagnostics over bulk measurements including molecular size measurements, interaction dynamics, and fast biomarker sensing and sequencing at low concentrations. We highlight the capabilities of dynamic optical and electrical sensing platforms for single-biomolecule and single-vesicle monitoring associated with neurodegenerative disorders, viral diseases, cancers, and more. Current approaches to instrument miniaturization have brought technology closer to portable diagnostics settings via smartphone-based devices, multifunctional portable microscopes, handheld electrical circuit devices, and remote single-molecule assays. Finally, we provide an overview of the clinical applications of single-molecule sensors in POCT assays. Altogether, single-molecule analyses platforms exhibit significant potential for the development of novel portable healthcare devices.
Collapse
Affiliation(s)
- Dang Du Nguyen
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Fedor Shuklin
- Moscow Center for Advanced Studies, Kulakova str. 20, Moscow, 123592, Russia
| | - Elena Barulina
- Moscow Center for Advanced Studies, Kulakova str. 20, Moscow, 123592, Russia; Russian Quantum Center, Moscow, 121205, Russia
| | - Hristina Albitskaya
- Moscow Center for Advanced Studies, Kulakova str. 20, Moscow, 123592, Russia
| | - Sergey Novikov
- Moscow Center for Advanced Studies, Kulakova str. 20, Moscow, 123592, Russia
| | - Alexander I Chernov
- Russian Quantum Center, Moscow, 121205, Russia; Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia.
| | - Inki Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of MetaBioHealth, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Aleksandr Barulin
- Moscow Center for Advanced Studies, Kulakova str. 20, Moscow, 123592, Russia.
| |
Collapse
|
2
|
Ding L, Liu B, Peil A, Fan S, Chao J, Liu N. DNA‑Directed Assembly of Photonic Nanomaterials for Diagnostic and Therapeutic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2500086. [PMID: 40103431 DOI: 10.1002/adma.202500086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/07/2025] [Indexed: 03/20/2025]
Abstract
DNA-directed assembly has emerged as a versatile and powerful approach for constructing complex structured materials. By leveraging the programmability of DNA nanotechnology, highly organized photonic systems can be developed to optimize light-matter interactions for improved diagnostics and therapeutic outcomes. These systems enable precise spatial arrangement of photonic components, minimizing material usage, and simplifying fabrication processes. DNA nanostructures, such as DNA origami, provide a robust platform for building multifunctional photonic devices with tailored optical properties. This review highlights recent progress in DNA-directed assembly of photonic nanomaterials, focusing on their applications in diagnostics and therapeutics. It provides an overview of the latest advancements in the field, discussing the principles of DNA-directed assembly, strategies for functionalizing photonic building blocks, innovations in assembly design, and the resulting optical effects that drive these developments. The review also explores how these photonic architectures contribute to diagnostic and therapeutic applications, emphasizing their potential to create efficient and effective photonic systems tailored to specific healthcare needs.
Collapse
Affiliation(s)
- Longjiang Ding
- 2nd Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
| | - Bing Liu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Andreas Peil
- 2nd Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
| | - Sisi Fan
- 2nd Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
| | - Jie Chao
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Na Liu
- 2nd Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
| |
Collapse
|
3
|
Quarshie M, Golubewa L, Giraulo C, Morello S, Cirillo C, Sarno M, Xu B, Balasubramanian P, Mindarava Y, Tutkus M, Obraztsov A, Jelezko F, Kuzhir P, Malykhin S. Diamond nanoneedles for biosensing. NANOTECHNOLOGY 2025; 36:165501. [PMID: 39983237 DOI: 10.1088/1361-6528/adb8f4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 02/21/2025] [Indexed: 02/23/2025]
Abstract
Nanoparticles and nanomaterials are revolutionizing medicine by offering diverse tools for diagnosis and therapy, including devices, contrast agents, drug delivery systems, adjuvants, therapeutics, and theragnostic agents. Realizing full applied potential requires a deep understanding of the interactions of nano dimensional objects with biological cells. In this study, we investigate interaction of single-crystal diamond nanoneedles (SCDNNs) containing silicon vacancy (SiV-) color centers with biological substances. Four batches of the diamond needles with sizes ranging between 200 nm and 1300 nm and their water suspensions were used in these studies. The human lung fibroblast cells were used for the proof-of-concept demonstration. Employing micro-photoluminescence (PL) mapping, confocal microscopy, and lactate dehydrogenase (LDH) viability tests, we evaluated the cellular response to the SCDNNs. Intriguingly, our investigation with PL spectroscopy revealed that the cells and SCDNNs can coexist together with approved efficient registration of SiV-centers presence. Notably, LDH release remained minimal in cells exposed to optimally sized SCDNNs, suggesting a small number of lysed cells, and indicating non-cytotoxicity in concentrations of 2-32µg ml-1. The evidence obtained highlights the potential of SCDNNs for extra- or/and intracellular drug delivery when the surface of the needle is modified. In addition, fluorescent defects in the SCDNNs can be used for bioimaging as well as optical and quantum sensing.
Collapse
Affiliation(s)
- Mariam Quarshie
- Department of Physics and Mathematics, University of Eastern Finland, Joensuu, Finland
| | - Lena Golubewa
- State Research Institute Centre for Physical Sciences and Technology, Vilnius, Lithuania
- Institute for Chemical Physics, Vilnius University, Vilnius, Lithuania
| | - Caterina Giraulo
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | - Claudia Cirillo
- Department of Physics 'E.R. Caianiello', and NANO MATES Research Centre, University of Salerno, Fisciano, SA, Italy
| | - Maria Sarno
- Department of Physics 'E.R. Caianiello', and NANO MATES Research Centre, University of Salerno, Fisciano, SA, Italy
| | - Bo Xu
- Department of Physics and Mathematics, University of Eastern Finland, Joensuu, Finland
| | | | - Yuliya Mindarava
- Institute for Quantum Optics & IQST, Ulm University, Ulm, Germany
| | - Marijonas Tutkus
- State Research Institute Centre for Physical Sciences and Technology, Vilnius, Lithuania
- MB Platformina, Vilnius, Lithuania
- Institute of Biotechnology, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | - Alexander Obraztsov
- Department of Physics and Mathematics, University of Eastern Finland, Joensuu, Finland
| | - Fedor Jelezko
- Institute for Quantum Optics & IQST, Ulm University, Ulm, Germany
| | - Polina Kuzhir
- Department of Physics and Mathematics, University of Eastern Finland, Joensuu, Finland
| | - Sergei Malykhin
- Department of Physics and Mathematics, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
4
|
Wang M, Xiao C, Zhao F, Suo Z, Liu Y, Wei M, Jin B. A label-free electrochemical sensor based on π-structured bipedal DNA walker-triggered hybridization chain reaction and AuPt NPs/Zr-MOF for OTA detection. Anal Chim Acta 2025; 1334:343424. [PMID: 39638468 DOI: 10.1016/j.aca.2024.343424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/31/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Ochratoxin A (OTA) is a serious food contaminant, not easily degradable, and capable of causing irreversible damage to the human body. Therefore, it is of great practical significance to establish a sensitive and efficient OTA detection method. The electrochemical aptasensor has a broad development prospect in OTA detection with its advantages of fast response speed and low cost. RESULTS Herein, a cascade signal amplification strategy based on AuPt NPs/Zr-MOF and π-structure bipedal DNA walker-triggered hybridization chain reaction (HCR) was designed for the detection of ochratoxin A (OTA). AuPt NPs/Zr-MOF was employed as the electrode modification material, providing a large number of active sites and high conductivity, achieving 1.47 times signal amplification. Interestingly, bipedal DNA walker binds to hairpin 1 (H1) to form the π-structure. Under the activation of Pb2+, one bipedal DNA walker can simultaneously bind and cleave two H1. It exhibits a wide walking range and high recognition efficiency. After H1 is cleaved, the trigger sequence was exposed to trigger HCR and a large amount of methylene blue was loaded on the electrode. Under the optimal conditions, the linear range of the determined OTA is 1 × 10-3-500 ng/mL, and the limit of detection is as low as 0.525 pg/mL. SIGNIFICANCE The experimental results demonstrate that the constructed electrochemical aptasensor is a sensitive and efficient platform for OTA monitoring. The applicability in food samples was also confirmed, and the strategy was efficiently selective and reproducible for different analytes. This provides ideas for subsequent food safety testing.
Collapse
Affiliation(s)
- Mengyao Wang
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Chengui Xiao
- Food Inspection and Quarantine Technology Center of Shenzhen Customs, Shenzhen Academy of Inspection and Quarantine, Shenzhen, 518045, PR China
| | - Fengjuan Zhao
- Food Inspection and Quarantine Technology Center of Shenzhen Customs, Shenzhen Academy of Inspection and Quarantine, Shenzhen, 518045, PR China
| | - Zhiguang Suo
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Yong Liu
- School of Energy Science and Technology, Henan University, Kaifeng, 475004, PR China
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, PR China.
| | - Baohui Jin
- Food Inspection and Quarantine Technology Center of Shenzhen Customs, Shenzhen Academy of Inspection and Quarantine, Shenzhen, 518045, PR China.
| |
Collapse
|
5
|
Wu Q, Xu W, Shang J, Li J, Liu X, Wang F, Li J. Autocatalytic DNA circuitries. Chem Soc Rev 2024; 53:10878-10899. [PMID: 39400237 DOI: 10.1039/d4cs00046c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Autocatalysis, a self-sustained replication process where at least one of the products functions as a catalyst, plays a pivotal role in life's evolution, from genome duplication to the emergence of autocatalytic subnetworks in cell division and metabolism. Leveraging their programmability, controllability, and rich functionalities, DNA molecules have become a cornerstone for engineering autocatalytic circuits, driving diverse technological applications. In this tutorial review, we offer a comprehensive survey of recent advances in engineering autocatalytic DNA circuits and their practical implementations. We delve into the fundamental principles underlying the construction of these circuits, highlighting their reliance on DNAzyme biocatalysis, enzymatic catalysis, and dynamic hybridization assembly. The discussed autocatalytic DNA circuitry techniques have revolutionized ultrasensitive sensing of biologically significant molecules, encompassing genomic DNAs, RNAs, viruses, and proteins. Furthermore, the amplicons produced by these circuits serve as building blocks for higher-order DNA nanostructures, facilitating biomimetic behaviors such as high-performance intracellular bioimaging and precise algorithmic assembly. We summarize these applications and extensively address the current challenges, potential solutions, and future trajectories of autocatalytic DNA circuits. This review promises novel insights into the advancement and practical utilization of autocatalytic DNA circuits across bioanalysis, biomedicine, and biomimetics.
Collapse
Affiliation(s)
- Qiong Wu
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Wei Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jinhua Shang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Jiajing Li
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xiaoqing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Fuan Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Jinghong Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
- Beijing Institute of Life Science and Technology, Beijing 102206, China
| |
Collapse
|
6
|
Islas P, Platnich CM, Gidi Y, Karimi R, Ginot L, Saliba D, Luo X, Cosa G, Sleiman HF. Automated Synthesis of DNA Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403477. [PMID: 39049795 DOI: 10.1002/adma.202403477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/10/2024] [Indexed: 07/27/2024]
Abstract
DNA nanotechnology has revolutionized the ability to position matter at the nanoscale, but the preparation of DNA-based architectures remains laborious. To facilitate the formation of custom structures, a fully automated method is reported to produce sequence- and size-defined DNA nanotubes. By programming the sequential addition of desired building blocks, rigid DX-tile-based DNA nanotubes and flexible wireframe DNA structures are attained, where the total number of possible constructs increases as a power function of the number of different units available. Using single-molecule fluorescence imaging, the kinetics and yield of each synthetic step can be quantitatively determined, revealing differences in self-assembly dynamics as the nanotube is built up from the solid support and providing new insights into DNA self-assembly. The exploitation of automation for both assembly and analysis (through an ad-hoc developed K-means clustering algorithm) facilitates a workflow wherein the synthesis parameters may be iteratively improved upon, demonstrating how a single-molecule "assembly-analysis-optimization" sequence can be used to generate complex, noncovalent materials in good yield. The presented synthetic strategy is generalizable, making use of equipment already available in most standard laboratories and represents the first fully automated supramolecular assembly on a solid support.
Collapse
Affiliation(s)
- Patricia Islas
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Casey M Platnich
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Yasser Gidi
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Ryan Karimi
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Lorianne Ginot
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Daniel Saliba
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Xin Luo
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Gonzalo Cosa
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Hanadi F Sleiman
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| |
Collapse
|
7
|
Zhang J, Li H, Zhou X, Hu Q, Chen J, Tang L, Yang X, Gao J, Liu B, Zhang Y, Zhao G, Dong S, Zhang S. Adhesive Zwitterionic Poly(ionic liquid) with Unprecedented Organic Solvent Resistance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403039. [PMID: 38805574 DOI: 10.1002/adma.202403039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Indexed: 05/30/2024]
Abstract
The resistance of adhesives to organic solvents is of paramount importance in diverse industries. Unfortunately, many currently available adhesives exhibit either weak intermolecular chain interactions, resulting in insufficient resistance to organic solvents, or possess a permanent covalent crosslinked network, impeding recyclability. This study introduces an innovative approach to address this challenge by formulating zwitterionic poly(ionic liquid) (ZPIL) derivatives with robust dipole-dipole interactions, incorporating sulfonic anions and imidazolium cations. Due to its unique dynamic and electrostatic self-crosslinking structure, the ZPIL exhibits significant adhesion to various substrates and demonstrates excellent recyclability even after multiple adhesion tests. Significantly, ZPIL exhibits exceptional adhesion stability across diverse nonpolar and polar organic solvents, including ionic liquids, distinguishing itself from nonionic polymers and conventional poly(ionic liquid)s. Its adhesive performance remains minimally affected even after prolonged exposure to soaking conditions. The study presents a promising solution for the design of highly organic solvent-resistant materials for plastics, coatings, and adhesives.
Collapse
Affiliation(s)
- Jun Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Hui Li
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Xuan Zhou
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Qinyu Hu
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Jiayin Chen
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Liang Tang
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Xiaoqing Yang
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Jie Gao
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Bei Liu
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Yan Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Gai Zhao
- State Key Laboratory of Mechanics and Control of Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Shiguo Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| |
Collapse
|
8
|
Yousefi A, Zheng Z, Zargarbashi S, Assadipapari M, Hickman GJ, Parmenter CD, Bueno-Alejo CJ, Sanderson G, Craske D, Xu L, Perry CC, Rahmani M, Ying C. Structural Flexibility and Disassembly Kinetics of Single Ferritin Molecules Using Optical Nanotweezers. ACS NANO 2024; 18:15617-15626. [PMID: 38850556 PMCID: PMC11191739 DOI: 10.1021/acsnano.4c01221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Ferritin, a spherical protein shell assembled from 24 subunits, functions as an efficient iron storage and release system through its channels. Understanding how various chemicals affect the structural behavior of ferritin is crucial for unravelling the origins of iron-related diseases in living organisms including humans. In particular, the influence of chemicals on ferritin's dynamics and iron release is barely explored at the single-protein level. Here, by employing optical nanotweezers using double-nanohole (DNH) structures, we examined the effect of ascorbic acid (reducing reagent) and pH on individual ferritin's conformational dynamics. The dynamics of ferritin increased as the concentration of ascorbic acid approached saturation. At pH 2.0, ferritin exhibited significant structural fluctuations and eventually underwent a stepwise disassembly into fragments. This work demonstrated the disassembly pathway and kinetics of a single ferritin molecule in solution. We identified four critical fragments during its disassembly pathway, which are 22-mer, 12-mer, tetramer, and dimer subunits. Moreover, we present single-molecule evidence of the cooperative disassembly of ferritin. Interrogating ferritin's structural change in response to different chemicals holds importance for understanding their roles in iron metabolism, hence facilitating further development of medical treatments for its associated diseases.
Collapse
Affiliation(s)
- Arman Yousefi
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118NS, United
Kingdom
| | - Ze Zheng
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118NS, United
Kingdom
| | - Saaman Zargarbashi
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118NS, United
Kingdom
| | - Mahya Assadipapari
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118NS, United
Kingdom
| | - Graham J. Hickman
- School
of Science and Technology, Nottingham Trent
University, Nottingham NG11 8NS, United Kingdom
| | | | - Carlos J. Bueno-Alejo
- School
of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Gabriel Sanderson
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118NS, United
Kingdom
| | - Dominic Craske
- School
of Science and Technology, Nottingham Trent
University, Nottingham NG11 8NS, United Kingdom
| | - Lei Xu
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118NS, United
Kingdom
| | - Carole C. Perry
- Interdisciplinary
Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| | - Mohsen Rahmani
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118NS, United
Kingdom
| | - Cuifeng Ying
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118NS, United
Kingdom
| |
Collapse
|
9
|
Platnich CM, Earle MK, Keyser UF. Chemical Annealing Restructures RNA for Nanopore Detection. J Am Chem Soc 2024; 146:12919-12924. [PMID: 38691627 PMCID: PMC11099964 DOI: 10.1021/jacs.4c03753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024]
Abstract
RNA is a key biochemical marker, yet its chemical instability and complex secondary structure hamper its integration into DNA nanotechnology-based sensing platforms. Relying on the denaturation of the native RNA structure using urea, we show that restructured DNA/RNA hybrids can readily be prepared at room temperature. Using solid-state nanopore sensing, we demonstrate that the structures of our DNA/RNA hybrids conform to the design at the single-molecule level. Employing this chemical annealing procedure, we mitigate RNA self-cleavage, enabling the direct detection of restructured RNA molecules for biosensing applications.
Collapse
Affiliation(s)
- Casey M. Platnich
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Max K. Earle
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Ulrich F. Keyser
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
10
|
Wang Y, Cao LP, Shuai XJ, Liu L, Huang CZ, Li CM. DNA Nanospheres Assisted Spatial Confinement Signal Amplification for MicroRNA Imaging in Live Cancer Cells. Anal Chem 2024; 96:4597-4604. [PMID: 38456210 DOI: 10.1021/acs.analchem.3c05554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
DNA assemblies are commonly used in biosensing, particularly for the detection and imaging of microRNAs (miRNAs), which are biomarkers associated with tumor progression. However, the difficulty lies in the exploration of high-sensitivity analytical techniques for miRNA due to its limited presence in living cells. In this study, we introduced a DNA nanosphere (DS) enhanced catalytic hairpin assembly (CHA) system for the detection and imaging of intracellular miR-21. The single-stranded DNA with four palindromic portions and extending sequences at the terminal was annealed for assembling DS, which avoided the complex sequence design and high cost of long DNA strands. Benefiting from the multiple modification sites of DS, functional hairpins H1 (modified with Cy3 and BHQ2) and H2 were grafted onto the surface of DS for assembling DS-H1-H2 using a hybridization reaction. The DS-H1-H2 system utilized spatial confinement and the CHA reaction to amplify fluorescence signals of Cy3. This enabled highly sensitive and rapid detection of miR-21 in the range from 0.05 to 3.5 nM. The system achieved a limit of determination (LOD) of 2.0 pM, which was 56 times lower than that of the control CHA circuit with freedom hairpins. Additionally, the sensitivity was improved by 8 times. Moreover, DS-H1-H2 also showed an excellent imaging capability for endogenous miR-21 in tumor cells. This was due to enhanced cell internalization efficiency, accelerated reaction kinetics, and improved biostability. The imaging strategy was shown to effectively monitor the dynamic content of miR-21 in live cancer cells and differentiate various cells. In general, the simple nanostructure DS not only enhanced the detection and imaging capability of the conventional probe but also could be easily integrated with the reported DNA-free probe, indicating a wide range of potential applications.
Collapse
Affiliation(s)
- Yao Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Li Ping Cao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xin Jia Shuai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lin Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Chun Mei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
11
|
Gao Q, Zang P, Li J, Zhang W, Zhang Z, Li C, Yao J, Li C, Yang Q, Li S, Guo Z, Zhou L. Revealing the Binding Events of Single Proteins on Exosomes Using Nanocavity Antennas beyond Zero-Mode Waveguides. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49511-49526. [PMID: 37812455 DOI: 10.1021/acsami.3c11077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Exosomes (EXOs) play a crucial role in biological action mechanisms. Understanding the biological process of single-molecule interactions on the surface of the EXO membrane is essential for elucidating the precise function of the EXO receptor. However, due to dimensional incompatibility, monitoring the binding events between EXOs of tens to hundreds of nanometers and biomolecules of nanometers using existing nanostructure antennas is difficult. Unlike the typical zero-mode waveguides (ZMWs), this work presents a nanocavity antenna (λvNAs) formed by nanocavities with diameters close to the visible light wavelength dimensions. Effective excitation volumes suitable for observing single-molecule fluorescence were generated in nanocavities of larger diameters than typical ZMWs; the optimal signal-to-noise ratio obtained was 19.5 when the diameter was 300 nm and the incident angle was ∼50°. EXOs with a size of 50-150 nm were loaded into λvNAs with an optimized diameter of 300-500 nm, resulting in appreciable occupancy rates that overcame the nanocavity size limitation for large-volume biomaterial loading. Additionally, this method identified the binding events between the single transmembrane CD9 proteins on the EXO surface and their monoclonal antibody anti-CD9, demonstrating that λvNAs expanded the application range beyond subwavelength ZMWs. Furthermore, the λvNAs provide a platform for obtaining in-depth knowledge of the interactions of single molecules with biomaterials ranging in size from tens to hundreds of nanometers.
Collapse
Affiliation(s)
- Qingxue Gao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Peilin Zang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Jinze Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Wei Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
- Suzhou CASENS Co., Ltd, 215163 Suzhou, China
| | - Zhiqi Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
- Suzhou CASENS Co., Ltd, 215163 Suzhou, China
| | - Chao Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Jia Yao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Chuanyu Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Qi Yang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Shuli Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Zhen Guo
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Lianqun Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
- Suzhou CASENS Co., Ltd, 215163 Suzhou, China
| |
Collapse
|
12
|
Liu Y, Zhang X, Zhang X, Liu X, Wang B, Zhang Q, Wei X. Temporal logic circuits implementation using a dual cross-inhibition mechanism based on DNA strand displacement. RSC Adv 2023; 13:27125-27134. [PMID: 37701285 PMCID: PMC10493850 DOI: 10.1039/d3ra03995a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
Molecular circuits crafted from DNA molecules harness the inherent programmability and biocompatibility of DNA to intelligently steer molecular machines in the execution of microscopic tasks. In comparison to combinational circuits, DNA-based temporal circuits boast supplementary capabilities, allowing them to proficiently handle the omnipresent temporal information within biochemical systems and life sciences. However, the lack of temporal mechanisms and components proficient in comprehending and processing temporal information presents challenges in advancing DNA circuits that excel in complex tasks requiring temporal control and time perception. In this study, we engineered temporal logic circuits through the design and implementation of a dual cross-inhibition mechanism, which enables the acceptance and processing of temporal information, serving as a fundamental building block for constructing temporal circuits. By incorporating the dual cross-inhibition mechanism, the temporal logic gates are endowed with cascading capabilities, significantly enhancing the inhibitory effect compared to a cross-inhibitor. Furthermore, we have introduced the annihilation mechanism into the circuit to further augment the inhibition effect. As a result, the circuit demonstrates sensitive time response characteristics, leading to a fundamental improvement in circuit performance. This architecture provides a means to efficiently process temporal signals in DNA strand displacement circuits. We anticipate that our findings will contribute to the design of complex temporal logic circuits and the advancement of molecular programming.
Collapse
Affiliation(s)
- Yuan Liu
- School of Computer Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Xiaokang Zhang
- School of Computer Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Xun Zhang
- School of Computer Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Xin Liu
- School of Computer Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University Dalian 116622 China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Xiaopeng Wei
- School of Computer Science and Technology, Dalian University of Technology Dalian 116024 China
| |
Collapse
|
13
|
Zhang Q, Gao L, Li F, Bi Y. Sensing and manipulating single lipid vesicles using dynamic DNA nanotechnology. NANOSCALE 2023; 15:5158-5166. [PMID: 36825547 DOI: 10.1039/d2nr07192d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Natural and artificial lipid vesicles have been widely involved in nano-delivery, bio-analysis and diagnosis. For sensing and manipulating single lipid vesicles, dynamic DNA reactions were constructed inside or on the surface of lipid vesicles. In this review, we interpreted various ways of integrating lipid vesicles and dynamic DNA nanotechnology by summarizing the latest reports in bio-analysis and biomimetic cell research.
Collapse
Affiliation(s)
- Qi Zhang
- School of Pharmaceutical Sciences, Shandong First Medical University, Tai'An, Shandong, 271016, P. R. China.
- Key laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Sichuan, 610064, P. R. China.
| | - Lu Gao
- Key laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Sichuan, 610064, P. R. China.
| | - Feng Li
- Key laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Sichuan, 610064, P. R. China.
| | - Yanping Bi
- School of Pharmaceutical Sciences, Shandong First Medical University, Tai'An, Shandong, 271016, P. R. China.
| |
Collapse
|
14
|
Confederat S, Sandei I, Mohanan G, Wälti C, Actis P. Nanopore fingerprinting of supramolecular DNA nanostructures. Biophys J 2022; 121:4882-4891. [PMID: 35986518 PMCID: PMC9808562 DOI: 10.1016/j.bpj.2022.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 01/07/2023] Open
Abstract
DNA nanotechnology has paved the way for new generations of programmable nanomaterials. Utilizing the DNA origami technique, various DNA constructs can be designed, ranging from single tiles to the self-assembly of large-scale, complex, multi-tile arrays. This technique relies on the binding of hundreds of short DNA staple strands to a long single-stranded DNA scaffold that drives the folding of well-defined nanostructures. Such DNA nanostructures have enabled new applications in biosensing, drug delivery, and other multifunctional materials. In this study, we take advantage of the enhanced sensitivity of a solid-state nanopore that employs a poly-ethylene glycol enriched electrolyte to deliver real-time, non-destructive, and label-free fingerprinting of higher-order assemblies of DNA origami nanostructures with single-entity resolution. This approach enables the quantification of the assembly yields for complex DNA origami nanostructures using the nanostructure-induced equivalent charge surplus as a discriminant. We compare the assembly yield of four supramolecular DNA nanostructures obtained with the nanopore with agarose gel electrophoresis and atomic force microscopy imaging. We demonstrate that the nanopore system can provide analytical quantification of the complex supramolecular nanostructures within minutes, without any need for labeling and with single-molecule resolution. We envision that the nanopore detection platform can be applied to a range of nanomaterial designs and enable the analysis and manipulation of large DNA assemblies in real time.
Collapse
Affiliation(s)
- Samuel Confederat
- School of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds, United Kingdom; Bragg Centre for Materials Research, Leeds, United Kingdom
| | - Ilaria Sandei
- School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Gayathri Mohanan
- School of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds, United Kingdom; Bragg Centre for Materials Research, Leeds, United Kingdom
| | - Christoph Wälti
- School of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds, United Kingdom; Bragg Centre for Materials Research, Leeds, United Kingdom.
| | - Paolo Actis
- School of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds, United Kingdom; Bragg Centre for Materials Research, Leeds, United Kingdom.
| |
Collapse
|
15
|
Doricchi A, Platnich CM, Gimpel A, Horn F, Earle M, Lanzavecchia G, Cortajarena AL, Liz-Marzán LM, Liu N, Heckel R, Grass RN, Krahne R, Keyser UF, Garoli D. Emerging Approaches to DNA Data Storage: Challenges and Prospects. ACS NANO 2022; 16:17552-17571. [PMID: 36256971 PMCID: PMC9706676 DOI: 10.1021/acsnano.2c06748] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
With the total amount of worldwide data skyrocketing, the global data storage demand is predicted to grow to 1.75 × 1014 GB by 2025. Traditional storage methods have difficulties keeping pace given that current storage media have a maximum density of 103 GB/mm3. As such, data production will far exceed the capacity of currently available storage methods. The costs of maintaining and transferring data, as well as the limited lifespans and significant data losses associated with current technologies also demand advanced solutions for information storage. Nature offers a powerful alternative through the storage of information that defines living organisms in unique orders of four bases (A, T, C, G) located in molecules called deoxyribonucleic acid (DNA). DNA molecules as information carriers have many advantages over traditional storage media. Their high storage density, potentially low maintenance cost, ease of synthesis, and chemical modification make them an ideal alternative for information storage. To this end, rapid progress has been made over the past decade by exploiting user-defined DNA materials to encode information. In this review, we discuss the most recent advances of DNA-based data storage with a major focus on the challenges that remain in this promising field, including the current intrinsic low speed in data writing and reading and the high cost per byte stored. Alternatively, data storage relying on DNA nanostructures (as opposed to DNA sequence) as well as on other combinations of nanomaterials and biomolecules are proposed with promising technological and economic advantages. In summarizing the advances that have been made and underlining the challenges that remain, we provide a roadmap for the ongoing research in this rapidly growing field, which will enable the development of technological solutions to the global demand for superior storage methodologies.
Collapse
Affiliation(s)
- Andrea Doricchi
- Istituto
Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
- Dipartimento
di Chimica e Chimica Industriale, Università
di Genova, via Dodecaneso
31, 16146 Genova, Italy
| | - Casey M. Platnich
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Andreas Gimpel
- Institute
for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Friederikee Horn
- Technical
University of Munich, Department of Electrical
and Computer Engineering Munchen, Bayern, DE 80333, Germany
| | - Max Earle
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - German Lanzavecchia
- Istituto
Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
- Dipartimento
di Fisica, Università di Genova, via Dodecaneso 33, 16146 Genova, Italy
| | - Aitziber L. Cortajarena
- Center
for Cooperative Research in Biomaterials (CICbiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque
Foundation for Science, 48009 Bilbao, Spain
| | - Luis M. Liz-Marzán
- Center
for Cooperative Research in Biomaterials (CICbiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque
Foundation for Science, 48009 Bilbao, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Av. Monforte de Lemos, 3-5. Pabellón 11.
Planta 0, 28029 Madrid, Spain
| | - Na Liu
- Second
Physics Institute, University of Stuttgart, 70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Reinhard Heckel
- Technical
University of Munich, Department of Electrical
and Computer Engineering Munchen, Bayern, DE 80333, Germany
| | - Robert N. Grass
- Institute
for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Roman Krahne
- Istituto
Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
| | - Ulrich F. Keyser
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Denis Garoli
- Istituto
Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
| |
Collapse
|
16
|
Wang J, Wicher B, Maurizot V, Huc I. Directing the Self-Assembly of Aromatic Foldamer Helices using Acridine Appendages and Metal Coordination. Chemistry 2022; 28:e202201345. [PMID: 35965255 PMCID: PMC9826129 DOI: 10.1002/chem.202201345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Indexed: 01/11/2023]
Abstract
Folded molecules provide complex interaction interfaces amenable to sophisticated self-assembly motifs. Because of their high conformational stability, aromatic foldamers constitute suitable candidates for the rational elaboration of self-assembled architectures. Several multiturn helical aromatic oligoamides have been synthesized that possess arrays of acridine appendages pointing in one or two directions. The acridine units were shown to direct self-assembly in the solid state via aromatic stacking leading to recurrent helix-helix association patterns under the form of discrete dimers or extended arrays. In the presence of Pd(II), metal coordination of the acridine units overwhelms other forces and generates new metal-mediated multihelical self-assemblies, including macrocycles. These observations demonstrate simple access to different types of foldamer-containing architectures, ranging from discrete objects to 1D and, by extension, 2D and 3D arrays.
Collapse
Affiliation(s)
- Jinhua Wang
- CBMN (UMR5248)Univ. Bordeaux – CNRS – IPBInstitut Européen de Chimie et Biologie2 rue Escarpit33600PessacFrance
| | - Barbara Wicher
- Department of Chemical Technology of DrugsPoznan University of Medical SciencesGrunwaldzka 660-780PoznanPoland
| | - Victor Maurizot
- CBMN (UMR5248)Univ. Bordeaux – CNRS – IPBInstitut Européen de Chimie et Biologie2 rue Escarpit33600PessacFrance
| | - Ivan Huc
- CBMN (UMR5248)Univ. Bordeaux – CNRS – IPBInstitut Européen de Chimie et Biologie2 rue Escarpit33600PessacFrance
- Department of PharmacyLudwig-Maximilians-UniversitätButenandtstrasse 5–1381377MünchenGermany
- Cluster of Excellence e-conversion85748GarchingGermany
| |
Collapse
|
17
|
Rahman M, Islam KR, Islam MR, Islam MJ, Kaysir MR, Akter M, Rahman MA, Alam SMM. A Critical Review on the Sensing, Control, and Manipulation of Single Molecules on Optofluidic Devices. MICROMACHINES 2022; 13:968. [PMID: 35744582 PMCID: PMC9229244 DOI: 10.3390/mi13060968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023]
Abstract
Single-molecule techniques have shifted the paradigm of biological measurements from ensemble measurements to probing individual molecules and propelled a rapid revolution in related fields. Compared to ensemble measurements of biomolecules, single-molecule techniques provide a breadth of information with a high spatial and temporal resolution at the molecular level. Usually, optical and electrical methods are two commonly employed methods for probing single molecules, and some platforms even offer the integration of these two methods such as optofluidics. The recent spark in technological advancement and the tremendous leap in fabrication techniques, microfluidics, and integrated optofluidics are paving the way toward low cost, chip-scale, portable, and point-of-care diagnostic and single-molecule analysis tools. This review provides the fundamentals and overview of commonly employed single-molecule methods including optical methods, electrical methods, force-based methods, combinatorial integrated methods, etc. In most single-molecule experiments, the ability to manipulate and exercise precise control over individual molecules plays a vital role, which sometimes defines the capabilities and limits of the operation. This review discusses different manipulation techniques including sorting and trapping individual particles. An insight into the control of single molecules is provided that mainly discusses the recent development of electrical control over single molecules. Overall, this review is designed to provide the fundamentals and recent advancements in different single-molecule techniques and their applications, with a special focus on the detection, manipulation, and control of single molecules on chip-scale devices.
Collapse
Affiliation(s)
- Mahmudur Rahman
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Kazi Rafiqul Islam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Rashedul Islam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Jahirul Islam
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh;
| | - Md. Rejvi Kaysir
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada;
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | - Masuma Akter
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Arifur Rahman
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - S. M. Mahfuz Alam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| |
Collapse
|
18
|
Algar WR, Krause KD. Developing FRET Networks for Sensing. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:17-36. [PMID: 35300526 DOI: 10.1146/annurev-anchem-061020-014925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Förster resonance energy transfer (FRET) is a widely used fluorescence-based sensing mechanism. To date, most implementations of FRET sensors have relied on a discrete donor-acceptor pair for detection of each analytical target. FRET networks are an emerging concept in which target recognition perturbs a set of interconnected FRET pathways between multiple emitters. Here, we review the energy transfer topologies and scaffold materials for FRET networks, propose a general nomenclature, and qualitatively summarize the dynamics of the competitive, sequential, homoFRET, and heteroFRET pathways that constitute FRET networks. Implementations of FRET networks for sensing are also described, including concentric FRET probes, other single-vector multiplexing, and logic gates and switches. Unresolved questions and future research directions for current systems are discussed, as are potential but currently unexplored applications of FRET networks in sensing.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada;
| | - Katherine D Krause
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada;
| |
Collapse
|
19
|
Wu T, Cao Y, Liu Q, Wu X, Shang Y, Piao J, Li Y, Dong Y, Liu D, Wang H, Liu J, Ding B. Genetically Encoded Double-Stranded DNA-Based Nanostructure Folded by a Covalently Bivalent CRISPR/dCas System. J Am Chem Soc 2022; 144:6575-6582. [PMID: 35357193 DOI: 10.1021/jacs.2c01760] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
DNA nanotechnology has been widely employed in the construction of various functional nanostructures. However, most DNA nanostructures rely on hybridization between multiple single-stranded DNAs. Herein, we report a general strategy for the construction of a double-stranded DNA-ribonucleoprotein (RNP) hybrid nanostructure by folding double-stranded DNA with a covalently bivalent clustered regularly interspaced short palindromic repeats (CRISPR)/nuclease-dead CRISPR-associated protein (dCas) system. In our design, dCas9 and dCas12a can be efficiently fused together through a flexible and stimuli-responsive peptide linker. After activation by guide RNAs, the covalently bivalent dCas9-12a RNPs (staples) can precisely recognize their target sequences in the double-stranded DNA scaffold and pull them together to construct a series of double-stranded DNA-RNP hybrid nanostructures. The genetically encoded hybrid nanostructure can protect genetic information in the folded state, similar to the natural DNA-protein hybrids present in chromosomes, and elicit efficient stimuli-responsive gene transcription in the unfolded form. This rationally developed double-stranded DNA folding and unfolding strategy presents a new avenue for the development of DNA nanotechnology.
Collapse
Affiliation(s)
- Tiantian Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Yuanwei Cao
- University of Chinese Academy of Sciences, Beijing 100049, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiaohui Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingxu Shang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiafang Piao
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yujie Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuanchen Dong
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dongsheng Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Haoyi Wang
- University of Chinese Academy of Sciences, Beijing 100049, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Yang F, Lu H, Meng X, Dong H, Zhang X. Shedding Light on DNA-Based Nanoprobes for Live-Cell MicroRNA Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106281. [PMID: 34854567 DOI: 10.1002/smll.202106281] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Indexed: 06/13/2023]
Abstract
DNA-based nanoprobes integrated with various imaging signals have been employed for fabricating versatile biosensor platforms for the study of intracellular biological process and biomarker detection. The nanoprobes developments also provide opportunities for endogenous microRNA (miRNA) in situ analysis. In this review, the authors are primarily interested in various DNA-based nanoprobes for miRNA biosensors and declare strategies to reveal how to customize the desired nanoplatforms. Initially, various delivery vehicles for nanoprobe architectures transmembrane transport are delineated, and their biosecurity and ability for resisting the complex cellular environment are evaluated. Then, the novel strategies for designing DNA sequences as target miRNA specific recognition and signal amplification modules for miRNA detection are presented. Afterward, recent advances in imaging technologies to accurately respond and produce significant signal output are summarized. Finally, the challenges and future directions in the field are discussed.
Collapse
Affiliation(s)
- Fan Yang
- Marshall Laboratory of Biomedical Engineering Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, P. R. China
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, P. R. China
- School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, P. R. China
| | - Huiting Lu
- School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, P. R. China
| | - Xiangdan Meng
- School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, P. R. China
| | - Haifeng Dong
- Marshall Laboratory of Biomedical Engineering Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, P. R. China
- School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, P. R. China
| | - Xueji Zhang
- Marshall Laboratory of Biomedical Engineering Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, P. R. China
| |
Collapse
|
21
|
Zamoskovtseva AA, Golyshev VM, Kizilova VA, Shevelev GY, Pyshnyi DV, Lomzov AA. Pairing nanoarchitectonics of oligodeoxyribonucleotides with complex diversity: concatemers and self-limited complexes. RSC Adv 2022; 12:6416-6431. [PMID: 35424594 PMCID: PMC8981972 DOI: 10.1039/d2ra00155a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/15/2022] [Indexed: 11/21/2022] Open
Abstract
The development of approaches to the design of two- and three-dimensional self-assembled DNA-based nanostructures with a controlled shape and size is an essential task for applied nanotechnology, therapy, biosensing, and bioimaging. We conducted a comprehensive study on the formation of various complexes from a pair of oligonucleotides with two transposed complementary blocks that can be linked through a nucleotide or non-nucleotide linker. A methodology is proposed to prove the formation of a self-limited complex and to determine its molecularity. It is based on the "opening" of a self-limited complex with an oligonucleotide that effectively binds to a duplex-forming block. The complexes assembled from a pair of oligonucleotides with different block length and different linker sizes and types were investigated by theoretical analysis, several experimental methods (a gel shift assay, atomic force microscopy, and ultraviolet melting analysis), and molecular dynamics simulations. The results showed a variety of complexes formed by only a pair of oligonucleotides. Self-limited associates, concatemer complexes, or mixtures thereof can arise if we change the length of a duplex and loop-forming blocks in oligonucleotides or via introduction of overhangs and chemical modifications. We postulated basic principles of rational design of native self-limited DNA complexes of desired structure, shape, and molecularity. Our foundation makes self-limited complexes useful tools for nanotechnology, biological studies, and therapeutics.
Collapse
Affiliation(s)
- Anastasia A Zamoskovtseva
- Institute of Chemical Biology and Fundamental Medicine, SB RAS 8 Lavrentiev Avenue Novosibirsk 630090 Russia
- Moscow Institute of Physics and Technology 9 Institutskiy per., Dolgoprudny 141701 Russia
| | - Victor M Golyshev
- Institute of Chemical Biology and Fundamental Medicine, SB RAS 8 Lavrentiev Avenue Novosibirsk 630090 Russia
| | - Valeria A Kizilova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS 8 Lavrentiev Avenue Novosibirsk 630090 Russia
| | - Georgiy Yu Shevelev
- Institute of Chemical Biology and Fundamental Medicine, SB RAS 8 Lavrentiev Avenue Novosibirsk 630090 Russia
| | - Dmitrii V Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine, SB RAS 8 Lavrentiev Avenue Novosibirsk 630090 Russia
| | - Alexander A Lomzov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS 8 Lavrentiev Avenue Novosibirsk 630090 Russia
| |
Collapse
|
22
|
Tang W, Han L, Duan S, Lu X, Wang Y, Wu X, Liu J, Ding B. An Aptamer-Modified DNA Tetrahedron-Based Nanogel for Combined Chemo/Gene Therapy of Multidrug-Resistant Tumors. ACS APPLIED BIO MATERIALS 2021; 4:7701-7707. [PMID: 35006686 DOI: 10.1021/acsabm.1c00933] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DNA-based nanogels have attracted much attention in the biomedical research field. Herein, we report a universal strategy for the fabrication of an aptamer-modified DNA tetrahedron (TET)-based nanogel for combined chemo/gene therapy of multidrug-resistant tumors. In our design, terminal extended antisense oligonucleotides (ASOs) are employed as the linker to co-assemble with two kinds of three-vertex extended TETs for the efficient construction of the DNA-based nanogel. With the incorporation of an active cell-targeting group (aptamer in one vertex of TET) and a controlled-release element (disulfide bridges in the terminals of ASOs), the functional DNA-based nanogel can achieve targeted cellular internalization and stimuli-responsive release of embedded ASOs. After loading with the chemodrug (doxorubicin (DOX), an intercalator of double-stranded DNA), the multifunctional DOX/Nanogel elicits efficient chemo/gene therapy of human MCF-7 breast tumor cells with DOX resistance (MCF-7R). This aptamer-modified DNA tetrahedron-based nanogel provides another strategy for intelligent drug delivery and combined tumor therapy.
Collapse
Affiliation(s)
- Wantao Tang
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China.,CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Lin Han
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China.,CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Su Duan
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
| | - Xuehe Lu
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China.,CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yuang Wang
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China.,CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiaohui Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoquan Ding
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China.,CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Wu X, Liu Q, Liu F, Wu T, Shang Y, Liu J, Ding B. An RNA/DNA hybrid origami-based nanoplatform for efficient gene therapy. NANOSCALE 2021; 13:12848-12853. [PMID: 34477769 DOI: 10.1039/d1nr00517k] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nucleic acid nanostructures are promising biomaterials for the delivery of homologous gene therapy drugs. Herein, we report a facile strategy for the construction of target mRNA (scaffold) and antisense (staple strands) co-assembled RNA/DNA hybrid "origami" for efficient gene therapy. In our design, the mRNA was folded into a chemically well-defined nanostructure through RNA-DNA hybridization with high yield. After the incorporation of an active cell-targeting aptamer, the tailored RNA/DNA hybrid origami demonstrated efficient cellular uptake and controllable release of antisenses in response to intracellular RNase H digestion. The biocompatible RNA/DNA origami (RDO) elicited a noticeable inhibition of cell proliferation based on the silencing of the tumor-associated gene polo-like kinase 1 (PLK1). This RDO-based nanoplatform provides a novel strategy for the further development of gene therapy.
Collapse
Affiliation(s)
- Xiaohui Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, China.
| | | | | | | | | | | | | |
Collapse
|
24
|
A dissipative pathway for the structural evolution of DNA fibres. Nat Chem 2021; 13:843-849. [PMID: 34373598 DOI: 10.1038/s41557-021-00751-w] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 06/14/2021] [Indexed: 11/08/2022]
Abstract
Biochemical networks interconnect, grow and evolve to express new properties as different chemical pathways are selected during a continuous cycle of energy consumption and transformation. In contrast, synthetic systems that push away from equilibrium usually return to the same self-assembled state, often generating waste that limits system recyclability and prevents the formation of adaptable networks. Here we show that annealing by slow proton dissipation selects for otherwise inaccessible morphologies of fibres built from DNA and cyanuric acid. Using single-molecule fluorescence microscopy, we observe that proton dissipation influences the growth mechanism of supramolecular polymerization, healing gaps within fibres and converting highly branched, interwoven networks into nanocable superstructures. Just as the growth kinetics of natural fibres determine their structural attributes to modulate function, our system of photoacid-enabled depolymerization and repolymerization selects for healed materials to yield organized, robust fibres. Our method provides a chemical route for error-checking, distinct from thermal annealing, that improves the morphologies and properties of supramolecular materials using out-of-equilibrium systems.
Collapse
|
25
|
Sayed M, Krishnamurthy B, Pal H. Unraveling the salt induced modulation in the photophysical behavior of acridine orange dye on its interaction with natural DNA. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
26
|
Li H, Cao Y, Wu T, Zhang Y, Zheng Z, Lv J, Mao A, Zhang Y, Tang Q, Li J. Programmable DNA Circuits for Flexible and Robust Exciton-Plasmon Interaction-Based Photoelectrochemical Biosensing. Anal Chem 2021; 93:11043-11051. [PMID: 34319082 DOI: 10.1021/acs.analchem.1c02488] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA circuits as one of the dynamic nanostructures can be rationally designed and show amazing geometrical complexity and nanoscale accuracy, which are becoming increasingly attractive for DNA entropy-driven amplifier design. Herein, a novel and elegant exciton-plasmon interaction (EPI)-based photoelectrochemical (PEC) biosensor was developed with the assistance of a programmable entropy-driven DNA amplifier and superparamagnetic nanostructures. Low-abundance miRNA-let-7a as a model can efficiently initiate the operation of the entropy-driven DNA amplifier, and the released output DNAs can open the partially hybridized double-stranded DNA anchored on Fe3O4@SiO2 particles. The liberated Au nanoparticles (NPs)-cDNA can completely hybridize with CdSe/ZnS quantum dots (QDs)-cDNA-1 and result in proportionally decreased photocurrent of CdSe/ZnS QDs-cDNA-1. This unique entropy-driven amplification strategy is beneficial for reducing the reversibility of each step reaction, enables the base sequence invariant and the reaction efficiency improvement, and exhibits high thermal stability and specificity as well as flexible design. These features grant the PEC biosensor with ultrasensitivity and high selectivity. Also, instead of solid-liquid interface assembly for conventional EPI-based PEC biosensors, herein, DNA hybridization in the solution phase enables the improved hybridization efficiency and sensitivity. In addition, superparamagnetic Fe3O4@SiO2 particles further ensure the enhancement of the selectivity and reliability of the as-designed PEC biosensor. Particularly, this single-step electrode modification procedure evidently improves the electrode fabrication efficiency, reproducibility, and stability.
Collapse
Affiliation(s)
- Hongbo Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Ye Cao
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Tianyu Wu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Yansong Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Zhaoting Zheng
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Jingchun Lv
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Airong Mao
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Yuye Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Qin Tang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| |
Collapse
|
27
|
Kong G, Xiong M, Liu L, Hu L, Meng HM, Ke G, Zhang XB, Tan W. DNA origami-based protein networks: from basic construction to emerging applications. Chem Soc Rev 2021; 50:1846-1873. [PMID: 33306073 DOI: 10.1039/d0cs00255k] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural living systems are driven by delicate protein networks whose functions are precisely controlled by many parameters, such as number, distance, orientation, and position. Focusing on regulation rather than just imitation, the construction of artificial protein networks is important in many research areas, including biomedicine, synthetic biology and chemical biology. DNA origami, sophisticated nanostructures with rational design, can offer predictable, programmable, and addressable scaffolds for protein assembly with nanometer precision. Recently, many interdisciplinary efforts have achieved the precise construction of DNA origami-based protein networks, and their emerging application in many areas. To inspire more fantastic research and applications, herein we highlight the applicability and potentiality of DNA origami-based protein networks. After a brief introduction to the development and features of DNA origami, some important factors for the precise construction of DNA origami-based protein networks are discussed, including protein-DNA conjugation methods, networks with different patterns and the controllable parameters in the networks. The discussion then focuses on the emerging application of DNA origami-based protein networks in several areas, including enzymatic reaction regulation, sensing, bionics, biophysics, and biomedicine. Finally, current challenges and opportunities in this research field are discussed.
Collapse
Affiliation(s)
- Gezhi Kong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Mengyi Xiong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Lu Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Ling Hu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Hong-Min Meng
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Guoliang Ke
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| |
Collapse
|
28
|
Tang W, Han L, Lu X, Wang Z, Liu F, Li Y, Liu S, Liu S, Tian R, Liu J, Ding B. A Nucleic Acid/Gold Nanorod-Based Nanoplatform for Targeted Gene Editing and Combined Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20974-20981. [PMID: 33909408 DOI: 10.1021/acsami.1c02122] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The CRISPR/Cas9 gene-editing system has become a promising strategy for tumor therapy with its powerful oncogene-editing ability. However, the efficient delivery of sgRNA/Cas9 complex into target tumor cells remains a challenge. Herein, we report a facile strategy for the construction of an sgRNA/Cas9 complex co-assembled nanoplatform for targeted gene editing and combined tumor therapy. In our design, the TAT peptide and thiolated DNA linker functionalized gold nanorod can efficiently load the sgRNA/Cas9 complex through the hybridization between the 3' overhang of sgRNA and the DNA linker. Due to the integration of an active cell targeting group (aptamer) and nuclear targeting peptide (TAT), the multifunctional nanoplatform can elicit the targeted cellular internalization and efficient nuclear targeting transportation to realize endogenous RNase H activated gene editing of the tumor-associated gene polo-like kinase 1 (PLK1). With mild photothermal treatment, this sgRNA/Cas9 complex loaded nanoplatform achieved efficient inhibition of tumor cell proliferation. This multifunctional nanocarrier provides a new strategy for the development of combined tumor therapy.
Collapse
Affiliation(s)
- Wantao Tang
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Lin Han
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xuehe Lu
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhaoran Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Fengsong Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Shengbo Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoli Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Run Tian
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoquan Ding
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Yu Q, Ren K, You M. Genetically encoded RNA nanodevices for cellular imaging and regulation. NANOSCALE 2021; 13:7988-8003. [PMID: 33885099 PMCID: PMC8122502 DOI: 10.1039/d0nr08301a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nucleic acid-based nanodevices have been widely used in the fields of biosensing and nanomedicine. Traditionally, the majority of these nanodevices were first constructed in vitro using synthetic DNA or RNA oligonucleotides and then delivered into cells. Nowadays, the emergence of genetically encoded RNA nanodevices has provided a promising alternative approach for intracellular analysis and regulation. These genetically encoded RNA-based nanodevices can be directly transcribed and continuously produced inside living cells. A variety of highly precise and programmable nanodevices have been constructed in this way during the last decade. In this review, we will summarize the recent advances in the design and function of these artificial genetically encoded RNA nanodevices. In particular, we will focus on their applications in regulating cellular gene expression, imaging, logic operation, structural biology, and optogenetics. We believe these versatile RNA-based nanodevices will be broadly used in the near future to probe and program cells and other biological systems.
Collapse
Affiliation(s)
- Qikun Yu
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Kewei Ren
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
30
|
Liu J, Lu X, Wu T, Wu X, Han L, Ding B. Branched Antisense and siRNA Co-Assembled Nanoplatform for Combined Gene Silencing and Tumor Therapy. Angew Chem Int Ed Engl 2020; 60:1853-1860. [PMID: 33058467 DOI: 10.1002/anie.202011174] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/01/2020] [Indexed: 12/14/2022]
Abstract
Chemically modified DNA has been widely developed to fabricate various nucleic acid nanostructures for biomedical applications. Herein, we report a facile strategy for construction of branched antisense DNA and small interfering RNA (siRNA) co-assembled nanoplatform for combined gene silencing in vitro and in vivo. In our design, the branched antisense can efficiently capture siRNA with 3' overhangs through DNA-RNA hybridization. After being equipped with an active targeting group and an endosomal escape peptide by host-guest interaction, the tailored nucleic acid nanostructure functions efficiently as both delivery carrier and therapeutic cargo, which is released by endogenous RNase H digestion. The multifunctional nucleic acid nanosystem elicits an efficient inhibition of tumor growth based on the combined gene silencing of the tumor-associated gene polo-like kinase 1 (PLK1). This biocompatible nucleic acid nanoplatform presents a new strategy for the development of gene therapy.
Collapse
Affiliation(s)
- Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuehe Lu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China.,School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - Tiantian Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohui Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China.,School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
31
|
Liu J, Lu X, Wu T, Wu X, Han L, Ding B. Branched Antisense and siRNA Co‐Assembled Nanoplatform for Combined Gene Silencing and Tumor Therapy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xuehe Lu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun Beijing 100190 China
- School of Materials Science and Engineering Henan Institute of Advanced Technology Zhengzhou University Zhengzhou 450001 China
| | - Tiantian Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaohui Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lin Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun Beijing 100190 China
- School of Materials Science and Engineering Henan Institute of Advanced Technology Zhengzhou University Zhengzhou 450001 China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- School of Materials Science and Engineering Henan Institute of Advanced Technology Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|