1
|
Fu R, Pan J, Wang M, Min H, Dong H, Cai R, Sun Z, Xiong Y, Cui F, Lei SY, Chen S, Chen J, Sun L, Zhang Q, Xu F. In Situ Atomic-Scale Deciphering of Multiple Dynamic Phase Transformations and Reversible Sodium Storage in Ternary Metal Sulfide Anode. ACS NANO 2023. [PMID: 37326660 DOI: 10.1021/acsnano.3c02138] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ternary metal sulfides (TMSs), endowed with the synergistic effect of their respective binary counterparts, hold great promise as anode candidates for boosting sodium storage performance. Their fundamental sodium storage mechanisms associated with dynamic structural evolution and reaction kinetics, however, have not been fully comprehended. To enhance the electrochemical performance of TMS anodes in sodium-ion batteries (SIBs), it is of critical importance to gain a better mechanistic understanding of their dynamic electrochemical processes during live (de)sodiation cycling. Herein, taking BiSbS3 anode as a representative paradigm, its real-time sodium storage mechanisms down to the atomic scale during the (de)sodiation cycling are systematically elucidated through in situ transmission electron microscopy. Previously unexplored multiple phase transformations involving intercalation, two-step conversion, and two-step alloying reactions are explicitly revealed during sodiation, in which newly formed Na2BiSbS4 and Na2BiSb are respectively identified as intermediate phases of the conversion and alloying reactions. Impressively, the final sodiation products of Na6BiSb and Na2S can recover to the original BiSbS3 phase upon desodiation, and afterward, a reversible phase transformation can be established between BiSbS3 and Na6BiSb, where the BiSb as an individual phase (rather than respective Bi and Sb phases) participates in reactions. These findings are further verified by operando X-ray diffraction, density functional theory calculations, and electrochemical tests. Our work provides valuable insights into the mechanistic understanding of sodium storage mechanisms in TMS anodes and important implications for their performance optimization toward high-performance SIBs.
Collapse
Affiliation(s)
- Ruining Fu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, People's Republic of China
| | - Jianhai Pan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Mingyuan Wang
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, People's Republic of China
| | - Huihua Min
- Electron Microscope Laboratory, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Hanghang Dong
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Ran Cai
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Zhefei Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Yuwei Xiong
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, People's Republic of China
| | - Fuhan Cui
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, People's Republic of China
| | - Shuang-Ying Lei
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, People's Republic of China
| | - Shuangqiang Chen
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Jing Chen
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, People's Republic of China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, People's Republic of China
| | - Qiaobao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Feng Xu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, People's Republic of China
| |
Collapse
|
2
|
Peng M, Shin K, Jiang L, Jin Y, Zeng K, Zhou X, Tang Y. Alloy-Type Anodes for High-Performance Rechargeable Batteries. Angew Chem Int Ed Engl 2022; 61:e202206770. [PMID: 35689344 DOI: 10.1002/anie.202206770] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 12/18/2022]
Abstract
Alloy-type anodes are one of the most promising classes of next-generation anode materials due to their ultrahigh theoretical capacity (2-10 times that of graphite). However, current alloy-type anodes have several limitations: huge volume expansion, high tendency to fracture and disintegrate, an unstable solid-electrolyte interphase (SEI) layer, and low Coulombic efficiency. Efforts to overcome these challenges are ongoing. This Review details recent progress in the research of batteries based on alloy-type anodes and discusses the direction of their future development. We conclude that improvements in structural design, the introduction of a protective interface, and the selection of suitable electrolytes are the most effective ways to improve the performance of alloy-type anodes. Furthermore, future studies should direct more attention toward analyzing their synergistic promoting effect.
Collapse
Affiliation(s)
- Manqi Peng
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Kyungsoo Shin
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lixia Jiang
- Bureau of Major R&D Programs, Chinese Academy of Sciences, Beijing, 100864, China
| | - Ye Jin
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Ke Zeng
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Xiaolong Zhou
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongbing Tang
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Key Laboratory of Adv. Mater. Processing & Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| |
Collapse
|
3
|
Peng M, Shin K, Jiang L, Jin Y, Zeng K, Zhou X, Tang Y. Alloy‐Type Anodes for High‐Performance Rechargeable Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Manqi Peng
- Advanced Energy Storage Technology Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- School of Materials Science and Engineering Chongqing University of Technology Chongqing 400054 China
| | - Kyungsoo Shin
- Advanced Energy Storage Technology Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lixia Jiang
- Bureau of Major R&D Programs Chinese Academy of Sciences Beijing 100864 China
| | - Ye Jin
- Advanced Energy Storage Technology Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- Nano Science and Technology Institute University of Science and Technology of China Suzhou 215123 China
| | - Ke Zeng
- Advanced Energy Storage Technology Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- Nano Science and Technology Institute University of Science and Technology of China Suzhou 215123 China
| | - Xiaolong Zhou
- Advanced Energy Storage Technology Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yongbing Tang
- Advanced Energy Storage Technology Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Key Laboratory of Adv. Mater. Processing & Mold, Ministry of Education Zhengzhou University Zhengzhou 450002 China
| |
Collapse
|
4
|
Yuan J, Zhao J, Lu T, Zhang L, Xu J, Chu D. ZnSe@C core-shell microspheres as potential anode material for sodium ion batteries. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Li X, Liu Y, Lin C, Wang Y, Lei Z, Xiong P, Luo Y, Chen Q, Zeng L, Wei M, Qian Q. Structure Engineering of BiSbS x Nanocrystals Embedded within Sulfurized Polyacrylonitrile Fibers for High Performance of Potassium-Ion Batteries. Chemistry 2022; 28:e202200028. [PMID: 35196410 DOI: 10.1002/chem.202200028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Indexed: 11/10/2022]
Abstract
Potassium-ion batteries (PIBs) are regarded as promising candidates in next-generation energy storage technology; however, the electrode materials in PIBs are usually restricted by the shortcomings of large volume expansion and poor cycling stability stemming from a high resistance towards diffusion and insertion of large-sized K ions. In this study, BiSbSx nanocrystals are rationally integrated with sulfurized polyacrylonitrile (SPAN) fibres through electrospinning technology with an annealing process. Such a unique structure, in which BiSbSx nanocrystals are embedded inside the SPAN fibre, affords multiple binding sites and a short diffusion length for K+ to realize fast kinetics. In addition, the molecular structure of SPAN features robust chemical interactions for stationary diffluent discharge products. Thus, the electrode demonstrates a superior potassium storage performance with an excellent reversible capacity of 790 mAh g-1 (at 0.1 A g-1 after 50 cycles) and 472 mAh g-1 (at 1 A g-1 after 2000 cycles). It's one of the best performances for metal dichalcogenides anodes for PIBs to date. The unusual performance of the BiSbSx @SPAN composite is attributed to the synergistic effects of the judicious nanostructure engineering of BiSbSx nanocrystals as well as the chemical interaction and confinement of SPAN fibers.
Collapse
Affiliation(s)
- Xinye Li
- Engineering Research Center of Polymer Green Recycling of Ministry of Education College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China.,Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian, 350007, China
| | - Yanru Liu
- College of Life Science, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Chuyuan Lin
- Engineering Research Center of Polymer Green Recycling of Ministry of Education College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China.,Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian, 350007, China
| | - Yiyi Wang
- Engineering Research Center of Polymer Green Recycling of Ministry of Education College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China.,Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian, 350007, China
| | - Zewei Lei
- College of Life Science, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Peixun Xiong
- Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian, 350002, China
| | - Yongjin Luo
- Engineering Research Center of Polymer Green Recycling of Ministry of Education College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China.,Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian, 350007, China
| | - Qinghua Chen
- Engineering Research Center of Polymer Green Recycling of Ministry of Education College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China.,Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian, 350007, China.,Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Lingxing Zeng
- Engineering Research Center of Polymer Green Recycling of Ministry of Education College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China.,Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian, 350007, China.,Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Mingdeng Wei
- Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian, 350002, China
| | - Qingrong Qian
- Engineering Research Center of Polymer Green Recycling of Ministry of Education College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China.,Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian, 350007, China.,Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
6
|
Kumar P, Wahyudi W, Sharma A, Yuan Y, Harrison GT, Gedda M, Wei X, El-Labban A, Ahmad S, Kumar V, Tung V, Anthopoulos TD. Bismuth-based mixed-anion compounds for anode materials in rechargeable batteries. Chem Commun (Camb) 2022; 58:3354-3357. [PMID: 35188144 DOI: 10.1039/d1cc06456h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A facile solvothermal synthesis approach for chemical composition control in ternary Bi-S-I systems is reported by simply controlling the sulfide concentration. We demonstrate the application of these bismuth-based ternary mixed-anion compounds as high capacity anode materials in rechargeable batteries. Cells utilising Bi13S18I2 achieved an initial capacity value of 807 mA h g-1, while those with BiSI/Bi13S18I2 a value of 1087 mA h g-1 in lithium-ion battery systems.
Collapse
Affiliation(s)
- Prashant Kumar
- KAUST Solar Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Wandi Wahyudi
- KAUST Solar Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Abhinav Sharma
- KAUST Solar Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Youyou Yuan
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - George T Harrison
- KAUST Solar Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Murali Gedda
- KAUST Solar Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Xuan Wei
- KAUST Solar Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Abdulrahman El-Labban
- KAUST Solar Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Shahzad Ahmad
- Department of Chemistry, Zakir Husain Delhi College, University of Delhi, Delhi 110002, India
| | - Vinod Kumar
- Special Center for Nanoscience, Jawaharlal Nehru University, Delhi 110067, India
| | - Vincent Tung
- KAUST Solar Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Thomas D Anthopoulos
- KAUST Solar Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
7
|
Guo H, Zhao Z, Wu L, Qiu J, Zhang F, Zhu B, Yu J, Chen X. Novel Braceletlike BiSbX 3 (X = S, Se) Monolayers with an In-Plane Negative Poisson's Ratio and Anisotropic Photoelectric Properties. J Phys Chem Lett 2021; 12:11353-11360. [PMID: 34783548 DOI: 10.1021/acs.jpclett.1c02995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, we predict two novel two-dimensional (2D) auxetic materials, BiSbX3 (X = S, Se) monolayers, through first-principles calculations. Attributed to their special braceletlike structure, the in-plane negative Poisson's ratio (NPR) of BiSbS3 and BiSbSe3 monolayers are as high as -0.25 and -0.26, respectively. The phonon dispersion calculations, ab initio molecular dynamics simulations, and elastic constants calculations demonstrate that these two monolayers possess excellent dynamic, thermal, and mechanical stabilities. The band gap values of BiSbS3 and BiSbSe3 calculated at the HSE level by considering the spin-orbit coupling (SOC) effect are 1.68 and 1.20 eV. The anisotropic carrier mobility and superior optical absorption indicate that they may shine in the next generation of electronic and optoelectronic devices. All of these discoveries not only enrich the types of auxetic materials but also provide a structural reference for designing new auxetic materials on the molecular level. Furthermore, they can provide theoretical guidance for future applications of BiSbX3 (X = S, Se) monolayers in various fields.
Collapse
Affiliation(s)
- Haojie Guo
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering. State Key Laboratory of Power Transmission Equipment & System Security and New Technology and School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - ZengXiu Zhao
- College of Architectural Engineering, Shanxi Institute of Applied Science and Technology, Taiyuan 030031, China
| | - Lingmei Wu
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering. State Key Laboratory of Power Transmission Equipment & System Security and New Technology and School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Jian Qiu
- Faculty of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Fusheng Zhang
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering. State Key Laboratory of Power Transmission Equipment & System Security and New Technology and School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Bao Zhu
- Faculty of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Jiabing Yu
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering. State Key Laboratory of Power Transmission Equipment & System Security and New Technology and School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Xianping Chen
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering. State Key Laboratory of Power Transmission Equipment & System Security and New Technology and School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
8
|
Zhang L, Li H, Sheng T, Chen J, Lu M, Xu Y, Yuan H, Zhao J, Lu J. Synthesizing Cu-doped CoSe2 nanoframe cubics for Na-ion batteries electrodes. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Deng W, Chen J, Yang L, Liang X, Yin S, Deng X, Zou G, Hou H, Ji X. Solid Solution Metal Chalcogenides for Sodium-Ion Batteries: The Recent Advances as Anodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101058. [PMID: 34242471 DOI: 10.1002/smll.202101058] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/19/2021] [Indexed: 06/13/2023]
Abstract
The sodium-ion battery (SIB) has attracted ever growing attention as a promising alternative of the lithium-ion battery (LIB). Constructing appropriate anode materials is critical for speeding up the application of SIB. This review aims at guiding anode design from the material's perspective, and specifically focusing on solid solution metal chalcogenide anode. The sodium ion storage mechanisms of a solid solution metal chalcogenide anode is overviewed on basis of the elements it is composed of, and discusses how the solid solution character alters the electrochemical performances through diffusion and surface-controlled processes. In addition, by classifying solid solution metal chalcogenide as cation and anion, their recent applications are updated, and understanding the roles of guest elements in improving the electrochemical behaviors of a solid solution metal chalcogenide is carried out. After that, discussion of possible strategies to further optimize these anode materials in the future, flowing from crystal structure design to morphology control and finally to the intimacy improvement between conductive matrix and solid solution metal chalcogenide are also provided.
Collapse
Affiliation(s)
- Wentao Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jun Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Li Yang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xinxing Liang
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
| | - Shouyi Yin
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Xinglan Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
10
|
Zhu Y, Zhao J, Li L, Mao J, Xu J, Jin J. One-step solvothermal synthesis of BiSbTe3/N-doped reduced graphene oxide composite as lithium-ion batteries anode materials. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115829] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Priyadharshini M, Pazhanivel T, Bharathi G. Carbon Quantum Dot Incorporated Nickel Pyrophosphate as Alternate Cathode for Supercapacitors. ChemistrySelect 2020. [DOI: 10.1002/slct.201904334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Thangavelu Pazhanivel
- Smart Materials Interface Laboratory Department of Physics, Periyar University Salem-11 Tamilnadu India
| | - Ganapathi Bharathi
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province College of Optoelectronic Engineering, Shenzhen University, Shenzhen Guangdong Province 518060 P.R. China
| |
Collapse
|
12
|
Xu T, Zhao J, Li L, Mao J, Xu J, Zhao H. Co/Ni-MOF-74-derived CoNi 2S 4 nanoparticles embedded in porous carbon as a high performance anode material for sodium ion batteries. NEW J CHEM 2020. [DOI: 10.1039/d0nj02736g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In this study, Co/Ni-MOF-74-derived CoNi2S4 nanoparticles embedded in porous carbon (CoNi2S4@C) were successfully prepared using Co/Ni-MOF-74 as precursor. And, CoNi2S4@C exhibits excellent electrochemical performance as an anode material for sodium ion batteries.
Collapse
Affiliation(s)
- Tingting Xu
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Jiachang Zhao
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Lanjie Li
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Jianfeng Mao
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Jingli Xu
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Hongbin Zhao
- College of Sciences & Institute for Sustainable Energy
- Shanghai University
- Shanghai 200444
- P. R. China
| |
Collapse
|
13
|
Sheng T, Zhao J, Liu X, Yuan H, Liu X, Liu F, Zhu X, Lu J, Zhang L. The construction of CuCo2O4/N-doped reduced graphene oxide hybrid hollow spheres as anodes for sodium-ion batteries. NEW J CHEM 2020. [DOI: 10.1039/d0nj00195c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hierarchical CuCo2O4/N-doped reduced graphene oxide (CuCo2O4/N-rGO) hollow hybrid nanospheres was constructed and further applied as highly capacity anode materials for SIBs.
Collapse
Affiliation(s)
- Tiandu Sheng
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Jiachang Zhao
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Xiaodi Liu
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Haikuan Yuan
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Xijian Liu
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Fengjiao Liu
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Xueyan Zhu
- China State Institute of Pharmaceutical Industry
- China State Institute of Pharmaceutical Industry
- Shanghai 201203
- China
| | - Jie Lu
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Lijuan Zhang
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| |
Collapse
|