1
|
Nie HJ, Fu YJ, Long S, Wang JY, Zhao WS, Zhai LH, Yang YL, Tan MJ, Hu H, Chen XH. Chemoproteomics reveals proteome-wide covalent and non-covalent targets of withaferin A. Acta Pharmacol Sin 2025; 46:1782-1793. [PMID: 39900821 PMCID: PMC12098870 DOI: 10.1038/s41401-024-01468-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/22/2024] [Indexed: 02/05/2025]
Abstract
Withaferin A (WA), a natural product used in traditional medicine, has recently garnered attention because of its diverse pharmacological effects. However, the direct targets responsible for these effects remain elusive. The discovery of targets is usually serendipitous and research has predominantly concentrated on covalent interactions, overlooking non-covalent targets. The unbiased and proteome-wide mapping of WA-interacting proteins in living cells remains largely unexplored. We have developed a chemical proteomics platform that enabled profiling of the covalent/non-covalent interactome and target occupancy in disease-related cells, which was used to reveal the landscape of the targets of WA in triple-negative breast cancer (TNBC) cells. Analysis of the discovered high-occupancy targets suggested that WA was substantially involved in the RNA metabolism pathway, in addition to other biological processes. Moreover, we biochemically validated a selection of previously unknown high-occupancy targets from various important biological pathways, including the non-covalent target MVK and covalent targets HNRNPF and CKAP4, which all play critical roles in TNBC. Collectively, these findings provided a target map for comprehensive understanding of the anti-TNBC activity of WA, and present WA-targetable proteins as new avenues for pharmacological intervention in TNBC. We anticipate that this platform will be applicable for the unbiased profiling of the targets of WA in various other disease-related cell models, as well as for other bioactive electrophilic natural products in different pathophysiological systems.
Collapse
Affiliation(s)
- Hui-Jun Nie
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ying-Jie Fu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Shang Long
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jia-Yu Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wen-Si Zhao
- School of Medicine, Tongji University, Shanghai, 200433, China
| | - Lin-Hui Zhai
- School of Medicine, Tongji University, Shanghai, 200433, China
| | - Yin-Long Yang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Min-Jia Tan
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Hu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Xiao-Hua Chen
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Dantas Rocha KA, Silveira ER, de Freitas Paulo T, Ayala AP, Soares BM, Sant'Anna Maranhão S, Pessoa CDÓ, Paz IA, Barroso Rodrigues ML, Falcão do Nascimento NR, Canuto KM, Loiola Pessoa OD. Bioactive withanolides from the leaves of Athenaea velutina (Sendtn.) D'Arcy. PHYTOCHEMISTRY 2025; 238:114549. [PMID: 40414446 DOI: 10.1016/j.phytochem.2025.114549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 05/11/2025] [Accepted: 05/18/2025] [Indexed: 05/27/2025]
Abstract
Withanolides are a substantial bio-diverse group of naturally occurring steroidal lactones. Herein, ten still undescribed withanolides (1-10), along with the knowns withaferin A (11), 2,3-dihidrowithaferin A (12), and two other non-withanolides, vomifoliol (13) and the N-trans-p-coumaroyltyramine (14), were isolated from the hexane/EtOAc 1:1 leaf extract of Athenaea velutina (Sendtn.) D'Arcy (Solanaceae). The structures of the undescribed withanolides were elucidated by an extensive analysis of their spectroscopic data: 1D and 2D NMR, HRESIMS, single-crystal X-ray diffraction, and ECD calculations. The antiproliferative properties of the withanolides were evaluated against the human cancer cell lines: central nervous system (SNB-19), prostate (PC-3), colon (HCT-116), and leukemia (HL-60), and a murine fibroblast-like cell (L-929). Withanolides 15-17, isolated from the same plant in a previous work, were included for the pharmacological tests. Compounds 15 and 16 exhibited cytotoxic activity for all cancer cells, while 2 was selectively more cytotoxic to HL-60 cells. In addition, the withanolides were evaluated in guinea pig cardiac tissues. Compounds 15 and 16 showed cardiotonic activity, devoid of a positive chronotropic effect which is a good pharmacological profile for an inotrope agent.
Collapse
Affiliation(s)
- Késya Amanda Dantas Rocha
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, 60021-970, Fortaleza, CE, Brazil
| | - Edilberto Rocha Silveira
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, 60021-970, Fortaleza, CE, Brazil
| | - Tércio de Freitas Paulo
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, 60021-970, Fortaleza, CE, Brazil
| | - Alejandro Pedro Ayala
- Departamento de Física, Centro de Ciências, Universidade Federal do Ceará, 60440-900, Fortaleza, CE, Brazil
| | - Bruno Marques Soares
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, 60430-270, Fortaleza, CE, Brazil
| | - Sarah Sant'Anna Maranhão
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, 60430-270, Fortaleza, CE, Brazil
| | - Cláudia do Ó Pessoa
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, 60430-270, Fortaleza, CE, Brazil
| | - Iury Araújo Paz
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, 60714-903, Fortaleza, Ceará, Brazil
| | | | | | | | - Otília Deusdenia Loiola Pessoa
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, 60021-970, Fortaleza, CE, Brazil.
| |
Collapse
|
3
|
Bailly C. Covalent binding of withanolides to cysteines of protein targets. Biochem Pharmacol 2024; 226:116405. [PMID: 38969301 DOI: 10.1016/j.bcp.2024.116405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/26/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Withanolides represent an important category of natural products with a steroidal lactone core. Many of them contain an α,β-unsaturated carbonyl moiety with a high reactivity toward sulfhydryl groups, including protein cysteine thiols. Different withanolides endowed with marked antitumor and anti-inflammatory have been shown to form stable covalent complexes with exposed cysteines present in the active site of oncogenic kinases (BTK, IKKβ, Zap70), metabolism enzymes (Prdx-1/6, Pin1, PHGDH), transcription factors (Nrf2, NFκB, C/EBPβ) and other structural and signaling molecules (GFAP, β-tubulin, p97, Hsp90, vimentin, Mpro, IPO5, NEMO, …). The present review analyzed the covalent complexes formed through Michael addition alkylation reactions between six major withanolides (withaferin A, physalin A, withangulatin A, 4β-hydroxywithanolide E, withanone and tubocapsanolide A) and key cysteine residues of about 20 proteins and the resulting biological effects. The covalent conjugation of the α,β-unsaturated carbonyl system of withanolides with reactive protein thiols can occur with a large set of soluble and membrane proteins. It points to a general mechanism, well described with the leading natural product withaferin A, but likely valid for most withanolides harboring a reactive (electrophilic) enone moiety susceptible to react covalently with cysteinyl residues of proteins. The multiplicity of reactive proteins should be taken into account when studying the mechanism of action of new withanolides. Proteomic and network analyses shall be implemented to capture and compare the cysteine covalent-binding map for the major withanolides, so as to identify the protein targets at the origin of their activity and/or unwanted effects. Screening of the cysteinome will help understanding the mechanism of action and designing cysteine-reactive electrophilic drug candidates.
Collapse
Affiliation(s)
- Christian Bailly
- CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institute, University of Lille, F-59000 Lille, France; Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, F-59006 Lille, France; OncoWitan, Scientific Consulting Office, F-59290 Lille, France.
| |
Collapse
|
4
|
Zhou X, Wu D, Zhu L, Li R, Yu H, Li W. Withaferin A Inhibits Liver Cancer Tumorigenesis by Suppressing Aerobic Glycolysis through the p53/IDH1/HIF-1α Signaling Axis. Curr Cancer Drug Targets 2024; 24:534-545. [PMID: 38804345 DOI: 10.2174/0115680096262915231026050602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/22/2023] [Accepted: 10/03/2023] [Indexed: 05/29/2024]
Abstract
BACKGROUND The energy supply of certain cancer cells depends on aerobic glycolysis rather than oxidative phosphorylation. Our previous studies have shown that withaferin A (WA), a lactone compound derived from Withania somnifera, suppresses skin carcinogenesis at least partially by stabilizing IDH1 and promoting oxidative phosphorylation. Here, we have extended our studies to evaluate the anti-tumor effect of WA in liver cancer. METHODS Differential expression of glycolysis-related genes between liver cancer tissues and normal tissues and prognosis were verified using an online database. Glycolysis-related protein expression was detected using western blot after overexpression and knockdown of IDH1 and mitochondrial membrane potential assay based on JC-1, and mitochondrial complex I activity was also detected. The inhibitory effect of WA on the biological functions of HepG2 cells was detected along with cell viability using MTT assay, scratch assay, clone formation assay, glucose consumption and lactate production assay. Western blot and qRT-PCR were used to detect the expression of proteins and genes related to IDH1, p53 and HIF1α signaling pathways. RESULTS We first identified that IDH1 expression was downregulated in human liver cancer cells compared to normal liver cells. Next, we found that treatment of HepG2 cells with WA resulted in significantly increased protein levels of IDH1, accompanied by decreased levels of several glycolytic enzymes. Furthermore, we found that WA stabilized IDH1 proteins by inhibiting the degradation by the proteasome. The tumor suppressor p53 was also upregulated by WA treatment, which played a critical role in the upregulation of IDH1 and downregulation of the glycolysis-related genes. Under hypoxic conditions, glycolysis-related genes were induced, which was suppressed by WA treatment, and IDH1 expression was still maintained at higher levels under hypoxia. CONCLUSION Taken together, our results indicated that WA suppresses liver cancer tumorigenesis by p53-mediated IDH1 upregulation, which promotes mitochondrial respiration, thereby inhibiting the HIF-1α pathway and blocking aerobic glycolysis.
Collapse
Affiliation(s)
- Xiangyang Zhou
- College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding, Hebei, 071000, China
| | - Di Wu
- College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding, Hebei, 071000, China
| | - Linmiao Zhu
- College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China
| | - Ruohan Li
- College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China
| | - Haitao Yu
- Department of Biology Genetics, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Wenjuan Li
- College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding, Hebei, 071000, China
| |
Collapse
|
5
|
Vilaboa N, Voellmy R. Withaferin A and Celastrol Overwhelm Proteostasis. Int J Mol Sci 2023; 25:367. [PMID: 38203539 PMCID: PMC10779417 DOI: 10.3390/ijms25010367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Withaferin A (WA) and celastrol (CEL) are major bioactive components of plants that have been widely employed in traditional medicine. The pleiotropic activities of plant preparations and the isolated compounds in vitro and in vivo have been documented in hundreds of studies. Both WA and CEL were shown to have anticancer activity. Although WA and CEL belong to different chemical classes, our synthesis of the available information suggests that the compounds share basic mechanisms of action. Both WA and CEL bind covalently to numerous proteins, causing the partial unfolding of some of these proteins and of many bystander proteins. The resulting proteotoxic stress, when excessive, leads to cell death. Both WA and CEL trigger the activation of the unfolded protein response (UPR) which, if the proteotoxic stress persists, results in apoptosis mediated by the PERK/eIF-2/ATF4/CHOP pathway or another UPR-dependent pathway. Other mechanisms of cell death may play contributory or even dominant roles depending on cell type. As shown in a proteomic study with WA, the compounds appear to function largely as electrophilic reactants, indiscriminately modifying reachable nucleophilic amino acid side chains of proteins. However, a remarkable degree of target specificity is imparted by the cellular context.
Collapse
Affiliation(s)
- Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, 28046 Madrid, Spain
| | | |
Collapse
|
6
|
Lobatto VL, García ME, Nicotra VE, Orozco CI, Casero CN. Antibacterial activity of withanolides and their structure-activity relationship. Steroids 2023; 199:109297. [PMID: 37598738 DOI: 10.1016/j.steroids.2023.109297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Two new withanolides, (17R,20S,22R)-4β-acetoxy-5β,6β-epoxy-19,27-dihydroxy-1-oxo-witha-2,24-dienolide (withalongolide A 4-acetate (5) and (17R,20S,22R)-5β,6β-epoxy-27-hydroxy-1,4-dioxo-witha-24-enolide (9), and seven known withanolides with normal structure (1-4, 6-8) were isolated from aerial parts of Cuatresia colombiana. Several semisynthetic derivatives were prepared from the natural metabolites withaferin A and jaborosalactone 38. The compounds were fully characterized by a combination of spectroscopic methods (1D and 2D NMR and MS). The compounds isolated from C. colombiana, sixteen withanolides previously isolated from different Solanaceae species with different skeletons and semisynthetic derivatives were evaluated for their antibacterial activity against a selected panel of Gram-positive and Gram-negative bacteria. According to the bioactivity against S. aureus and E. faecalis, the compounds evaluated were divided into three groups: compounds with high activity (MIC 0.063 mM), compounds with moderate activity (0.5 mM > MIC > 0.125 mM) and non-active compounds (MIC ≥1 mM); in addition, some structure-activity relationship keys could be inferred.
Collapse
Affiliation(s)
- Virginia L Lobatto
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Depto. de Química Orgánica, Facultad de Ciencias Químicas, Edificio de Ciencias Químicas II, Haya de la Torre esq. Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Manuela E García
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Depto. de Química Orgánica, Facultad de Ciencias Químicas, Edificio de Ciencias Químicas II, Haya de la Torre esq. Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Viviana E Nicotra
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Depto. de Química Orgánica, Facultad de Ciencias Químicas, Edificio de Ciencias Químicas II, Haya de la Torre esq. Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Clara I Orozco
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Carrera 30 45-03, edificio 425, Bogotá, Colombia
| | - Carina N Casero
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Depto. de Química Orgánica, Facultad de Ciencias Químicas, Edificio de Ciencias Químicas II, Haya de la Torre esq. Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina.
| |
Collapse
|
7
|
Vilaboa N, Lopez JA, de Mesa M, Escudero-Duch C, Winfield N, Bayford M, Voellmy R. Disruption of Proteostasis by Natural Products and Synthetic Compounds That Induce Pervasive Unfolding of Proteins: Therapeutic Implications. Pharmaceuticals (Basel) 2023; 16:ph16040616. [PMID: 37111374 PMCID: PMC10145903 DOI: 10.3390/ph16040616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Exposure of many cancer cells, including multiple myeloma cells, to cytotoxic concentrations of natural products celastrol and withaferin A or synthetic compounds of the IHSF series resulted in denaturation of a luciferase reporter protein. Proteomic analysis of detergent-insoluble extract fractions from HeLa-derived cells revealed that withaferin A, IHSF058 and IHSF115 caused denaturation of 915, 722 and 991 of 5132 detected cellular proteins, respectively, of which 440 were targeted by all three compounds. Western blots showed that important fractions of these proteins, in some cases approaching half of total protein amounts, unfolded. Relatively indiscriminate covalent modification of target proteins was observed; 1178 different proteins were modified by IHSF058. Further illustrating the depth of the induced proteostasis crisis, only 13% of these proteins detectably aggregated, and 79% of the proteins that aggregated were not targets of covalent modification. Numerous proteostasis network components were modified and/or found in aggregates. Proteostasis disruption caused by the study compounds may be more profound than that mediated by proteasome inhibitors. The compounds act by a different mechanism that may be less susceptible to resistance development. Multiple myeloma cells were particularly sensitive to the compounds. Development of an additional proteostasis-disrupting therapy of multiple myeloma is suggested.
Collapse
Affiliation(s)
- Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, 28046 Madrid, Spain
| | - Juan Antonio Lopez
- Centro Nacional de Investigaciones Cardiovasculares, CNIC, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, CIBERCV, 28029 Madrid, Spain
| | - Marco de Mesa
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
| | - Clara Escudero-Duch
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, 28046 Madrid, Spain
| | - Natalie Winfield
- Domainex Ltd., Chesterford Research Park, Little Chesterford, Essex, Saffron Walden CB10 1XL, UK
| | - Melanie Bayford
- Domainex Ltd., Chesterford Research Park, Little Chesterford, Essex, Saffron Walden CB10 1XL, UK
| | | |
Collapse
|
8
|
Kumar S, Mathew SO, Aharwal RP, Tulli HS, Mohan CD, Sethi G, Ahn KS, Webber K, Sandhu SS, Bishayee A. Withaferin A: A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) Dunal. Pharmaceuticals (Basel) 2023; 16:160. [PMID: 37259311 PMCID: PMC9966696 DOI: 10.3390/ph16020160] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 08/04/2023] Open
Abstract
Cancer represents the second most deadly disease and one of the most important public health concerns worldwide. Surgery, chemotherapy, radiation therapy, and immune therapy are the major types of treatment strategies that have been implemented in cancer treatment. Unfortunately, these treatment options suffer from major limitations, such as drug-resistance and adverse effects, which may eventually result in disease recurrence. Many phytochemicals have been investigated for their antitumor efficacy in preclinical models and clinical studies to discover newer therapeutic agents with fewer adverse effects. Withaferin A, a natural bioactive molecule isolated from the Indian medicinal plant Withania somnifera (L.) Dunal, has been reported to impart anticancer activities against various cancer cell lines and preclinical cancer models by modulating the expression and activity of different oncogenic proteins. In this article, we have comprehensively discussed the biosynthesis of withaferin A as well as its antineoplastic activities and mode-of-action in in vitro and in vivo settings. We have also reviewed the effect of withaferin A on the expression of miRNAs, its combinational effect with other cytotoxic agents, withaferin A-based formulations, safety and toxicity profiles, and its clinical potential.
Collapse
Affiliation(s)
- Suneel Kumar
- Bio-Design Innovation Centre, Rani Durgavati University, Jabalpur 482 001, India
| | - Stephen O. Mathew
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | - Hardeep Singh Tulli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, India
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Kwang-Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Sardul Singh Sandhu
- Bio-Design Innovation Centre, Rani Durgavati University, Jabalpur 482 001, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
9
|
Dantas Rocha KA, de Freitas Paulo T, Ayala AP, da Silva Sampaio V, Gomes Nunes PI, Santos FA, Canuto KM, Silveira ER, Loiola Pessoa OD. Anti-inflammatory withajardins from the leaves of Athenaea velutina. PHYTOCHEMISTRY 2022; 203:113338. [PMID: 35948140 DOI: 10.1016/j.phytochem.2022.113338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Withajardins, uncommon modified withanolide-type steroids, have been isolated exclusively from plants of the Solanaceae family so far. Two undescribed withajardins and the known tuboanosigenin were isolated from the hexane/EtOAc 1:1 extract from Athenaea velutina leaves. Their structures were established by an extensive analysis of 1D and 2D-NMR and HRMS data. The absolute configuration was determined by X-ray diffraction (withajardin L and tuboanosigenin) and circular dichroism (CD) analyses (withajardin M). The anti-inflammatory activity of compounds was evaluated through the inhibition of the lipopolysaccharide (LPS)-induced nitric oxide (NO), TNF-α, and IL-6 release in RAW264.7 cells. The cell viability effects to RAW 264.7 cells showed IC50 values of 74.4-354.4 μM. The compounds attenuated LPS-induced release of NO and decreased pro-inflammatory cytokines TNF-α and IL-6 in RAW264.7 cells.
Collapse
Affiliation(s)
- Késya Amanda Dantas Rocha
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, 60021-970, Fortaleza, CE, Brazil
| | - Tércio de Freitas Paulo
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, 60021-970, Fortaleza, CE, Brazil
| | - Alejandro Pedro Ayala
- Departamento de Física, Centro de Ciências, Universidade Federal do Ceará, 60440-900, Fortaleza, CE, Brazil
| | | | - Paulo Iury Gomes Nunes
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, 60430-270, Fortaleza, CE, Brazil
| | - Flávia Almeida Santos
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, 60430-270, Fortaleza, CE, Brazil
| | | | - Edilberto Rocha Silveira
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, 60021-970, Fortaleza, CE, Brazil
| | - Otília Deusdenia Loiola Pessoa
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, 60021-970, Fortaleza, CE, Brazil.
| |
Collapse
|
10
|
Sadahiro Y, Hitora Y, Kimura I, Hitora-Imamura N, Onodera R, Motoyama K, Tsukamoto S. Colletofragarone A2 Inhibits Cancer Cell Growth In Vivo and Leads to the Degradation and Aggregation of Mutant p53. Chem Res Toxicol 2022; 35:1598-1603. [PMID: 36027604 DOI: 10.1021/acs.chemrestox.2c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutant p53 not only loses its original tumor suppressor function but also acquires new abilities regarding oncogenic progression. Therefore, the strategy of targeting mutant p53 has attracted attention for cancer therapy. We isolated colletofragarone A2 (CF) from the fungus Colletotrichum sp. (13S020), which decreases mutant p53 levels in cells, and herein examine its effect on mutant p53. CF showed more potent cytotoxic activities on cells with p53R175H structural mutants than those with different p53 statuses such as a DNA-contact mutant, wild-type, and null cells. CF markedly decreased tumor cell growth in vivo using a mouse xenograft model with HuCCT1 (p53R175H) cells. Cotreatment of SK-BR-3 (p53R175H) cells with CF and cycloheximide decreased mutant p53 levels by promoting p53 degradation. In the presence of MG-132, CF induced the accumulation of the aggregated mutant p53. These results suggest that CF inhibits the function of molecular chaperones such as HSP90.
Collapse
Affiliation(s)
- Yusaku Sadahiro
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
| | - Yuki Hitora
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
| | - Ichiro Kimura
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
| | - Natsuko Hitora-Imamura
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
| | - Risako Onodera
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
| | - Keiichi Motoyama
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
| | - Sachiko Tsukamoto
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
| |
Collapse
|
11
|
Kwee I, Martinelli A, Khayal LA, Akhmedov M. metaLINCS: an R package for meta-level analysis of LINCS L1000 drug signatures using stratified connectivity mapping. BIOINFORMATICS ADVANCES 2022; 2:vbac064. [PMID: 36699415 PMCID: PMC9710587 DOI: 10.1093/bioadv/vbac064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/18/2022] [Accepted: 09/08/2022] [Indexed: 02/01/2023]
Abstract
Summary Accessing the collection of perturbed gene expression profiles, such as the LINCS L1000 connectivity map, is usually performed at the individual dataset level, followed by a summary performed by counting individual hits for each perturbagen. With the metaLINCS R package, we present an alternative approach that combines rank correlation and gene set enrichment analysis to identify meta-level enrichment at the perturbagen level and, in the case of drugs, at the mechanism of action level. This significantly simplifies the interpretation and highlights overarching themes in the data. We demonstrate the functionality of the package and compare its performance against those of three currently used approaches. Availability and implementation metaLINCS is released under GPL3 license. Source code and documentation are freely available on GitHub (https://github.com/bigomics/metaLINCS). Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Ivo Kwee
- To whom correspondence should be addressed.
| | | | | | | |
Collapse
|
12
|
Tewari D, Chander V, Dhyani A, Sahu S, Gupta P, Patni P, Kalick LS, Bishayee A. Withania somnifera (L.) Dunal: Phytochemistry, structure-activity relationship, and anticancer potential. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153949. [PMID: 35151215 DOI: 10.1016/j.phymed.2022.153949] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/08/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Ayurveda is a highly recognized, well-documented, and well-accepted traditional medicine system. This system utilizes many natural products in various forms for therapeutic purposes. Thousands of plants mentioned in the Ayurvedic system are useful in disease mitigation and health preservation. One potential plant of the Ayurvedic system is "Ashwagandha" [Withania somnifera (L.) Dunal], commonly regarded as Indian Ginseng. It possesses various therapeutic activities, such as neuroprotective, hypoglycemic, hepatoprotective, antiarthritic, and anticancer effects. PURPOSE Here we present a comprehensive insight on the anticancer effects of W. somnifera and mechanistic attributes of its bioactive phytocompounds. This review also provides updated information on the clinical studies pertaining to cancer, safety evaluation and opportunities for chemical modifications of withanolides, a group of specialized phytochemicals of W. somnifera. METHODS The present study was performed in accordance with the guidelines of the Preferred Reporting Items for Systemic Reviews and Meta-Analysis. Various scientific databases, such as PubMed, Science Direct, Scopus, Google Scholar, were explored for related studies published up to May 2021. RESULTS An updated review on the anticancer potential and mechanisms of action of the major bioactive components of W. somnifera, including withanolides, withaferin A and withanone, is presented. Comprehensive information on clinical attributes of W. somnifera and its active components are presented with the structure-activity relationship (SAR) and toxicity evaluation. CONCLUSION The outcome of the work clearly indicates that W. somnifera has a significant potential for cancer therapy. The SAR revealed that various withanolides in general and withaferin A in particular have binding energies against various proteins and tremendous potential to serve as the lead for new chemical entities. Nevertheless, additional studies, particularly well-designed clinical trials are required before therapeutic application of withanolides for cancer treatment.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Vikas Chander
- Department of Pharmacy, Uttarakhand Technical University, Dehradun 248007, Uttarakhand, India
| | - Archana Dhyani
- Department of Pharmaceutics, School of Pharmacy, Graphic Era Hill University, Dehradun 248001, Uttarakhand, India
| | - Sanjeev Sahu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Pawan Gupta
- Shree SK Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India
| | - Pooja Patni
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Lindsay S Kalick
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
13
|
Gaonkar R, Singh J, Chauhan A, Avti PK, Hegde G. Geraniol and Citral as potential therapeutic agents targeting the HSP90 activity: An in silico and experimental approach. PHYTOCHEMISTRY 2022; 195:113058. [PMID: 34942558 DOI: 10.1016/j.phytochem.2021.113058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Lemongrass essential oil has antifungal and anti-cancerous properties. Heat-shock protein (HSP90), an ATP-dependent molecular chaperone found in eukaryotes, is involved in protein folding, stability, and disease, making it a promising research topic. Both in silico and in vitro approaches were used to provide a clear insight into the HSP90-ATPase 3D structures, activity, and their interaction with the essential oil constituents among various species such as fungi (S. cerevisiae), parasites (P. falciparum), and humans. For in silico studies, sequence alignment, docking (AutoDock), and absorption, distribution, metabolism, and excretion (ADME) properties were evaluated to obtain hit compounds specifically against each HSP90-ATPase. The hit compounds obtained were evaluated for their efficacy in the in vitro studies of S. cerevisiae. In vitro studies were carried out targeting HSP90-ATPases via lemongrass essential oil components individually and in combination as a function of concentration and various salt concentrations. Results suggest that sequence alignment exists of over 75% among these three species. The best docking score was possessed by Geraniol and its constituent (geldanamycin ≥ -4.93 kcal/mol) (a known antifungal and antitumor against HSP90) in all the above species. Lemongrass oil and the combination of Geraniol and Citral at concentrations of 80 μg/mL showed the maximum inhibition of ATPase and HSP90-ATPase activity compared to their individual treatment. Therefore, both in silico and in vitro studies provide clear evidence of specific inhibitory action of lemongrass oil, Geraniol, and Citral against the ATPase and HSP90-ATPase activities and might show potential as antifungal and antitumor drugs.
Collapse
Affiliation(s)
- Roopa Gaonkar
- Department of Biotechnology, BMS College of Engineering, Bangalore, Karnataka, India
| | - Jitender Singh
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Arushi Chauhan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Pramod K Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Gurumurthy Hegde
- Centre for Advanced Research and Development (CARD), CHRIST (Deemed to be University), Hosur Rd, Bangalore, 560029, India.
| |
Collapse
|
14
|
Identification of a c-MYB-directed therapeutic for acute myeloid leukemia. Leukemia 2022; 36:1541-1549. [PMID: 35368048 PMCID: PMC9162920 DOI: 10.1038/s41375-022-01554-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 11/27/2022]
Abstract
A significant proportion of patients suffering from acute myeloid leukemia (AML) cannot be cured by conventional chemotherapy, relapsed disease being a common problem. Molecular targeting of essential oncogenic mediators is an attractive approach to improving outcomes for this disease. The hematopoietic transcription factor c-MYB has been revealed as a central component of complexes maintaining aberrant gene expression programs in AML. We have previously screened the Connectivity Map database to identify mebendazole as an anti-AML therapeutic targeting c-MYB. In the present study we demonstrate that another hit from this screen, the steroidal lactone withaferin A (WFA), induces rapid ablation of c-MYB protein and consequent inhibition of c-MYB target gene expression, loss of leukemia cell viability, reduced colony formation and impaired disease progression. Although WFA has been reported to have pleiotropic anti-cancer effects, we demonstrate that its anti-AML activity depends on c-MYB modulation and can be partially reversed by a stabilized c-MYB mutant. c-MYB ablation results from disrupted HSP/HSC70 chaperone protein homeostasis in leukemia cells following induction of proteotoxicity and the unfolded protein response by WFA. The widespread use of WFA in traditional medicines throughout the world indicates that it represents a promising candidate for repurposing into AML therapy.
Collapse
|
15
|
Renganathan S, Pramanik S, Ekambaram R, Kutzner A, Kim PS, Heese K. Identification of a Chemotherapeutic Lead Molecule for the Potential Disruption of the FAM72A-UNG2 Interaction to Interfere with Genome Stability, Centromere Formation, and Genome Editing. Cancers (Basel) 2021; 13:5870. [PMID: 34831023 PMCID: PMC8616359 DOI: 10.3390/cancers13225870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/15/2021] [Accepted: 11/20/2021] [Indexed: 01/05/2023] Open
Abstract
Family with sequence similarity 72 A (FAM72A) is a pivotal mitosis-promoting factor that is highly expressed in various types of cancer. FAM72A interacts with the uracil-DNA glycosylase UNG2 to prevent mutagenesis by eliminating uracil from DNA molecules through cleaving the N-glycosylic bond and initiating the base excision repair pathway, thus maintaining genome integrity. In the present study, we determined a specific FAM72A-UNG2 heterodimer protein interaction using molecular docking and dynamics. In addition, through in silico screening, we identified withaferin B as a molecule that can specifically prevent the FAM72A-UNG2 interaction by blocking its cell signaling pathways. Our results provide an excellent basis for possible therapeutic approaches in the clinical treatment of cancer.
Collapse
Affiliation(s)
- Senthil Renganathan
- Department of Bioinformatics, Marudupandiyar College, Thanjavur 613403, India;
| | - Subrata Pramanik
- Department of Biology, Life Science Centre, School of Science and Technology, Örebro University, 701-82 Örebro, Sweden;
| | | | - Arne Kutzner
- Department of Information Systems, College of Engineering, Hanyang University, Seoul 133-791, Korea;
| | - Pok-Son Kim
- Department of Information Security, Cryptology, and Mathematics, Kookmin University, Seoul 136-702, Korea;
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Korea
| |
Collapse
|
16
|
Siraj MA, Islam MA, Al Fahad MA, Kheya HR, Xiao J, Simal-Gandara J. Cancer Chemopreventive Role of Dietary Terpenoids by Modulating Keap1-Nrf2-ARE Signaling System—A Comprehensive Update. APPLIED SCIENCES 2021; 11:10806. [DOI: 10.3390/app112210806] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
ROS, RNS, and carcinogenic metabolites generate excessive oxidative stress, which changes the basal cellular status and leads to epigenetic modification, genomic instability, and initiation of cancer. Epigenetic modification may inhibit tumor-suppressor genes and activate oncogenes, enabling cells to have cancer promoting properties. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that in humans is encoded by the NFE2L2 gene, and is activated in response to cellular stress. It can regulate redox homoeostasis by expressing several cytoprotective enzymes, including NADPH quinine oxidoreductase, heme oxygenase-1, UDP-glucuronosyltransferase, glutathione peroxidase, glutathione-S-transferase, etc. There is accumulating evidence supporting the idea that dietary nutraceuticals derived from commonly used fruits, vegetables, and spices have the ability to produce cancer chemopreventive activity by inducing Nrf2-mediated detoxifying enzymes. In this review, we discuss the importance of these nutraceuticals in cancer chemoprevention and summarize the role of dietary terpenoids in this respect. This approach was taken to accumulate the mechanistic function of these terpenoids to develop a comprehensive understanding of their direct and indirect roles in modulating the Keap1-Nrf2-ARE signaling system.
Collapse
Affiliation(s)
- Md Afjalus Siraj
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720, USA
| | - Md. Arman Islam
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Md. Abdullah Al Fahad
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Habiba Rahman Kheya
- Department of Sociology, Faculty of Social Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
17
|
Wang J, Zhang H, Kaul A, Li K, Priyandoko D, Kaul SC, Wadhwa R. Effect of Ashwagandha Withanolides on Muscle Cell Differentiation. Biomolecules 2021; 11:biom11101454. [PMID: 34680087 PMCID: PMC8533065 DOI: 10.3390/biom11101454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Withania somnifera (Ashwagandha) is used in Indian traditional medicine, Ayurveda, and is believed to have a variety of health-promoting effects. The molecular mechanisms and pathways underlying these effects have not yet been sufficiently explored. In this study, we investigated the effect of Ashwagandha extracts and their major withanolides (withaferin A and withanone) on muscle cell differentiation using C2C12 myoblasts. We found that withaferin A and withanone and Ashwagandha extracts possessing different ratios of these active ingredients have different effects on the differentiation of C2C12. Withanone and withanone-rich extracts caused stronger differentiation of myoblasts to myotubes, deaggregation of heat- and metal-stress-induced aggregated proteins, and activation of hypoxia and autophagy pathways. Of note, the Parkinson’s disease model of Drosophila that possess a neuromuscular disorder showed improvement in their flight and climbing activity, suggesting the potential of Ashwagandha withanolides for the management of muscle repair and activity.
Collapse
Affiliation(s)
- Jia Wang
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
| | - Huayue Zhang
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
| | - Ashish Kaul
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
| | - Kejuan Li
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
- College of Life Science, Sichuan Normal University, Chengdu 610066, China
| | - Didik Priyandoko
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
- Department of Biology, Universitas Pendidikan Indonesia, Bangdung 40154, Indonesia
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
| | - Renu Wadhwa
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
- Correspondence:
| |
Collapse
|
18
|
Orabi MAA, Zidan SAH, Sakagami H, Murakami Y, Ali AA, Alyami HS, Alshabi AM, Matsunami K. Antileishmanial and lung adenocarcinoma cell toxicity of Withania somnifera (Linn.) dunal root and fruit extracts. Nat Prod Res 2021; 36:4231-4237. [PMID: 34520289 DOI: 10.1080/14786419.2021.1973462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study aims to evaluate the anti-Leishmania major and the lung adenocarcinoma (A549) cytotoxicity of Withania somnifera root and fruit. The total extracts were obtained by homogenisation in aqueous MeOH, and the sub-extracts [n-hexane, ethyl acetate (EtOAc), n-butanol (n-BuOH), and methanol (MeOH)] were obtained by flash chromatography. The activity evaluation showed that n-BuOH sub-extracts from root and fruit exhibited noticeable antileishmanial promastigote properties. The n-hexane and EtOAc sub-extracts from both organs, and the MeOH sub-extract from the fruit exerted mild to moderate effects on the promastigotes. In-vitro growth-inhibitory test results on axenic amastigote and cytotoxicity testing on macrophages (RAW264.7), the parasite-host at the amastigote stage, revealed that the activity was mainly concentrated in the root EtOAc and n-BuOH sub-extracts and to a lesser extent the fruit MeOH and EtOAc, and the root n-hexane sub-extracts. Only the roots' EtOAc and n-BuOH sub-extracts demonstrated low cytotoxicity on the A549 cell line.
Collapse
Affiliation(s)
- Mohamed A A Orabi
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-branch, Assiut, Egypt
| | - Sabry A H Zidan
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-branch, Assiut, Egypt.,Department of Pharmacognosy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Hiroshi Sakagami
- Meikai University Research Institute of Odontology (M-RIO), Sakado, Saitama, Japan
| | - Yukio Murakami
- Division of Oral Diagnosis and General Dentistry, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Sakado, Japan
| | - Ashraf A Ali
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Hamad S Alyami
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Ali Mohamed Alshabi
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Katsuyoshi Matsunami
- Department of Pharmacognosy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| |
Collapse
|
19
|
SILAC-based quantitative MS approach reveals Withaferin A regulated proteins in prostate cancer. J Proteomics 2021; 247:104334. [PMID: 34298187 DOI: 10.1016/j.jprot.2021.104334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 06/30/2021] [Accepted: 07/16/2021] [Indexed: 01/06/2023]
Abstract
Withaferin A (WA) is a steroidal lactone extracted from Withania somnifera, commonly known as Ashwagandha. WA has several therapeutic benefits. The current study aims to identify proteins that are potentially regulated by WA in prostate cancer (PCA) cells. We used a SILAC-based proteomic approach to analyze the expression of proteins in response to WA treatment at 4 h and 24 h time points in three PCA cell lines: 22Rv1, DU-145, and LNCaP. Ontology analysis suggested that prolonged treatment with WA upregulated the expression of proteins involved in stress-response pathways. Treatment with WA increased oxidative stress, reduced global mRNA translation, and elevated the expression of cytoprotective stress granule (SG) protein G3BP1. WA treatment also enhanced the formation of SGs. The elevated expression of G3BP1 and the formation of SGs might constitute a mechanism of cytoprotection in PCA cells. Knockdown of G3BP1 blocked SG formation and enhanced the efficacy of WA to reduce PCA cell survival. SIGNIFICANCE: Withaferin A, a steroidal lactone, extracted from Withania somnifera is a promising anti-cancer drug. Using a SILAC-based quantitative proteomic approach, we identified proteins changed by WA-treatment at 4 h and 24 h in three prostate cancer (PCA) cell lines. WA-treatment induced the expression of proteins involved in apoptosis and reduced the expression of proteins involved in cell growth at 4 h. WA-treatment for 24 h enhanced the expression of proteins involved in stress response pathways. WA-treated cells exhibited increased oxidative stress, reduced mRNA translation and enhanced SG formation. PCA is characterized by higher metabolic rate and increased oxidative stress. PCA with a higher stress tolerance can effectively adapt to anti-cancer treatment stress, leading to drug resistance and cellular protection. Enhancing the level of oxidative stress along with inhibition of corresponding cytoprotective stress response pathways is a feasible option to prevent PCA from getting adapted to treatment stress. WA-treatment induced oxidative stress, in combination with blocking SGs by G3BP1 targeting, offers a therapeutic strategy to reduce PCA cell survival.
Collapse
|
20
|
Covalent Cysteine Targeting of Bruton's Tyrosine Kinase (BTK) Family by Withaferin-A Reduces Survival of Glucocorticoid-Resistant Multiple Myeloma MM1 Cells. Cancers (Basel) 2021; 13:cancers13071618. [PMID: 33807411 PMCID: PMC8037275 DOI: 10.3390/cancers13071618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by plasma cells' uncontrolled growth. The major barrier in treating MM is the occurrence of primary and acquired therapy resistance to anticancer drugs. Often, this therapy resistance is associated with constitutive hyperactivation of tyrosine kinase signaling. Novel covalent kinase inhibitors, such as the clinically approved BTK inhibitor ibrutinib (IBR) and the preclinical phytochemical withaferin A (WA), have, therefore, gained pharmaceutical interest. Remarkably, WA is more effective than IBR in killing BTK-overexpressing glucocorticoid (GC)-resistant MM1R cells. To further characterize the kinase inhibitor profiles of WA and IBR in GC-resistant MM cells, we applied phosphopeptidome- and transcriptome-specific tyrosine kinome profiling. In contrast to IBR, WA was found to reverse BTK overexpression in GC-resistant MM1R cells. Furthermore, WA-induced cell death involves covalent cysteine targeting of Hinge-6 domain type tyrosine kinases of the kinase cysteinome classification, including inhibition of the hyperactivated BTK. Covalent interaction between WA and BTK could further be confirmed by biotin-based affinity purification and confocal microscopy. Similarly, molecular modeling suggests WA preferably targets conserved cysteines in the Hinge-6 region of the kinase cysteinome classification, favoring inhibition of multiple B-cell receptors (BCR) family kinases. Altogether, we show that WA's promiscuous inhibition of multiple BTK family tyrosine kinases represents a highly effective strategy to overcome GC-therapy resistance in MM.
Collapse
|
21
|
Moujir LM, Llanos GG, Araujo L, Amesty A, Bazzocchi IL, Jiménez IA. Withanolide-Type Steroids from Withania aristata as Potential Anti-Leukemic Agents. Molecules 2020; 25:E5744. [PMID: 33291428 PMCID: PMC7731379 DOI: 10.3390/molecules25235744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
Leukemia is a blood or bone marrow cancer with increasing incidence in developed regions of the world. Currently, there is an ongoing need for novel and safe anti-leukemic agents, as no fully effective chemotherapy is available to treat this life-threatening disease. Herein, are reported the isolation, structural elucidation, and anti-leukemic evaluation of twenty-nine withanolide-type steroids (1-29) from Withania aristata. Among them, the new isolated withanolides, withaperoxidins A-D (1-4) have an unusual six-membered cyclic peroxide moiety on the withasteroid skeleton as a structural novelty. Their structures have been elucidated by means of spectroscopic analyses, including 2D NMR experiments. In addition, extensive structure-activity relationships and in silico ADME studies were employed to understand the pharmacophore and pharmacokinetic properties of this series of withasteroids. Compounds 15, 16, and 22 together with withaferin A (14) were identified as having improved antiproliferative effect (IC50 ranging from 0.2 to 0.7 μM) on human leukemia HL-60 cell lines compared with the reference drug, etoposide. This cytotoxic potency was also coupled with good selectivity index (SI 33.0-9.2) on non-tumoral Vero cell line and in silico drug likeness. These findings revealed that these natural withasteroids are potential candidates as chemotherapeutic agents in the treatment of leukemia.
Collapse
Affiliation(s)
- Laila M. Moujir
- Department of Biochemistry, Microbiology, Cell Biology and Genetic, Faculty of Pharmacy, Universidad de La Laguna, Avenida Astrofisico Francisco Sánchez s/n, 38206 La Laguna, Spain; (L.M.M.); (L.A.)
| | - Gabriel G. Llanos
- Institute of Bio-Orgánica Antonio González and Organic Chemistry Department, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain; (G.G.L.); (A.A.); (I.L.B.)
| | - Liliana Araujo
- Department of Biochemistry, Microbiology, Cell Biology and Genetic, Faculty of Pharmacy, Universidad de La Laguna, Avenida Astrofisico Francisco Sánchez s/n, 38206 La Laguna, Spain; (L.M.M.); (L.A.)
- Clinical Laboratory Career, Faculty of Health Sciences, Universidad Nacional de Chimborazo, Avenida Antonio José de Sucre, Riobamba 060150, Ecuador
| | - Angel Amesty
- Institute of Bio-Orgánica Antonio González and Organic Chemistry Department, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain; (G.G.L.); (A.A.); (I.L.B.)
| | - Isabel L. Bazzocchi
- Institute of Bio-Orgánica Antonio González and Organic Chemistry Department, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain; (G.G.L.); (A.A.); (I.L.B.)
| | - Ignacio A. Jiménez
- Institute of Bio-Orgánica Antonio González and Organic Chemistry Department, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain; (G.G.L.); (A.A.); (I.L.B.)
| |
Collapse
|