1
|
Sultana S, Rahaman M, Hassan A, Parvez MA, Chandan MR. Biomass-Based Sustainable Graphene for Advanced Electronic Technology: A Review. Chem Asian J 2025; 20:e202500128. [PMID: 40256841 DOI: 10.1002/asia.202500128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/11/2025] [Accepted: 04/02/2025] [Indexed: 04/22/2025]
Abstract
Through its remarkable mechanical, electrical, and thermal qualities, graphene has become a revolutionary material in electronics. Sustainable graphene synthesis from biomass residues offers a possible path toward adhering to the demand for economical and ecologically friendly graphene production methods. The present study thoroughly examines the numerous biomass sources used for graphene synthesis, such as plant-derived materials, agricultural waste, and other organic leftovers. The benefits and drawbacks of several synthesis methods are examined, including pyrolysis, chemical exfoliation, and hydrothermal carbonization. The study also explores the possible uses of graphene produced from biomass in electronics, including sensors, energy storage devices, electronic devices with flexibility, and electromagnetic interference (EMI) shielding. This review highlights how biomass-based graphene can revolutionize the electronics sector by bridging the gap between electronic applications, synthesis techniques, and biomass supplies.
Collapse
Affiliation(s)
- Salma Sultana
- School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abul Hassan
- Department of Finance, School of Business, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mohammad Anwar Parvez
- Department of Chemical Engineering, College of Engineering, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mohammed Rehaan Chandan
- Colloids and Polymers Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
2
|
Guan L, Guo L, Yao H, Cai J, Dong X, Wang R, Zhai Z, Chen X, Wei X, Li D, Liu X, Ji S, Meng F. Redox Additive Electrolytes for Supercapacitors: A Mini-Review on Recent Developments and Future Directions. Molecules 2025; 30:1764. [PMID: 40333749 PMCID: PMC12029214 DOI: 10.3390/molecules30081764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 05/09/2025] Open
Abstract
Supercapacitors are promising energy storage devices that combine high power density, fast charge/discharge rates, and excellent cycling stability. However, their relatively low energy density compared to batteries remains a major challenge. To address this limitation, redox additive electrolytes have emerged as a key strategy to introduce reversible Faradaic reactions, significantly enhancing the energy storage capacity of supercapacitors. This mini-review systematically summarizes recent advancements in the use of redox-active species across aqueous, non-aqueous, and solid-state/gel electrolytes. We highlight the role of both inorganic and organic redox additives, detailing their mechanisms, advantages, and limitations in improving energy density and stability. Furthermore, we discuss the challenges associated with redox species, such as solubility, long-term stability, and parasitic side reactions, which hinder their practical applications. Future research directions are proposed to optimize redox-active materials and electrolyte systems, aiming to develop next-generation supercapacitors with superior energy density, extended cycling life, and enhanced applicability.
Collapse
Affiliation(s)
- Lu Guan
- Department of Biological and Chemical Engineering, Jining Polytechnic, Jining 272037, China; (L.G.); (H.Y.); (J.C.); (X.D.); (R.W.); (Z.Z.); (X.C.); (X.W.); (D.L.); (X.L.)
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Liangliang Guo
- Department of Biological and Chemical Engineering, Jining Polytechnic, Jining 272037, China; (L.G.); (H.Y.); (J.C.); (X.D.); (R.W.); (Z.Z.); (X.C.); (X.W.); (D.L.); (X.L.)
| | - Haiyuan Yao
- Department of Biological and Chemical Engineering, Jining Polytechnic, Jining 272037, China; (L.G.); (H.Y.); (J.C.); (X.D.); (R.W.); (Z.Z.); (X.C.); (X.W.); (D.L.); (X.L.)
| | - Jun Cai
- Department of Biological and Chemical Engineering, Jining Polytechnic, Jining 272037, China; (L.G.); (H.Y.); (J.C.); (X.D.); (R.W.); (Z.Z.); (X.C.); (X.W.); (D.L.); (X.L.)
| | - Xuewei Dong
- Department of Biological and Chemical Engineering, Jining Polytechnic, Jining 272037, China; (L.G.); (H.Y.); (J.C.); (X.D.); (R.W.); (Z.Z.); (X.C.); (X.W.); (D.L.); (X.L.)
| | - Ruonan Wang
- Department of Biological and Chemical Engineering, Jining Polytechnic, Jining 272037, China; (L.G.); (H.Y.); (J.C.); (X.D.); (R.W.); (Z.Z.); (X.C.); (X.W.); (D.L.); (X.L.)
| | - Zhihua Zhai
- Department of Biological and Chemical Engineering, Jining Polytechnic, Jining 272037, China; (L.G.); (H.Y.); (J.C.); (X.D.); (R.W.); (Z.Z.); (X.C.); (X.W.); (D.L.); (X.L.)
| | - Xuan Chen
- Department of Biological and Chemical Engineering, Jining Polytechnic, Jining 272037, China; (L.G.); (H.Y.); (J.C.); (X.D.); (R.W.); (Z.Z.); (X.C.); (X.W.); (D.L.); (X.L.)
| | - Xiuzhi Wei
- Department of Biological and Chemical Engineering, Jining Polytechnic, Jining 272037, China; (L.G.); (H.Y.); (J.C.); (X.D.); (R.W.); (Z.Z.); (X.C.); (X.W.); (D.L.); (X.L.)
- Faculty of Humanities, Altai Li University, Barnaul 656099, Russia
| | - Dajin Li
- Department of Biological and Chemical Engineering, Jining Polytechnic, Jining 272037, China; (L.G.); (H.Y.); (J.C.); (X.D.); (R.W.); (Z.Z.); (X.C.); (X.W.); (D.L.); (X.L.)
| | - Xingtong Liu
- Department of Biological and Chemical Engineering, Jining Polytechnic, Jining 272037, China; (L.G.); (H.Y.); (J.C.); (X.D.); (R.W.); (Z.Z.); (X.C.); (X.W.); (D.L.); (X.L.)
| | - Shanshan Ji
- Department of Biological and Chemical Engineering, Jining Polytechnic, Jining 272037, China; (L.G.); (H.Y.); (J.C.); (X.D.); (R.W.); (Z.Z.); (X.C.); (X.W.); (D.L.); (X.L.)
| | - Fanxiao Meng
- Department of Biological and Chemical Engineering, Jining Polytechnic, Jining 272037, China; (L.G.); (H.Y.); (J.C.); (X.D.); (R.W.); (Z.Z.); (X.C.); (X.W.); (D.L.); (X.L.)
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Zhao Q, Zhao T, Han Y, Jiang T, Zhang J, Feng R, Li X. Hydrothermal Fabrication and Electrochemical Property of a 0D/2D Hybrid Nanostructure with Graphitic Carbon Nitride-Incorporated Nickel Molybdenum Sulfide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4702-4713. [PMID: 39936405 DOI: 10.1021/acs.langmuir.4c04583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
As a kind of energy storage device, supercapacitors have attracted substantial attention on account of their large capacity, cycling stability, and high energy density. Here, a 0D/2D structured composite with graphitic carbon nitride (g-C3N4) nanosheet (2D)-incorporated nickel molybdenum sulfide [Ni2MoS4(NMS)] nanoparticles(0D) (NMS/g-C3N4) was synthesized through a two-step hydrothermal method using NiSO4·6H2O and Na2MoO4·2H2O as raw materials and thiourea as the sulfurizing agent. The incorporation of g-C3N4 nanosheets enhanced the dispersibility of NMS nanoparticles for preventing volumetric expansion during the charge-discharge cycles. The dispersed NMS nanoparticles and g-C3N4 nanosheets formed a 0D/2D hybrid nanostructure and could offer more active sites. The electrochemical results manifested that the formulated composite obtained a specific capacitance of 1800.6 F·g-1 at a current density of 1 A·g-1, and the specific capacitance of the NMS/g-C3N4 composite could retain 50.1% after 1000 cycles at a current density of 10 A·g-1, representing 12.5% improvement in capacitance retention compared to the pristine NMS composite. It indicates that the NMS/g-C3N4 composite holds promising potential as a supercapacitor electrode material.
Collapse
Affiliation(s)
- Qichen Zhao
- NPU-NCP Joint International Research Center on Advanced Nanomaterials & Defects Engineering, Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, College of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tingkai Zhao
- NPU-NCP Joint International Research Center on Advanced Nanomaterials & Defects Engineering, Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, College of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yongkang Han
- NPU-NCP Joint International Research Center on Advanced Nanomaterials & Defects Engineering, Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, College of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tao Jiang
- NPU-NCP Joint International Research Center on Advanced Nanomaterials & Defects Engineering, Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, College of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jumin Zhang
- NPU-NCP Joint International Research Center on Advanced Nanomaterials & Defects Engineering, Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, College of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ruiping Feng
- NPU-NCP Joint International Research Center on Advanced Nanomaterials & Defects Engineering, Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, College of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xianghong Li
- NPU-NCP Joint International Research Center on Advanced Nanomaterials & Defects Engineering, Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, College of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
4
|
He W, Li J, Zhang Y, Yang J, Zeng T, Yang N. High-Performance Supercapacitors Using Hierarchical And Sulfur-Doped Trimetallic NiCo/NiMn Layered Double Hydroxides. SMALL METHODS 2025; 9:e2301167. [PMID: 38009500 DOI: 10.1002/smtd.202301167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/06/2023] [Indexed: 11/29/2023]
Abstract
A supercapacitor features high power density and long cycling life. However, its energy density is low. To ensemble a supercapacitor with high power- and energy-densities, the applied capacitor electrodes play the key roles. Herein, a high-performance capacitive electrode is designed and grown on a flexible carbon cloth (CC) substrate via a hydrothermal reaction and a subsequent ion exchange sulfuration process. It has a 3D heterostructure, consisting of sulfur-doped NiMn-layered double hydroxide (LDH) nanosheets (NMLS) and sulfur-doped NiCo-LDH nanowires (NCLS). The electrode with sheet-shaped NMLS and wire-shaped NCLS on their top (NMLS@NCLS/CC) increases the available surface area, providing more pseudocapacitive sites. It exhibits a gravimetric capacity of 555.2 C g-1 at a current density of 1 A g-1, the retention rate of 75.1% when the current density reaches up to 20 A g-1, as well as superior cyclic stability. The assembled asymmetric supercapacitor that is composed of a NMLS@NCLS/CC positive electrode and a sulfurized activated carbon negative electrode presents a maximum energy density of 24.2 Wh kg-1 and a maximum power density of 16000 W kg-1. In this study, a facile strategy for designing hierarchical LDH materials is demonstrated as well as their applications in advanced energy storage systems.
Collapse
Affiliation(s)
- Weikang He
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Jingjing Li
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Yuanyuan Zhang
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Juan Yang
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Ting Zeng
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Nianjun Yang
- Department of Chemistry & IMO-IMOMEC, Hasselt University, 3590, Diepenbeek, Belgium
| |
Collapse
|
5
|
Manimekala T, Sivasubramanian R, Dar MA, Dharmalingam G. Crafting the architecture of biomass-derived activated carbon via electrochemical insights for supercapacitors: a review. RSC Adv 2025; 15:2490-2522. [PMID: 39867323 PMCID: PMC11758807 DOI: 10.1039/d4ra07682f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025] Open
Abstract
Escalating energy demands have often ignited ground-breaking innovations in the current era of electrochemical energy storage systems. Supercapacitors (SCs) have emerged as frontrunners in this regard owing to their exclusive features such ultra-high cyclic stability, power density, and ability to be derived from sustainable sources. Despite their promising attributes, they typically fail in terms of energy density, which poses a significant hindrance to their widespread commercialization. Hence, researchers have been exploring different cutting-edge technologies to address these challenges. This review focuses on biomass-derived activated carbon (BDAC) as a promising material for SCs. Initially, the methodology and key factors involved in synthesising BDAC, including crafting the building blocks of SCs, is detailed. Further, various conventional and novel material characterization techniques are examined, highlighting important insights from different biomass sources. This comprehensive investigation seeks to deepen our understanding of the properties of materials and their significance in various applications. Next, the architectural concepts of SCs, including their construction and energy storage mechanisms, are highlighted. Finally, the translation of the unravelled BDAC metrics into promising SCs is reviewed with comprehensive device-level visualisations and quantifications of the electrochemical performance of SCs using various techniques, including cyclic voltammetry (CV), galvanostatic charge-discharge test (GCD), electrochemical impedance spectroscopy (EIS), cyclic tests (CT), voltage holding tests (VHT) and self-discharge tests (SDT). The review is concluded with a discussion that overviews peanut-shell-derived activated carbon as it is a common and promising source in our geographical setting. Overall, the review explores the current and futuristic pivotal roles of BDAC in the broad field of energy storage, especially in SC construction and commercialisation.
Collapse
Affiliation(s)
- T Manimekala
- Electrochemical Sensors and Energy Materials Laboratory, Department of Nanoscience and Technology, PSG Institute of Advanced Studies Peelamedu Coimbatore-641 004 Tamilnadu India
| | - R Sivasubramanian
- Department of Chemistry, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham Amaravati Andhra Pradesh India
| | - Mushtaq Ahmad Dar
- Center of Excellence for Research in Engineering Materials, Deanship of Scientific Research (DSR), King Saud University Riyadh 11421 Saudi Arabia
| | - Gnanaprakash Dharmalingam
- Plasmonic Nanomaterials Laboratory, Department of Nanoscience and Technology, PSG Institute of Advanced Studies Peelamedu Coimbatore-641 004 Tamilnadu India
| |
Collapse
|
6
|
Choudhary N, Tomar A, Singh S, Chandra R, Maji PK. Fabrication of a symmetric supercapacitor device using MnO 2/cellulose nanocrystals/graphite electrodes via sputtering for energy storage. NANOSCALE 2025; 17:1289-1307. [PMID: 39639701 DOI: 10.1039/d4nr03476g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The growing commercialization of flexible electronic goods has led to increased interest in flexible wearable energy storage devices, particularly supercapacitors. The development of supercapacitive electrodes from low-cost, sustainable, and renewable materials is essential for promoting a green and eco-friendly approach. Cellulose nanocrystals (CNCs) with unique properties and structures hold the potential to produce a 3-D network-based electrode, which is necessary to utilize high-quality carbon materials. Integration of metal oxides on the CNCs/graphite surface exhibits excellent structural stability due to CNCs and electrical characteristics of the graphite substrate. In this work, we demonstrate a self-standing MnO2/CNCs/graphite-based hybrid electrode with excellent supercapacitance for energy storage. An MnO2 thin film was produced using the radio frequency (RF) magnetron sputtering technique, while CNCs were extracted from sugarcane bagasse. The MnO2/CNCs/graphite hybrid electrode and device demonstrated superior electrochemical performance in 1 M Na2SO4 electrolyte. It offered a 1.2 V potential window with an areal capacitance of 149 mF cm-2, energy density of 75 mW h cm-2 at 2 mA cm-2, and a power density of 2977 μW cm-2 with a low solution resistance of 5.67 Ω, comparable to the very high value of CNCs, i.e., Rs 6.13 KΩ. Moreover, the MnO2/CNCs/graphite device demonstrated outstanding cyclic retention, i.e., 85.27% after 15 000 cycles, owing to the structural stability imparted by CNCs, making it a great contender as supercapacitors.
Collapse
Affiliation(s)
- Nitesh Choudhary
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur-247001, India.
- Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Akshay Tomar
- Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Shiva Singh
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur-247001, India.
| | - Ramesh Chandra
- Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Pradip K Maji
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur-247001, India.
| |
Collapse
|
7
|
Ali G, Tahira A, Hayat A, Bhatti MA, Shah AA, Uddin Shah Bukhari SN, Dawi E, Nafady A, Alshammari RH, Tonezzer M, Samoon MK, Ibupoto ZH. Facile and ecofriendly green synthesis of Co 3O 4/MgO-SiO 2 composites towards efficient asymmetric supercapacitor and oxygen evolution reaction applications. RSC Adv 2024; 14:38009-38021. [PMID: 39610823 PMCID: PMC11604033 DOI: 10.1039/d4ra07337a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024] Open
Abstract
The development of low-cost, eco-friendly, and earth-friendly electrode materials for energy storage and conversion applications is a highly desirable but challenging task for strengthening the existing renewable energy systems. As part of this study, orange peel extract was utilized to synthesize a magnesium oxide-silicon dioxide hybrid substrate system (MgO-SiO2) for coating cobalt oxide nanostructures (Co3O4) via hydrothermal methods. A variety of MgO-SiO2 compositions were used to produce Co3O4 nanostructures. The purpose of using MgO-SiO2 substrates was to increase the porosity of the final hybrid material and enhance its compatibility with the electrode material. This study investigated the morphology, chemical composition, optical properties, and functional group properties. In hybrid materials, the shape structure is inherited from nanoparticles with uniform size distributions that are well compacted. A relative decrease in the optical band was observed for Co3O4 when deposited onto an MgO-SiO2 substrate. An improvement in the electrochemical properties of Co3O4/MgO-SiO2 composites was observed during the measurements of supercapacitors and oxygen evolution reaction (OER) in alkaline solutions. The Co3O4/MgO-SiO2 composite prepared on 0.4 g of the MgO-SiO2 substrate (sample 2) demonstrated excellent specific capacitance, high energy density, and recycling stability for 40 000 galvanic charge-discharge cycles. The assembled asymmetric supercapacitor (ASC) device demonstrated a specific capacitance of 243.94 F g-1 at a current density of 2 A g-1. Co3O4/MgO-SiO2 composites were found to be highly active towards the OER in 1 M KOH aqueous solution with an overpotential of 340 mV at 10 mA cm-2 and a Tafel slope of 88 mV dc-1. It was found that the stability and durability were highly satisfactory. Based on the use of orange peel extract, a roadmap was developed for the synthesis of porous hybrid substrates for the development of efficient electrode materials for energy storage and conversion.
Collapse
Affiliation(s)
- Gulzar Ali
- Institute of Chemistry, University of Sindh Jamshoro 76080 Pakistan
| | - Aneela Tahira
- Institute of Chemistry, Shah Abdul Latif University Khairpur Mirs Sindh Pakistan
| | - Asma Hayat
- Institute of Chemistry, University of Sindh Jamshoro 76080 Pakistan
| | - Muhammad Ali Bhatti
- Centre for Environmental Sciences, University of Sindh Jamshoro 76080 Sindh Pakistan
| | - Aqeel Ahmed Shah
- Wet Chemistry Laboratory, Department of Metallurgical Engineering, NED University of Engineering and Technology, University Road Karachi 75270 Pakistan
| | - Syed Nizam Uddin Shah Bukhari
- Department of Basic Science and Humanities, Dawood University of Engineering and Technology Karachi Sindh 74800 Pakistan
| | - Elmuez Dawi
- College of Humanities and Sciences, Department of Mathematics and Sciences, Ajman University P. O. Box 346 Ajman UAE
| | - Ayman Nafady
- Chemistry Department, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Riyadh H Alshammari
- Chemistry Department, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Matteo Tonezzer
- Department of Chemical and Geological Sciences, University of Cagliari Monserrato Italy
| | - Muhammad Kashif Samoon
- Centre for Pure and Applied Geology, University of Sindh Jamshoro Jamshoro Sindh 76080 Pakistan
| | | |
Collapse
|
8
|
Bandas C, Orha C, Nicolaescu M, Morariu Popescu MI, Lăzău C. 2D and 3D Nanostructured Metal Oxide Composites as Promising Materials for Electrochemical Energy Storage Techniques: Synthesis Methods and Properties. Int J Mol Sci 2024; 25:12521. [PMID: 39684234 DOI: 10.3390/ijms252312521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 12/18/2024] Open
Abstract
Due to population growth and global technological development, energy consumption has increased exponentially. The global energy crisis opens up many hotly debated topics regarding energy generation and consumption. Not only is energy production in short supply due to limited energy resources but efficient and sustainable storage has become a very important goal. Currently, there are energy storage devices such as batteries, capacitors, and super-capacitors. Supercapacitors or electrochemical capacitors can be very advantageous replacements for batteries and capacitors because they can achieve higher power density and energy density characteristics. The evolution and progress of society demand the use of innovative and composite nanostructured metal oxide materials, which fulfill the requirements of high-performance technologies. This review mainly addresses the synthesis techniques and properties of 2D and 3D metal oxide nanostructured materials, especially based on Ti, Fe, Ga, and Sn ions, electrochemical methods used for the characterization and application of 2D, and 3D nanostructured metal oxide structures in electrochemical storage systems of energy.
Collapse
Affiliation(s)
- Cornelia Bandas
- Condensed Matter Department, National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania
| | - Corina Orha
- Condensed Matter Department, National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania
| | - Mircea Nicolaescu
- Condensed Matter Department, National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania
| | - Mina-Ionela Morariu Popescu
- Condensed Matter Department, National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania
- Department of Applied Chemistry and Engineering of Inorganic Compounds and Environment, Politehnica University of Timisoara, 300223 Timisoara, Romania
| | - Carmen Lăzău
- Condensed Matter Department, National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania
| |
Collapse
|
9
|
Kumar D, Tiwari R, Verma DK, Yadav S, Parwati K, Rai R, Adhikary P, Krishnamoorthi S. Negative capacitance based on isomeric polythiophene in action. SOFT MATTER 2024; 20:7578-7582. [PMID: 39315655 DOI: 10.1039/d4sm01075b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
In this study, we demonstrated that arranging positive and negative capacitance materials in series, based on isomeric polythiophene, led to a notable increase in total capacitance. Furthermore, the application of negative capacitance (NC) technology in supercapacitor (SC) construction offers the potential for energy storage capabilities surpassing fundamental limits. Our findings suggest the feasibility of developing all-organic based energy storage devices with high capacitance.
Collapse
Affiliation(s)
- Devendra Kumar
- Department of Chemistry, Center of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| | - Rudramani Tiwari
- Department of Chemistry, Center of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| | - Dipendra Kumar Verma
- Department of Chemistry, Center of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| | - Shashikant Yadav
- Department of Chemistry, Center of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| | - Km Parwati
- Department of Chemistry, Center of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| | - Rajshree Rai
- Department of Chemistry, Center of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| | - Pubali Adhikary
- Department of Chemistry, Center of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| | - S Krishnamoorthi
- Department of Chemistry, Center of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| |
Collapse
|
10
|
Noor U, Sherin P K R, Sharif A, Ahmed T, Rahman MU. Enhancing the electrochemical performance of supercapacitor electrodes using as-synthesized CuO and MOF-derived CuO nanostructures. NANOTECHNOLOGY 2024; 35:455601. [PMID: 39121875 DOI: 10.1088/1361-6528/ad6d71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
Metal organic frameworks (MOF's) have gained considerable attention in the field of energy storage and supercapacitors applications. Herein, we synthesized copper oxide (CuO) through the precipitation method and concurrently derived from the solvothermal prepared copper-benzene dicarboxylate (Cu-BDC) by calcination. The integration of MOF-derived nanostructures with traditional CuO to form a hybrid electrode material, has not been extensively explored. The synthesized materials were characterized using x-ray Diffractometry, FTIR, XPS, Brunauer, Emmett, and Teller and morphological analysis was conducted using scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) affirming the composite's nature. Electrochemical impedance spectroscopy, galvanostatic charge-discharge, and cyclic voltammetry were used to evaluate the electrochemical properties of electrode material. With a specific capacitance of 691 Fg-1for CuO obtained from Cu-BDC (benzene dicarboxylic acid) and 236 Fg-1for CuO via the precipitation method, measured at a scan rate of 5 m Vs-1in 6 M KOH was found to be the optimal performance solution for the electrode material. The mesoporous structures are crucial for their absorption ability and improved ion transport, resulting in optimized electrochemical performance. Finally, we demonstrate significant improvements in specific capacitance and cycling stability compared to pure CuO-based electrodes, highlighting the potential of this composite structure for advanced supercapacitor applications.
Collapse
Affiliation(s)
- Umar Noor
- School of Integrated Science and Innovation, Sirindhorn International Institute of Technology Thammasat University, Rangsit, Bangkadi 12120, Thailand
| | - Risla Sherin P K
- Institute of Nano Optoelectronics Research and Technology (INOR), Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Ammara Sharif
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Toheed Ahmed
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Mehboob Ur Rahman
- School of Integrated Science and Innovation, Sirindhorn International Institute of Technology Thammasat University, Rangsit, Bangkadi 12120, Thailand
| |
Collapse
|
11
|
Zhang D, Zhang T, Yang K, Li Z, Liu C, Zhou G, Luo M, Li M, Chen W, Zhou X. Designing Dense, Robust, and Ion-Diffusion-Effective Electrodes from Natural Wood Material toward High-Volumetric-Performance Supercapacitors. NANO LETTERS 2024; 24:10210-10218. [PMID: 39105760 DOI: 10.1021/acs.nanolett.4c02526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Assembling active materials into dense electrodes is a promising way to obtain high-volumetric-capacitance supercapacitors, but insufficient ion channels in the dense structure lead to a low rate capability. Herein, a dense and robust wood electrode with a large MXene volumetric mass loading (1.25 g cm-3) and abundant ion diffusion channels is designed via a facile capillary-force-driven self-densification strategy. Specifically, MXene is assembled onto a wood cell wall, endowing the wood electrode with good electrical conductivity (86 S cm-1) and high electrochemical activity (5.9 F cm-2 at 1 mA cm-2). Notably, the oriented channels along with spaces between adjacent microfibrils recast after densification ensure efficient ion transport for the wood electrode, achieving an excellent rate capability with a high capacitance retention of 77% from 1 to 20 mA cm-2. Meanwhile, the capillary force induces self-densification on the softened wood cell wall, resulting in a highly compact and robust structure for the wood electrode.
Collapse
Affiliation(s)
- Daotong Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Tao Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Kai Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Zhao Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Chaozheng Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Guoqiang Zhou
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Min Luo
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Xinbei District, Changzhou, Jiangsu 213032, China
| | - Min Li
- College of Mechanics and Materials, Hohai University, Nanjing 210024, China
| | - Weimin Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Xiaoyan Zhou
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| |
Collapse
|
12
|
Arora G, Sabran NS, Ng CY, Low FW, Jun H. Applications of carbon quantum dots in electrochemical energy storage devices. Heliyon 2024; 10:e35543. [PMID: 39166025 PMCID: PMC11334856 DOI: 10.1016/j.heliyon.2024.e35543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024] Open
Abstract
Supercapacitors (SCs), including electric double-layer capacitors (EDLCs), pseudocapacitors, and hybrid capacitors, are esteemed for their high power density and attractive features such as robust safety, fast charging, low maintenance, and prolonged cycling lifespan, sparking significant interest. Carbon quantum dots (CQDs) are fluorescent nanomaterials with small size, broad excitation spectrum, stable fluorescence, and adjustable emission wavelengths. They are widely used in optoelectronics, medical diagnostics, and energy storage due to their biocompatibility, low toxicity, rich surface functional groups, abundant electron-hole pairs, large specific surface area, and tunable heteroatom doping. In this short review, we briefly discussed the advantages and disadvantages of bottom-up and top-down of CQD synthesis methods. The arc-discharge technique, laser ablation technique, plasma treatment, ultrasound synthesis technique, electrochemical technique, chemical exfoliation, and combustion are among the initial top-down approaches. The subsequent section delineates waste-derived and bottom-up methods, encompassing microwave synthesis, hydrothermal synthesis, thermal pyrolysis, and the metal-organic framework template-assisted technique. In addition, this short review focuses on the operational mechanism of supercapacitors, their properties, and the utilization of CQDs in supercapacitors.
Collapse
Affiliation(s)
- Grishika Arora
- Department of Mechanical and Materials Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Bandar Sungai Long, 43000, Kajang, Malaysia
| | - Nuur Syahidah Sabran
- Centre for Advanced and Sustainable Materials Research, Universiti Tunku Abdul Rahman, Sungai Long Campus, Bandar Sungai Long, 43000, Kajang, Malaysia
- Centre for Sustainable Mobility Technologies, Universiti Tunku Abdul Rahman, Sungai Long Campus, Bandar Sungai Long, 43000, Kajang, Malaysia
| | - Chai Yan Ng
- Department of Mechanical and Materials Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Bandar Sungai Long, 43000, Kajang, Malaysia
- Centre for Advanced and Sustainable Materials Research, Universiti Tunku Abdul Rahman, Sungai Long Campus, Bandar Sungai Long, 43000, Kajang, Malaysia
| | - Foo Wah Low
- Centre for Advanced and Sustainable Materials Research, Universiti Tunku Abdul Rahman, Sungai Long Campus, Bandar Sungai Long, 43000, Kajang, Malaysia
- Department of Electrical and Electronic Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, 43000, Kajang, Malaysia
| | - H.K. Jun
- Department of Mechanical and Materials Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Bandar Sungai Long, 43000, Kajang, Malaysia
- Centre for Advanced and Sustainable Materials Research, Universiti Tunku Abdul Rahman, Sungai Long Campus, Bandar Sungai Long, 43000, Kajang, Malaysia
- Centre for Sustainable Mobility Technologies, Universiti Tunku Abdul Rahman, Sungai Long Campus, Bandar Sungai Long, 43000, Kajang, Malaysia
| |
Collapse
|
13
|
Mu Q, Liu C, Guo Y, Wang K, Gao Z, Du Y, Cao C, Duan P, Kapusta K. Preparation of Supercapacitor Carbon Electrode Materials by Low-Temperature Carbonization of High-Nitrogen-Doped Raw Materials from Food Waste. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3984. [PMID: 39203161 PMCID: PMC11356624 DOI: 10.3390/ma17163984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024]
Abstract
To address the problem of the low nitrogen (N) content of carbon materials prepared through the direct carbonization of food waste, soybean meal and egg whites with high N contents were selected to carry out carbonization experiments on food waste. At 220 °C, the effects of hydrothermal carbonization and microwave carbonization on the properties of supercapacitor electrode materials were investigated. The results show that food waste doped with soybean meal and egg whites could achieve good N doping. At a current density of 1 A·g-1, the specific capacitance of the doped carbon prepared by hydrothermal doping is as high as 220.00 F·g-1, which is much greater than that of the raw material prepared through the hydrothermal carbonization of food waste alone, indicating that the hydrothermal carbonization reactions of soybean meal, egg white, and food waste promote the electrochemical properties of the prepared carbon materials well. However, when a variety of raw materials are mixed for pyrolysis carbonization, different raw materials cannot be fully mixed in the pyrolysis process, and under the etching action of potassium hydroxide, severe local etching and local nonetching occur, resulting in a severe increase in the pore size distribution and deterioration of the electrochemical performance of the prepared carbon materials. At a current density of 1 A·g-1, the specific capacitance of these prepared carbon materials is 157.70 F·g-1, whereas it is only 62.00 F·g-1 at a high current density of 20 A·g-1. Therefore, this study suggests that the hydrothermal carbonization process is superior to the microwave pyrolysis carbonization process for preparing supercapacitor electrode materials with multiple samples doped with each other.
Collapse
Affiliation(s)
- Qingnan Mu
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Q.M.); (C.L.); (Y.G.); (K.W.); (Z.G.); (Y.D.); (C.C.)
- Institute for Advanced Technology, Shandong University, Jinan 250100, China
| | - Chang Liu
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Q.M.); (C.L.); (Y.G.); (K.W.); (Z.G.); (Y.D.); (C.C.)
| | - Yao Guo
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Q.M.); (C.L.); (Y.G.); (K.W.); (Z.G.); (Y.D.); (C.C.)
| | - Kun Wang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Q.M.); (C.L.); (Y.G.); (K.W.); (Z.G.); (Y.D.); (C.C.)
| | - Zhijie Gao
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Q.M.); (C.L.); (Y.G.); (K.W.); (Z.G.); (Y.D.); (C.C.)
| | - Yuhan Du
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Q.M.); (C.L.); (Y.G.); (K.W.); (Z.G.); (Y.D.); (C.C.)
| | - Changqing Cao
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Q.M.); (C.L.); (Y.G.); (K.W.); (Z.G.); (Y.D.); (C.C.)
| | - Peigao Duan
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Q.M.); (C.L.); (Y.G.); (K.W.); (Z.G.); (Y.D.); (C.C.)
| | - Krzysztof Kapusta
- Główny Instytut Górnictwa (Central Mining Institute), Gwarków 1, 40-166 Katowice, Poland
| |
Collapse
|
14
|
Malavekar D, Pujari S, Jang S, Bachankar S, Kim JH. Recent Development on Transition Metal Oxides-Based Core-Shell Structures for Boosted Energy Density Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312179. [PMID: 38593336 DOI: 10.1002/smll.202312179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/22/2024] [Indexed: 04/11/2024]
Abstract
In recent years, nanomaterials exploration and synthesis have played a crucial role in advancing energy storage research, particularly in supercapacitor development. Researchers have diversified materials, including metal oxides, chalcogenides, and composites, as well as carbon materials, to enhance energy and power density. Balancing energy density with electrochemical stability remains challenging, driving intensified efforts in advancing electrode materials. This review focuses on recent progress in designing and synthesizing core-shell materials tailored for supercapacitors. The core-shell architecture offers advantages such as increased surface area, redox active sites, electrical conductivity, ion diffusion kinetics, specific capacitance, and cyclability. The review explores the impact of core and shell materials, specifically transition metal oxides (TMOs), on supercapacitor electrochemical behavior. Metal oxide choices, such as cobalt oxide as a preferred core and manganese oxide as a shell, are discussed. The review also highlights characterization techniques for assessing structural, morphological, and electrochemical properties of core-shell materials. Overall, it provides a comprehensive overview of ongoing TMOs-based core-shell material research for supercapacitors, showcasing their potential to enhance energy storage for applications ranging from gadgets to electric vehicles. The review outlines existing challenges and future opportunities in evolving TMOs-based core-shell materials for supercapacitor advancements, holding promise for high-efficiency energy storage devices.
Collapse
Affiliation(s)
- Dhanaji Malavekar
- Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, 300, Yongbong-Dong, Buk-Gu, Gwangju, 61186, South Korea
| | - Sachin Pujari
- Department of Physics, Yashwantrao Chavan Warana Mahavidyalaya, Warananagar, Kolhapur, 416113, India
| | - Suyoung Jang
- Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, 300, Yongbong-Dong, Buk-Gu, Gwangju, 61186, South Korea
| | - Shital Bachankar
- Department of Physics, Yashwantrao Chavan Warana Mahavidyalaya, Warananagar, Kolhapur, 416113, India
| | - Jin Hyeok Kim
- Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, 300, Yongbong-Dong, Buk-Gu, Gwangju, 61186, South Korea
| |
Collapse
|
15
|
Zhang C, Chen N, Zhao M, Zhong W, Wu WJ, Jin YC. High-performance electrode materials of heteroatom-doped lignin-based carbon materials for supercapacitor applications. Int J Biol Macromol 2024; 273:133017. [PMID: 38876242 DOI: 10.1016/j.ijbiomac.2024.133017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Supercapacitors are the preferred option for supporting renewable energy sources owing to many benefits, including fast charging, long life, high energy and power density, and saving energy. While electrode materials with environmentally friendly preparation, high performance, and low cost are important research directions of supercapacitors. At present, the growing global population and the increasingly pressing issue of environmental pollution have drawn the focus of numerous researchers worldwide to the development and utilization of renewable biomass resources. Lignin, a renewable aromatic polymer, has reserves second only to cellulose in nature. Ten million tonnes of industrial lignin are produced in pulp and paper mills annually, most of which are disposed of as waste or burned for fuel, seriously depleting natural resources and polluting the environment. One practical strategy to accomplish sustainable development is to employ lignin resources to create high-value materials. Based on the high carbon content and rich functional groups of lignin, the lignin-based carbon materials generated after carbonization treatment display specific electrochemical properties as electrode materials. Nevertheless, low electrochemical activity of untreated lignin precludes it from achieving its full potential for application in energy storage. Heteroatom doping is a common modification method that aims to improve the electrochemical performance of the electrode materials by optimizing the structure of the lignin, improving its pore structure and increasing the number of active sites on its surface. This paper aims to establish theoretical foundations for design, preparation, and optimizing the performance of heteroatom-doped lignin-based carbon materials, as well as for developing high-value-added lignin materials. The most reported the mechanism of supercapacitors, the doping process involving various types of heteroatoms, and the analysis of how heteroatoms affect the performance of lignin-based carbon materials are also detailed in this review.
Collapse
Affiliation(s)
- Cheng Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Nuo Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Miao Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Wei Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Wen-Juan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yong-Can Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
16
|
Parayangattil Jyothibasu J, Tien YC, Chen ZT, Yang H, Chiang TH, EL-Mahdy AFM, Lee RH. Iron Sulfide Microspheres Supported on Cellulose-Carbon Nanotube Conductive Flexible Film as an Electrode Material for Aqueous-Based Symmetric Supercapacitors with High Voltage. ACS OMEGA 2024; 9:26582-26595. [PMID: 38911739 PMCID: PMC11191093 DOI: 10.1021/acsomega.4c03232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/11/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024]
Abstract
Nanostructured iron disulfide (FeS2) was uniformly deposited on regenerated cellulose (RC) and oxidized carbon nanotube (CNT)-based composite films using a simple chemical bath deposition method to form RC/CNT/FeS2 composite films. The RC/CNT composite film served as an ideal substrate for the homogeneous deposition of FeS2 microspheres due to its unique porous architecture, large specific surface area, and high conductivity. Polypyrrole (PPy), a conductive polymer, was coated on the RC/CNT/FeS2 composite to improve its conductivity and cycling stability. Due to the synergistic effect of FeS2 with high redox activity and PPy with high stability and conductivity, the RC/CNT/FeS2/PPy composite electrode exhibited excellent electrochemical performance. The RC/CNT/0.3FeS2/PPy-60 composite electrode tested with Na2SO4 aqueous electrolyte could achieve an excellent areal capacitance of 6543.8 mF cm-2 at a current density of 1 mA cm-2. The electrode retained 91.1% of its original capacitance after 10,000 charge/discharge cycles. Scanning electron microscopy (SEM) images showed that the ion transfer channels with a pore diameter of 5-30 μm were formed in the RC/CNT/0.3FeS2/PPy-60 film after a 10,000 cycle test. A symmetrical supercapacitor device composed of two identical pieces of RC/CNT/0.3FeS2/PPy-60 composite electrodes provided a high areal capacitance of 1280 mF cm-2, a maximum energy density of 329 μWh cm-2, a maximum power density of 24.9 mW cm-2, and 86.2% of capacitance retention after 10,000 cycles at 40 mA cm-2 when tested at a wide voltage window of 1.4 V. These results demonstrate the greatest potential of RC/CNT/FeS2/PPy composite electrodes for the fabrication of high-performance symmetric supercapacitors with high operating voltages.
Collapse
Affiliation(s)
| | - You-Ching Tien
- Department
of Chemical Engineering, National Chung
Hsing University, Taichung 402, Taiwan
| | - Zi-Ting Chen
- Department
of Chemical Engineering, National Chung
Hsing University, Taichung 402, Taiwan
| | - Hongta Yang
- Department
of Chemical Engineering, National Chung
Hsing University, Taichung 402, Taiwan
| | - Tzu Hsuan Chiang
- Department
of Energy Engineering, National United University, Miaoli 360302, Taiwan
| | - Ahmed F. M. EL-Mahdy
- Department
of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Rong-Ho Lee
- Department
of Chemical Engineering, National Chung
Hsing University, Taichung 402, Taiwan
- Department
of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan
| |
Collapse
|
17
|
Chen H, Bao E, Sun H, Ren X, Han X, Wang Y, Zhang Z, Luo C, Xu C. Sonochemical synthesis of CoNi layered double hydroxide as a cathode material for assembling high performance hybrid supercapacitor. J Colloid Interface Sci 2024; 664:117-127. [PMID: 38460377 DOI: 10.1016/j.jcis.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
Fabricating battery-type electrode materials with large specific surface area and mesopores is an efficient method for enhancing the electrochemical performance of supercapacitors. This method may provide more active sites for Faradic reactions and shorten the ion-diffusion paths. In this study, the CoNi layered double hydroxides (LDHs) with the morphology of nanoflowers and nanoflakes were prepared in solutions with pH values of 7.5 (CoNi LDH-7.5) and 8.5 (CoNi LDH-8.5) via a simple sonochemical approach. These CoNi LDHs possessed large specific surface areas and favourable electrochemical properties. The CoNi LDH-7.5 delivered a specific capacity of 740.8C/g at a current density of 1 A/g, surpassing CoNi LDH-8.5 with 668.1C/g. The hybrid supercapacitor (HSC) was assembled with activated carbon as the anode and CoNi LDH as the cathode to assess its practical application potential in the field of electrochemical energy storage. The CoNi LDH-7.5//AC HSC achieved the highest energy density of 35.6 W h kg-1 at a power density of 781.1 W kg-1. In addition, both HSCs exhibited little capacity decay over 5,000 cycles at a high current load of 8 A/g. These electrochemical properties of CoNi LDHs make them promising candidates for battery-type electrode materials. The current sonochemical method is simple and can be applied to the preparation of other LDHs-based electrode materials with favourable electrochemical performance.
Collapse
Affiliation(s)
- Huiyu Chen
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China.
| | - Enhui Bao
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Hongyan Sun
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Xianglin Ren
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Xinxin Han
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Yue Wang
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Zheyu Zhang
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Chunwang Luo
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Chunju Xu
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| |
Collapse
|
18
|
Liu Q, Li R, Li J, Zheng B, Song S, Chen L, Li T, Ma Y. The Utilization of Metal-Organic Frameworks and Their Derivatives Composite in Supercapacitor Electrodes. Chemistry 2024; 30:e202400157. [PMID: 38520385 DOI: 10.1002/chem.202400157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Up to now, the mainstream adoption of renewable energy has brought about substantial transformations in the electricity and energy sector. This shift has garnered considerable attention within the scientific community. Supercapacitors, known for their exceptional performance metrics like good charge/discharge capability, strong power density, as well as extended cycle longevity, have gained widespread traction across various sectors, including transportation and aviation. Metal-organic frameworks (MOFs) with unique traits including adaptable structure, highly customizable synthetic methods, and high specific surface area, have emerged as strong candidates for electrode materials. For enhancing the performance, MOFs are commonly compounded with other conducting materials to increase capacitance. This paper provides a detailed analysis of various common preparation strategies and characteristics of MOFs. It summarizes the recent application of MOFs and their derivatives as supercapacitor electrodes alongside other carbon materials, metal compounds, and conductive polymers. Additionally, the challenges encountered by MOFs in the realm of supercapacitor applications are thoroughly discussed. Compared to previous reviews, the content of this paper is more comprehensive, offering readers a deeper understanding of the diverse applications of MOFs. Furthermore, it provides valuable suggestions and guidance for future progress and development in the field of MOFs.
Collapse
Affiliation(s)
- Qianwen Liu
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Ruidong Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Jie Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Bingyue Zheng
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Shuxin Song
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Lihua Chen
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Tingxi Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Yong Ma
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| |
Collapse
|
19
|
Asghar A, Khan K, Hakami O, Alamier WM, Ali SK, Zelai T, Rashid MS, Tareen AK, Al-Harthi EA. Recent progress in metal oxide-based electrode materials for safe and sustainable variants of supercapacitors. Front Chem 2024; 12:1402563. [PMID: 38831913 PMCID: PMC11144895 DOI: 10.3389/fchem.2024.1402563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/23/2024] [Indexed: 06/05/2024] Open
Abstract
A significant amount of energy can be produced using renewable energy sources; however, storing massive amounts of energy poses a substantial obstacle to energy production. Economic crisis has led to rapid developments in electrochemical (EC) energy storage devices (EESDs), especially rechargeable batteries, fuel cells, and supercapacitors (SCs), which are effective for energy storage systems. Researchers have lately suggested that among the various EESDs, the SC is an effective alternate for energy storage due to the presence of the following characteristics: SCs offer high-power density (PD), improvable energy density (ED), fast charging/discharging, and good cyclic stability. This review highlighted and analyzed the concepts of supercapacitors and types of supercapacitors on the basis of electrode materials, highlighted the several feasible synthesis processes for preparation of metal oxide (MO) nanoparticles, and discussed the morphological effects of MOs on the electrochemical performance of the devices. In this review, we primarily focus on pseudo-capacitors for SCs, which mainly contain MOs and their composite materials, and also highlight their future possibilities as a useful application of MO-based materials in supercapacitors. The novelty of MO's electrode materials is primarily due to the presence of synergistic effects in the hybrid materials, rich redox activity, excellent conductivity, and chemical stability, making them excellent for SC applications.
Collapse
Affiliation(s)
- Ali Asghar
- Additive Manufacturing Institute, Shenzhen University, Shenzhen, China
| | - Karim Khan
- Additive Manufacturing Institute, Shenzhen University, Shenzhen, China
| | - Othman Hakami
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, Jazan, Saudi Arabia
| | - Waleed M. Alamier
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, Jazan, Saudi Arabia
| | - Syed Kashif Ali
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, Jazan, Saudi Arabia
| | - Taharh Zelai
- Department of Physical Sciences, Physics Division, College of Science, Jazan University, Jazan, Saudi Arabia
| | - Muhammad Shahid Rashid
- Department of Physical Sciences, Physics Division, College of Science, Jazan University, Jazan, Saudi Arabia
| | - Ayesha Khan Tareen
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, China
| | - Enaam A. Al-Harthi
- College of Science, Department of Chemistry, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
Ha S, Shin KY. Fabrication of Ternary Titanium Dioxide/Polypyrrole/Phosphorene Nanocomposite for Supercapacitor Electrode Applications. Molecules 2024; 29:2172. [PMID: 38792034 PMCID: PMC11124188 DOI: 10.3390/molecules29102172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
In this paper, we report a titanium dioxide/polypyrrole/phosphorene (TiO2/PPy/phosphorene) nanocomposite as an active material for supercapacitor electrodes. Black phosphorus (BP) was fabricated by ball milling to induce a phase transition from red phosphorus, and urea-functionalized phosphorene (urea-FP) was obtained by urea-assisted ball milling of BP, followed by sonication. TiO2/PPy/phosphorene nanocomposites can be prepared via chemical oxidative polymerization, which has the advantage of mass production for a one-pot synthesis. The specific capacitance of the ternary nanocomposite was 502.6 F g-1, which was higher than those of the phosphorene/PPy (286.25 F g-1) and TiO2/PPy (150 F g-1) nanocomposites. The PPy fully wrapped around the urea-FP substrate provides an electron transport pathway, resulting in the enhanced electrical conductivity of phosphorene. Furthermore, the assistance of anatase TiO2 nanoparticles enhanced the structural stability and also improved the specific capacitance of the phosphorene. To the best of our knowledge, this is the first report on the potential of phosphorene hybridized with conducting polymers and metal oxides for practical supercapacitor applications.
Collapse
Affiliation(s)
| | - Keun-Young Shin
- Department of Materials Science and Engineering, Soongsil University 369, Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea;
| |
Collapse
|
21
|
Liu Y, Li Y, Liu Z, Feng T, Lin H, Li G, Wang K. Uniform P-Doped MnMoO 4 Nanosheets for Enhanced Asymmetric Supercapacitors Performance. Molecules 2024; 29:1988. [PMID: 38731479 PMCID: PMC11085725 DOI: 10.3390/molecules29091988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Manganese molybdate has garnered considerable interest in supercapacitor research owing to its outstanding electrochemical properties and nanostructural stability but still suffers from the common problems of transition metal oxides not being able to reach the theoretical specific capacitance and lower electrical conductivity. Doping phosphorus elements is an effective approach to further enhance the electrochemical characteristics of transition metal oxides. In this study, MnMoO4·H2O nanosheets were synthesized on nickel foam via a hydrothermal route, and the MnMoO4·H2O nanosheet structure was successfully doped with a phosphorus element using a gas-solid reaction method. Phosphorus element doping forms phosphorus-metal bonds and oxygen vacancies, thereby increasing the charge storage and conductivity of the electrode material. The specific capacitance value is as high as 2.112 F cm-2 (1760 F g-1) at 1 mA cm-2, which is 3.2 times higher than that of the MnMoO4·H2O electrode (0.657 F cm-2). The P-MnMoO4//AC ASC device provides a high energy density of 41.9 Wh kg-1 at 666.8 W kg-1, with an 84.5% capacity retention after 10,000 charge/discharge cycles. The outstanding performance suggests that P-MnMoO4 holds promise as an electrode material for supercapacitors.
Collapse
Affiliation(s)
- Yu Liu
- Institute of Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (Y.L.); (Z.L.); (T.F.); (G.L.)
| | - Yan Li
- Key Laboratory of Light Field Manipulation and System Integration Applications in Fujian Province, School of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China;
| | - Zhuohao Liu
- Institute of Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (Y.L.); (Z.L.); (T.F.); (G.L.)
| | - Tao Feng
- Institute of Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (Y.L.); (Z.L.); (T.F.); (G.L.)
| | - Huichuan Lin
- Key Laboratory of Light Field Manipulation and System Integration Applications in Fujian Province, School of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China;
| | - Gang Li
- Institute of Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (Y.L.); (Z.L.); (T.F.); (G.L.)
| | - Kaiying Wang
- Department of Microsystems, University of South-Eastern Norway, 3184 Horten, Norway
| |
Collapse
|
22
|
Autade VB, Bhattacharjee K, Kate RS, Arbuj SS, Kalubarme RS, Apte SK, Kale BB, Arote SA. Solid state engineering of Bi 2S 3/rGO nanostrips: an excellent electrode material for energy storage applications. RSC Adv 2024; 14:12313-12322. [PMID: 38633501 PMCID: PMC11019906 DOI: 10.1039/d4ra01304b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
The study presents a novel, one-pot, and scalable solid-state reaction scheme to prepare bismuth sulphide (Bi2S3)-reduced graphene oxide (rGO) nanocomposites using bismuth oxide (Bi2O3), thiourea (TU), and graphene oxide (GO) as starting materials for energy storage applications. The impact of GO loading concentration on the electrochemical performance of the nanocomposites was investigated. The reaction follows a diffusion substitution pathway, gradually transforming Bi2O3 powder into Bi2S3 nanostrips, concurrently converting GO into rGO. Enhanced specific capacitances were observed across all nanocomposite samples, with the Bi2S3@0.2rGO exhibiting the highest specific capacitance of 705 F g-1 at a current density of 1 A g-1 and maintaining a capacitance retention of 82% after 1000 cycles. The superior specific capacitance is attributed to the excellent homogeneity and synergistic relation between rGO and Bi2S3 nanostrips. This methodology holds promise for extending the synthesis of other chalcogenides-rGO nanocomposites.
Collapse
Affiliation(s)
- Vijay B Autade
- Department of Physics, S.N. Arts, D.J.M. Commerce and B.N.S. Science College (Autonomous) Sangamner Ahmednagar 422 605 M.S. India
- Nanocrystalline Laboratory, Centre for Material for Electronic Technology (CMET), Govt. of India Panchawati, Off Pashan Road Pune 411007 India
| | - Kaustav Bhattacharjee
- Nanocrystalline Laboratory, Centre for Material for Electronic Technology (CMET), Govt. of India Panchawati, Off Pashan Road Pune 411007 India
| | - Ranjit S Kate
- Nanocrystalline Laboratory, Centre for Material for Electronic Technology (CMET), Govt. of India Panchawati, Off Pashan Road Pune 411007 India
| | - Sudhir S Arbuj
- Nanocrystalline Laboratory, Centre for Material for Electronic Technology (CMET), Govt. of India Panchawati, Off Pashan Road Pune 411007 India
| | - Ramchandra S Kalubarme
- Nanocrystalline Laboratory, Centre for Material for Electronic Technology (CMET), Govt. of India Panchawati, Off Pashan Road Pune 411007 India
| | - Sanjay K Apte
- Nanocrystalline Laboratory, Centre for Material for Electronic Technology (CMET), Govt. of India Panchawati, Off Pashan Road Pune 411007 India
| | - Bharat B Kale
- MIT World Peace University (MIT-WPU) Paud Rd, Kothrud Pune Maharashtra 411038 India
| | - Sandeep A Arote
- Department of Physics, S.N. Arts, D.J.M. Commerce and B.N.S. Science College (Autonomous) Sangamner Ahmednagar 422 605 M.S. India
| |
Collapse
|
23
|
Joseph A, Mathew A, Perikkathra S, Thomas T. Recent advances in and perspectives on binder materials for supercapacitors–A review. Eur Polym J 2024; 210:112941. [DOI: 10.1016/j.eurpolymj.2024.112941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Wang Y, Yang X, Meng Y, Wen Z, Han R, Hu X, Sun B, Kang F, Li B, Zhou D, Wang C, Wang G. Fluorine Chemistry in Rechargeable Batteries: Challenges, Progress, and Perspectives. Chem Rev 2024; 124:3494-3589. [PMID: 38478597 DOI: 10.1021/acs.chemrev.3c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The renewable energy industry demands rechargeable batteries that can be manufactured at low cost using abundant resources while offering high energy density, good safety, wide operating temperature windows, and long lifespans. Utilizing fluorine chemistry to redesign battery configurations/components is considered a critical strategy to fulfill these requirements due to the natural abundance, robust bond strength, and extraordinary electronegativity of fluorine and the high free energy of fluoride formation, which enables the fluorinated components with cost effectiveness, nonflammability, and intrinsic stability. In particular, fluorinated materials and electrode|electrolyte interphases have been demonstrated to significantly affect reaction reversibility/kinetics, safety, and temperature tolerance of rechargeable batteries. However, the underlining principles governing material design and the mechanistic insights of interphases at the atomic level have been largely overlooked. This review covers a wide range of topics from the exploration of fluorine-containing electrodes, fluorinated electrolyte constituents, and other fluorinated battery components for metal-ion shuttle batteries to constructing fluoride-ion batteries, dual-ion batteries, and other new chemistries. In doing so, this review aims to provide a comprehensive understanding of the structure-property interactions, the features of fluorinated interphases, and cutting-edge techniques for elucidating the role of fluorine chemistry in rechargeable batteries. Further, we present current challenges and promising strategies for employing fluorine chemistry, aiming to advance the electrochemical performance, wide temperature operation, and safety attributes of rechargeable batteries.
Collapse
Affiliation(s)
- Yao Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Xu Yang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Yuefeng Meng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Zuxin Wen
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Ran Han
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Xia Hu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Bing Sun
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Feiyu Kang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Baohua Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Dong Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Chunsheng Wang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| |
Collapse
|
25
|
Pan L, Wang D, Wang J, Chu Y, Li X, Wang W, Mitsuzaki N, Jia S, Chen Z. Morphological control and performance engineering of Co-based materials for supercapacitors. Phys Chem Chem Phys 2024; 26:9096-9111. [PMID: 38456310 DOI: 10.1039/d3cp06038a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
As one of the most promising energy storage devices, supercapacitors exhibit a higher power density than batteries. However, its low energy density usually requires high-performance electrode materials. Although the RuO2 material shows desirable properties, its high cost and toxicity significantly limit its application in supercapacitors. Recent developments demonstrated that Co-based materials have emerged as a promising alternative to RuO2 for supercapacitors due to their low cost, favorable redox reversibility and environmental friendliness. In this paper, the morphological control and performance engineering of Co-based materials are systematically reviewed. Firstly, the principle of supercapacitors is briefly introduced, and the characteristics and advantages of pseudocapacitors are emphasized. The special forms of cobalt-based materials are introduced, including 1D, 2D and 3D nanomaterials. After that, the ways to enhance the properties of cobalt-based materials are discussed, including adding conductive materials, constructing heterostructures and doping heteroatoms. Particularly, the influence of morphological control and modification methods on the electrochemical performances of materials is highlighted. Finally, the application prospect and development direction of Co-based materials are proposed.
Collapse
Affiliation(s)
- Lin Pan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Dan Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Jibiao Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Yuan Chu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Xiaosong Li
- Jiangsu Key Laboratory of Materials Surface Science and Technology, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
- Analysis and Testing Center, NERC Biomass of Changzhou University, Changzhou, Jiangsu, 213032, China
| | | | - Shuyong Jia
- Jiangsu Key Laboratory of Materials Surface Science and Technology, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
26
|
Khizar A, Iqbal MZ, Zakir A, Shaheen M, Wabaidur SM, Faisal MM. Synergistic effects of a copper-cobalt-nitroisophthalic acid/neodymium oxide composite on the electrochemical performance of hybrid supercapacitors. RSC Adv 2024; 14:10120-10130. [PMID: 38566837 PMCID: PMC10985792 DOI: 10.1039/d4ra01719f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Hybrid supercapacitors can produce extraordinary advances in specific power and energy to display better electrochemical performance and better cyclic stability. Amalgamating metal oxides with metal-organic frameworks endows the prepared composites with unique properties and advantageous possibilities for enhancing the electrochemical capabilities. The present study focused on the synergistic effects of the CuCo(5-NIPA)-Nd2O3 composite. Employing a half-cell configuration, we conducted a comprehensive electrochemical analysis of CuCo(5-NIPA), Nd2O3, and their composite. Owing to the best performance of the composite, the hybrid device prepared from CuCo(5-NIPA)-Nd2O3 and activated carbon demonstrated a specific capacity of 467.5 C g-1 at a scan rate of 3 mV s-1, as well as a phenomenal energy and power density of 109.68 W h kg-1 and 4507 W kg-1, respectively. Afterwards, semi-empirical techniques and models were used to investigate the capacitive and diffusive mechanisms, providing important insights into the unique properties of battery-supercapacitor hybrids. These findings highlight the enhanced performance of the CuCo(5-NIPA)-Nd2O3 composite, establishing it as a unique and intriguing candidate for applications requiring the merging of battery and supercapacitor technologies.
Collapse
Affiliation(s)
- Asma Khizar
- Renewable Energy Research Laboratory, Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology Topi 23640 Khyber Pakhtunkhwa Pakistan
| | - Muhammad Zahir Iqbal
- Renewable Energy Research Laboratory, Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology Topi 23640 Khyber Pakhtunkhwa Pakistan
| | - Ayesha Zakir
- Renewable Energy Research Laboratory, Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology Topi 23640 Khyber Pakhtunkhwa Pakistan
| | - Misbah Shaheen
- Renewable Energy Research Laboratory, Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology Topi 23640 Khyber Pakhtunkhwa Pakistan
| | | | | |
Collapse
|
27
|
Benitto JJ, Vijaya JJ, Saravanakumar B, Al-Lohedan H, Bellucci S. Microwave engineered NiZrO 3@GNP as efficient electrode material for energy storage applications. RSC Adv 2024; 14:8178-8187. [PMID: 38469189 PMCID: PMC10925960 DOI: 10.1039/d4ra00621f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/02/2024] [Indexed: 03/13/2024] Open
Abstract
Supercapacitors (SCs) have emerged as attractive energy storage devices due to their rapid charge/discharge rates, long cycle life, and high-power density. However, the development of innovative electrode materials to achieve high-performance remains crucial to meet future requirements in supercapacitor technology. In this work, we have explored the potential of a microwave-engineered NiZrO3@GNP composite as a promising electrode material for SCs. A microwave assisted hydrothermal approach was adopted for the fabrication of the NiZrO3@GNP nanocomposite. Structural and morphological investigations showed its structural richness and its chemical compositions. When applied as a SC electrode, this innovative combination exhibits battery-like behaviour with higher specific capacity (577.63 C g-1) with good cyclic stability, and good performance. We have assembled an asymmetric-type two-electrode SC device and analysed its electrochemical features. This NiZrO3@GNP device exhibits the specific capacity of 47 C g-1 with capacitance retention of 70% after 2000 charge-discharge cycles. Further research on optimizing the synthesis process and exploring different device configurations could pave the way for even higher-performance supercapacitors in the future.
Collapse
Affiliation(s)
- J John Benitto
- Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College Chennai-600034 Tamil Nadu India
| | - J Judith Vijaya
- Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College Chennai-600034 Tamil Nadu India
| | - B Saravanakumar
- Department of Physics, Dr. Mahalingam College of Engineering and Technology Pollachi Tamil Nadu-642 003 India
| | - Hamad Al-Lohedan
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | | |
Collapse
|
28
|
Islam MR, Bhuiyan MA, Ahmed MH, Rahaman M. Hydrothermal synthesis of NiO nanoparticles decorated hierarchical MnO 2 nanowire for supercapacitor electrode with improved electrochemical performance. Heliyon 2024; 10:e26631. [PMID: 38420414 PMCID: PMC10901009 DOI: 10.1016/j.heliyon.2024.e26631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/31/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
In this work, MnO2/NiO nanocomposite electrode materials have been synthesized by a cost-effective hydrothermal method. The effect of the concentrations (0, 1, 3, 5, and 7 wt%) of NiO nanoparticles on the surface morphology, structural properties, and electrochemical performance of the nanocomposites was characterized by different characterization techniques. The scanning electron micrographs (SEM) reveal that the as-prepared NiO nanoparticles are well connected and stuck with the MnO2 nanowires. The transmission electron microscopy (TEM) analysis showed an increase in the interplanar spacing due to the incorporation of NiO nanoparticles. The different structural parameters of MnO2/NiO nanocomposites were also found to vary with the concentration of NiO. The MnO2/NiO nanocomposites provide an improved electrochemical performance together with a specific capacitance as high as 343 F/g at 1.25 A/g current density. The electrochemical spectroscopic analysis revealed a reduction in charge transfer resistance due to the introduction of NiO, indicating a rapid carrier transportation between the materials interface. The improved electrochemical performance of MnO2/NiO can be attributed to good interfacial interaction, a large interlayer distance, and low charge transfer resistance. The unique features of MnO2/NiO and the cost-effective hydrothermal method will open up a new route for the fabrication of a promising supercapacitor electrode.
Collapse
Affiliation(s)
- Muhammad Rakibul Islam
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | | | - Md Hasive Ahmed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Mizanur Rahaman
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| |
Collapse
|
29
|
Lim T, Seo BH, Kim SJ, Han S, Lee W, Suk JW. Nitrogen-Doped Activated Hollow Carbon Nanofibers with Controlled Hierarchical Pore Structures for High-Performance, Binder-Free, Flexible Supercapacitor Electrodes. ACS OMEGA 2024; 9:8247-8254. [PMID: 38405492 PMCID: PMC10882668 DOI: 10.1021/acsomega.3c08952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/27/2024]
Abstract
Carbon nanofibers (CNFs) are a fascinating electrode material for energy storage devices due to their one-dimensionality, interconnected networks, and chemical stability. However, a relatively low specific surface area of CNFs hinders their use as supercapacitor electrodes. Here, nitrogen-doped hollow CNFs with hierarchical pore structures are prepared via electrospinning of core-shell polymer nanofibers and subsequent carbonization and activation under an ammonia atmosphere. Hierarchical pore structures with micro-, meso-, and macropores are controlled by an ammonia etching effect during the carbonization of polymer nanofibers. In addition, a hollow structure in CNFs is obtained by thermal decomposition of the core polymer during the carbonization/activation. The nitrogen-doped activated hollow CNFs (ahCNFs) exhibited an exceptionally high specific surface area of 3618 m2/g with increased mesopores. Thus, a symmetric supercapacitor using ahCNFs electrodes with a 6 M KOH aqueous electrolyte provides a high specific capacitance of 208 F/g at a current density of 1 A/g, a high energy density of 7.22 W h/kg at a power density of 502 W/kg, a good rate capability, and cyclic stability. Moreover, the freestanding ahCNFs are used for flexible supercapacitor electrodes without any binder. This work demonstrates the great potential of highly porous ahCNFs for high-performance energy storage devices.
Collapse
Affiliation(s)
- TaeGyeong Lim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Bong Hyun Seo
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Seo Ju Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Seungwoo Han
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Wonyoung Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Ji Won Suk
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
- Department of Smart Fab. Technology, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
30
|
Liu D, Kim S, Choi WM. Facile Synthesis of Nitrogen-Doped Graphene Quantum Dots/MnCO 3/ZnMn 2O 4 on Ni Foam Composites for High-Performance Supercapacitor Electrodes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:884. [PMID: 38399135 PMCID: PMC10890349 DOI: 10.3390/ma17040884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
This study reports the facile synthesis of rationally designed composite materials consisting of nitrogen-doped graphene quantum dots (N-GQDs) and MnCO3/ZnMn2O4 (N/MC/ZM) on Ni foam using a simple hydrothermal method to produce high-performance supercapacitor applications. The N/MC/ZM composite was uniformly synthesized on a Ni foam surface with the hierarchical structure of microparticles and nanosheets, and the uniform deposition of N-GQDs on a MC/ZM surface was observed. The incorporation of N-GQDs with MC/ZM provides good conductivity, charge transfer, and electrolyte diffusion for a better electrochemical performance. The N/MC/ZM composite electrode delivered a high specific capacitance of 960.6 F·g-1 at 1 A·g-1, low internal resistance, and remarkable cycling stability over 10,000 charge-discharge cycles. Additionally, an all-flexible solid-state asymmetric supercapacitor (ASC) device was fabricated using the N/MC/ZM composite electrode. The fabricated ASC device produced a maximum energy density of 58.4 Wh·kg-1 at a power density of 800 W·kg-1 and showed a stable capacitive performance while being bent, with good mechanical stability. These results provide a promising and effective strategy for developing supercapacitor electrodes with a high areal capacitance and high energy density.
Collapse
Affiliation(s)
- Di Liu
- School of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea; (D.L.); (S.K.)
| | - Soeun Kim
- School of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea; (D.L.); (S.K.)
- Division of Advanced Material, Korea Research Institution of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Won Mook Choi
- School of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea; (D.L.); (S.K.)
| |
Collapse
|
31
|
Zhong W, Su W, Li P, Li K, Wu W, Jiang B. Preparation and research progress of lignin-based supercapacitor electrode materials. Int J Biol Macromol 2024; 259:128942. [PMID: 38143066 DOI: 10.1016/j.ijbiomac.2023.128942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/20/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
The reserve of lignin in the biological world is the second largest biomass resource after cellulose. Lignin has the characteristics of wide sources, low cost, and rich active components. Due to environmental pollution and energy scarcity, lignin is often used as a substitute good for petrochemical products. Lignin-based functional materials can be prepared by chemical modification or compounding, which are widely used in the fields of energy storage, chemical industry, and medicine. Among them, lignin-based carbon materials have the features of stable chemical properties, large pH application range, ideal electrical conductivity, developed pore size, and high specific surface area, which have great application prospects as supercapacitor materials. This paper mainly introduces the structural properties of lignin, the methods, and mechanisms of carbonization, pore-making, and pore-expansion, as well as the research progress of lignin-based carbon materials for supercapacitors, while looking forward to the future research direction of lignin carbon materials.
Collapse
Affiliation(s)
- Wei Zhong
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wanting Su
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Penghui Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kongyan Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Bo Jiang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
32
|
Choudhary G, Dhariwal J, Saha M, Trivedi S, Banjare MK, Kanaoujiya R, Behera K. Ionic liquids: environmentally sustainable materials for energy conversion and storage applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10296-10316. [PMID: 36719584 DOI: 10.1007/s11356-023-25468-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/17/2023] [Indexed: 02/01/2023]
Abstract
Ionic liquids (ILs), often known as green designer solvents, have demonstrated immense application potential in numerous scientific and technological domains. ILs possess high boiling point and low volatility that make them suitable environmentally benign candidates for many potential applications. The more important aspect associated with ILs is that their physicochemical properties can be effectively changed for desired applications just by tuning the structure of the cationic and/or anionic part of ILs. Furthermore, these eco-friendly designer materials can function as electrolytes or solvents depending on the application. Owing to the distinctive properties such as low volatility, high thermal and electrochemical stability, and better ionic conductivity, ILs are nowadays immensely used in a variety of energy applications, particularly in the development of green and sustainable energy storage and conversion devices. Suitable ILs are designed for specific purposes to be used as electrolytes and/or solvents for fuel cells, lithium-ion batteries, supercapacitors (SCs), and solar cells. Herein, we have highlighted the utilization of ILs as unique green designer materials in Li-batteries, fuel cells, SCs, and solar cells. This review will enlighten the promising prospects of these unique, environmentally sustainable materials for next-generation green energy conversion and storage devices. Ionic liquids have much to offer in the field of energy sciences regarding fixing some of the world's most serious issues. However, most of the discoveries discussed in this review article are still at the laboratory research scale for further development. This review article will inspire researchers and readers about how ILs can be effectively applied in energy sectors for various applications as mentioned above.
Collapse
Affiliation(s)
- Gaurav Choudhary
- Department of Applied Chemistry (CBFS - ASAS), Amity University Gurugram, Manesar, Panchgaon, Haryana, 122413, Gurugram, India
| | - Jyoti Dhariwal
- Department of Applied Chemistry (CBFS - ASAS), Amity University Gurugram, Manesar, Panchgaon, Haryana, 122413, Gurugram, India
| | - Moumita Saha
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, U.P., India
| | - Shruti Trivedi
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, U.P., India
| | - Manoj K Banjare
- MATS School of Sciences, MATS University, Pagaria Complex, Pandri, Raipur (C.G.), 492 004, India
| | - Rahul Kanaoujiya
- Department of Chemistry, Faculty of Science, University of Allahabad, Prayagraj, U.P., 211002, India
| | - Kamalakanta Behera
- Department of Applied Chemistry (CBFS - ASAS), Amity University Gurugram, Manesar, Panchgaon, Haryana, 122413, Gurugram, India.
- Department of Chemistry, Faculty of Science, University of Allahabad, Prayagraj, U.P., 211002, India.
| |
Collapse
|
33
|
Nashim A, Pany S, Parida K. Effect of synthesis methods on the activity of NiO/Co 3O 4 as an electrode material for supercapacitor: in the light of X-ray diffraction study. RSC Adv 2024; 14:233-244. [PMID: 38173613 PMCID: PMC10759196 DOI: 10.1039/d3ra05200a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
The formation of heterostructures by combining individual components (NiO and Co3O4) is a preferred approach to enhance electrochemical performance as it leads to improved charge transfer and surface reaction kinetics. In the present work, a NiO/Co3O4 composite was prepared by two methods. First, neat NiO and Co3O4 were prepared by adopting the hydrothermal method followed by the formation of the composite (i) by a hydrothermal route (NC-Hydro) and (ii) by a calcination route (NC-Cal). NC-Hydro composite shows a specific capacity of 176 C g-1 at 1 A g-1 of current density in the three-electrode system in a 2 M KOH solution as an electrolyte with 90% cyclic retention after 5000 cycles at 4 A g-1. NC-Cal shows a specific capacity of 111 C g-1 at 1 A g-1 with 75% cyclic retention. The coulombic efficiency of NC-Hydro was 86.3% while for NC-Cal it was 42.3%. The reason behind the superior electrochemical performance of NC-Hydro in comparison to NC-Cal may be the large interlayer spacing and lattice parameters of the former, which provide large space for redox reactions. The unit cell volume of the composites was more than that of the constituents. This study reveals that the composites prepared by the hydrothermal method have superior electrochemical properties in comparison to composites prepared by the calcination method.
Collapse
Affiliation(s)
- Amtul Nashim
- Centre for Nano Science and Nano Technology, Institute of Technical Education and Research, Siksha 'O' Anusandhan (Deemed to be University) Bhubaneswar 751019 India
| | - Soumyashree Pany
- Centre for Nano Science and Nano Technology, Institute of Technical Education and Research, Siksha 'O' Anusandhan (Deemed to be University) Bhubaneswar 751019 India
| | - Kulamani Parida
- Centre for Nano Science and Nano Technology, Institute of Technical Education and Research, Siksha 'O' Anusandhan (Deemed to be University) Bhubaneswar 751019 India
| |
Collapse
|
34
|
Shahzad U, Marwani HM, Saeed M, Asiri AM, Repon MR, Althomali RH, Rahman MM. Progress and Perspectives on Promising Covalent-Organic Frameworks (COFs) Materials for Energy Storage Capacity. CHEM REC 2024; 24:e202300285. [PMID: 37986206 DOI: 10.1002/tcr.202300285] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Indexed: 11/22/2023]
Abstract
In recent years, a new class of highly crystalline advanced permeable materials covalent-organic frameworks (COFs) have garnered a great deal of attention thanks to their remarkable properties, such as their large surface area, highly ordered pores and channels, and controllable crystalline structures. The lower physical stability and electrical conductivity, however, prevent them from being widely used in applications like photocatalytic activities and innovative energy storage and conversion devices. For this reason, many studies have focused on finding ways to improve upon these interesting materials while also minimizing their drawbacks. This review article begins with a brief introduction to the history and major milestones of COFs development before moving on to a comprehensive exploration of the various synthesis methods and recent successes and signposts of their potential applications in carbon dioxide (CO2 ) sequestration, supercapacitors (SCs), lithium-ion batteries (LIBs), and hydrogen production (H2 -energy). In conclusion, the difficulties and potential of future developing with highly efficient COFs ideas for photocatalytic as well as electrochemical energy storage applications are highlighted.
Collapse
Affiliation(s)
- Umer Shahzad
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hadi M Marwani
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohsin Saeed
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdullah M Asiri
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Md Reazuddin Repon
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentų 56, LT-51424, Kaunas, Lithuania
- Laboratory of Plant Physiology, Nature Research Centre, Akademijos g. 2, 08412, Vilnius, Lithuania
- Department of Textile Engineering, Daffodil International University, Dhaka, 1216, Bangladesh
| | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir, 11991, Saudi Arabia
| | - Mohammed M Rahman
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
35
|
Liang J, Qin S, Luo S, Pan D, Xu P, Li J. Honeycomb porous heterostructures of NiMo layered double hydroxide nanosheets anchored on CoNi metal-organic framework nano-blocks as electrodes for asymmetric supercapacitors. J Colloid Interface Sci 2024; 653:504-516. [PMID: 37729758 DOI: 10.1016/j.jcis.2023.09.086] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
Supercapacitors (SCs) have the advantages of high power density, long cycle life, and fast charging/discharging rates, but relatively low energy density limits their practical application prospects. The key to improving the energy density of supercapacitors is to develop electrode materials with excellent performance. Metal-organic frameworks (MOFs) used for electrochemical energy storage have emerged as a research hotspot due to their adjustable microstructure, porosity, and high specific surface area. To address the demands of high-performance supercapacitors, composite nanomaterials can be prepared by rationally designing MOFs. Herein, CoNi-MOF nano-blocks are grown on the carbon cloth, and ultrathin NiMo layered double hydroxides (NiMo-LDH) nanosheets are further anchored on its surfaces to form a honeycomb porous heterostructure (NiMo-LDH@CoNi-MOF). The porous heterostructures increase the electrochemically active specific surface area and shorten the charge transfer distance, possessing ultra-high capacitance of 15.6 F/cm2 at 1 mA/cm2. Furthermore, utilizing annealed activated carbon cloth (AAC) as the negative electrode, the assembled NiMo-LDH@CoNi-MOF-2//AAC asymmetric supercapacitor possesses an energy density of 1.10 mWh/cm2 at a power density of 4 mW/cm2, and a capacitance retention of 97.8 % after 10,000 cycles. This material exhibits distinctive nanostructures and favorable electrochemical characteristics, providing a unique idea for preparing supercapacitors with high energy density and power density.
Collapse
Affiliation(s)
- Jianying Liang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Shumin Qin
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Shuang Luo
- Department of Materials Science & Engineering, City University of Hong Kong, Kowloon Tong 999077, Hong Kong, China
| | - Die Pan
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Pengfei Xu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Jien Li
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
36
|
Tarasenka NN, Kornev VG, Nedelko MI, Maltanova HM, Poznyak SK, Tarasenko NV. Electric field-assisted laser ablation fabrication and assembly of zinc oxide/carbon nanocomposites into hierarchical structures for supercapacitor electrodes. NANOSCALE 2023; 16:322-334. [PMID: 38059723 DOI: 10.1039/d3nr05116a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
One of the major challenges in the field of electrochemical energy storage device performance improvement is the development of suitable synthetic materials for electrodes that can provide high power and high energy density features combined with their long-term stability. Here, we have developed a novel two-step approach based on DC glow discharge plasma pre-treatment of a carbon cloth substrate followed by electric field-assisted laser ablation for the synthesis of ZnO/C nanocomposites in a liquid and their simultaneous assembly into hierarchically organized nanostructures onto the pre-processed carbon cloth to produce a supercapacitor electrode. To form such nanostructures, a processed carbon cloth was included in the electrical circuit as a cathode during laser ablation of zinc in water, while a zinc target served as an anode. A series of studies have been performed to explore the structure, morphology, composition and electrochemical characteristics of the synthesized ZnO/C nanocomposites. Application of the external field provided additional possibilities for tuning the particle morphology. The parameters of the obtained nanostructures were shown to depend on the direction of the applied electric field and liquid composition. SEM studies revealed a nanoflower-like morphology of the prepared nanomaterial having potential in supercapacitor applications due to a large surface area. The ZnO/C nanoflowers, deposited onto a carbon cloth substrate, were tested for energy storage by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) analysis. The results showed a pseudocapacitor behavior with a maximum specific capacitance of about 3045 F g-1 (at a scan rate of 1 mV s-1). These results demonstrate a promising storage efficiency of the synthesized ZnO/C nanocomposite as a material for supercapacitors.
Collapse
Affiliation(s)
- Natalie N Tarasenka
- B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk 220072, Belarus.
| | - Vladislav G Kornev
- B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk 220072, Belarus.
| | - Mikhail I Nedelko
- B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk 220072, Belarus.
| | - Hanna M Maltanova
- Belarusian State University, Research Institute for Physical Chemical Problems, Minsk 220006, Belarus
| | - Sergey K Poznyak
- Belarusian State University, Research Institute for Physical Chemical Problems, Minsk 220006, Belarus
| | - Nikolai V Tarasenko
- B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk 220072, Belarus.
| |
Collapse
|
37
|
Tuc Altaf C, Rostas AM, Popa A, Toloman D, Stefan M, Demirci Sankir N, Sankir M. Recent Advances in Photochargeable Integrated and All-in-One Supercapacitor Devices. ACS OMEGA 2023; 8:47393-47411. [PMID: 38144123 PMCID: PMC10734009 DOI: 10.1021/acsomega.3c07464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023]
Abstract
Photoassisted energy storage systems, which enable both the conversion and storage of solar energy, have attracted attention in recent years. These systems, which started about 20 years ago with the individual production of dye-sensitized solar cells and capacitors and their integration, today allow more compact and cost-effective designs using dual-acting electrodes. Solar-assisted batterylike or hybrid supercapacitors have also shown promise with their high energy densities. This review summarizes all of these device designs and conveys the cutting-edge studies in this field. Besides, this review aims to emphasize the effects of point, extrinsic, intrinsic, and 2D-planar defects on the performance of photoassisted energy storage systems since it is known that defect structures, as well as electrical, optical, and surface properties, affect the device performance. Here, it is also targeted to draw attention to how critical the design, material selection, and material properties are for these new-generation energy conversion and storage devices, which have a high potential to see commercial examples quickly and to be recognized by more readers.
Collapse
Affiliation(s)
- Cigdem Tuc Altaf
- Department
of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Sogutozu Caddesi No 43 Sogutozu 06560 Ankara, Turkey
| | - Arpad Mihai Rostas
- National
Institute for Research and Development of Isotopic and
Molecular Technologies- INCDTIM, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Adriana Popa
- National
Institute for Research and Development of Isotopic and
Molecular Technologies- INCDTIM, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Dana Toloman
- National
Institute for Research and Development of Isotopic and
Molecular Technologies- INCDTIM, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Maria Stefan
- National
Institute for Research and Development of Isotopic and
Molecular Technologies- INCDTIM, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Nurdan Demirci Sankir
- Department
of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Sogutozu Caddesi No 43 Sogutozu 06560 Ankara, Turkey
| | - Mehmet Sankir
- Department
of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Sogutozu Caddesi No 43 Sogutozu 06560 Ankara, Turkey
| |
Collapse
|
38
|
Shivasharma TK, Upadhyay N, Deshmukh TB, Sankapal BR. Exploring Vacuum-Assisted Thin Films toward Supercapacitor Applications: Present Status and Future Prospects. ACS OMEGA 2023; 8:37685-37719. [PMID: 37867670 PMCID: PMC10586283 DOI: 10.1021/acsomega.3c05285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/14/2023] [Indexed: 10/24/2023]
Abstract
Demand for high-performance energy storage devices is growing tremendously. Supercapacitors possess an excellent candidature to fulfill the energy storage requisites such as high energy density when compared to conventional capacitors, high power density, and cycling stability as compared to batteries, though not only for large-scale devices for higher energy/power density applications but also for macro- to microdevices for miniaturized electrical components. With the aid of various routes, many materials have been explored with well-tuned properties with controlled surface architecture through various preparative parameters to find those best suited for supercapacitive electrodes. Growth of a thin film can be accomplished through chemical or physical (vacuum-assisted) routes. Vacuum-assisted (physical) growth yields high purity, precise dimensions with a line-of-sight deposition, along with high adhesion between the film and the substrates, and hence, these techniques are necessary to manufacture many macro- to microscale supercapacitor devices. Still, much effort has not been put forth to explore vacuum-assisted techniques to fabricate supercapacitive electrodes and energy storage applications. The present review explores the first comprehensive report on the growth of widespread materials through vacuum-assisted physical deposition techniques inclusive of thermal evaporation, e-beam evaporation, sputtering, and laser beam ablation toward supercapacitive energy storage applications on one platform. The theoretical background of nucleation and growth through physical deposition, optimization of process parameters, and characterization to supercapacitor applications from macro- to microscale devices has been well explored to a provide critical analysis with literature-reviewed materials. The review ends with future challenges to bring out upcoming prospects to further enhance supercapacitive performance, as much work and materials need to be explored through these routes.
Collapse
Affiliation(s)
- T. Kedara Shivasharma
- Nano Materials and Device
Laboratory, Department of Physics, Visvesvaraya
National Institute of Technology, South Ambazari Road, Nagpur, 440010 M.S., India
| | - Nakul Upadhyay
- Nano Materials and Device
Laboratory, Department of Physics, Visvesvaraya
National Institute of Technology, South Ambazari Road, Nagpur, 440010 M.S., India
| | - Tushar Balasaheb Deshmukh
- Nano Materials and Device
Laboratory, Department of Physics, Visvesvaraya
National Institute of Technology, South Ambazari Road, Nagpur, 440010 M.S., India
| | - Babasaheb R. Sankapal
- Nano Materials and Device
Laboratory, Department of Physics, Visvesvaraya
National Institute of Technology, South Ambazari Road, Nagpur, 440010 M.S., India
| |
Collapse
|
39
|
Arora R, Nehra SP, Lata S. In-situ composited g-C 3N 4/polypyrrole nanomaterial applied as energy-storing electrode with ameliorated super-capacitive performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98589-98600. [PMID: 35788487 DOI: 10.1007/s11356-022-21777-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Graphitic carbon nitride (g-C3N4) and polypyrrole (ppy) nanocomposites are synthesized and cast off as material for electrodes intended for energy storage, where the amount of pyrrole is being kept static after optimization by altering the amount of g-C3N4 to make a series of g-C3N4/ppy (pcn) nanocomposites. These nanocomposites are successfully synthesized by employing in-situ oxidation polymerization by oxidizing pyrrole. The nanocomposites are further characterized by Fourier transform infrared spectroscopy (FT-IR) for structural investigation, thermal gravimetric analysis (TGA) for thermal stability analysis, and field emission scanning electron microscopy (FESEM) and transmission electron microscopy (HR-TEM) for surface morphological scrutiny. The electrochemical measurements of the series are inspected with the help of galvanostatic charge-discharge (GCD), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) measurements. It is detected that 0.4 pcn has the highest specific capacitance value of 555 F g-1 at 10 mV s-1 scan rate through CV and 475 F g-1 at a current density of 0.5 A g-1 through GCD in 1 M H2SO4 in contrast with neat g-C3N4 as well as ppy where both the precursors have this value below 100 F g-1. This composite exhibited good cyclic stability with high retention. The high energy density of 0.4 pcn composite is analyzed at 86 Wh/kg at a power density of 300 W/kg. Due to facile synthesis, significant specific capacitance, and excellent energy density, pcn is a promising candidate for its application in energy storage purposes.
Collapse
Affiliation(s)
- Rajat Arora
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana, India, 131039
| | - Satya Pal Nehra
- Centre of Excellence in Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana, India, 131039
| | - Suman Lata
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana, India, 131039.
| |
Collapse
|
40
|
Geng Y, Wang J, Chen X, Wang Q, Zhang S, Tian Y, Liu C, Wang L, Wei Z, Cao L, Zhang J, Zhang S. In Situ N, O-Dually Doped Nanoporous Biochar Derived from Waste Eutrophic Spirulina for High-Performance Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2431. [PMID: 37686939 PMCID: PMC10489722 DOI: 10.3390/nano13172431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023]
Abstract
Sustainable and high-performance energy storage materials are crucial to address global energy and environmental challenges. In this study, Spirulina platensis was used as the carbon and nitrogen source, and Spirulina-based nanoporous biochar (SNPB) was synthesized through chemical activation using KOH as the activating agent in N2 atmosphere. SNPB-800-4 was characterized by N2 adsorption-desorption and XPS, showing a high specific surface area (2923.7 m2 g-1) and abundant heteroatomic oxygen (13.78%) and nitrogen (2.55%). SNPB-800-4 demonstrated an exceptional capacitance of 348 F g-1 at a current density of 1 A g-1 and a remarkable capacitance retention of 94.14% after 10,000 cycles at a current density of 10 A g-1 in 6 M KOH. Notably, symmetric supercapacitors SNPB-800-4//SNPB-800-4 achieved the maximum energy and power densities of 17.99 Wh kg-1 and 162.48 W kg-1, respectively, at a current density of 0.5 A g-1, and still maintained 2.66 Wh kg-1 when the power density was increased to 9685.08 W kg-1 at a current density of 30 A g-1. This work provides an easily scalable and straightforward way to convert waste algae biomass into in situ N, O-dually doped biochar for ultra-high-power supercapacitors.
Collapse
Affiliation(s)
- Yihao Geng
- Miami College, Henan University, Kaifeng 475004, China; (Y.G.); (J.W.); (X.C.); (Q.W.); (S.Z.); (Y.T.); (C.L.); (L.W.); (Z.W.)
| | - Jieni Wang
- Miami College, Henan University, Kaifeng 475004, China; (Y.G.); (J.W.); (X.C.); (Q.W.); (S.Z.); (Y.T.); (C.L.); (L.W.); (Z.W.)
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China;
| | - Xuanyu Chen
- Miami College, Henan University, Kaifeng 475004, China; (Y.G.); (J.W.); (X.C.); (Q.W.); (S.Z.); (Y.T.); (C.L.); (L.W.); (Z.W.)
| | - Qizhao Wang
- Miami College, Henan University, Kaifeng 475004, China; (Y.G.); (J.W.); (X.C.); (Q.W.); (S.Z.); (Y.T.); (C.L.); (L.W.); (Z.W.)
| | - Shuqin Zhang
- Miami College, Henan University, Kaifeng 475004, China; (Y.G.); (J.W.); (X.C.); (Q.W.); (S.Z.); (Y.T.); (C.L.); (L.W.); (Z.W.)
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China;
| | - Yijun Tian
- Miami College, Henan University, Kaifeng 475004, China; (Y.G.); (J.W.); (X.C.); (Q.W.); (S.Z.); (Y.T.); (C.L.); (L.W.); (Z.W.)
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China;
| | - Chenxiao Liu
- Miami College, Henan University, Kaifeng 475004, China; (Y.G.); (J.W.); (X.C.); (Q.W.); (S.Z.); (Y.T.); (C.L.); (L.W.); (Z.W.)
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China;
| | - Lin Wang
- Miami College, Henan University, Kaifeng 475004, China; (Y.G.); (J.W.); (X.C.); (Q.W.); (S.Z.); (Y.T.); (C.L.); (L.W.); (Z.W.)
| | - Zhangdong Wei
- Miami College, Henan University, Kaifeng 475004, China; (Y.G.); (J.W.); (X.C.); (Q.W.); (S.Z.); (Y.T.); (C.L.); (L.W.); (Z.W.)
| | - Leichang Cao
- Miami College, Henan University, Kaifeng 475004, China; (Y.G.); (J.W.); (X.C.); (Q.W.); (S.Z.); (Y.T.); (C.L.); (L.W.); (Z.W.)
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China;
| | - Jinglai Zhang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China;
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China;
| |
Collapse
|
41
|
Pan H, Wang J, Chen Z, Su Z, Tang Z, Ma Z. Solution-Processed ZnO with Conductivity over 1000 S cm -1 for ITO-Free Organic Photovoltaics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39677-39688. [PMID: 37572058 DOI: 10.1021/acsami.3c08040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
Developing transparent conductors to replace indium tin oxide (ITO) is a critical objective in the field of organic optoelectronics. Non-atomically doped (NAD) ZnO thin films, while currently exhibiting limited conductivity, are highly promising candidates due to their unique advantages, such as having complete transparency in both the visible and near-infrared spectral regions, solution processability, and the desired surface electronic properties. In this work, the impact of surface modification by insulating polymers on the ultraviolet-enhanced conductivity of NAD-ZnO films is investigated. It was found that polymer modifiers that are rich in amino and hydroxyl groups are effective at increasing the concentration of oxygen vacancies and the conductivity of NAD-ZnO films. The highest conductivity of over 1000 S cm-1, which is more than twice as high as the previous record for NAD-ZnO films, is achieved using polyethylenimine ethoxylated (PEIE) to modify NAD-ZnO films. Subsequently, the replacement of ITO in organic photovoltaic devices by a ZnO/PEIE electrode is realized. The ZnO/PEIE-based OPV devices that were created exhibit performances comparable to those of ITO-based devices under simulated solar illumination and performances better than those achieved with ITO-based devices under simulated indoor illumination. These results make NAD-ZnO a promising candidate for the widespread replacement of ITO in optoelectronic devices.
Collapse
Affiliation(s)
- Hailin Pan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Jie Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Zhi Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Ziqi Su
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Zheng Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Zaifei Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
42
|
Zhang CJ, Schneider R, Jafarpour M, Nüesch F, Abdolhosseinzadeh S, Heier J. Micro-Cup Architecture for Printing and Coating Asymmetric 2d-Material-Based Solid-State Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300357. [PMID: 37078837 DOI: 10.1002/smll.202300357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/29/2023] [Indexed: 05/03/2023]
Abstract
High energy density micro-supercapacitors (MSCs) are in high demand for miniaturized electronics and microsystems. Research efforts today focus on materials development, applied in the planar interdigitated, symmetric electrode architecture. A novel "cup & core" device architecture that allows for printing of asymmetric devices without the need of accurately positioning the second finger electrode here have been introduced. The bottom electrode is either produced by laser ablation of a blade-coated graphene layer or directly screen-printed with graphene inks to create grids with high aspect ratio walls forming an array of "micro-cups". A quasi-solid-state ionic liquid electrolyte is spray-deposited on the walls; the top electrode material -MXene inks- is then spray-coated to fill the cup structure. The architecture combines the advantages of interdigitated electrodes for facilitated ion-diffusion, which is critical for 2D-material-based energy storage systems by providing vertical interfaces with the layer-by-layer processing of the sandwich geometry. Compared to flat reference devices, volumetric capacitance of printed "micro-cups" MSC increased considerably, while the time constant decreased (by 58%). Importantly, the high energy density (3.99 µWh cm-2 ) of the "micro-cups" MSC is also superior to other reported MXene and graphene-based MSCs.
Collapse
Affiliation(s)
- Chuanfang John Zhang
- College of Materials Science & Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
- Laboratory for Functional Polymers, Swiss Federal Laboratories for Materials Science and Technology (Empa), Überlandstrasse 129, Dübendorf, CH-8600, Switzerland
| | - René Schneider
- Laboratory for Functional Polymers, Swiss Federal Laboratories for Materials Science and Technology (Empa), Überlandstrasse 129, Dübendorf, CH-8600, Switzerland
| | - Mohammad Jafarpour
- Laboratory for Functional Polymers, Swiss Federal Laboratories for Materials Science and Technology (Empa), Überlandstrasse 129, Dübendorf, CH-8600, Switzerland
- Institute of Materials Science and Engineering, Ecole Polytechnique Fedérale de Lausanne (EPFL), Station 12, Lausanne, CH-1015, Switzerland
| | - Frank Nüesch
- Laboratory for Functional Polymers, Swiss Federal Laboratories for Materials Science and Technology (Empa), Überlandstrasse 129, Dübendorf, CH-8600, Switzerland
- Institute of Materials Science and Engineering, Ecole Polytechnique Fedérale de Lausanne (EPFL), Station 12, Lausanne, CH-1015, Switzerland
| | - Sina Abdolhosseinzadeh
- Laboratory for Functional Polymers, Swiss Federal Laboratories for Materials Science and Technology (Empa), Überlandstrasse 129, Dübendorf, CH-8600, Switzerland
- Institute of Materials Science and Engineering, Ecole Polytechnique Fedérale de Lausanne (EPFL), Station 12, Lausanne, CH-1015, Switzerland
| | - Jakob Heier
- Laboratory for Functional Polymers, Swiss Federal Laboratories for Materials Science and Technology (Empa), Überlandstrasse 129, Dübendorf, CH-8600, Switzerland
| |
Collapse
|
43
|
Melnik S, Ryzhov A, Kiselev A, Radenovic A, Weil T, Stevenson KJ, Artemov VG. Confinement-Controlled Water Engenders Unusually High Electrochemical Capacitance. J Phys Chem Lett 2023; 14:6572-6576. [PMID: 37458683 PMCID: PMC10388349 DOI: 10.1021/acs.jpclett.3c01498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The electrodynamics of nanoconfined water have been shown to change dramatically compared to bulk water, opening room for safe electrochemical systems. We demonstrate a nanofluidic "water-only" battery that exploits anomalously high electrolytic properties of pure water at firm confinement. The device consists of a membrane electrode assembly of carbon-based nanomaterials, forming continuously interconnected water-filled nanochannels between the separator and electrodes. The efficiency of the cell in the 1-100 nm pore size range shows a maximum energy density at 3 nm, challenging the region of the current metal-ion batteries. Our results establish the electrodynamic fundamentals of nanoconfined water and pave the way for low-cost and inherently safe energy storage solutions that are much needed in the renewable energy sector.
Collapse
Affiliation(s)
- Svetlana Melnik
- Atmospheric Microphysics Department, Leibniz Institute for Tropospheric Research, 04318 Leipzig, Germany
| | - Alexander Ryzhov
- Center for Low-Emission Transport, Austrian Institute of Technology, 1210 Vienna, Austria
| | - Alexei Kiselev
- Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Aleksandra Radenovic
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Vasily G Artemov
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
44
|
Kasten J, Hsiao CC, Johnson D, Djire A. Superior cyclability of high surface area vanadium nitride in salt electrolytes. NANOSCALE ADVANCES 2023; 5:3485-3493. [PMID: 37383068 PMCID: PMC10295220 DOI: 10.1039/d2na00810f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/06/2023] [Indexed: 06/30/2023]
Abstract
High surface area vanadium nitrides (VNs) have been extensively studied as materials for aqueous supercapacitors due to the high initial capacitance in alkaline media at low scan rates. However, low capacitance retention and safety limit their implementation. The use of neutral aqueous salt solutions has the potential to mitigate both of these concerns, but is limited in analysis. Hence, we report on the synthesis and characterization of high surface area VN as a supercapacitor material in a wide variety of aqueous chlorides and sulfates using Mg2+, Ca2+, Na+, K+, and Li+ ions. We observe the following trend in the salt electrolytes: Mg2+ > Li+ > K+ > Na+ > Ca2+. Mg2+ systems provide the best performance at higher scan rates with areal capacitances of 294 μF cm-2 in 1 M MgSO4 over a 1.35 V operating window at 2000 mV s-1. Furthermore, VN in 1 M MgSO4 maintained a 36% capacitance retention from 2 to 2000 mV s-1 compared to 7% in 1 M KOH. Capacitance in 1 M MgSO4 and 1 M MgCl2 increased to 121% and 110% of their original values after 500 cycles and maintained capacitances of 589 and 508 μF cm-2 at 50 mV s-1 after 1000 cycles, respectively. In contrast, in 1 M KOH the capacitance decreases to 37% of its original value, reaching only 29 F g-1 at 50 mV s-1 after 1000 cycles. The superior performance of the Mg system is attributed to a reversible surface 2 e- transfer pseudocapacitive mechanism between Mg2+ and VNxOy. These findings can be used to further the field of aqueous supercapacitors to build safer and more stable energy storage systems that can charge quicker compared to KOH systems.
Collapse
Affiliation(s)
- James Kasten
- Artie McFerrin Department of Chemical Engineering, Texas A&M University College Station TX 77843 USA
| | - Cheng-Che Hsiao
- Artie McFerrin Department of Chemical Engineering, Texas A&M University College Station TX 77843 USA
| | - Denis Johnson
- Artie McFerrin Department of Chemical Engineering, Texas A&M University College Station TX 77843 USA
| | - Abdoulaye Djire
- Artie McFerrin Department of Chemical Engineering, Texas A&M University College Station TX 77843 USA
- Department of Materials Science & Engineering, Texas A&M University College Station TX 77843 USA
| |
Collapse
|
45
|
Lin J, Yuan Y, Wang M, Yang X, Yang G. Theoretical Studies on the Quantum Capacitance of Two-Dimensional Electrode Materials for Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1932. [PMID: 37446449 DOI: 10.3390/nano13131932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
In recent years, supercapacitors have been widely used in the fields of energy, transportation, and industry. Among them, electrical double-layer capacitors (EDLCs) have attracted attention because of their dramatically high power density. With the rapid development of computational methods, theoretical studies on the physical and chemical properties of electrode materials have provided important support for the preparation of EDLCs with higher performance. Besides the widely studied double-layer capacitance (CD), quantum capacitance (CQ), which has long been ignored, is another important factor to improve the total capacitance (CT) of an electrode. In this paper, we survey the recent theoretical progress on the CQ of two-dimensional (2D) electrode materials in EDLCs and classify the electrode materials mainly into graphene-like 2D main group elements and compounds, transition metal carbides/nitrides (MXenes), and transition metal dichalcogenides (TMDs). In addition, we summarize the influence of different modification routes (including doping, metal-adsorption, vacancy, and surface functionalization) on the CQ characteristics in the voltage range of ±0.6 V. Finally, we discuss the current difficulties in the theoretical study of supercapacitor electrode materials and provide our outlook on the future development of EDLCs in the field of energy storage.
Collapse
Affiliation(s)
- Jianyan Lin
- College of Physics, Changchun Normal University, Changchun 130032, China
| | - Yuan Yuan
- College of Physics, Changchun Normal University, Changchun 130032, China
| | - Min Wang
- College of Physics, Changchun Normal University, Changchun 130032, China
| | - Xinlin Yang
- College of Physics, Changchun Normal University, Changchun 130032, China
| | - Guangmin Yang
- College of Physics, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
46
|
Yang X, Lv T, Qiu J. High Mass-Loading Biomass-Based Porous Carbon Electrodes for Supercapacitors: Review and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300336. [PMID: 36840663 DOI: 10.1002/smll.202300336] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/05/2023] [Indexed: 06/02/2023]
Abstract
Biomass-based porous carbon (BPC) with renewability and flexible nano/microstructure tunability has attracted increasing attention as efficient and cheap electrode materials for supercapacitors. To meet commercial needs, high mass-loading electrodes with high areal capacitance are preferred when designing supercapacitors. The increased mass percentage of active materials can effectively improve the energy density of supercapacitors. However, as the thickness of the electrode increases, it will face the following challenges including severely blocked ion transport channels, poor charging dynamics, poor electrode structural stability, and complex preparation processes. A bridge between theoretical research and practical applications of BPC electrodes for supercapacitors needs to be established. In this review, the advances of high mass-loading BPC electrodes for supercapacitors are summarized based on different biomass precursors. The key performance evaluation parameters of the high mass-loading electrodes are analyzed, and the performance influencing factors are systematically discussed, including specific surface area, pore structure, electrical conductivity, and surface functional groups. Subsequently, the promising optimization strategies for high mass-loading electrodes are summarized, including the structure regulation of electrode materials and the optimization of other supercapacitor components. Finally, the major challenges and opportunities of high mass-loading BPC electrodes in the future are discussed and outlined.
Collapse
Affiliation(s)
- Xiaomin Yang
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Ting Lv
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jieshan Qiu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, P. R. China
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
47
|
Thu MM, Chaiammart N, Jongprateep O, Techapiesancharoenkij R, Thant AA, Saito N, Panomsuwan G. Introducing micropores into carbon nanoparticles synthesized via a solution plasma process by thermal treatment and their charge storage properties in supercapacitors. RSC Adv 2023; 13:16136-16144. [PMID: 37305444 PMCID: PMC10248543 DOI: 10.1039/d3ra02314a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Carbon materials synthesized via a solution plasma process (SPP) have recently shown great potential for various applications. However, they mainly possess a meso-macroporous structure with a lack of micropores, which limits their applications for supercapacitors. Herein, carbon nanoparticles (CNPs) were synthesized from benzene via SPP and then subjected to thermal treatment at different temperatures (400, 600, 800, and 1000 °C) in an argon environment. The CNPs exhibited an amorphous phase and were more graphitized at high treatment temperatures. A small content of tungsten carbide particles was also observed, which were encapsulated in CNPs. An increase in treatment temperature led to an increase in the specific surface area of CNPs from 184 to 260 m2 g-1 through the development of micropores, while their meso-macropore structure remained unchanged. The oxygen content of CNPs decreased from 14.72 to 1.20 atom% as the treatment temperature increased due to the degradation of oxygen functionality. The charge storage properties of CNPs were evaluated for supercapacitor applications by electrochemical measurements using a three-electrode system in 1 M H2SO4 electrolyte. The CNPs treated at low temperatures exhibited an electric double layer and pseudocapacitive behavior due to the presence of quinone groups on the carbon surface. With increasing treatment temperature, the electric double layer behavior became more dominant, while pseudocapacitive behavior was suppressed due to the quinone degradation. Regarding cycling stability, the CNPs treated at high temperatures (with a lack of oxygen functionality) were more stable than those treated at low temperatures. This work highlights a way of introducing micropores into CNPs derived from SPP via thermal treatment, which could be helpful for controlling and adjusting their pore structure for supercapacitor applications.
Collapse
Affiliation(s)
- Myo Myo Thu
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University Bangkok Thailand
- ICE-Matter Consortium, ASEAN University Network/Southeast Asia Engineering Education Development Network (AUN/SEED-Net), Kasetsart University Bangkok 10900 Thailand
| | - Nattapat Chaiammart
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University Bangkok Thailand
| | - Oratai Jongprateep
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University Bangkok Thailand
- ICE-Matter Consortium, ASEAN University Network/Southeast Asia Engineering Education Development Network (AUN/SEED-Net), Kasetsart University Bangkok 10900 Thailand
| | - Ratchatee Techapiesancharoenkij
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University Bangkok Thailand
- ICE-Matter Consortium, ASEAN University Network/Southeast Asia Engineering Education Development Network (AUN/SEED-Net), Kasetsart University Bangkok 10900 Thailand
| | - Aye Aye Thant
- Department of Physics, Faculty of Science, University of Yangon Yangon 11041 Myanmar
| | - Nagahiro Saito
- Department of Chemical System Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Gasidit Panomsuwan
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University Bangkok Thailand
- ICE-Matter Consortium, ASEAN University Network/Southeast Asia Engineering Education Development Network (AUN/SEED-Net), Kasetsart University Bangkok 10900 Thailand
| |
Collapse
|
48
|
Chen S, Zhang Y, Tian D, You Q, Zhong M, Hu C, Chen J. Polyaniline combining with ultrathin manganese dioxide nanosheets on carbon nanofibers as effective binder-free supercapacitor electrode. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
49
|
Siemiaszko G, Breczko J, Hryniewicka A, Ilnicka A, Markiewicz KH, Terzyk AP, Plonska-Brzezinska ME. Composites containing resins and carbon nano-onions as efficient porous carbon materials for supercapacitors. Sci Rep 2023; 13:6606. [PMID: 37095172 PMCID: PMC10126139 DOI: 10.1038/s41598-023-33874-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/20/2023] [Indexed: 04/26/2023] Open
Abstract
Herein, we report the functionalization of carbon nano-onions (CNOs) with the hydroxyaryl group and subsequent modifications with resins: resorcinol-formaldehyde using porogenic Pluronic F-127, resorcinol-formaldehyde-melamine, benzoxazine made of bisphenol A and triethylenetetramine, and calix[4]resorcinarene-derived using F-127. Following the direct carbonization, extensive physicochemical analysis was carried out, including Fourier transform infrared, Raman and X-ray photoelectron spectroscopy, scanning and transmission electron microscopy, and adsorption-desorption of N2. The addition of CNO to the materials significantly increases the total pore volume (up to 0.932 cm3 g-1 for carbonized resorcinol-formaldehyde resin and CNO (RF-CNO-C) and 1.242 cm3 g-1 for carbonized resorcinol-formaldehyde-melamine resin and CNO (RFM-CNO-C)), with mesopores dominating. However, the synthesized materials have poorly ordered domains with some structural disturbance; the RFM-CNO-C composite shows a more ordered structure with amorphous and semi-crystalline regions. Subsequently, cyclic voltammetry and galvanostatic charge-discharge method studied the electrochemical properties of all materials. The influence of resins' compositions, CNO content, and amount of N atoms in carbonaceous skeleton on the electrochemical performance was studied. In all cases, adding CNO to the material improves its electrochemical properties. The carbon material derived from CNO, resorcinol and melamine (RFM-CNO-C) showed the highest specific capacitance of 160 F g-1 at a current density of 2 A g-1, which is stable after 3000 cycles. The RFM-CNO-C electrode retains approximately 97% of its initial capacitive efficiency. The electrochemical performance of the RFM-CNO-C electrode results from the hierarchical porosity's stability and the presence of nitrogen atoms in the skeleton. This material is an optimal solution for supercapacitor devices.
Collapse
Affiliation(s)
- Gabriela Siemiaszko
- Department of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2A, 15-222, Bialystok, Poland.
| | - Joanna Breczko
- Department of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2A, 15-222, Bialystok, Poland
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland
| | - Agnieszka Hryniewicka
- Department of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2A, 15-222, Bialystok, Poland
| | - Anna Ilnicka
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100, Torun, Poland
| | - Karolina H Markiewicz
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland
| | - Artur P Terzyk
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100, Torun, Poland
| | - Marta E Plonska-Brzezinska
- Department of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2A, 15-222, Bialystok, Poland.
| |
Collapse
|
50
|
Sahoo G, Jeong HS, Jeong SM. Ligand-Controlled Growth of Different Morphological Bimetallic Metal-Organic Frameworks for Enhanced Charge-Storage Performance and Quasi-Solid-State Hybrid Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21097-21111. [PMID: 37075253 DOI: 10.1021/acsami.3c01580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The present research work facilitates a ligand-mediated effective strategy to achieve different morphological surface structures of bimetallic (Ni and Co) metal-organic frameworks (MOFs) by utilizing different types of organic ligands like terephthalic acid (BDC), 2-methylimidazole (2-Melm), and trimesic acid (BTC). Different morphological structures, rectangular-like nanosheets, petal-like nanosheets, and nanosheet-assembled flower-like spheres (NSFS) of NiCo MOFs, are confirmed from the structural characterization for ligands BDC, 2-Melm, and BTC, respectively. The basic characterization studies like scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and Brunauer-Emmett-Teller revealed that the NiCo MOF prepared by using trimesic acid as the ligand (NiCo MOF_BTC) with a long organic linker exhibits a three-dimensional architecture of NSFS that possesses higher surface area and pore dimensions, which enables better ion kinetics. Also, the NiCo MOF_BTC delivered the highest capacity of 1471.4 C g-1 (and 408 mA h g-1) at 1 A g-1 current density, compared to the other prepared NiCo MOFs and already reported different NiCo MOF structures. High interaction of trimesic acid with the metal ions confirmed from ultraviolet-visible spectroscopy and X-ray photoelectron spectroscopy leads to a NSFS structure of NiCo MOF_BTC. For practical application, an asymmetric supercapacitor device (NiCo MOF_BTC//AC) is fabricated by taking NiCo MOF_BTC and activated carbon as the positive and negative electrode, respectively, where the PVA + KOH gel electrolyte serves as a separator as well as an electrolyte. The device delivered an outstanding energy density of 78.1 Wh kg-1 at a power density of 750 W kg-1 in an operating potential window of 1.5 V. In addition, it displays a long cycle life of 5000 cycles with only 12% decay of the initial specific capacitance. Therefore, these findings manifest the morphology control of MOFs by using different ligands and the mechanism behind the different morphologies that will provide an effective way to synthesize differently structured MOF materials for future energy-storage applications.
Collapse
Affiliation(s)
- Gopinath Sahoo
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Hyeon Seo Jeong
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Sang Mun Jeong
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|