1
|
Zhao Q, Tang Q, Chu H, Pan Z, Pan H, Zhao S, Li D. Ultra-High Temperature Calcination of Crystalline α-Fe 2O 3 and Its Nonlinear Optical Properties for Ultrafast Photonics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500896. [PMID: 40091586 PMCID: PMC12079331 DOI: 10.1002/advs.202500896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/22/2025] [Indexed: 03/19/2025]
Abstract
As a typical transition metal oxide, α-Fe2O3 has garnered significant attention due to its advantages in nonlinear optical applications, such as strong third-order nonlinearity and fast carrier recovery time. To delve into the nonlinear optical properties of α-Fe2O3, crystalline α-Fe2O3 materials with different microstructures are prepared. The nonlinear optical features of α-Fe2O3 calcined at the previously unexplored ultra-high temperature of >1100°C are emphasized. It is found that α-Fe2O3 exposed to ultra-high temperatures undergoes the phase transition, leading to the formation of Fe3O4. Subsequently, the nonlinear absorption coefficient is measured as -0.6280 cm GW-1 at 1.5 µm. The modulation depth and saturation intensity for the Fe2O3-based saturable absorber at 1.5 µm are 4.20% and 13.94 MW cm-2, respectively. Ultimately, the incorporation of the Fe2O3-based saturable absorber into an Er-doped fiber laser cavity resulted in the achievement of both conventional soliton mode-locking operation with a central wavelength of 1560.3 nm and a pulse duration of 1.13 ps, as well as the dissipative soliton resonance mode-locking operation with a central wavelength near 1564.0 nm. Overall, the phase transition and the nonlinear optical features in iron oxides under ultra-high temperatures are revealed, indicating the great potential in advanced ultrafast photonic applications.
Collapse
Affiliation(s)
- Qingxi Zhao
- School of Information Science and Engineering and Key Laboratory of Laser and Infrared System of Ministry of EducationShandong UniversityQingdao266237China
| | - Qingling Tang
- School of Information Science and Engineering and Key Laboratory of Laser and Infrared System of Ministry of EducationShandong UniversityQingdao266237China
| | - Hongwei Chu
- School of Information Science and Engineering and Key Laboratory of Laser and Infrared System of Ministry of EducationShandong UniversityQingdao266237China
| | - Zhongben Pan
- School of Information Science and Engineering and Key Laboratory of Laser and Infrared System of Ministry of EducationShandong UniversityQingdao266237China
| | - Han Pan
- School of Information Science and Engineering and Key Laboratory of Laser and Infrared System of Ministry of EducationShandong UniversityQingdao266237China
| | - Shengzhi Zhao
- School of Information Science and Engineering and Key Laboratory of Laser and Infrared System of Ministry of EducationShandong UniversityQingdao266237China
| | - Dechun Li
- School of Information Science and Engineering and Key Laboratory of Laser and Infrared System of Ministry of EducationShandong UniversityQingdao266237China
| |
Collapse
|
2
|
Liu Q, Zhang C, Li R, Li J, Zheng B, Song S, Chen L, Li T, Ma Y. Oxygen vacancies enhancing hierarchical NiCo 2S 4@MnO 2 electrode for flexible asymmetric supercapacitors. J Colloid Interface Sci 2025; 678:902-914. [PMID: 39270390 DOI: 10.1016/j.jcis.2024.09.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/16/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
The limited energy density of supercapacitors hampers their widespread application in electronic devices. Metal oxides, employed as electrode materials, suffer from low conductivity and stability, prompting extensive research in recent years to enhance their electrochemical properties. Among these efforts, the construction of core-shell heterostructures and the utilization of oxygen vacancy (VO) engineering have emerged as pivotal strategies for improving material stability and ion diffusion rates. Herein, core-shell composites comprising NiCo2S4 nanospheres and MnO2 nanosheets are grown in situ on carbon cloth (CC), forming nanoflower clusters while introducing VO defects through a chemical reduction method. Density functional theory (DFT) results proves that the existence of VO effectively enhances electronic and structural properties of MnO2, thereby enhancing capacitive properties. The electrochemical test results show that NiCo2S4@MnO2-V3 exhibits excellent 1376 F g-1 mass capacitance and 2.06 F cm-2 area capacitance at 1 A g-1. Moreover, NiCo2S4@MnO2-V3//activated carbon (AC) asymmetric supercapacitor (ASC) can achieve an energy density of 39.7 Wh kg-1 at a power density of 775 W kg-1, and maintains 15.5 Wh kg-1 even at 7749.77 W kg-1. Capacitance retention is 73.1 % after 10,000 cycles at 5 A g-1, and coulombic efficiency reaches 100 %, demonstrating satisfactory cycle stability. In addition, the device's excellent flexibility offers broad application prospects in wearable electronic applications.
Collapse
Affiliation(s)
- Qianwen Liu
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - Chengjingmeng Zhang
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - Ruidong Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - Jie Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - Bingyue Zheng
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - Shuxin Song
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - Lihua Chen
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - Tingxi Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - Yong Ma
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China.
| |
Collapse
|
3
|
Cai D, Yang Z, Tong R, Huang H, Zhang C, Xia Y. Binder-Free MOF-Based and MOF-Derived Nanoarrays for Flexible Electrochemical Energy Storage: Progress and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305778. [PMID: 37948356 DOI: 10.1002/smll.202305778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/09/2023] [Indexed: 11/12/2023]
Abstract
The fast development of Internet of Things and the rapid advent of next-generation versatile wearable electronics require cost-effective and highly-efficient electroactive materials for flexible electrochemical energy storage devices. Among various electroactive materials, binder-free nanostructured arrays have attracted widespread attention. Featured with growing on a conductive and flexible substrate without using inactive and insulating binders, binder-free 3D nanoarray electrodes facilitate fast electron/ion transportation and rapid reaction kinetics with more exposed active sites, maintain structure integrity of electrodes even under bending or twisted conditions, readily release generated joule heat during charge/discharge cycles and achieve enhanced gravimetric capacity of the whole device. Binder-free metal-organic framework (MOF) nanoarrays and/or MOF-derived nanoarrays with high surface area and unique porous structure have emerged with great potential in energy storage field and been extensively exploited in recent years. In this review, common substrates used for binder-free nanoarrays are compared and discussed. Various MOF-based and MOF-derived nanoarrays, including metal oxides, sulfides, selenides, nitrides, phosphides and nitrogen-doped carbons, are surveyed and their electrochemical performance along with their applications in flexible energy storage are analyzed and overviewed. In addition, key technical issues and outlooks on future development of MOF-based and MOF-derived nanoarrays toward flexible energy storage are also offered.
Collapse
Affiliation(s)
- Dongming Cai
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronics Engineering, Hubei University of Automotive Technology, Shiyan, 442002, P. R. China
| | - Zhuxian Yang
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4QF, UK
| | - Rui Tong
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronics Engineering, Hubei University of Automotive Technology, Shiyan, 442002, P. R. China
| | - Haiming Huang
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronics Engineering, Hubei University of Automotive Technology, Shiyan, 442002, P. R. China
| | - Chuankun Zhang
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronics Engineering, Hubei University of Automotive Technology, Shiyan, 442002, P. R. China
| | - Yongde Xia
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4QF, UK
| |
Collapse
|
4
|
Li F, Zhou Y, Wang D, Ding Z, Chen L, Feng X. Oxygen Vacancy Engineering of FeO x toward Oxygen-Tolerant Hydrogen Peroxide Reduction for Reliable Bioassays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:3241-3247. [PMID: 38289291 DOI: 10.1021/acs.langmuir.3c03748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The accurate determination of hydrogen peroxide (H2O2), an important clinical disease relevant biomarker, is of great importance for the diagnosis and management of illnesses. By using the cathodic monitoring approach, H2O2 can be accurately detected because interfering signals from easily oxidizable endogenous and exogenous species in biofluids can be avoided. However, the simultaneous occurrence of the oxygen reduction reaction (ORR) restricts the practical use of this cathodic method. In this study, via oxygen vacancy modulation, we synthesized FeOx catalysts that can selectively reduce H2O2 over O2. The H2O2 detection system based on this catalyst exhibits an outstanding ORR inhibition ability. Furthermore, by integrating this catalyst with glucose oxidase, a model enzyme, a reliable bioassay system was developed that can selectively detect glucose over a wide variety of interferents in artificially simulated tissue fluids. The bioassay system employing this catalyst in conjunction with oxidases is generally applicable to accurate detect a wide range of biomarkers.
Collapse
Affiliation(s)
- Fei Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yifan Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Dandan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhenyao Ding
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Liping Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xinjian Feng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| |
Collapse
|
5
|
Liu S, Li T, Shi F, Ma H, Wang B, Dai X, Cui X. Constructing multiple active sites in iron oxide catalysts for improving carbonylation reactions. Nat Commun 2023; 14:4973. [PMID: 37591841 PMCID: PMC10435489 DOI: 10.1038/s41467-023-40640-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/04/2023] [Indexed: 08/19/2023] Open
Abstract
Surface engineering is a promising strategy to improve the catalytic activities of heterogeneous catalysts. Nevertheless, few studies have been devoted to investigate the catalytic behavior differences of the multiple metal active sites triggered by the surface imperfections on catalysis. Herein, oxygen vacancies induced Fe2O3 catalyst are demonstrated with different Fe sites around one oxygen vacancy and exhibited significant catalytic performance for the carbonylation of various aryl halides and amines/alcohols with CO. The developed catalytic system displays excellent activity, selectivity, and reusability for the synthesis of carbonylated chemicals, including drugs and chiral molecules, via aminocarbonylation and alkoxycarbonylation. Combined characterizations disclose the formation of oxygen vacancies. Control experiments and density functional theory calculations demonstrate the selective combination of the three Fe sites is vital to improve the catalytic performance by catalyzing the elemental steps of PhI activation, CO insertion and C-N/C-O coupling respectively, endowing combinatorial sites catalyst for multistep reactions.
Collapse
Affiliation(s)
- Shujuan Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, 730000, China
| | - Teng Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, 730000, China
| | - Feng Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, 730000, China
| | - Haiying Ma
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing, 100049, China
| | - Bin Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, 730000, China
| | - Xingchao Dai
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, 730000, China
| | - Xinjiang Cui
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Kumar R, Sahoo S, Joanni E, Pandey R, Shim JJ. Vacancy designed 2D materials for electrodes in energy storage devices. Chem Commun (Camb) 2023; 59:6109-6127. [PMID: 37128726 DOI: 10.1039/d3cc00815k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Vacancies are ubiquitous in nature, usually playing an important role in determining how a material behaves, both physically and chemically. As a consequence, researchers have introduced oxygen, sulphur and other vacancies into bi-dimensional (2D) materials, with the aim of achieving high performance electrodes for electrochemical energy storage. In this article, we focused on the recent advances in vacancy engineering of 2D materials for energy storage applications (supercapacitors and secondary batteries). Vacancy defects can effectively modify the electronic characteristics of 2D materials, enhancing the charge-transfer processes/reactions. These atomic-scale defects can also serve as extra host sites for inserted protons or small cations, allowing easier ion diffusion during their operation as electrodes in supercapacitors and secondary batteries. From the viewpoint of materials science, this article summarises recent developments in the exploitation of vacancies (which are surface defects, for these materials), including various defect creation approaches and cutting-edge techniques for detection of vacancies. The crucial role of defects for improvement in the energy storage performance of 2D electrode materials in electrochemical devices has also been highlighted.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Mechanical Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India.
| | - Sumanta Sahoo
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Ednan Joanni
- Center for Information Technology Renato Archer (CTI), Campinas 13069-901, Brazil
| | - Raghvendra Pandey
- Department of Physics, ARSD College, University of Delhi, New Delhi, 110021, India
| | - Jae-Jin Shim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
7
|
Ji W, Li W, Zhang TC, Wang Y, Yuan S. Constructing Dimensionally Stable TiO2 Nanotube Arrays/SnO2/RuO2 Anode via Successive Electrodeposition for Efficient Electrocatalytic Oxidation of As(III). Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
8
|
Tian S, Zhang B, Han D, Gong Z, Li X. Fe 2O 3/Porous Carbon Composite Derived from Oily Sludge Waste as an Advanced Anode Material for Supercapacitor Application. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3819. [PMID: 36364595 PMCID: PMC9656837 DOI: 10.3390/nano12213819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
It is urgent to improve the electrochemical performance of anode for supercapacitors. Herein, we successfully prepare Fe2O3/porous carbon composite materials (FPC) through hydrothermal strategies by using oily sludge waste. The hierarchical porous carbon (HPC) substrate and fine loading of Fe2O3 nanorods are all important for the electrochemical performance. The HPC substrate could not only promote the surface capacitance effect but also improve the utilization efficiency of Fe2O3 to enhance the pseudo-capacitance. The smaller and uniform Fe2O3 loading is also beneficial to optimize the pore structure of the electrode and enlarge the interface for faradaic reactions. The as-prepared FPC shows a high specific capacitance of 465 F g-1 at 0.5 A g-1, good rate capability of 66.5% retention at 20 A g-1, and long cycling stability of 88.4% retention at 5 A g-1 after 4000 cycles. In addition, an asymmetric supercapacitor device (ASC) constructed with FPC as the anode and MnO2/porous carbon composite (MPC) as the cathode shows an excellent power density of 72.3 W h kg-1 at the corresponding power density of 500 W kg-1 with long-term cycling stability. Owing to the outstanding electrochemical characteristics and cycling performance, the associated materials' design concept from oily sludge waste has large potential in energy storage applications and environmental protection.
Collapse
Affiliation(s)
- Shubing Tian
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Baoling Zhang
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Dong Han
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhiqiang Gong
- State Grid Shandong Electric Power Research Institute, Jinan 250003, China
| | - Xiaoyu Li
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
9
|
Xiong S, Weng S, Tang Y, Qian L, Xu Y, Li X, Lin H, Xu Y, Jiao Y, Chen J. Mo-doped Co 3O 4 ultrathin nanosheet arrays anchored on nickel foam as a bi-functional electrode for supercapacitor and overall water splitting. J Colloid Interface Sci 2021; 602:355-366. [PMID: 34139533 DOI: 10.1016/j.jcis.2021.06.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/30/2022]
Abstract
Simple preparation, favorable price and environmental protection have been a long-term challenge in the field of electrochemistry. Herein, we studied and prepared a bifunctional Mo-doped Co3O4 ultrathin nanosheets, which has been validated as an effective binder-free electrode material for electrocatalytic water splitting and supercapacitors. The material has a large specific surface area, high electrical conductivity and exposure to more active sites, breaking down the limited performance and range of use of transition metal oxides. Benefiting from intriguing ultrathin property and conductivity, OER and HER process of 0.4Mo-Co3O4 have a small Tafel slope of 83.7 and 98 mV dec-1, respectively. The current density at 10 mA cm-2 show a low overpotential of 315 and 79 mV and significant stability. The water electrolytic device requires a potential of 1.64 V to reach 10 mA cm-2, and the potential change is negligible after 12 h of continuous electrolysis. In addition, the manifest improved electrochemical performance of 0.3Mo-Co3O4 as supercapacitor electrode material shows high areal capacitance 2815 mF cm-2 at 1 mA cm-2, excellent rate performance (85% at 10 mA cm-2) and retains 90% of the initial capacitance by cycling 5000 at a current density of 10 mA cm-2. Moreover, 0.3Mo-Co3O4||0.3Mo-Co3O4 symmetrical supercapacitor has a maximum volumetric energy density of 1.25 mW h cm-3 at a power density of 7.1 mW cm-3 and superior cycle life. The influence of doping on electrochemical performance was studied by changing the content of doped metal ions, which is of great significance for the exploration of supercapacitor and electrocatalytic hydrolysis of bifunctional electrode materials.
Collapse
Affiliation(s)
- Shanshan Xiong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Shuting Weng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yu Tang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lei Qian
- Zhejiang Anke Environmental Protection Technology Co., Ltd, China
| | - Yanqiu Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xianfa Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yang Jiao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jianrong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
10
|
Sampaio MJ, Yu Z, Lopes JC, Tavares PB, Silva CG, Liu L, Faria JL. Light-driven oxygen evolution from water oxidation with immobilised TiO 2 engineered for high performance. Sci Rep 2021; 11:21306. [PMID: 34716398 PMCID: PMC8556285 DOI: 10.1038/s41598-021-99841-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/23/2021] [Indexed: 11/09/2022] Open
Abstract
Calcination treatments in the range of 500–900 °C of TiO2 synthesised by the sol–gel resulted in materials with variable physicochemical (i.e., optical, specific surface area, crystallite size and crystalline phase) and morphological properties. The photocatalytic performance of the prepared materials was evaluated in the oxygen evolution reaction (OER) following UV-LED irradiation of aqueous solutions containing iron ions as sacrificial electron acceptors. The highest activity for water oxidation was obtained with the photocatalyst thermally treated at 700 °C (TiO2-700). Photocatalysts with larger anatase to rutile ratio of the crystalline phases and higher surface density of oxygen vacancies (defects) displayed the best performance in OER. The oxygen defects at the photocatalyst surface have proven to be responsible for the enhanced photoactivity, acting as important active adsorption sites for water oxidation. Seeking technological application, water oxidation was accomplished by immobilising the photocatalyst with the highest OER rate measured under the established batch conditions (TiO2-700). Experiments operating under continuous mode revealed a remarkable efficiency for oxygen production, exceeding 12% of the apparent quantum efficiency (AQE) at 384 nm (UV-LED system) compared to the batch operation mode.
Collapse
Affiliation(s)
- Maria J Sampaio
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal.
| | - Zhipeng Yu
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal.,Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, 4715-330, Braga, Portugal
| | - Joana C Lopes
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
| | - Pedro B Tavares
- Departamento de Química, Centro de Química-Vila Real, Universidade de Trás-os-Montes e Alto Douro, 5001-911, Vila Real, Portugal
| | - Cláudia G Silva
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
| | - Lifeng Liu
- Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, 4715-330, Braga, Portugal
| | - Joaquim L Faria
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
| |
Collapse
|
11
|
Zheng YM, Huang XB, Meng XM, Xu SD, Chen L, Liu SB, Zhang D. Copper and Zirconium Codoped O3-Type Sodium Iron and Manganese Oxide as the Cobalt/Nickel-Free High-Capacity and Air-Stable Cathode for Sodium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45528-45537. [PMID: 34520167 DOI: 10.1021/acsami.1c12684] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Considering the abundance of iron and manganese within the Earth's crust, the cathode O3-NaFe0.5Mn0.5O2 has shown great potential for large-scale energy storage. Following the strategy of introducing specific heteroelements to optimize the structural stability for energy storage, the work has obtained an O3-type NaFe0.4Mn0.49Cu0.1Zr0.01O2 that exhibits enhanced electrochemical performance and air stability. It displays an initial reversible capacity of 147.5 mAh g-1 at 0.1C between 2 and 4.1 V, a capacity retention ratio exceeding 69.6% after 100 cycles at 0.2C, and a discharge capacity of 70.8 mAh g-1 at a high rate of 5C, which is superior to that of O3-NaFe0.5Mn0.5O2. The codoping of Cu/Zr reserves the layered O3 structure and enlarges the interlayer spacing, promoting the diffusion of Na+. In addition, the structural stability and air stability observed by Cu-doping is well maintained via the incorporation of extra Zr favoring a highly reversible phase conversion process. Thus, this work has demonstrated an efficient strategy for developing cobalt/nickel-free high-capacity and air-stable cathodes for sodium-ion batteries.
Collapse
Affiliation(s)
- Ya-Min Zheng
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiao-Bao Huang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiao-Meng Meng
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Shou-Dong Xu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Liang Chen
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Shi-Bin Liu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ding Zhang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
12
|
Lyu L, Hooch Antink W, Kim YS, Kim CW, Hyeon T, Piao Y. Recent Development of Flexible and Stretchable Supercapacitors Using Transition Metal Compounds as Electrode Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101974. [PMID: 34323350 DOI: 10.1002/smll.202101974] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Flexible and stretchable supercapacitors (FS-SCs) are promising energy storage devices for wearable electronics due to their versatile flexibility/stretchability, long cycle life, high power density, and safety. Transition metal compounds (TMCs) can deliver a high capacitance and energy density when applied as pseudocapacitive or battery-like electrode materials owing to their large theoretical capacitance and faradaic charge-storage mechanism. The recent development of TMCs (metal oxides/hydroxides, phosphides, sulfides, nitrides, and selenides) as electrode materials for FS-SCs are discussed here. First, fundamental energy-storage mechanisms of distinct TMCs, various flexible and stretchable substrates, and electrolytes for FS-SCs are presented. Then, the electrochemical performance and features of TMC-based electrodes for FS-SCs are categorically analyzed. The gravimetric, areal, and volumetric energy density of SC using TMC electrodes are summarized in Ragone plots. More importantly, several recent design strategies for achieving high-performance TMC-based electrodes are highlighted, including material composition, current collector design, nanostructure design, doping/intercalation, defect engineering, phase control, valence tuning, and surface coating. Integrated systems that combine wearable electronics with FS-SCs are introduced. Finally, a summary and outlook on TMCs as electrodes for FS-SCs are provided.
Collapse
Affiliation(s)
- Lulu Lyu
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Wytse Hooch Antink
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Seong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Chae Won Kim
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yuanzhe Piao
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
- Advanced Institutes of Convergence Technology, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| |
Collapse
|
13
|
Chemical reduction-induced fabrication of graphene hybrid fibers for energy-dense wire-shaped supercapacitors. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.05.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
One-step hydrothermal synthesis of bimetallic oxides (NiO@Mn3O4) supported on rGO: A highly efficient electrode material for supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Oxygen Vacancy-Fe2O3@polyaniline Composites Directly Grown on Carbon Cloth as a High Stable Electrode for Symmetric Supercapacitors. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02005-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Li C, Zhang Z, Liu R. In Situ Growth of 3D NiFe LDH-POM Micro-Flowers on Nickel Foam for Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003777. [PMID: 33107177 DOI: 10.1002/smll.202003777] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Rational design and preparation of efficient and durable bifunctional electrocatalyst is an eternal yet challenging goal for sustainable energy conversion processes, such as water splitting. Herein, 3D NiFe layered double hydroxide-polyoxometalate (LDH-POM; polyoxometalate, i.e., K8 [SiW11 O39 ]·13H2 O) with micro-flower morphology is in situ grown on Ni foam via a facile one-step hydrothermal method, which can be used as a high-efficient bifunctional catalyst for overall water splitting. The as-prepared catalyst achieves overall water splitting current density of 10 mA cm-2 at low overpotentials (oxygen evolution reaction (OER): ≈200 mV; hydrogen evolution reaction (HER): ≈156 mV) in 0.1 m KOH over a period of 20 h operation. Experimental investigation and density functional theory calculation indicate that, compared to pristine NiFe LDH, W6+ in NiFe LDH-POM can effectively minimize the adsorption energy barriers of *OH and therefore improve the kinetics of OER. This result may provide a promising strategy to synthesize 3D LDH micro-flowers by employing POM as a structure-direction agent for catalysis and energy applications.
Collapse
Affiliation(s)
- Congling Li
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Zhijie Zhang
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Rui Liu
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| |
Collapse
|
17
|
Kumar SA, Mohanty A, Saravanakumar B, Mohanty S, Nayak SK, Ramadoss A. Three-dimensional Bi 2O 3/Ti microspheres as an advanced negative electrode for hybrid supercapacitors. Chem Commun (Camb) 2020; 56:12973-12976. [PMID: 32996474 DOI: 10.1039/d0cc04057f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report a novel, low-temperature solvothermal method to grow 3D-Bi2O3 flower-like microspheres on Ti substrates as a binder-free negative electrode for supercapacitor applications. The Bi2O3/Ti electrode showed an areal capacitance of 1.65 F cm-2 at 4 mA cm-2. Moreover, the 3D-NiCo2O4||3D-Bi2O3 hybrid device delivered high energy and power densities of 31.17 μW h cm-2 and 7500 μW cm-2, respectively. The more optimal energy storage performance based on the strong adhesion of the current collector and self-assembled three-dimensional nanostructures permits efficient electron and ion transportation.
Collapse
Affiliation(s)
- S Arun Kumar
- School for Advanced Research in Polymers, Laboratory for Advanced Research in Polymeric Materials, Central Institute of Plastics Engineering and Technology, Bhubaneswar-751024, India.
| | - Ankita Mohanty
- School for Advanced Research in Polymers, Laboratory for Advanced Research in Polymeric Materials, Central Institute of Plastics Engineering and Technology, Bhubaneswar-751024, India.
| | - Balasubramaniam Saravanakumar
- School for Advanced Research in Polymers, Laboratory for Advanced Research in Polymeric Materials, Central Institute of Plastics Engineering and Technology, Bhubaneswar-751024, India.
| | - Smita Mohanty
- School for Advanced Research in Polymers, Laboratory for Advanced Research in Polymeric Materials, Central Institute of Plastics Engineering and Technology, Bhubaneswar-751024, India.
| | - Sanjay Kumar Nayak
- School for Advanced Research in Polymers, Laboratory for Advanced Research in Polymeric Materials, Central Institute of Plastics Engineering and Technology, Bhubaneswar-751024, India.
| | - Ananthakumar Ramadoss
- School for Advanced Research in Polymers, Laboratory for Advanced Research in Polymeric Materials, Central Institute of Plastics Engineering and Technology, Bhubaneswar-751024, India.
| |
Collapse
|
18
|
Pan M, Zeng W, Quan H, Cui J, Guo Y, Wang Y, Chen D. Low-crystalline Ni/Co-oxyhydroxides nanoarrays on carbon cloth with high mass loading and hierarchical structure as cathode for supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136886] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Three-dimensional heterostructured polypyrrole/nickel molybdate anchored on carbon cloth for high-performance flexible supercapacitors. J Colloid Interface Sci 2020; 574:355-363. [DOI: 10.1016/j.jcis.2020.04.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 12/25/2022]
|
20
|
Jia Y, Liu S, Du Y, Yang L, Liu X, Liu L, Ren X, Wei Q, Ju H. Intramolecular Coreaction Accelerated Electrochemiluminescence of Polypeptide-Biomineralized Gold Nanoclusters for Targeted Detection of Biomarkers. Anal Chem 2020; 92:9179-9187. [DOI: 10.1021/acs.analchem.0c01519] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yue Jia
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Shanghua Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Yu Du
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Lei Yang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xuejing Liu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Lei Liu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xiang Ren
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Huangxian Ju
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
21
|
Zhang S, Wang X, Li Y, Zhang Y, Hu Q, Hua X, Liu G, Xie E, Zhang Z. Moderate oxygen-deficient Fe(III) oxide nanoplates for high performance symmetric supercapacitors. J Colloid Interface Sci 2020; 565:458-464. [PMID: 31982712 DOI: 10.1016/j.jcis.2020.01.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 10/25/2022]
Abstract
As a promising anode material for supercapacitors, Fe2O3 has been widely studied but still face the problem of low conductivity. Inducing oxygen vacancy (Vo) into Fe2O3 is a widely used approach to tune the conductivity to enhance its capacitive performance, but there is little research on the influence of Vo content. Herein, we report the effect of Vo in Fe2O3 nanoplates with various content. We tuned the Vo content by annealing at 200-500 °C. XPS and EPR were taken to characterize the Vo content, ranging from 11% to 26%. Electrochemical results show that FO-300 with 17% Vo has the highest capacity of 301 mAh g-1, and the capacity of the highest Vo content's (26% Vo) is only 107 mAh g-1. The symmetric supercapacitor based on FO-300 shows a considerably high energy density of 58.5 Wh kg-1 at a power density of 9.32 kW kg-1 and remains 84.6% after 12,000 cycles.
Collapse
Affiliation(s)
- Shengming Zhang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Key Laboratory of Special Function Materials and Structure Design of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xuhui Wang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Key Laboratory of Special Function Materials and Structure Design of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yan Li
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Key Laboratory of Special Function Materials and Structure Design of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yaxiong Zhang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Key Laboratory of Special Function Materials and Structure Design of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Qiang Hu
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Key Laboratory of Special Function Materials and Structure Design of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xiaohui Hua
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Key Laboratory of Special Function Materials and Structure Design of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Guo Liu
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Key Laboratory of Special Function Materials and Structure Design of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Erqing Xie
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Key Laboratory of Special Function Materials and Structure Design of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zhenxing Zhang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Key Laboratory of Special Function Materials and Structure Design of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
22
|
Yang Q, Du J, Li J, Wu Y, Zhou Y, Yang Y, Yang D, He H. Thermodynamic and Kinetic Influence of Oxygen Vacancies on the Solar Water Oxidation Reaction of α-Fe 2O 3 Photoanodes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11625-11634. [PMID: 32073812 DOI: 10.1021/acsami.9b21622] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To reveal the role of oxygen vacancies in the solar water oxidation of α-Fe2O3 photoanodes, the kinetic and thermodynamic properties that are closely related to the water oxidation reaction of the α-Fe2O3 photoanode containing oxygen vacancies were investigated. Compared with the pristine α-Fe2O3 photoanode, the presence of surface oxygen vacancies can improve the water oxidation activity and stability of the α-Fe2O3 photoanode simultaneously, but the bulk oxygen vacancies have a negative effect on the water oxidation performance of the α-Fe2O3 photoanode. In thermodynamics, our investigations revealed that the presence of surface oxygen vacancies narrows the space charge region width of the α-Fe2O3 photoanode, which could boost the charge separation and transfer efficiency of the α-Fe2O3 photoanode during water oxidation. Because the surface property and hydrophilicity of α-Fe2O3 are modified owing to the presence of surface oxygen vacancies, the water oxidation kinetics of the α-Fe2O3 photoanode with surface oxygen vacancies is obviously boosted. Our findings in the present work provide comprehensive understanding of the thermodynamic and kinetic differences for α-Fe2O3 photoanodes with and without oxygen vacancies for solar water oxidation.
Collapse
Affiliation(s)
- Qian Yang
- State Key Laboratory of Environmental-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jinyan Du
- State Key Laboratory of Environmental-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jie Li
- State Key Laboratory of Environmental-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yuting Wu
- State Key Laboratory of Environmental-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yong Zhou
- Ecomaterials and Renewable Energy Research Center, School of Physics, Nanjing University, Nanjing 211102, China
| | - Yang Yang
- College of Chemistry and Chemical Engineering, Shannxi University of Science & Technology, Xi'an 710021, China
| | - Dingming Yang
- State Key Laboratory of Environmental-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Huichao He
- State Key Laboratory of Environmental-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
23
|
Facile flame deposit of CNFs/Fe2O3 coating on 304 stainless steel mesh and their high capacitive performance. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
24
|
Xu J, Han F, Fang D, Wang X, Tang J, Tang W. Hierarchical bimetallic hydroxide/chalcogenide core-sheath microarrays for freestanding ultrahigh rate supercapacitors. NANOSCALE 2020; 12:72-78. [PMID: 31816001 DOI: 10.1039/c9nr08418e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Transition metal compounds (TMCs) either crystalline or amorphous exhibit specific advantages in electrochemical energy storage. To integrate their merits into one electrode, we have herein developed hierarchical bimetallic hydroxide/chalcogenide core-sheath microarrays on nickel foam (NF) for freestanding high-efficiency supercapacitors, wherein interior crystalline metal chalcogenides serve as highly conductive pivots and exterior amorphous bimetallic hydroxides provide rich ion diffusion channels. With the synergic effect of the unique structure and bimetallic composition, the as-prepared Ni(OH)2-Co(OH)2/NiSe-Ni3S2/NF electrode displays an ultrahigh areal specific capacitance of 19.01 F cm-2 at 15 mA cm-2, which can be retained as 6.01 F cm-2 even at 125 mA cm-2. To the best of our knowledge, such excellent tolerance of ultrafast ion insertion/extraction at high current density is rare among NF-based free-standing electrodes. The asymmetric supercapacitor by assembling with activated carbon as the negative electrode delivers a volumetric capacitance of 3.93 F cm-3 at 30 mA cm-2, corresponding to an energy density of 13.9 mW h cm-3 at a power density of 200 mW cm-3. A capacitance retention of 82.5% was observed after 4000 cycles, together with an average 97% coulombic efficiency. This work may provide a facile strategy to construct hierarchical microarrays for efficient energy storage devices.
Collapse
Affiliation(s)
- Jia Xu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China.
| | - Fenfen Han
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China.
| | - Dianlei Fang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China.
| | - Xinlei Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China.
| | - Jian Tang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China.
| | - Weihua Tang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China.
| |
Collapse
|
25
|
Guo X, Liu Z, Liu F, Zhang J, Zheng L, Hu Y, Mao J, Liu H, Xue Y, Tang C. Sulfur vacancy-tailored NiCo2S4 nanosheet arrays for the hydrogen evolution reaction at all pH values. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02189b] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Sulfur vacancy-tailored NiCo2S4 nanosheet arrays as efficient electrocatalysts for the hydrogen evolution reaction at all pH values.
Collapse
|