1
|
Tian JR, Song JY, Wang Z. Covalently Coupling Carbon Quantum Dots for Photoluminescence Red Shift Response to pH. Inorg Chem 2025; 64:3518-3527. [PMID: 39920098 DOI: 10.1021/acs.inorgchem.4c05129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Conventional fluorescent pH sensors, despite offering high sensitivity and rapid response, are limited by their reliance on fluorescence intensity changes, hindering applications requiring precise wavelength control. Here, we present a pH sensing strategy based on cross-linked carbon quantum dots (CCL-CQDs) displaying a remarkable pH-dependent red shift in the fluorescence emission wavelength. Amino- and carboxyl-functionalized CQDs were synthesized via a one-step hydrothermal method and further assembled into CCL-CQDs through the condensation reaction between amino groups and glutaraldehyde. The CCL-CQDs displayed excellent pH sensitivity, with their fluorescence emission wavelength exhibiting a linear red shift upon increasing pH (from 2.29 to 7.16). The results of mechanism exploration revealed that H+ induced the cleavage of C═N bonds in the CCL-CQD structure, leading to the formation of -COOH groups and increased surface-oxidized carbon content. This enhanced oxidation generated more surface defects, triggering a wavelength shift in surface-state-related fluorescence emission. This study demonstrates the successful synthesis of pH-sensitive CCL-CQDs with an excellent fluorescence detection performance.
Collapse
Affiliation(s)
- Jun-Ru Tian
- International Iberian Nanotechnology Laboratory (INL), Avenide Mestre Jose Veiga, Braga 4715-330, Portugal
| | - Jie-Yao Song
- Modern Chemical Engineering Department, Shanxi Engineering Vocational College, Taiyuan, Shanxi 030009, China
| | - Zhongchang Wang
- International Iberian Nanotechnology Laboratory (INL), Avenide Mestre Jose Veiga, Braga 4715-330, Portugal
| |
Collapse
|
2
|
Huang Y, Zhou Y, Guo X, Tong Z, Zhuang T. Near-infrared circularly polarized luminescence enabled by chiral inorganic nanomaterials. NANOSCALE 2025; 17:1922-1931. [PMID: 39651574 DOI: 10.1039/d4nr03743j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Near-infrared circularly polarized luminescence (NIR-CPL) has attracted widespread attention owing to its fascinating characteristic-circular polarization in specific illumination regions-offering advances in applications such as information security and cancer detection. For the generation of NIR-CPL, chiral inorganic nanomaterials have emerged as the desirable candidates due to their extraordinary chiroptical properties. In this mini-review, we first highlight the recent advances in NIR-CPL produced from chiral inorganic nanomaterials. Thereafter, we present the applications of NIR-CPL in information security and cancer detection. Finally, we prospect the challenges in this field and provide new perspectives and insights for the development of novel NIR-CPL materials and new applications.
Collapse
Affiliation(s)
- Yanji Huang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Yajie Zhou
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Xueru Guo
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Zhi Tong
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Taotao Zhuang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
3
|
Khan AH, Basak A, Zaman A, Das PK. Inherently targeted estradiol-derived carbon dots for selective killing of ER (+) breast cancer cells via oridonin-triggered p53 pathway activation. J Mater Chem B 2024; 12:11708-11720. [PMID: 39435655 DOI: 10.1039/d4tb01415d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
One of the most prevalent cancers globally is breast cancer and approximately two thirds of the breast cancers are hormone receptor positive with estrogen receptors (ER) being a prominent target. Notably, p53 that controls several cellular functions and prevents tumor formation, gets suppressed in breast cancers. Reactivation of p53 can lead to cell cycle arrest as well as apoptosis. Therefore, targeting the estrogen receptor for selective delivery of anticancer drugs that can reactivate p53 in ER (+) breast cancers can be a crucial method in breast cancer therapy. Herein, we have designed and developed estradiol-derived inherently targeted specific carbon dots (E2-CA-CD) from 17β-estradiol and citric acid following a solvothermal method. The synthesized carbon dots were characterized using spectroscopic and microscopic techniques. The water soluble, intrinsically fluorescent E2-CA-CD showed excellent biocompatibility in MCF-7, MDA-MB-231 as well as NIH3T3 cells and demonstrated target specific bioimaging in ER (+) MCF-7 cells due to the overexpressed ER receptors. Furthermore, oridonin, a well-known hydrophobic anticancer drug capable of upregulating the p53 pathway, was loaded on the carbon dots to increase its bioavailability. E2-CA-CD-Ori caused ∼2.2 times higher killing in ER (+) MCF-7 cells compared to ER (-) MDA-MB-231 cells and normal cells NIH3T3. Also, E2-CA-CD-Ori showed ∼3 fold better killing in MCF-7 cells compared to native oridonin. E2-CA-CD-Ori-induced killing of MCF-7 cells took place through the early to late apoptotic pathway along with the elevation of the intracellular ROS level. Importantly, E2-CA-CD-Ori triggered the activation of the p53 pathway in MCF-7 cells, which in turn induced apoptosis involving the upregulation of Bax and downregulation of Bcl-2 leading to the selective and efficient killing of ER (+) MCF-7 cells.
Collapse
Affiliation(s)
- Aftab Hossain Khan
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700 032, India.
| | - Ambalika Basak
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700 032, India.
| | - Afreen Zaman
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700 032, India.
| | - Prasanta Kumar Das
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700 032, India.
| |
Collapse
|
4
|
Zhylkybayeva N, Paliienko K, Topchylo A, Zaderko A, Géloën A, Borisova T, Grishchenko L, Mariychuk R, Skryshevsky V, Mussabek G, Lysenko V. Size dependent properties of Gd 3+-free versus Gd 3+-doped carbon dots for bioimaging application. Sci Rep 2024; 14:27812. [PMID: 39537704 PMCID: PMC11561127 DOI: 10.1038/s41598-024-76500-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Gd3+- free carbon dots (CDs) were synthesized by one-step solvothermal method using urea, citric acid and 3-(trifluoromethyl)aniline as precursors. Additionally, Gd3+-doped CDs were prepared by incorporating gadolinium chloride (Gd3+ ions) into the synthesis. Size selection of the purified CDs was achieved through filter membranes ranging from 3 kDa to 100 kDa. The chemical composition and optical properties of the obtained samples were characterized by Energy dispersive X-ray (EDX), Fourier-transform infrared spectroscopy (FTIR), Dynamic Light Scattering (DLS), proton relaxation time measurements, Ultraviolet-visible (UV-vis) and fluorescence spectroscopies. A comparative analysis revealed a strong size-dependent behavior in the optical properties of both Gd3+-doped and Gd3+-free CDs. Furthermore, in vitro tests confirmed the non-cytotoxicity of Gd3+-doped CDs, indicating their potential applicability in biomedicine for magnetic resonance imaging (MRI) and red fluorescence-based cell and tissue imaging.
Collapse
Affiliation(s)
- Nazym Zhylkybayeva
- Faculty of Physics and Technology, Al-Farabi Kazakh National University, 71, al-Farabi Ave., Almaty, 050040, Kazakhstan
- Institute of Information and Computational Technologies, 125 Pushkin Str., Almaty, 050000, Kazakhstan
| | - Konstantin Paliienko
- Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kyiv, 01054, Ukraine
- Corporation Science Park, Taras Shevchenko University of Kyiv, 60 Volodymyrska Str., Kyiv, 01033, Ukraine
| | - Anna Topchylo
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, 01601, Ukraine
- Light Matter Institute, UMR-5306, Claude Bernard University of Lyon/CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France
| | - Alexander Zaderko
- Light Matter Institute, UMR-5306, Claude Bernard University of Lyon/CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France
| | - Alain Géloën
- University of Lyon, UMR Ecologie Microbienne Lyon (LEM), CNRS 5557, INRAE 1418, Université Claude Bernard Lyon 1, VetAgro Sup, 69622, Villeurbanne, France
| | - Tatiana Borisova
- Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kyiv, 01054, Ukraine
- Corporation Science Park, Taras Shevchenko University of Kyiv, 60 Volodymyrska Str., Kyiv, 01033, Ukraine
| | - Liudmyla Grishchenko
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, 01601, Ukraine
| | - Ruslan Mariychuk
- University of Presov, 17th November str. 1, Presov, 08001, Slovakia
| | - Valeriy Skryshevsky
- Corporation Science Park, Taras Shevchenko University of Kyiv, 60 Volodymyrska Str., Kyiv, 01033, Ukraine.
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, 01601, Ukraine.
| | - Gauhar Mussabek
- Faculty of Physics and Technology, Al-Farabi Kazakh National University, 71, al-Farabi Ave., Almaty, 050040, Kazakhstan
- Institute of Information and Computational Technologies, 125 Pushkin Str., Almaty, 050000, Kazakhstan
| | - Vladimir Lysenko
- Light Matter Institute, UMR-5306, Claude Bernard University of Lyon/CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France
| |
Collapse
|
5
|
Mohanaraman SP, Chidambaram R. A holistic review on red fluorescent graphene quantum dots, its synthesis, unique properties with emphasis on biomedical applications. Heliyon 2024; 10:e35760. [PMID: 39220916 PMCID: PMC11365325 DOI: 10.1016/j.heliyon.2024.e35760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Graphene quantum dots (GQDs) are an evolving class of carbon-based nanomaterial, seizing tremendous attention owing to their intense optical property, engineered shapes and structures, and good photostability. Being a zero-dimensional form of carbon structure, GQDs have superior photoluminescent behavior, tunable emission and absorption, excellent biocompatibility, low cytotoxicity, hydrophilic nature, modifying surface states. Their water dispersibility and functionalized surface structure, involving heteroatoms and various functional groups onto the surface of GQDs, make them particularly suitable for biological applications. Based on their absolute luminescence properties, GQDs emit blue, green, yellow, and red light under ultraviolet irradiation. Amongst the three colors, red luminescence can achieve deeper penetration of light into tissues, good cellular distribution, bio-sensing property, cell imaging, drug delivery, and serves as a better candidate for photodynamic therapy. The overall objective of this review is to provide a comprehensive overview of the synthesis methods for red fluorescence graphene quantum dots (RF-GQDs), critical comparative analyses of spectral techniques used for their characterization, the tunable photoluminescence mechanisms underpinning red emission, and the significance of chemically functionalizing GQDs' surface edges in achieving red fluorescence are discussed in depth. This review also discusses the effective biological applications and critical challenges associated with RF-GQDs are examined, providing insights into their future potential in clinical and industrial applications.
Collapse
Affiliation(s)
- Shanmuga Priya Mohanaraman
- Instrumental and Food Analysis Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Ramalingam Chidambaram
- Instrumental and Food Analysis Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
6
|
Yang L, An Y, Xu D, Dai F, Shao S, Lu Z, Liu G. Comprehensive Overview of Controlled Fabrication of Multifunctional Fluorescent Carbon Quantum Dots and Exploring Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309293. [PMID: 38342681 DOI: 10.1002/smll.202309293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/24/2024] [Indexed: 02/13/2024]
Abstract
In recent years, carbon dots (CDs) have garnered increasing attention due to their simple preparation methods, versatile performances, and wide-ranging applications. CDs can manifest various optical, physical, and chemical properties including quantum yield (QY), emission wavelength (Em), solid-state fluorescence (SSF), room-temperature phosphorescence (RTP), material-specific responsivity, pH sensitivity, anti-oxidation and oxidation, and biocompatibility. These properties can be effectively regulated through precise control of the CD preparation process, rendering them suitable for diverse applications. However, the lack of consideration given to the precise control of each feature of CDs during the preparation process poses a challenge in obtaining the requisite features for various applications. This paper is to analyze existing research and present novel concepts and ideas for creating CDs with different distinct features and applications. The synthesis methods of CDs are discussed in the first section, followed by a comprehensive overview of the important properties of CDs and the modification strategy. Subsequently, the application of CDs and their requisite properties are reviewed. Finally, the paper outlines the current challenges in controlling CDs properties and their applications, discusses potential solutions, and offers suggestions for future research.
Collapse
Affiliation(s)
- Lijuan Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yibo An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Dazhuang Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Fan Dai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Shillong Shao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Zhixiang Lu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
7
|
Wang C, Yang L, Chu K, Xu J, Wang D, Zhao W. Fluorescent carbon dots synthesized by waste wind turbine blade for photocatalytic degradation. LUMINESCENCE 2024; 39:e4608. [PMID: 37918949 DOI: 10.1002/bio.4608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
Developing novel waste recycling strategies has become a feasible solution to overcome environmental pollution. In this work, a method of using waste wind turbine blade (WTB) as a carbon source to synthesize blue fluorescent carbon dots (B-CDs) by hydrothermal treatment is proposed. B-CDs are spherical and have an average particle size of 5.2 nm. The surface is rich in C-O, C=O, -CH3 , and N-H bond functional groups, containing five elements: C, O, N, Si, and Ca. The optimal emission wavelength of B-CDs is 463 nm, corresponding to an excitation wavelength of 380 nm. Notably, a relatively high quantum yield of 29.9% and a utilization rate of 40% were obtained. In addition, B-CDs can serve as a photocatalyst to degrade methylene blue dye, with a degradation efficiency of 64% under 40-min irradiation conditions. The presence of holes has a significant influence on the degradation process.
Collapse
Affiliation(s)
- Congling Wang
- School of Materials Science and Engineering, Hunan University, Changsha, China
| | - Lilin Yang
- School of Materials Science and Engineering, University of Jinan, Jinan, China
| | - Kunyu Chu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Jun Xu
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, China
| | - Dongzhi Wang
- School of Materials Science and Engineering, University of Jinan, Jinan, China
| | - Weilin Zhao
- School of Materials Science and Engineering, University of Jinan, Jinan, China
| |
Collapse
|
8
|
Feghhi F, Minagar A, Madaah Hosseini HR. Bandgap tailoring and enhancing the aromatization in cysteine-based carbon dots. J Colloid Interface Sci 2023; 651:36-46. [PMID: 37540928 DOI: 10.1016/j.jcis.2023.07.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/06/2023]
Abstract
Cysteine, as a non-aromatic precursor, was used to produce Nitrogen (N) and Sulfur (S) sources for preparing N, S-doped carbon dots (CDs) with tunable luminescence emission. Despite the tremendous investigations, the photoluminescence (PL) mechanism of CDs is still unclear due to its complex core-shell structure, variety of surface functional groups, and structure dependency. This study focuses on controlling aromatization and graphitization processes during the hydrothermal synthesis on CDs by using Citric Acid (CA) and Ammonium persulfate. Detailed characterizations by FTIR spectroscopy, XPS, and HR-TEM are provided to suggest both chemical and bandgap structures. Results reveal that the red-shift of PL occurred due to the graphitization and increasing content of graphitic nitrogen in the core, as well as the Pyridinic and Amine groups creating sub-bands on the surface. These findings resolve the controversy on the PL mechanism of Cysteine-based CDs and provide a general guide for increasing the aromatization and graphitization degree from non-aromatic precursors which clarify the mechanism exploration and structural analysis of other types of CDs.
Collapse
Affiliation(s)
- Fazeleh Feghhi
- epartment of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, P.O. Box 11155-9466, Tehran, Iran
| | - Ava Minagar
- epartment of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, P.O. Box 11155-9466, Tehran, Iran
| | - H R Madaah Hosseini
- epartment of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, P.O. Box 11155-9466, Tehran, Iran; Institute for Convergence Science & Technology, Center for Bioscience & Technology, Sharif University of Technology, Tehran 1458889694, Iran.
| |
Collapse
|
9
|
Kumara BN, Kalimuthu P, Prasad KS. Synthesis, properties and potential applications of photoluminescent carbon nanoparticles: A review. Anal Chim Acta 2023; 1268:341430. [PMID: 37268342 DOI: 10.1016/j.aca.2023.341430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
Photoluminescent-carbon nanoparticles (PL-CNPs) are a new class of materials that received immense interest among researchers due to their distinct characteristics, including photoluminescence, high surface-to-volume ratio, low cost, ease of synthesis, high quantum yield, and biocompatibility. By exploiting these outstanding properties, many studies have been reported on its utility as sensors, photocatalysts, probes for bio-imaging, and optoelectronics applications. From clinical applications to point-of-care test devices, drug loading to tracking of drug delivery, and other research innovations demonstrated PL-CNPs as an emerging material that could substitute conventional approaches. However, some of the PL-CNPs have poor PL properties and selectivity due to the presence of impurities (e.g., molecular fluorophores) and unfavourable surface charges by the passivation molecules, which impede their applications in many fields. To address these issues, many researchers have been paying great attention to developing new PL-CNPs with different composite combinations to achieve high PL properties and selectivity. Herein, we thoroughly discussed the recent development of various synthetic strategies employed to prepare PL-CNPs, doping effects, photostability, biocompatibility, and applications in sensing, bioimaging, and drug delivery fields. Moreover, the review discussed the limitations, future direction, and perspectives of PL-CNPs in possible potential applications.
Collapse
Affiliation(s)
- B N Kumara
- Nanomaterial Research Laboratory (NMRL), Nano Division, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575 018, India
| | - Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia.
| | - K S Prasad
- Centre for Nutrition Studies, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575 018, India.
| |
Collapse
|
10
|
Ostadhossein F, Moitra P, Alafeef M, Sar D, D’Souza S, Benig LF, Nelappana M, Huang X, Soares J, Zhang K, Pan D. Ensemble and single-particle level fluorescent fine-tuning of carbon dots via positional changes of amines toward "supervised" oral microbiome sensing. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:082807. [PMID: 37427335 PMCID: PMC10324603 DOI: 10.1117/1.jbo.28.8.082807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023]
Abstract
Significance Carbon dots (CDs) have attracted a host of research interest in recent years mainly due to their unique photoluminescence (PL) properties that make them applicable in various biomedical areas, such as imaging and image-guided therapy. However, the real mechanism underneath the PL is a subject of wide controversy and can be investigated from various angles. Aim Our work investigates the effect of the isomeric nitrogen position as the precursor in the synthesis of CDs by shedding light on their photophysical properties on the single particles and ensemble level. Approach To this end, we adopted five isomers of diaminopyridine (DAP) and urea as the precursors and obtained CDs during a hydrothermal process. The various photophysical properties were further investigated in depth by mass spectroscopy. CD molecular frontier orbital analyses aided us in justifying the fluorescence emission profile on the bulk level as well as the charge transfer processes. As a result of the varying fluorescent responses, we indicate that these particles can be utilized for machine learning (ML)-driven sensitive detection of oral microbiota. The sensing results were further supported by density functional theoretical calculations and docking studies. Results The generating isomers have a significant effect on the overall photophysical properties at the bulk/ensembled level. On the single-particle level, although some of the photophysical properties such as average intensity remained the same, the overall differences in brightness, photo-blinking frequency, and bleaching time between the five samples were conceived. The various photophysical properties could be explained based on the different chromophores formed during the synthesis. Overall, an array of CDs was demonstrated herein to achieve ∼ 100 % separation efficacy in segregating a mixed oral microbiome culture in a rapid (< 0.5 h ), high-throughput manner with superior accuracy. Conclusions We have indicated that the PL properties of CDs can be regulated by the precursors' isomeric position of nitrogen. We emancipated this difference in a rapid method relying on ML algorithms to segregate the dental bacterial species as biosensors.
Collapse
Affiliation(s)
- Fatemeh Ostadhossein
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- Carle Foundation Hospital, Mills Breast Cancer Institute, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Beckman Institute of Advanced Science and Technology, Urbana, Illinois, United States
| | - Parikshit Moitra
- The Pennsylvania State University, Department of Nuclear Engineering, State College, Pennsylvania, United States
| | - Maha Alafeef
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- The Pennsylvania State University, Department of Nuclear Engineering, State College, Pennsylvania, United States
| | - Dinabandhu Sar
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- Carle Foundation Hospital, Mills Breast Cancer Institute, Urbana, Illinois, United States
| | - Shannon D’Souza
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- Carle Foundation Hospital, Mills Breast Cancer Institute, Urbana, Illinois, United States
| | - Lily F. Benig
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- Carle Foundation Hospital, Mills Breast Cancer Institute, Urbana, Illinois, United States
| | - Michael Nelappana
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- Carle Foundation Hospital, Mills Breast Cancer Institute, Urbana, Illinois, United States
| | - Xuedong Huang
- Fudan University, Department of Chemistry, Shanghai, China
| | - Julio Soares
- University of Illinois at Urbana‐Champaign, Frederick Seitz Materials Research Laboratory, Urbana, Illinois, United States
| | - Kai Zhang
- University of Illinois at Urbana-Champaign, School of Molecular and Cellular Biology, Department of Biochemistry, Urbana, Illinois, United States
| | - Dipanjan Pan
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- Carle Foundation Hospital, Mills Breast Cancer Institute, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Beckman Institute of Advanced Science and Technology, Urbana, Illinois, United States
- The Pennsylvania State University, Department of Nuclear Engineering, State College, Pennsylvania, United States
- The Pennsylvania State University, Department of Materials Science and Engineering, University Park, Pennsylvania, United States
- The Materials Research Institute, Millennium Science Complex, University Park, Pennsylvania, United States
- Huck Institutes of the Life Sciences, University Park, Pennsylvania, United States
| |
Collapse
|
11
|
Frias Batista LM, Kaplan E, Weththasingha C, Cook B, Harris S, Nag A, Tibbetts KM. How Pulse Width Affects Laser Ablation of Organic Liquids. J Phys Chem B 2023; 127:6551-6561. [PMID: 37462519 DOI: 10.1021/acs.jpcb.3c03708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Laser synthesis in liquids is often carried out in organic solvents to prevent oxidation of metals during nanoparticle generation and to produce tailored carbon-based nanomaterials. This work investigates laser ablation of neat organic liquids acetone, ethanol, n-hexane, and toluene with pulse widths ranging from 30 fs to 4 ps through measurements of reaction kinetics and characterization of the ablation products with optical spectroscopy and mass spectrometry. Increasing the pulse width from 30 fs to 4 ps impacts both the reaction kinetics and product distributions, suppressing the formation of solvent molecule dimers and oxidized molecules while enhancing the yields of gaseous molecules, sp-hybridized carbons, and fluorescent carbon dots. The observed trends are explained in the context of established ionization mechanisms and cavitation bubble dynamical processes that occur during ultrashort pulsed laser ablation of liquid media. The results of this work have important implications both for controlling the formation of carbon shells around metal nanoparticles during the ablation of solid targets in liquid and producing carbon nanomaterials directly from the ablation of organic liquids without a solid target.
Collapse
Affiliation(s)
- Laysa M Frias Batista
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Ella Kaplan
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Chamari Weththasingha
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Benjamin Cook
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Samuel Harris
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Ashish Nag
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Katharine Moore Tibbetts
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
12
|
Adhel E, Ha Duong NT, Vu TH, Taverna D, Ammar S, Serradji N. Interaction between carbon dots from folic acid and their cellular receptor: a qualitative physicochemical approach. Phys Chem Chem Phys 2023; 25:14324-14333. [PMID: 37183591 DOI: 10.1039/d3cp01277h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
According to the World Health Organization, the number of cancers (all cancers, both sexes, all ages and worldwide) in 2020 reached a total of 19 292 789 new cases leading to 9 958 133 deaths during the same period. Many cancers could be cured if detected early. Preventing cancer and detecting it early are two essential strategies for controlling this pathology. For this purpose, several strategies have been described for imaging cancer cells. One of them is based on the use of carbon nanoparticles called carbon dots, tools of physical chemistry. The literature describes that cancer cells can be imaged using carbon dots obtained from folic acid and that the in cellulo observed photoluminescence probably results from the interaction of these nanoparticles with the folic acid-receptor, a cell surface protein overexpressed in many malignant cells. However, this interaction has never been directly demonstrated yet. We investigated it, for the first time, using (i) freshly synthesized and fully characterized carbon dots, (ii) folate binding protein, a folic acid-receptor model protein and (iii) fluorescence spectroscopy and isothermal titration calorimetry, two powerful methods for detecting molecular interactions. Our results even highlight a selective interaction between these carbon made nano-objects and their biological target.
Collapse
Affiliation(s)
- Erika Adhel
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France.
| | | | - Thi Huyen Vu
- University of Engineering and Technology, Vietnam National University, Hanoi (VNUH), Vietnam
| | - Dario Taverna
- Sorbonne Université, CNRS, IMPMC, F-75005 Paris, France
| | - Souad Ammar
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France.
| | - Nawal Serradji
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France.
| |
Collapse
|
13
|
Dua S, Kumar P, Pani B, Kaur A, Khanna M, Bhatt G. Stability of carbon quantum dots: a critical review. RSC Adv 2023; 13:13845-13861. [PMID: 37181523 PMCID: PMC10167674 DOI: 10.1039/d2ra07180k] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/04/2023] [Indexed: 05/16/2023] Open
Abstract
Carbon quantum dots (CQDs) are fluorescent carbon nanomaterials with unique optical and structural properties that have drawn extensive attention from researchers in the past few decades. Environmental friendliness, biocompatibility and cost effectiveness of CQDs have made them very renowned in countless applications including solar cells, white light-emitting diodes, bio-imaging, chemical sensing, drug delivery, environmental monitoring, electrocatalysis, photocatalysis and other related areas. This review is explicitly dedicated to the stability of CQDs under different ambient conditions. Stability of CQDs is very important for every possible application and no review has been put forth to date that emphasises it, to the best of our knowledge. This review's primary goal is to make the readers cognizant of the importance of stability, ways to assess it, factors that affect it and proposed ways to enhance the stability for making CQDs suitable for commercial applications.
Collapse
Affiliation(s)
- Shweta Dua
- Department of Electronic Science, University of Delhi South Campus India
- Bhaskaracharya College of Applied Sciences, University of Delhi India
| | - Pawan Kumar
- Bhaskaracharya College of Applied Sciences, University of Delhi India
| | | | - Amarjeet Kaur
- Department of Physics and Astrophysics, University of Delhi India
| | - Manoj Khanna
- Faculty of Interdisciplinary and Applied Sciences, University of Delhi India
| | - Geeta Bhatt
- Non-Collegiate Women's Education Board, University of Delhi Second Floor, Guru Tegh Bahadur Rd University Enclave New Delhi Delhi 110007 India
| |
Collapse
|
14
|
Ding C, Xing H, Guo X, Yuan H, Li C, Zhang X, Jia X. Tea-derived carbon dots with two ratiometric fluorescence channels for the independent detection of Hg 2+ and H 2O. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1998-2005. [PMID: 37039155 DOI: 10.1039/d2ay01768g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Ratiometric fluorescence carbon dots (CDs) that serve as probes have attracted more attention on account of their unique optical properties, low toxicity, anti-interference, and internal reference. However, the facile fabrication of CDs with the aim of detecting multiple targets through mutually independent response channels is always a challenge. Herein, multifunctional label-free N-doped ratiometric fluorescence CDs (N-CDs) are developed from tea leaves extract and o-phenylenediamine by a mild solvothermal method. The prepared N-CDs are tailored with nitrogen- and oxygen-containing functional groups on the surface and contribute to splendid hydrophilia. Two completely independent ratiometric fluorescence channels of N-CDs, respectively, respond to Hg2+ and H2O in a mutually independent manner. Based on the interactions of N-Hg and O-Hg, N-CDs achieve an excellently sensitive and selective detection for Hg2+ in the channel of I387 nm/I351 nm, giving a linear relationship in the range of 0-50 μM. Also, a wide range of Hg2+ concentration (0-100 μM) is linear to A374 nm through UV-vis assay. Otherwise, the linear determination of H2O content (0-30%) is realized in another channel (Igreen/Iblue). The good performance in the independent testing of Hg2+ and H2O, demonstrate that the proposed N-CDs have potential in multifunctional detection.
Collapse
Affiliation(s)
- Chuanlu Ding
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China.
| | - Hao Xing
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China.
| | - Xuhong Guo
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China.
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Huihui Yuan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cuihua Li
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China.
| | - Xiulan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China.
| | - Xin Jia
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China.
| |
Collapse
|
15
|
Kashyap BK, Singh VV, Solanki MK, Kumar A, Ruokolainen J, Kesari KK. Smart Nanomaterials in Cancer Theranostics: Challenges and Opportunities. ACS OMEGA 2023; 8:14290-14320. [PMID: 37125102 PMCID: PMC10134471 DOI: 10.1021/acsomega.2c07840] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Cancer is ranked as the second leading cause of death globally. Traditional cancer therapies including chemotherapy are flawed, with off-target and on-target toxicities on the normal cells, requiring newer strategies to improve cell selective targeting. The application of nanomaterial has been extensively studied and explored as chemical biology tools in cancer theranostics. It shows greater applications toward stability, biocompatibility, and increased cell permeability, resulting in precise targeting, and mitigating the shortcomings of traditional cancer therapies. The nanoplatform offers an exciting opportunity to gain targeting strategies and multifunctionality. The advent of nanotechnology, in particular the development of smart nanomaterials, has transformed cancer diagnosis and treatment. The large surface area of nanoparticles is enough to encapsulate many molecules and the ability to functionalize with various biosubstrates such as DNA, RNA, aptamers, and antibodies, which helps in theranostic action. Comparatively, biologically derived nanomaterials perceive advantages over the nanomaterials produced by conventional methods in terms of economy, ease of production, and reduced toxicity. The present review summarizes various techniques in cancer theranostics and emphasizes the applications of smart nanomaterials (such as organic nanoparticles (NPs), inorganic NPs, and carbon-based NPs). We also critically discussed the advantages and challenges impeding their translation in cancer treatment and diagnostic applications. This review concludes that the use of smart nanomaterials could significantly improve cancer theranostics and will facilitate new dimensions for tumor detection and therapy.
Collapse
Affiliation(s)
- Brijendra Kumar Kashyap
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi 284128, Uttar Pradesh, India
| | - Virendra Vikram Singh
- Defence Research and Development Establishment, DRDO, Gwalior 474002, Madhya Pradesh, India
| | - Manoj Kumar Solanki
- Faculty of Natural Sciences, Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Anil Kumar
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Cheri-Manatu, Karmre, Kanke 835222, Ranchi, India
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Vikkinkaari 1, 00100 Helsinki, Finland
| |
Collapse
|
16
|
Carbon Quantum Dots: Synthesis, Structure, Properties, and Catalytic Applications for Organic Synthesis. Catalysts 2023. [DOI: 10.3390/catal13020422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Carbon quantum dots (CQDs), also known as carbon dots (CDs), are novel zero-dimensional fluorescent carbon-based nanomaterials. CQDs have attracted enormous attention around the world because of their excellent optical properties as well as water solubility, biocompatibility, low toxicity, eco-friendliness, and simple synthesis routes. CQDs have numerous applications in bioimaging, biosensing, chemical sensing, nanomedicine, solar cells, drug delivery, and light-emitting diodes. In this review paper, the structure of CQDs, their physical and chemical properties, their synthesis approach, and their application as a catalyst in the synthesis of multisubstituted 4H pyran, in azide-alkyne cycloadditions, in the degradation of levofloxacin, in the selective oxidation of alcohols to aldehydes, in the removal of Rhodamine B, as H-bond catalysis in Aldol condensations, in cyclohexane oxidation, in intrinsic peroxidase-mimetic enzyme activity, in the selective oxidation of amines and alcohols, and in the ring opening of epoxides are discussed. Finally, we also discuss the future challenges in this research field. We hope this review paper will open a new channel for the application of CQDs as a catalyst in organic synthesis.
Collapse
|
17
|
Yang S, Li Y, Chen L, Wang H, Shang L, He P, Dong H, Wang G, Ding G. Fabrication of Carbon-Based Quantum Dots via a "Bottom-Up" Approach: Topology, Chirality, and Free Radical Processes in "Building Blocks". SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2205957. [PMID: 36610043 DOI: 10.1002/smll.202205957] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The discovery of carbon-based quantum dots (CQDs) has allowed opportunities for fluorescence bioimaging, tumor diagnosis and treatment, and photo-/electro-catalysis. Nevertheless, in the existing reviews related to the "bottom-up" approaches, attention is mainly paid to the applications of CQDs but not the formation mechanism of CQDs, which mainly derived from the high complexities during the synthesis of CQDs. Among the various synthetic methods, using small molecules as "building blocks", the development of a "bottom-up" approach has promoted the structural design, modulation of the photoluminescence properties, and control of the interfacial properties of CQDs. On the other hand, many works have demonstrated the "building blocks"-dependent properties of CQDs. In this review, from one of the most important variables, the relationships among intrinsic properties of "building blocks" and photoluminescence properties of CQDs are summarized. The topology, chirality, and free radical process are selected as descriptors for the intrinsic properties of "building blocks". This review focuses on the induction and summary of recent research results from the "bottom-up" process. Moreover, several empirical rules pertaining thereto are also proposed.
Collapse
Affiliation(s)
- Siwei Yang
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yongqiang Li
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liangfeng Chen
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hang Wang
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liuyang Shang
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Peng He
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hui Dong
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, P. R. China
| | - Guqiao Ding
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
18
|
Ayad MM, Abdelghafar ME, Torad NL, Yamauchi Y, Amer WA. Green synthesis of carbon quantum dots toward highly sensitive detection of formaldehyde vapors using QCM sensor. CHEMOSPHERE 2023; 312:137031. [PMID: 36397304 DOI: 10.1016/j.chemosphere.2022.137031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/29/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
In the present study, an eco-friendly method for the preparation of carbon quantum dots (CQDs) is demonstrated using hydrothermal treatment of laurel leaves. The optical and structural characteristics of the prepared CQDs are investigated using transmission electron microscopy (TEM), X-ray photoelectron (XPS), fluorescent and UV-visible spectroscopies, Fourier transform infrared (FTIR), and X-ray diffraction (XRD). The quartz crystal microbalance (QCM) sensor designed and modified with CQDs is capable of detecting formaldehyde vapors in the presence of other interfering chemical-vapor analytes. The changes in the frequency of the QCM sensor are linearly correlated with the injected formaldehyde concentrations. The sensing properties of formaldehyde, including sensitivity and reversibility, are investigated. Detection of formaldehyde in the presence of humidity is carefully discussed for home or workplace room environment use. The adsorption kinetics of various VOCs vapors are also calculated and discussed.
Collapse
Affiliation(s)
- Mohamad M Ayad
- Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria 21934, Egypt.
| | - Mona E Abdelghafar
- Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Nagy L Torad
- Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba 305-0044, Japan
| | - Yusuke Yamauchi
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba 305-0044, Japan; School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane QLD 4072, Australia
| | - Wael A Amer
- Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; Department of Chemistry, College of Science, University of Bahrain, Sakhir 32038, Bahrain.
| |
Collapse
|
19
|
Senanayake R, Yao X, Froehlich CE, Cahill MS, Sheldon TR, McIntire M, Haynes CL, Hernandez R. Machine Learning-Assisted Carbon Dot Synthesis: Prediction of Emission Color and Wavelength. J Chem Inf Model 2022; 62:5918-5928. [PMID: 36394850 PMCID: PMC9749762 DOI: 10.1021/acs.jcim.2c01007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Indexed: 11/18/2022]
Abstract
Carbon dots (CDs) have attracted great attention in a range of applications due to their bright photoluminescence, high photostability, and good biocompatibility. However, it is challenging to design CDs with specific emission properties because the syntheses involve many parameters, and it is not clear how each parameter influences the CD properties. To help bridge this gap, machine learning, specifically an artificial neural network, is employed in this work to characterize the impact of synthesis parameters on and make predictions for the emission color and wavelength for CDs. The machine reveals that the choice of reaction method, purification method, and solvent relate more closely to CD emission characteristics than the reaction temperature or time, which are frequently tuned in experiments. After considering multiple models, the best performing machine learning classification model achieved an accuracy of 94% in predicting relative to actual color. In addition, hybrid (two-stage) models incorporating both color classification and an artificial neural network k-ensemble model for wavelength prediction through regression performed significantly better than either a standard artificial neural network or a single-stage artificial neural network k-ensemble regression model. The accuracy of the model predictions was evaluated against CD emission wavelengths measured from experiments, and the minimum mean average error is 25.8 nm. Overall, the models developed in this work can effectively predict the photoluminescence emission of CDs and help design CDs with targeted optical properties.
Collapse
Affiliation(s)
| | - Xiaoxiao Yao
- Department
of Chemistry, University of Minnesota−Twin
Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Clarice E. Froehlich
- Department
of Chemistry, University of Minnesota−Twin
Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Meghan S. Cahill
- Department
of Chemistry, University of Minnesota−Twin
Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Trever R. Sheldon
- Department
of Chemistry, University of Minnesota−Twin
Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Mary McIntire
- Department
of Chemistry, University of Minnesota−Twin
Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christy L. Haynes
- Department
of Chemistry, University of Minnesota−Twin
Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Rigoberto Hernandez
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Departments
of Chemical and Biomolecular Engineering and Materials Science and
Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
20
|
The preparation, optical properties and applications of carbon dots derived from phenylenediamine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Li J, Gong X. The Emerging Development of Multicolor Carbon Dots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205099. [PMID: 36328736 DOI: 10.1002/smll.202205099] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/13/2022] [Indexed: 06/16/2023]
Abstract
As a relatively new type of fluorescent carbon-based nanomaterials, multicolor carbon dots (MCDs) have attracted much attention because of their excellent biocompatibility, tunable photoluminescence (PL), high quantum yield, and unique electronic and physicochemical properties. The multicolor emission characteristics of carbon dots (CDs) obviously depend on the carbon source precursor, reaction conditions, and reaction environment, which directly or indirectly determines the multicolor emission characteristics of CDs. Therefore, this review is the first systematic classification and summary of multiple regulation methods of synthetic MCDs and reviews the recent research progress in the synthesis of MCDs from a variety of precursor materials such as aromatic molecules, small organic molecules, and natural biomass, focusing on how different regulation methods produce corresponding MCDs. This review also introduces the innovative applications of MCDs in the fields of biological imaging, light-emitting diodes (LEDs), sensing, and anti-counterfeiting due to their excellent PL properties. It is hoped that by selecting appropriate adjustment methods, this review can inspire and guide the future research on the design of tailored MCDs, and provide corresponding help for the development of multifunctional MCDs.
Collapse
Affiliation(s)
- Jiurong Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
22
|
Kasprzyk W, Świergosz T, Romańczyk PP, Feldmann J, Stolarczyk JK. The role of molecular fluorophores in the photoluminescence of carbon dots derived from citric acid: current state-of-the-art and future perspectives. NANOSCALE 2022; 14:14368-14384. [PMID: 36156633 DOI: 10.1039/d2nr03176k] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Carbon dots (CDs), an emerging class of nanomaterials, have attracted considerable attention due to their intriguing photophysical properties. Despite their indisputable potential of utilization in many fascinating areas of research and life, some fundamental aspects concerning their structure and the origin of their photoluminescence (PL) properties still await clarification. The mechanism of PL emission of CDs is associated with their structure, which is dependent on the carbonization process. At the initial stages of CD synthesis via a bottom-up approach, molecular fluorophores are considered to dominate the optical characteristics of the resulting nanomaterials. In this review, the recent progress in the use of molecular state theory for explanation of the structure-property relationship in CDs is summarized. This review focuses exclusively on the molecular fluorophores existing in nanomaterials prepared from citric acid (CA) as one of the most frequent carbon sources reported for the bottom-up synthesis of CDs. Consequently, the most relevant transformations of CA and the history of molecular fluorophores derived from it are described, followed by an in-depth discussion on their relevance in understanding the specific photophysical properties of blue-, green-, and red-emitting CDs. Finally, the challenging issues and future perspectives of molecular state PL mechanism exploration in CDs are highlighted.
Collapse
Affiliation(s)
- Wiktor Kasprzyk
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland.
| | - Tomasz Świergosz
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
| | - Piotr P Romańczyk
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland.
| | - Jochen Feldmann
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität München, Königinstrasse 10, Munich, 80539, Germany
| | - Jacek K Stolarczyk
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität München, Königinstrasse 10, Munich, 80539, Germany
- Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
| |
Collapse
|
23
|
Saengsrichan A, Khemthong P, Wanmolee W, Youngjan S, Phanthasri J, Arjfuk P, Pongchaikul P, Ratchahat S, Posoknistakul P, Laosiripojana N, Wu KCW, Sakdaronnarong C. Platinum/carbon dots nanocomposites from palm bunch hydrothermal synthesis as highly efficient peroxidase mimics for ultra-low H2O2 sensing platform through dual mode of colorimetric and fluorescent detection. Anal Chim Acta 2022; 1230:340368. [DOI: 10.1016/j.aca.2022.340368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/19/2022] [Accepted: 09/05/2022] [Indexed: 11/01/2022]
|
24
|
Zeng J, Liao L, Lin X, Liu G, Luo X, Luo M, Wu F. Red-Emissive Sulfur-Doped Carbon Dots for Selective and Sensitive Detection of Mercury (II) Ion and Glutathione. Int J Mol Sci 2022; 23:9213. [PMID: 36012486 PMCID: PMC9409242 DOI: 10.3390/ijms23169213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 01/15/2023] Open
Abstract
Carbon dots (CDs) show great potential in bioimaging and biosensing because of their good biocompatibility and excellent optical properties. However, CDs with intense red emissions for sensitive and selective detection are rarely reported. Herein, we prepared the red-emissive carbon dots (RCDs) through a facile hydrothermal method using tetra (4-carboxyphenyl) porphyrin (TCPP) and thiourea as starting materials. The obtained RCDs were characterized by TEM, XRD, and XPS. RCDs exhibited high water solubility and strong red emission (λem = 650 nm), with the fluorescence quantum yield as high as 26.7%, which was greatly higher than that of TCPP. Moreover, the as-prepared RCDs could be acted as a highly selective and sensitive probe for the detection of Hg2+ and glutathione (GSH) through the fluorometric titration method. The detection limits of Hg2+ and GSH were calculated to be 1.73 and 1.6 nM, respectively. The cellular experiments demonstrated the good biocompatibility of RCDs and their feasibility in bioimaging. Thus, this work provided a simple strategy to design and synthesize the highly red-emissive carbon dots, which showed promising application in biological and environmental assays.
Collapse
Affiliation(s)
- Jinjin Zeng
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430072, China
| | - Linhong Liao
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China
| | - Xiao Lin
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China
| | - Genyan Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China
| | - Xiaogang Luo
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ming Luo
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Fengshou Wu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430072, China
| |
Collapse
|
25
|
Zhang L, Yang X, Yin Z, Sun L. A Review on Carbon Quantum Dots: Synthesis, Photoluminescence Mechanisms and Applications. LUMINESCENCE 2022; 37:1612-1638. [PMID: 35906748 DOI: 10.1002/bio.4351] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/01/2022] [Accepted: 07/24/2022] [Indexed: 11/06/2022]
Abstract
Carbon quantum dots (CQDs), having outstanding biocompatibility, attractive catalytic performance, excellent optical properties, and valuable environment friendliness, are emerging as a new paradigm to design luminescent devices and show great potential in application fields such as biomedical sensors, optical and photonic devices. And CQDs are known as one of the most promising carbon based nanomaterials in the 21st century. Therefore, it has attracted a lot of attention since it was first discovered in 2004. In this review, we explain the accepted photoluminescence mechanism of CQDs, including fluorescence and phosphorescence. There are two main types of synthesis strategies: top-down approach and bottom-up approach. At the same time, the main application fields, including ion detection, anti-counterfeiting, biological imaging, food safety, sensors, lubrication additives, are reviewed. Finally, the existing bottlenecks, pending problems and prospects for the future of CQDs are discussed.
Collapse
Affiliation(s)
- Likang Zhang
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, China
| | - Xue Yang
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, China
| | - Zhifu Yin
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, China.,State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, China
| | - Linlin Sun
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, China
| |
Collapse
|
26
|
Wang Z, Zhu Y, Wu Y, Ding W, Li X. Tunable fluorescent amino-functionalized Ti 3C 2T x MXene quantum dots for ultrasensitive Fe 3+ ion sensing. NANOSCALE 2022; 14:9498-9506. [PMID: 35748806 DOI: 10.1039/d2nr02088b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of sensors with high sensitivity, good selectivity and reproducibility are of great importance for the detection of Fe3+ in contaminated water for environmental monitoring. In this work, a reflux approach has been adopted to synthesize Ti3C2Tx quantum dots (QDs) based on the cutting effect of tetramethylammonium hydroxide (TMAOH) on Ti3C2Tx at high temperature. The surface-functionalized Ti3C2Tx QDs contained abundant amino groups and exhibited tunable pH-dependent emission, which was attributed to the protonation and deprotonation of the surface terminations. The linearity of the radiometric fluorescence intensity versus pH indicates its great potential as a dual-emission ratiometric pH sensor. Additionally, the Ti3C2Tx QDs exhibited tunable excitation-dependent emission behavior, which was related to the degree of passivation by the amino groups on the surface. Furthermore, the fluorescence intensity of the Ti3C2Tx QDs shows a linear response toward Fe3+ in the nanomolar to micromolar range with a low detection limit of 2 nM, originating from the oxidation and reduction between Fe3+ and Ti3C2Tx. This ultra-sensitive and selective detection capability demonstrated the environmental application potential for Ti3C2Tx QDs as a nanoprobe to monitor Fe3+.
Collapse
Affiliation(s)
- Zhiwei Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuanhang Zhu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| | - Yuchen Wu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Weiyuan Ding
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiuting Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
27
|
Yao X, Wang Y, Li F, Dalluge JJ, Orr G, Hernandez R, Cui Q, Haynes CL. Unconventional aliphatic fluorophores discovered as the luminescence origin in citric acid-urea carbon dots. NANOSCALE 2022; 14:9516-9525. [PMID: 35758638 DOI: 10.1039/d2nr02361j] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Carbon dots (CDs) are emerging as the material of choice in a range of applications due to their excellent photoluminescence properties, ease of preparation from inexpensive precursors, and low toxicity. However, the precise nature of the mechanism for the fluorescence is still under debate, and several molecular fluorophores have been reported. In this work, a new blue fluorophore, 5-oxopyrrolidine-3-carboxylic acid, was discovered in carbon dots synthesized from the most commonly used precursors: citric acid and urea. The molecular product alone has demonstrated interesting aggregation-enhanced emission (AEE), making it unique compared to other fluorophores known to be generated in CDs. We propose that this molecular fluorophore is associated with a polymer backbone within the CDs, and its fluorescence behavior is largely dependent on intermolecular interactions with the polymers or other fluorophores. Thus, a new class of non-traditional fluorophores is now relevant to the consideration of the CD fluorescence mechanism, providing both an additional challenge to the community in resolving the mechanism and an opportunity for a greater range of CD design schemes and applications.
Collapse
Affiliation(s)
- Xiaoxiao Yao
- Department of Chemistry, University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, USA.
| | - Yinhan Wang
- Departments of Chemistry, Chemical and Biomolecular Engineering, and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Fangjia Li
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Joseph J Dalluge
- Department of Chemistry, University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, USA.
| | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Rigoberto Hernandez
- Departments of Chemistry, Chemical and Biomolecular Engineering, and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Qiang Cui
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
- Departments of Physics and Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| | - Christy L Haynes
- Department of Chemistry, University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
28
|
Zhang X, Jiang J, Yu Q, Zhou P, Yang S, Xia J, Deng T, Yu C. ZIF-based carbon dots with lysosome-Golgi transport property as visualization platform for deep tumour therapy via hierarchical size/charge dual-transform and transcytosis. NANOSCALE 2022; 14:8510-8524. [PMID: 35660835 DOI: 10.1039/d2nr02134j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The poor penetration of nanomaterials in solid tumours and difficulty in monitoring their penetration depth are major obstacles in their application for the treatment of solid tumours. Herein, pH-responsive carbon dots (ZCD) based on a zeolitic imidazolate framework (ZIF-8) were fabricated to achieve the deep delivery of the chemotherapeutic doxorubicin (DOX) via a hierarchical size/charge dual-transformation and transcytosis. The as-prepared ZCD accumulated in the solid tumour and the acidic tumour microenvironment further triggered its decomposition. Firstly, ZCD was decomposed by the weakly acidic extracellular microenvironment of the solid tumour, enabling it to transform into small and neutrally charged particles. Subsequently, these particles were endocytosed by lysosomes, and further disintegrated into smaller and positively charged particles, which could target the Golgi apparatus. Consequently, ZCD delivered DOX deep into the solid tumour via a size-shrinking strategy and Golgi-mediated transcytosis, thus significantly improving its antitumour efficacy. In addition, carbonization endowed ZCD with superior fluorescence property, which was enhanced in the acidic microenvironment, thus improving the sensitivity and accuracy of ex vivo monitoring of the penetration depth of the nanomedicine in real time. Collectively, our results confirmed that the carbon dots obtained via the direct carbonization of ZIF-8 simultaneously exhibited enhanced deep penetration into solid tumours and fluorescence, which could be monitored, and that the carbonization of functional materials is effective to enhance their fluorescence, and further broaden their applications.
Collapse
Affiliation(s)
- Xianming Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing 400016, China
| | - Junhao Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Qinghua Yu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing 400016, China
| | - Ping Zhou
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing 400016, China
| | - Shiyu Yang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing 400016, China
| | - Jiashan Xia
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing 400016, China
| | - Tao Deng
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing 400016, China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing 400016, China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing 400016, China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing 400016, China
| |
Collapse
|
29
|
Pricilla RB, Skoda D, Urbanek P, Urbanek M, Suly P, Domincova Bergerova E, Kuritka I. Unravelling the highly efficient synthesis of individual carbon nanodots from casein micelles and the origin of their competitive constant-blue-red wavelength shift luminescence mechanism for versatile applications. RSC Adv 2022; 12:16277-16290. [PMID: 35733696 PMCID: PMC9157532 DOI: 10.1039/d2ra01911f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/19/2022] [Indexed: 12/17/2022] Open
Abstract
Synthesis of casein-derived carbon nanodots (CND) using a microwave-assisted approach, giving a high product yield (25%), is reported. Casein was used as a sustainable carbon source, and polyvinylpyrrolidone was used as a stabilizer for the nanodots. The size of the prepared amorphous CND corresponds to individual casein coils, which were only partially carbonized. They were obtained due to the disintegration of casein micelles and submicelles within the microwave-assisted solvothermal process. The resulting nanodots had bright photoluminescence, and their electronic structure and optical properties were investigated. A novel competitive model of their luminescence mechanism was introduced to explain a phenomenon beyond the standard models. The synthesized carbon nanodots were used as luminescent ink for anticounterfeit applications. A polymer matrix nanocomposite was prepared by dispersing the nanodots in a flexible and robust poly(styrene-ethylene-butylene-styrene) tri-block copolymer (SEBS) using the solution cast method. For the first time, the effect of CND on the luminescence and mechanical properties of the SEBS/CND self-supporting films was studied. The film was also studied as a phosphor for light-emitting diodes, with a unique experimental setup to avoid self-absorption, which results in low efficiency and eliminates the excess UV transmitted. Because of their high luminescence, photostability, and mechanical properties, these CND could be used as luminescent labels in the packaging and optoelectronics industries.
Collapse
Affiliation(s)
- R Blessy Pricilla
- Centre of Polymer Systems, Tomas Bata University in Zlin Tr. T. Bati 5678 Zlin 76001 Czech Republic
| | - David Skoda
- Centre of Polymer Systems, Tomas Bata University in Zlin Tr. T. Bati 5678 Zlin 76001 Czech Republic
| | - Pavel Urbanek
- Centre of Polymer Systems, Tomas Bata University in Zlin Tr. T. Bati 5678 Zlin 76001 Czech Republic
| | - Michal Urbanek
- Centre of Polymer Systems, Tomas Bata University in Zlin Tr. T. Bati 5678 Zlin 76001 Czech Republic
| | - Pavol Suly
- Centre of Polymer Systems, Tomas Bata University in Zlin Tr. T. Bati 5678 Zlin 76001 Czech Republic
| | - Eva Domincova Bergerova
- Centre of Polymer Systems, Tomas Bata University in Zlin Tr. T. Bati 5678 Zlin 76001 Czech Republic
| | - Ivo Kuritka
- Centre of Polymer Systems, Tomas Bata University in Zlin Tr. T. Bati 5678 Zlin 76001 Czech Republic
| |
Collapse
|
30
|
Wang T, Zhang L, Xin H. A Portable Fluorescent Hydrogel-Based Device for On-Site Quantitation of Organophosphorus Pesticides as Low as the Sub-ppb Level. Front Chem 2022; 10:855281. [PMID: 35572106 PMCID: PMC9101059 DOI: 10.3389/fchem.2022.855281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Portable devices possess powerful application prospects in on-site sensing without the limitation of bulky instruments. Given the relevance of pesticides to food safety, we herein fabricated a robust gold nanocluster (AuNC)-based hydrogel test kit for precisely quantified chlorpyrifos by using a three-dimensional (3D) printed subsidiary device. In this work, the fluorescence of AuNC-based hydrogel could be efficiently quenched by cobalt oxyhydroxide nanoflakes (CoOOH NFs) through the Förster resonance energy transfer effect. Chlorpyrifos as an acetylcholinesterase inhibitor controls the enzymatic hydrolysis reaction and further regulates the production of thiocholine that could decompose CoOOH nanoflakes into Co2+, resulting in the fluorescence response of AuNC-based hydrogel. By using a homemade subsidiary device and smartphone, the fluorescence color was transformed into digital information, achieving the on-site quantitative detection of chlorpyrifos with the limit of detection of 0.59 ng ml−1. Owing to specific AuNC signatures and hydrogel encapsulation, the proposed fluorescence hydrogel test kit displayed high sensitivity, good selectivity, and anti-interference capability in a real sample analysis, providing great potential in on-site applications.
Collapse
Affiliation(s)
| | | | - Hua Xin
- *Correspondence: Tuhui Wang, ; Hua Xin,
| |
Collapse
|
31
|
Cao X, Shao C, Zhang C, Liang M, Wang Y, Cheng J, Lu S. Yeast powder derived carbon quantum dots for dopamine detection and living cell imaging. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1342-1350. [PMID: 35297454 DOI: 10.1039/d2ay00231k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Dopamine (DA) is an important neurotransmitter in the brain of mammals. There is a critical need for fast and sensitive determination approaches to monitor these potential diseases due to various weaknesses in clinical trials of the existing methods for DA detection. DA can effectively quench the fluorescence of carbon quantum dots (CDs) through the inner filter effect and static quenching. In this work, fluorescent yeast CDs (Y-CDs) were prepared via a simple hydrothermal approach of using yeast powder and regarded as the fluorescent nanoprobe to directly monitor the DA concentration. The as-prepared detection platform exhibited excellent sensitivity and selectivity toward DA with a low detection limit of 30 nM and a wide linear range of 0.05-150 μM. Benefiting from these outstanding features, the developed label-free method has been successfully applied for fast DA detection in human serum samples with satisfactory recoveries. Furthermore, it demonstrated that the Y-CDs were well suitable for live cell imaging and showed low toxicity toward MCF-7 cells. Consequently, this work will facilitate the great potential of the versatile Y-CDs in developing biosensors for clinical diagnosis and other biological applications.
Collapse
Affiliation(s)
- Xue Cao
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, China.
| | - Congying Shao
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, China.
| | - Cheng Zhang
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, China.
| | - Mengna Liang
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, China.
| | - Yongxiang Wang
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, China.
| | - Jun Cheng
- School of Mechatronics & Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Shun Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
32
|
Yu B, Wang Y, Sun M, Luo Y, Yu H, Zhang L. Preparation of carbon dots-doped terbium phosphonate coordination polymers as ratiometric fluorescent probe for citrate detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120656. [PMID: 34857466 DOI: 10.1016/j.saa.2021.120656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/15/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
In this work, carbon dots-doped terbium phosphonate coordination polymers (CDs-GMP/Tb) were designed and prepared as ratiometric fluorescent probes for the detection of citrate. The as-prepared CDs-GMP/Tb are prepared and have the merits of high photostability, low toxicity, and excellent biocompatibility. The as-prepared CDs-GMP/Tb as ratiometric fluorescent probes also have better anti-interference ability and stability compared with the traditional single fluorescent probe. The surface morphology, fabrication, and spectroscopy were characterized through a variety of instruments. It confirms that the probes exhibited network structure doping carbon dots. With the addition of citrate, the fluorescence of GMP/Tb at 545 nm was significantly quenched, contrasting to the enhancement of fluorescence of CDs at 454 nm. Under optimum conditions, the detection limit for citrate was 0.47 μM, with a linear range of 0-200 μM between citrate concentrations and I545/I454. It has high sensitivity, selective, and rapid detection for citrate. The as-prepared CDs-GMP/Tb as ratiometric fluorescent probes were also used for imaging citrate in living cells. These experiment results showed that CDs-GMP/Tb as ratiometric fluorescent probes could be applied to trace citrate detection in the environmental and biological fields.
Collapse
Affiliation(s)
- Bohao Yu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yajie Wang
- Department of Pharmacy, Anhui Medical College, Hefei 230601, PR China
| | - Mengyao Sun
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yongquan Luo
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Haoran Yu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Lei Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
33
|
Zhang W, Zhong H, Zhao P, Shen A, Li H, Liu X. Carbon quantum dot fluorescent probes for food safety detection: Progress, opportunities and challenges. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108591] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Behi M, Gholami L, Naficy S, Palomba S, Dehghani F. Carbon dots: a novel platform for biomedical applications. NANOSCALE ADVANCES 2022; 4:353-376. [PMID: 36132691 PMCID: PMC9419304 DOI: 10.1039/d1na00559f] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/09/2021] [Indexed: 05/09/2023]
Abstract
Carbon dots (CDs) are a recently synthesised class of carbon-based nanostructures known as zero-dimensional (0D) nanomaterials, which have drawn a great deal of attention owing to their distinctive features, which encompass optical properties (e.g., photoluminescence), ease of passivation, low cost, simple synthetic route, accessibility of precursors and other properties. These newly synthesised nano-sized materials can replace traditional semiconductor quantum dots, which exhibit significant toxicity drawbacks and higher cost. It is demonstrated that their involvement in diverse areas of chemical and bio-sensing, bio-imaging, drug delivery, photocatalysis, electrocatalysis and light-emitting devices consider them as flawless and potential candidates for biomedical application. In this review, we provide a classification of CDs within their extended families, an overview of the different methods of CDs preparation, especially from natural sources, i.e., environmentally friendly and their unique photoluminescence properties, thoroughly describing the peculiar aspects of their applications in the biomedical field, where we think they will thrive as the next generation of quantum emitters. We believe that this review covers a niche that was not reviewed by other similar publications.
Collapse
Affiliation(s)
- Mohammadreza Behi
- School of Chemical and Biomolecular Engineering, The University of Sydney Sydney 2006 Australia
- Institute of Photonics and Optical Science, School of Physics, The University of Sydney Sydney NSW 2006 Australia
| | - Leila Gholami
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Science Mashhad Iran
| | - Sina Naficy
- School of Chemical and Biomolecular Engineering, The University of Sydney Sydney 2006 Australia
| | - Stefano Palomba
- Institute of Photonics and Optical Science, School of Physics, The University of Sydney Sydney NSW 2006 Australia
- The University of Sydney Nano Institute, The University of Sydney Sydney NSW 2006 Australia
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, The University of Sydney Sydney 2006 Australia
| |
Collapse
|
35
|
Sarkar S, Roy D, Das A, Roy R, Das D, Das BK, Ghorai UK, Chattopadhyay KK. Probing the emission dynamics in nitrogen doped carbon dots by reversible capping with mercury (II) through surface chemistry. NEW J CHEM 2022. [DOI: 10.1039/d2nj01910h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, the mechanistic insight and emission dynamics have been explored of size dependent nitrogen doped carbon quantum dots (namely 3A,3B & 3C) with toxic metal Hg2+ ions via...
Collapse
|
36
|
Yusuf VF, Atulbhai SV, Bhattu S, Malek NI, Kailasa SK. Recent developments on carbon dots-based green analytical methods: New opportunities in fluorescence assay of pesticides, drugs and biomolecules. NEW J CHEM 2022. [DOI: 10.1039/d2nj01401g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent carbon dots (CDs) grabs huge attention in analytical and bioanalytical applications due to their high selectivity towards target analyte, specificity, photostability, and quantum yield. Cost-effective and biocompatible properties of...
Collapse
|
37
|
Kumar P, Dua S, Kaur R, Kumar M, Bhatt G. A review on advancements in carbon quantum dots and their application in photovoltaics. RSC Adv 2022; 12:4714-4759. [PMID: 35425490 PMCID: PMC8981368 DOI: 10.1039/d1ra08452f] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/23/2022] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Carbon quantum dots are a new frontier in the field of fluorescent nanomaterials, and they exhibit fascinating properties such as biocompatibility, low toxicity, eco-friendliness, good water solubility and photostability. In addition, the synthesis of these nanoparticles is facile, rapid, and satisfies green chemistry principles. CQDs have easily tunable optical properties and have found applications in bioimaging, nanomedicine, drug delivery, solar cells, light-emitting diodes, photocatalysis, electrocatalysis and other related areas. This article systematically reviews carbon quantum dot structure, their synthesis techniques, recent advancements, the effects of doping and surface engineering on their optical properties, and related photoluminescence models in detail. The challenges associated with these nanomaterials and their prospects are discussed, and special emphasis has been placed on the application of carbon quantum dots in enhancing the performance of photovoltaics and white light-emitting diodes. This review puts forth the in-depth understanding of the fundamentals of carbon quantum dots(CQDs), recent advancements in the field including a thorough discussion on different roles of CQDs to enhance the performance of solar cells and white-LEDs.![]()
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Electronic Science, South Campus University of Delhi, New Delhi-110021, India
- Non-Collegiate Women's Education Board, University of Delhi, New Delhi-110007, India
| | - Shweta Dua
- Bhaskarcaharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
- Non-Collegiate Women's Education Board, University of Delhi, New Delhi-110007, India
| | - Ravinder Kaur
- Deen Dayal Upadhyaya College, University of Delhi, New Delhi-110075, India
- Non-Collegiate Women's Education Board, University of Delhi, New Delhi-110007, India
| | - Mahesh Kumar
- CSIR-National Physical Laboratory (NPL), New Delhi-110012, India
- Non-Collegiate Women's Education Board, University of Delhi, New Delhi-110007, India
| | - Geeta Bhatt
- Deen Dayal Upadhyaya College, University of Delhi, New Delhi-110075, India
- Non-Collegiate Women's Education Board, University of Delhi, New Delhi-110007, India
| |
Collapse
|
38
|
Mohandoss S, Palanisamy S, You S, Shim JJ, Lee YR. Rapid detection of silver ions based on luminescent carbon nanodots for multicolor patterning, smartphone sensors, and bioimaging applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5719-5726. [PMID: 34812808 DOI: 10.1039/d1ay01746b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photoluminescent nitrogen and sulfur co-doped carbon nanodots (N,S-CNDs) were prepared via single-step hydrothermal carbonization using 2,4-diaminobenzenesulfonic acid (2,4-DABSA) as the sole precursor. The synthesized N,S-CNDs are easily dispersed in aqueous solution and have an average particle size of 5.0 ± 0.2 nm, showing a high quantum yield of 23.1% with excellent stability. The surface states of the N,S-CNDs were confirmed by Fourier-transform infrared spectroscopy, powder X-ray diffractometry, Raman spectroscopy, and X-ray photoelectron spectroscopy techniques. These N,S-CNDs were applied for the rapid visual sensing detection of Ag+ ions, which can be identified by their photoluminescent color change under ultraviolet (UV) light illumination at 365 nm within 5 s. Furthermore, a linear correlation coefficient between P0/P and Ag+ ions was observed in the linear range of 0-1.2 μM with a detection limit of 7.88 nM. The proposed method was successfully used for the sensitive detection of Ag+ ions in real samples with satisfactory recoveries and relative standard deviation. The photoluminescence properties of N,S-CND and N,S-CNDs/Ag+ aqueous solutions were demonstrated by their invisible inks that can only be seen when irradiated with UV light. The RGB values of N,S-CND and N,S-CNDs/Ag+ aqueous solutions were measured using a color selector smartphone application. In addition, N,S-CND and N,S-CNDs/Ag+ aqueous solutions were further used for the multicolor imaging of HCT-116 cancer cells due to the low toxicity of N,S-CNDs.
Collapse
Affiliation(s)
- Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk-do 38541, Republic of Korea.
| | - Subramanian Palanisamy
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneungdaehangno, Gangneung, Gangwon 25457, Republic of Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneungdaehangno, Gangneung, Gangwon 25457, Republic of Korea
| | - Jae-Jin Shim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk-do 38541, Republic of Korea.
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk-do 38541, Republic of Korea.
| |
Collapse
|
39
|
Stergiou A, Tagmatarchis N. Interfacing Carbon Dots for Charge-Transfer Processes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006005. [PMID: 33522118 DOI: 10.1002/smll.202006005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Carbon dots (CDs) are a booming material and the most recent incomer in the big family of carbon nanostructures. Specifically, CDs are nanosized fluorescent core-shell nanoparticles with tunable absorption and emission spectra, with high solubility in aqueous media and common organic solvents. Herein, the origins and the development of these unique nanoscale structures are discussed, key synthetic routes are briefly described, and the utilization of CDs in light-induced charge-transfer schemes is mainly focused upon. Beyond the impact of the CD's surface on the photoluminescence properties, functionalization, by covalent or supramolecular means, permits controllable incorporation of new functionalities with novel photophysical properties. Furthermore, the dual nature of CDs as electron donating or electron accepting species, unveiled upon interfacing them with organic chromophores, highlights their potentiality in managing diverse charge-transfer processes. Novel mechanisms, such as symmetry-breaking photoinduced charge-transfer can be activated upon covalent functionalization of CDs with organic dyes. Without a doubt, participation of CDs in energy conversion schemes opens up a wide avenue that may lead to the development of novel prototype devices suitable for technological applications and related to photonics and optoelectronics.
Collapse
Affiliation(s)
- Anastasios Stergiou
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens, 11635, Greece
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens, 11635, Greece
| |
Collapse
|
40
|
Latronico T, Rizzi F, Panniello A, Laquintana V, Arduino I, Denora N, Fanizza E, Milella S, Mastroianni CM, Striccoli M, Curri ML, Liuzzi GM, Depalo N. Luminescent PLGA Nanoparticles for Delivery of Darunavir to the Brain and Inhibition of Matrix Metalloproteinase-9, a Relevant Therapeutic Target of HIV-Associated Neurological Disorders. ACS Chem Neurosci 2021; 12:4286-4301. [PMID: 34726377 PMCID: PMC9297288 DOI: 10.1021/acschemneuro.1c00436] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
![]()
Human
immunodeficiency virus (HIV) can independently replicate
in the central nervous system (CNS) causing neurocognitive impairment
even in subjects with suppressed plasma viral load. The antiretroviral
drug darunavir (DRV) has been approved for therapy of HIV-infected
patients, but its efficacy in the treatment of HIV-associated neurological
disorders (HAND) is limited due to the low penetration through the
blood–brain barrier (BBB). Therefore, innovations in DRV formulations,
based on its encapsulation in optically traceable nanoparticles (NPs),
may improve its transport through the BBB, providing, at the same
time, optical monitoring of drug delivery within the CNS. The aim
of this study was to synthesize biodegradable polymeric NPs loaded
with DRV and luminescent, nontoxic carbon dots (C-Dots) and investigate
their ability to permeate through an artificial BBB and to inhibit in vitro matrix metalloproteinase-9 (MMP-9) that represents
a factor responsible for the development of HIV-related neurological
disorders. Biodegradable poly(lactic-co-glycolic)
acid (PLGA)-based nanoformulations resulted characterized by an average
hydrodynamic size less than 150 nm, relevant colloidal stability in
aqueous medium, satisfactory drug encapsulation efficiency, and retained
emitting optical properties in the visible region of the electromagnetic
spectrum. The assay on the BBB artificial model showed that a larger
amount of DRV was able to cross BBB when incorporated in the PLGA
NPs and to exert an enhanced inhibition of matrix metalloproteinase-9
(MMP-9) expression levels with respect to free DRV. The overall results
reveal the great potential of this class of nanovectors of DRV for
an efficacious treatment of HANDs.
Collapse
Affiliation(s)
- Tiziana Latronico
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Federica Rizzi
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| | - Annamaria Panniello
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| | - Valentino Laquintana
- Department of Pharmacy─Pharmaceutical Sciences, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Ilaria Arduino
- Department of Pharmacy─Pharmaceutical Sciences, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Nunzio Denora
- Department of Pharmacy─Pharmaceutical Sciences, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Elisabetta Fanizza
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| | - Serafina Milella
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Claudio M. Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University, AOU Policlinico Umberto 1, 00185 Rome, Italy
| | - Marinella Striccoli
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| | - Maria Lucia Curri
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| | - Grazia M. Liuzzi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Nicoletta Depalo
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| |
Collapse
|
41
|
Zhao H, Jin X, Zhou H, Yang Z, Bai H, Yang J, Li Y, Ma Y, She M. Fabrication of carbon dots for sequential on-off-on determination of Fe 3+ and S 2- in solid-phase sensing and anti-counterfeit printing. Anal Bioanal Chem 2021; 413:7473-7483. [PMID: 34647132 DOI: 10.1007/s00216-021-03709-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/15/2021] [Accepted: 09/30/2021] [Indexed: 11/26/2022]
Abstract
Glutathione and 2-aminopyridine are used as carbon sources to prepare carbon dots (CDs) by a one-step hydrothermal reaction. The results show that the average particle diameter of CDs is 8.64 nm with uniform size distribution and the fluorescence quantum yield is 13.62%. We further demonstrate that novel CDs possess highly selective sensing of Fe3+ from 0.2 to 200 μM with a low detection limit (0.194 μM). Meanwhile, the fluorescence of CDs can be repeated many times by the addition of S2-. Moreover, the CDs are used for biological imaging of living cells with well cell penetrability and low toxicity. Furthermore, it is successfully applied for anti-counterfeiting and information encryption. More interestingly, it can be doped with hydrogel and filter paper to prepare solid-phase sensors exhibiting high sensitivity and fast response, demonstrating their tremendous potential for the simple, rapid, and low-cost monitoring of Fe3+ and S2-.
Collapse
Affiliation(s)
- Huaqi Zhao
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Xilang Jin
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China.
| | - Hongwei Zhou
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Zheng Yang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, People's Republic of China
| | - Haiyan Bai
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Jin Yang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Yulong Li
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Yiting Ma
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Mengyao She
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Biomedicine Key Laboratory of Shaanxi Province; Lab of Tissue Engineering, the College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi Province, 710069, People's Republic of China.
| |
Collapse
|
42
|
Luo WK, Zhang LL, Yang ZY, Guo XH, Wu Y, Zhang W, Luo JK, Tang T, Wang Y. Herbal medicine derived carbon dots: synthesis and applications in therapeutics, bioimaging and sensing. J Nanobiotechnology 2021; 19:320. [PMID: 34645456 PMCID: PMC8513293 DOI: 10.1186/s12951-021-01072-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/30/2021] [Indexed: 02/02/2023] Open
Abstract
Since the number of raw material selections for the synthesis of carbon dots (CDs) has grown extensively, herbal medicine as a precursor receives an increasing amount of attention. Compared with other biomass precursors, CDs derived from herbal medicine (HM-CDs) have become the most recent incomer in the family of CDs. In recent ten years, a great many studies have revealed that HM-CDs tend to be good at theranostics without drug loading. However, the relevant development and research results are not systematically reviewed. Herein, the origin and history of HM-CDs are outlined, especially their functional performances in medical diagnosis and treatment. Besides, we sort out the herbal medicine precursors, and analyze the primary synthetic methods and the key characteristics. In terms of the applications of HM-CDs, medical therapeutics, ion and molecular detection, bioimaging, as well as pH sensing are summarized. Finally, we discuss the crucial challenges and future prospects. ![]()
Collapse
Affiliation(s)
- Wei-Kang Luo
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Liang-Lin Zhang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Zhao-Yu Yang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Xiao-Hang Guo
- Hunan University of Chinese Medicine, Changsha, China
| | - Yao Wu
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jie-Kun Luo
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China.
| |
Collapse
|
43
|
Zhang D, Chao D, Yu C, Zhu Q, Zhou S, Tian L, Zhou L. One-Step Green Solvothermal Synthesis of Full-Color Carbon Quantum Dots Based on a Doping Strategy. J Phys Chem Lett 2021; 12:8939-8946. [PMID: 34499514 DOI: 10.1021/acs.jpclett.1c02475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Proposing a simple strategy for developing full-color carbon quantum dots (CQDs) and exploring how the luminescence can be tuned and improved is attractive and encouraging. Herein, blue, green, yellow-green, and orange-red CQDs doped with heteroatoms were synthesized in one pot and separated by column chromatography, with emission peaks of 435 nm, 495 nm [photoluminescence quantum yield (PLQY) of 88.9%], 525 nm, and 595 nm (full width at half-maximum of 31 nm), respectively. The abundant C-O/C-O-C electron donor groups greatly improve the PLQY of green CQDs, and the expended effective conjugated domains (particle size, doped chlorine, and conjugated nitrogen) of CQDs boost the red-shifts of emission spectra. Energy transfer (ET) in a concentrated mixed solution of CQDs was discovered, and possible ET mechanisms are proposed. Furthermore, a high-efficiency white light-emitting diode with Commission Internationale de L'Eclairage coordinates of (0.361, 0.369), a correlated color temperature of 4534 K, and a high color rendering index of 90.8 was fabricated.
Collapse
Affiliation(s)
- Danyang Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Daiyong Chao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Chunyu Yu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Qi Zhu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Shihong Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Long Tian
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Liang Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- University of Science and Technology of China, Hefei 230027, People's Republic of China
| |
Collapse
|
44
|
Wang J, Guo Y, Geng X, Hu J, Yan M, Sun Y, Zhang K, Qu L, Li Z. Quantitative Structure-Activity Relationship Enables the Rational Design of Lipid Droplet-Targeting Carbon Dots for Visualizing Bisphenol A-Induced Nonalcoholic Fatty Liver Disease-like Changes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44086-44095. [PMID: 34516075 DOI: 10.1021/acsami.1c13157] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lipid droplets (LDs) play indispensable roles in numerous physiological processes; hence, the visualization of the dynamic behavior of LDs in living cells is of great importance in physiological and pathological research. In this article, the quantitative structure-activity relationship (QSAR) theory was employed as an effective design strategy for the development of organelle-targeting carbon dots (CDs). The lipid-water partition coefficient (Log P) of the QSAR was adopted as a key parameter to predict the cellular uptake and subcellular localization of CDs in live cells. By carefully adjusting the molecular structure and lipophilicity of the precursors, p-phenylenediamine-derivatized nucleolus-targeting hydrophilic CDs were converted to lipophilic CDs [4-piperidinoaniline (PA) CDs] with inherent LD-targeting performance. The PA CDs were able to indicate the dynamic behavior of LDs and visualize the changes of bisphenol A-induced nonalcoholic fatty liver disease-like changes in a cellular model. The QSAR strategy of CDs demonstrated here is expected to be increasingly exploited as a powerful design tool for developing various organelle-targeting CDs.
Collapse
Affiliation(s)
- Junli Wang
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Yifei Guo
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Xin Geng
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Jingyu Hu
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Minmin Yan
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanqiang Sun
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Ke Zhang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaohui Li
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
45
|
Yan X, Rahman S, Rostami M, Tabasi ZA, Khan F, Alodhayb A, Zhang Y. Carbon Quantum Dot-Incorporated Chitosan Hydrogel for Selective Sensing of Hg 2+ Ions: Synthesis, Characterization, and Density Functional Theory Calculation. ACS OMEGA 2021; 6:23504-23514. [PMID: 34549147 PMCID: PMC8444287 DOI: 10.1021/acsomega.1c03557] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/25/2021] [Indexed: 05/24/2023]
Abstract
A carbon quantum dot-based chitosan hydrogel was prepared in this work as a fluorescence sensor for the selective sensing of Hg2+ ions. Among the eight tested metal ions, the prepared hydrogel exhibited remarkable sensing selectivity and sensitivity toward Hg2+. The results demonstrated that a prominent fluorescence quenching at 450 nm was observed in the presence of Hg2+ with a linear response range of 0-100.0 nM and an estimated limit of detection of 9.07 nM. The as-prepared hydrogel demonstrates pH-dependent fluorescence intensity and sensitivity. The highest fluorescence intensity and sensitivity were obtained under pH 5.0. The excellent sensing selectivity could be attributed to a strong interaction between the hydrogel film and Hg2+ ions to form complexes, which provokes an effective electron transfer for fluorescence quenching. Results from density functional theory (DFT) calculation confirm that the interaction energies (ΔIE) of the hydrogel with three toxic metal ions (Hg2+, Cd2+, and Pb2+) are in the following order: Hg2+ > Cd2+ > Pb2+.
Collapse
Affiliation(s)
- Xiangyu Yan
- Department
of Process Engineering, Memorial University
of Newfoundland, St. John’s A1B 3X5, Canada
| | - Shofiur Rahman
- Department
of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department
of Chemistry, Memorial University of Newfoundland, St. John’s A1B
3X7, Canada
| | - Masoumeh Rostami
- Department
of Process Engineering, Memorial University
of Newfoundland, St. John’s A1B 3X5, Canada
| | - Zahra A. Tabasi
- Department
of Chemistry, Memorial University of Newfoundland, St. John’s A1B
3X7, Canada
| | - Faisal Khan
- Department
of Process Engineering, Memorial University
of Newfoundland, St. John’s A1B 3X5, Canada
| | - Abdullah Alodhayb
- Department
of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yan Zhang
- Department
of Process Engineering, Memorial University
of Newfoundland, St. John’s A1B 3X5, Canada
| |
Collapse
|
46
|
An Y, Lin X, Guo Z, Yin Q, Li Y, Zheng Y, Shi Z, Zhang W, Liu C. Red Emission Carbon Dots Prepared by 1,4-Diaminonaphthalene for Light-Emitting Diode Application and Metal Ion Detection. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4716. [PMID: 34443238 PMCID: PMC8398855 DOI: 10.3390/ma14164716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
Carbon dots (CDs), as the most important type of carbon materials, have been widely used in many fields because of their unique fluorescence characteristics and excellent properties of biocompatibility. In previous studies, the fluorescence of CDs was mainly concentrated in the blue and green, whereas the red fluorescence was relatively less. Herein, we prepared efficient red-emitting CDs from 1,4-diaminonaphthalene using solvothermal methods. We discussed the effects of different solvothermal solvents on CDs. The results show that CDs prepared with octane and acetone as reaction media have the best fluorescence properties. The CDs dispersed in different organic solvents exhibited tunable emission across a wide spectrum from 427 nm to 679 nm. We further demonstrated the application of red light-emitting diode (LED) optoelectronics and fluorescence detection of Fe3+ in aqueous solution.
Collapse
Affiliation(s)
- Yulong An
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, College of Materials Science and Engineering, Southwest Forestry University, Kunming 650224, China; (Y.A.); (Z.G.); (Q.Y.); (Y.L.)
| | - Xu Lin
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, College of Materials Science and Engineering, Southwest Forestry University, Kunming 650224, China; (Y.A.); (Z.G.); (Q.Y.); (Y.L.)
| | - Zewen Guo
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, College of Materials Science and Engineering, Southwest Forestry University, Kunming 650224, China; (Y.A.); (Z.G.); (Q.Y.); (Y.L.)
| | - Qitao Yin
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, College of Materials Science and Engineering, Southwest Forestry University, Kunming 650224, China; (Y.A.); (Z.G.); (Q.Y.); (Y.L.)
| | - Yan Li
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, College of Materials Science and Engineering, Southwest Forestry University, Kunming 650224, China; (Y.A.); (Z.G.); (Q.Y.); (Y.L.)
| | - Yunwu Zheng
- Key Laboratory of State Forestry Administration for Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China; (Y.Z.); (Z.S.); (W.Z.)
| | - Zhengjun Shi
- Key Laboratory of State Forestry Administration for Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China; (Y.Z.); (Z.S.); (W.Z.)
| | - Wuxian Zhang
- Key Laboratory of State Forestry Administration for Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China; (Y.Z.); (Z.S.); (W.Z.)
| | - Can Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, College of Materials Science and Engineering, Southwest Forestry University, Kunming 650224, China; (Y.A.); (Z.G.); (Q.Y.); (Y.L.)
- Key Laboratory of State Forestry Administration for Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China; (Y.Z.); (Z.S.); (W.Z.)
| |
Collapse
|
47
|
Ramoğlu B, Gümrükçüoğlu A, Çekirge E, Ocak M, Ocak Ü. One Spot Microwave Synthesis and Characterization of Nitrogen-Doped Carbon Dots with High Oxygen Content for Fluorometric Determination of Banned Sudan II Dye in Spice Samples. J Fluoresc 2021; 31:1587-1598. [PMID: 34342798 DOI: 10.1007/s10895-021-02795-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
A simple microwave-assisted synthesis of nitrogen-doped carbon dots with high oxygen content (O-N-CDs) was carried out with citric acid as a carbon source and 2,4-diamino-6-methyl-1,3,5-triazine as a nitrogen source in triethylene glycol (TEG) media. It was determined by SEM analysis that O-N-CDs consisted of particles of different sizes and shapes. Transmission electron microscopy (TEM), Raman spectroscopy, and X-ray diffraction (XRD) analysis confirmed that O-N-CDs have a graphitic structure. Moreover, they showed a high fluorescence property based on the excitation wavelength. Therefore, a new fluorometric method was developed for the determination of banned food dye Sudan II by using the O-N-CDs. The proposed method was used in the determination of Sudan II in spiked spice samples. The detection limit was 0.6 mg L-1 and the linear range was 0-8 mg L-1.
Collapse
Affiliation(s)
- Bahtışen Ramoğlu
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Abidin Gümrükçüoğlu
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Ender Çekirge
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Miraç Ocak
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Ümmühan Ocak
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey.
| |
Collapse
|
48
|
Hagiwara K, Horikoshi S, Serpone N. Photoluminescent Carbon Quantum Dots: Synthetic Approaches and Photophysical Properties. Chemistry 2021; 27:9466-9481. [PMID: 33877732 DOI: 10.1002/chem.202100823] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Indexed: 12/22/2022]
Abstract
A number of synthetic methodologies and applications of carbon quantum dots (CQDs) have been reported since they were first discovered nearly two decades ago. Unlike metal-based or semiconductor-based (e. g., metal chalcogenides) quantum dots (MSQDs), CQDs have the unique feature of being prepared through a variety of synthetic protocols, which are typically understood from considerations of reaction models and photoluminescence mechanisms. Consequently, this brief review article describes quantum dots, in general, and CQDs, in particular, from various viewpoints: (i) their definition, (ii) their photophysical properties, and (iii) the superiority of CQDs over MSQDs. Where possible, comparisons are made between CQDs and MSQDs. First, however, the review begins with a general brief description of quantum dots (QDs) as nanomaterials (sizes≤10 nm), followed by a short description of MSQDs and CQDs. Described subsequently are the various top-down and bottom-up approaches to synthesize CQDs followed by their distinctive photophysical properties (emission spectra; quantum yields, Φs).
Collapse
Affiliation(s)
- Kenta Hagiwara
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, Tokyo, 102-8552, Japan
| | - Satoshi Horikoshi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, Tokyo, 102-8552, Japan
| | - Nick Serpone
- PhotoGreen Laboratory, Dipartimento di Chimica, Università degli Studi di Pavia, via Taramelli 12, Pavia, 27100, Italy
| |
Collapse
|
49
|
Uriarte D, Vidal E, Canals A, Domini CE, Garrido M. Simple-to-use and portable device for free chlorine determination based on microwave-assisted synthesized carbon dots and smartphone images. Talanta 2021; 229:122298. [PMID: 33838783 DOI: 10.1016/j.talanta.2021.122298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/26/2022]
Abstract
A new portable and simple 3D printed device was designed for free chlorine determination in water samples. The analytical method was based on the quenching caused by free chlorine on the fluorescence emission of the carbon dots (CD) synthesized from citric acid and urea. The fluorescence was captured through the camera of a smartphone, which was coupled to the 3D printed device, and the images were processed using the RGB system by the ImageJ 1.51q software. The proposed method was selective and precise (RSD% 4.6, for n = 6), and the trueness of the results was evaluated by comparing the results obtained with those recovered by the spectrophotometric method 4500-Cl G (standard method), with good agreement between them. Moreover, the remarkable correlation between the CD signal and the free chlorine concentration resulted in a determination with low detection limits (limit of detection of 6 μg L-1 and limit of quantification of 20 μg L-1). Therefore, the new method and the related portable device could be considered a fast, economical and reliable alternative for the on-site determination of free chlorine in water samples.
Collapse
Affiliation(s)
- D Uriarte
- INQUISUR, Departamento de Química, Universidad Nacional Del Sur (UNS)-CONICET, Av. Alem 1253, 8000, Bahía Blanca, Argentina
| | - E Vidal
- INQUISUR, Departamento de Química, Universidad Nacional Del Sur (UNS)-CONICET, Av. Alem 1253, 8000, Bahía Blanca, Argentina
| | - A Canals
- Departamento de Química Analítica, Nutrición y Bromatología, Instituto Universitario de Materiales, Universidad de Alicante, Apdo. 99, 03080, Alicante, Spain
| | - C E Domini
- INQUISUR, Departamento de Química, Universidad Nacional Del Sur (UNS)-CONICET, Av. Alem 1253, 8000, Bahía Blanca, Argentina.
| | - M Garrido
- INQUISUR, Departamento de Química, Universidad Nacional Del Sur (UNS)-CONICET, Av. Alem 1253, 8000, Bahía Blanca, Argentina.
| |
Collapse
|
50
|
Nannuri SH, Nikam AN, Pandey A, Mutalik S, George SD. Subcellular imaging and diagnosis of cancer using engineered nanoparticles. Curr Pharm Des 2021; 28:690-710. [PMID: 34036909 DOI: 10.2174/1381612827666210525154131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/13/2021] [Indexed: 11/22/2022]
Abstract
The advances in the synthesis of nanoparticles with engineered properties are reported to have profound applications in oncological disease detection via optical and multimodal imaging and therapy. Among various nanoparticle-assisted imaging techniques, engineered fluorescent nanoparticles show great promise from high contrast images and localized therapeutic applications. Of all the fluorescent nanoparticles available, the gold nanoparticles, carbon dots, and upconversion nanoparticles are emerging recently as the most promising candidates for diagnosis, treatment, and cancer monitoring. This review addresses the recent progress in engineering the properties of these emerging nanoparticles and their application for cancer diagnosis and therapy. In addition, the potential of these particles for subcellular imaging is also reviewed here.
Collapse
Affiliation(s)
- Shivanand H Nannuri
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ajinkya N Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sajan D George
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|