1
|
Li T, Qiang W, Lei B. Bioactive surface-functionalized MXenes for biomedicine. NANOSCALE 2025; 17:4854-4891. [PMID: 39873617 DOI: 10.1039/d4nr04260c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
MXenes, with their good biocompatibility, excellent photovoltaic properties, excellent physicochemical properties, and desirable bioactivity, have broad application prospects in the field of tissue regeneration. MXenes have been used in a wide range of applications including biosensing, bioimaging, tumour/infection therapy, bone regeneration and wound repair. By applying bioactive materials to modify the surface of MXenes, a series of multifunctional MXene-based nanomaterials can be designed for different biomedical applications to achieve better therapeutic effects or more desirable biological functions. This paper reviews the existing studies on MXene-based bioactivities, surface modification strategies and biomedical applications. Finally, the challenges, trends and prospects of MXene nanomaterials are discussed. We expect that more and more well-designed MXene-based biomaterials will have a wider range of biomedical applications, thus providing favourable information for the clinical translation of nanomedicine.
Collapse
Affiliation(s)
- Ting Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China.
| | - Weipeng Qiang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China.
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China.
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. 710061, China
| |
Collapse
|
2
|
Diao S, Meng L, Pelicano CM, Huang J, Tian Z, Lai F, Liu T, Cao S. Rapid Photothermal-Responsive Soft Hydrogel Actuator Contained Ti 3C 2T x MXene and Laponite Clay with Enhanced Mechanical Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44067-44076. [PMID: 39133189 DOI: 10.1021/acsami.4c09539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Photothermal responsive hydrogels are widely used in bionic soft actuators due to their remote-controlled capabilities and flexibility. However, their weak mechanical properties and limited responsiveness hinder their potential applications. To overcome this, we developed an innovative laponite/MXene/PNIPAm (LxMyPN) nanocomposite hydrogel that is mechanically robust and exhibits excellent photothermally responsive properties based on abundant hydrogen bonds. Notably, laponite clay is used as a co-cross-linking agent to improve the mechanical properties of LxMyPN hydrogel, while MXene nanosheets are added to promote the photothermal responsiveness. The resulting L3M0.4PN nanocomposite hydrogel exhibits enhanced mechanical properties, with a compressive strength of 0.201 MPa, a tensile strength of 90 kPa, and a fracture toughness of 27.25 kJ m-2. In addition, the L3M0.4PN hydrogel displays a deswelling ratio of 73.6% within 60 s and experiences an excellent volume shrinkage of 82.4% under light irradiation. Furthermore, hydrogel actuators with fast response behaviors are constructed and employed as grippers capable of grasping and releasing target objects. Overall, this high-strength and fast-responsive hydrogel actuator is beneficial to paving the way for remote controlled soft robots.
Collapse
Affiliation(s)
- Siyuan Diao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Lili Meng
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Christian Mark Pelicano
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Jiajia Huang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhihong Tian
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, P. R. China
| | - Feili Lai
- Department of Chemistry, KU Leuven, Leuven 3001, Belgium
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Shaokui Cao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
3
|
Cohen-Gerassi D, Messer O, Finkelstein-Zuta G, Aviv M, Favelukis B, Shacham-Diamand Y, Sokol M, Adler-Abramovich L. Conductive Peptide-Based MXene Hydrogel as a Piezoresistive Sensor. Adv Healthc Mater 2024; 13:e2303632. [PMID: 38536070 DOI: 10.1002/adhm.202303632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Wearable pressure sensors have become increasingly popular for personal healthcare and motion detection applications due to recent advances in materials science and functional nanomaterials. In this study, a novel composite hydrogel is presented as a sensitive piezoresistive sensor that can be utilized for various biomedical applications, such as wearable skin patches and integrated artificial skin that can measure pulse and blood pressure, as well as monitor sound as a self-powered microphone. The hydrogel is composed of self-assembled short peptides containing aromatic, positively- or negatively charged amino acids combined with 2D Ti3C2Tz MXene nanosheets. This material is low-cost, facile, reliable, and scalable for large areas while maintaining high sensitivity, a wide detection range, durability, oxidation stability, and biocompatibility. The bioinspired nanostructure, strong mechanical stability, and ease of functionalization make the assembled peptide-based composite MXene-hydrogel a promising and widely applicable material for use in bio-related wearable electronics.
Collapse
Affiliation(s)
- Dana Cohen-Gerassi
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
- Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Or Messer
- Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Gal Finkelstein-Zuta
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
- Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Moran Aviv
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
- School of Mechanical Engineering, Afeka Tel Aviv Academic College of Engineering, Tel Aviv, 6910717, Israel
| | - Bar Favelukis
- Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Yosi Shacham-Diamand
- The Scojen Institute for Synthetic Biology, Director, Reichman University, 8 University St., Herzliya, 4610101, Israel
| | - Maxim Sokol
- Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
4
|
Yang K, Dong Q, Liu H, Wu L, Zong S, Wang Z. A MXene Hydrogel-Based Versatile Microrobot for Controllable Water Pollution Management. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309257. [PMID: 38704697 PMCID: PMC11234425 DOI: 10.1002/advs.202309257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/05/2024] [Indexed: 05/07/2024]
Abstract
The urgent demand for addressing dye contaminants in water necessitates the development of microrobots that exhibit remote navigation, rapid removal, and molecular identification capabilities. The progress of microrobot development is currently hindered by the scarcity of multifunctional materials. In this study, a plasmonic MXene hydrogel (PM-Gel) is synthesized by combining bimetallic nanocubes and Ti3C2Tx MXene through the rapid gelation of degradable alginate. The hydrogel can efficiently adsorb over 60% of dye contaminants within 2 min, ultimately achieving a removal rate of >90%. Meanwhile, the hydrogel exhibits excellent sensitivity in surface enhanced Raman scattering (SERS) detection, with a limit of detection (LOD) as low as 3.76 am. The properties of the plasmonic hydrogel can be further adjusted for various applications. As a proof-of-concept experiment, thermosensitive polymers and superparamagnetic particles are successfully integrated into this hydrogel to construct a versatile, light-responsive microrobot for dye contaminants. With magnetic and optical actuation, the robot can remotely sample, identify, and remove pollutants in maze-like channels. Moreover, light-driven hydrophilic-hydrophobic switch of the microrobots through photothermal effect can further enhance the adsorption capacity and reduced the dye residue by up to 58%. These findings indicate of a broad application potential in complex real-world environments.
Collapse
Affiliation(s)
- Kuo Yang
- Advanced Photonics CenterSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| | - Qianqian Dong
- Advanced Photonics CenterSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| | - Hang Liu
- Advanced Photonics CenterSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| | - Lei Wu
- Advanced Photonics CenterSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| | - Shenfei Zong
- Advanced Photonics CenterSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| | - Zhuyuan Wang
- Advanced Photonics CenterSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| |
Collapse
|
5
|
Gu P, Liu S, Cheng X, Zhang S, Wu C, Wen T, Wang X. Recent strategies, progress, and prospects of two-dimensional metal carbides (MXenes) materials in wastewater purification: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169533. [PMID: 38154645 DOI: 10.1016/j.scitotenv.2023.169533] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/28/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
With the rapid development of industrialization, water pollution directly leads to the serious shortage of fresh water. As reported by the World Water Council, nearly 3.8 billion people will face water scarcity by 2030. Therefore, developing advanced nanomaterials to realize wastewater purification is a major challenge. Two-dimensional (2D) transition metal carbides (MXenes), as the emerging 2D layered nanomaterials, have been investigated for the applications of water purification treatment since first reported in 2011. Over 40 different MXenes have been developed for environmental remediation, and dozens more structures and properties are theoretically predicted. Here, we review the advances from the aspects of synthesis strategies for MXenes, purification mechanism, and their applications in wastewater treatment processes. The major points are 1) the synthesis and modification approaches for MXenes such as multi-layered stacked MXenes and delaminated MXenes 2) a discussion of current water remediation over MXene-based materials, 3) a brief introduction for removal behaviors and deep interaction mechanisms, 4) optimization strategies and key points for boosting the remediation performance of MXenes.
Collapse
Affiliation(s)
- Pengcheng Gu
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China; MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Shengsheng Liu
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China
| | - Xiangmei Cheng
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China
| | - Sai Zhang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Chuanying Wu
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China
| | - Tao Wen
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Xiangke Wang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| |
Collapse
|
6
|
Qian Y, Lu S, Meng J, Chen W, Li J. Thermo-Responsive Hydrogels Coupled with Photothermal Agents for Biomedical Applications. Macromol Biosci 2023; 23:e2300214. [PMID: 37526220 DOI: 10.1002/mabi.202300214] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/04/2023] [Indexed: 08/02/2023]
Abstract
Intelligent hydrogels are materials with abilities to change their chemical nature or physical structure in response to external stimuli showing promising potential in multitudinous applications. Especially, photo-thermo coupled responsive hydrogels that are prepared by encapsulating photothermal agents into thermo-responsive hydrogel matrix exhibit more attractive advantages in biomedical applications owing to their spatiotemporal control and precise therapy. This work summarizes the latest progress of the photo-thermo coupled responsive hydrogel in biomedical applications. Three major elements of the photo-thermo coupled responsive hydrogel, i.e., thermo-responsive hydrogel matrix, photothermal agents, and construction methods are introduced. Furthermore, the recent developments of these hydrogels for biomedical applications are described with some selected examples. Finally, the challenges and future perspectives for photo-thermo coupled responsive hydrogels are outlined.
Collapse
Affiliation(s)
- Yafei Qian
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410008, China
| | - Sha Lu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410008, China
| | - Jianqiang Meng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410008, China
| | - Wansong Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410008, China
| | - Juan Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410008, China
| |
Collapse
|
7
|
Lu X, Xie D, Zhu K, Wei S, Mo Z, Du C, Liang L, Chen G, Liu Z. Swift Assembly of Adaptive Thermocell Arrays for Device-Level Healable and Energy-Autonomous Motion Sensors. NANO-MICRO LETTERS 2023; 15:196. [PMID: 37566154 PMCID: PMC10421839 DOI: 10.1007/s40820-023-01170-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/08/2023] [Indexed: 08/12/2023]
Abstract
The evolution of wearable technology has prompted the need for adaptive, self-healable, and energy-autonomous energy devices. This study innovatively addresses this challenge by introducing an MXene-boosted hydrogel electrolyte, which expedites the assembly process of flexible thermocell (TEC) arrays and thus circumvents the complicated fabrication of typical wearable electronics. Our findings underscore the hydrogel electrolyte's superior thermoelectrochemical performance under substantial deformations and repeated self-healing cycles. The resulting hydrogel-based TEC yields a maximum power output of 1032.1 nW under the ΔT of 20 K when being stretched to 500% for 1000 cycles, corresponding to 80% of its initial state; meanwhile, it sustains 1179.1 nW under the ΔT of 20 K even after 60 cut-healing cycles, approximately 92% of its initial state. The as-assembled TEC array exhibits device-level self-healing capability and high adaptability to human body. It is readily applied for touch-based encrypted communication where distinct voltage signals can be converted into alphabet letters; it is also employed as a self-powered sensor to in-situ monitor a variety of body motions for complex human actions. The swift assembly approach, combined with the versatile functionality of the TEC device, paves the way for future advancements in wearable electronics targeting at fitness monitoring and human-machine interfaces.
Collapse
Affiliation(s)
- Xin Lu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Daibin Xie
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Kaihua Zhu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Shouhao Wei
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Ziwei Mo
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Chunyu Du
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Lirong Liang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Guangming Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
| | - Zhuoxin Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
8
|
Sagadevan S, Oh WC. Comprehensive utilization and biomedical application of MXenes - A systematic review of cytotoxicity and biocompatibility. J Drug Deliv Sci Technol 2023; 85:104569. [DOI: 10.1016/j.jddst.2023.104569] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
9
|
Zhang Y, Li Q, Ding M, Xiu W, Shan J, Yuwen L, Yang D, Song X, Yang G, Su X, Mou Y, Teng Z, Dong H. Endogenous/Exogenous Nanovaccines Synergistically Enhance Dendritic Cell-Mediated Tumor Immunotherapy. Adv Healthc Mater 2023; 12:e2203028. [PMID: 36807733 PMCID: PMC11468714 DOI: 10.1002/adhm.202203028] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/20/2023] [Indexed: 02/20/2023]
Abstract
Traditional dendritic cell (DC)-mediated immunotherapy is usually suppressed by weak immunogenicity in tumors and generally leads to unsatisfactory outcomes. Synergistic exogenous/endogenous immunogenic activation can provide an alternative strategy for evoking a robust immune response by promoting DC activation. Herein, Ti3 C2 MXene-based nanoplatforms (termed MXP) are prepared with high-efficiency near-infrared photothermal conversion and immunocompetent loading capacity to form endogenous/exogenous nanovaccines. Specifically, the immunogenic cell death of tumor cells induced by the photothermal effects of the MXP can generate endogenous danger signals and antigens release to boost vaccination for DC maturation and antigen cross-presentation. In addition, MXP can deliver model antigen ovalbumin (OVA) and agonists (CpG-ODN) as an exogenous nanovaccine (MXP@OC), which further enhances DC activation. Importantly, the synergistic strategy of photothermal therapy and DC-mediated immunotherapy by MXP significantly eradicates tumors and enhances adaptive immunity. Hence, the present work provides a two-pronged strategy for improving immunogenicity and killing tumor cells to achieve a favorable outcome in tumor patients.
Collapse
Affiliation(s)
- Yu Zhang
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Qiang Li
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Meng Ding
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Weijun Xiu
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023P. R. China
| | - Jingyang Shan
- Department of NeurologyShenzhen Institute of Translational MedicineThe First Affiliated Hospital of Shenzhen UniversityShenzhen Second People's HospitalShenzhen518000P. R. China
| | - Lihui Yuwen
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023P. R. China
| | - Dongliang Yang
- School of Physical and Mathematical SciencesNanjing Tech University30 South Puzhu RoadNanjingJiangsu211816P. R. China
| | - Xuejiao Song
- School of Physical and Mathematical SciencesNanjing Tech University30 South Puzhu RoadNanjingJiangsu211816P. R. China
| | - Guangwen Yang
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Xiaodan Su
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023P. R. China
| | - Yongbin Mou
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023P. R. China
| | - Heng Dong
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| |
Collapse
|
10
|
Zhou X, Zhang N, Kandalai S, Li H, Hossain F, Zhang S, Zhu J, Zhang J, Cui J, Zheng Q. Dynamic and Wearable Electro-responsive Hydrogel with Robust Mechanical Properties for Drug Release. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17113-17122. [PMID: 36946793 DOI: 10.1021/acsami.2c21942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electro-responsive dynamic hydrogels, which possess robust mechanical properties and precise spatiotemporal resolution, have a wide range of applications in biomedicine and energy science. However, it is still challenging to design and prepare electro-responsive hydrogels (ERHs) which have all of these properties. Here, we report one such class of ERHs with these features, based on the direct current voltage (DCV)-induced rearrangement of sodium dodecyl sulfate (SDS) micelles, where the rearrangement can tune the hydrogel networks that are originally maintained by the SDS micelle-assisted hydrophobic interactions. An enlarged mesh size is demonstrated for these ERHs after DCV treatment. Given the unique structure and properties of these ERHs, hydrophobic cargo (thiostrepton) has been incorporated into the hydrogels and is released upon DCV loading. Additionally, these hydrogels are highly stretchable (>6000%) and tough (507 J/m2), showing robust mechanical properties. Moreover, these hydrogels have a high spatiotemporal resolution. As the cross-links within our ERHs are enabled by the non-covalent (i.e., hydrophobic) interactions, these hydrogels are self-healing and malleable. Considering the robust mechanical properties, precise spatiotemporal resolution, dynamic nature (e.g., injectable and self-healing), and on-demand drug delivery ability, this class of ERHs will be of great interest in the fields of wearable bioelectronics and smart drug delivery systems.
Collapse
Affiliation(s)
- Xiaozhuang Zhou
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nan Zhang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Shruthi Kandalai
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Huapeng Li
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Farzana Hossain
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Shiqi Zhang
- Human Nutrition Program, Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jiangjiang Zhu
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Human Nutrition Program, Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Junran Zhang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jiaxi Cui
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
11
|
Ranjbari S, Rezayi M, Arefinia R, Aghaee-Bakhtiari SH, Hatamluyi B, Pasdar A. A novel electrochemical biosensor based on signal amplification of Au HFGNs/PnBA-MXene nanocomposite for the detection of miRNA-122 as a biomarker of breast cancer. Talanta 2023; 255:124247. [PMID: 36603443 DOI: 10.1016/j.talanta.2022.124247] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/25/2022] [Accepted: 12/30/2022] [Indexed: 01/02/2023]
Abstract
Cancer is one of the leading causes of death worldwide and a crisis for global health. Breast cancer is the second most common cancer globally. In the perusal, a novel electrochemical biosensor amplified with hierarchical flower-like gold, poly (n-butyl acrylate), and MXene (AuHFGNs/PnBA-MXene) nanocomposite and activated by highly special antisense ssDNA (single-stranded DNA) provide a promising alternative for miRNA-122 detection as a biomarker of breast cancer. The biosensor presented a detection limit of 0.0035 aM (S/N = 3) with a linear range from 0.01 aM to 10 nM. The platform was tried on 20 breast cancer miRNAs extracted from actual serum specimens (10 positives and 10 negatives). Founded on the quantitatively obtained outcomes and statistic analysis (t-test, box-graph, receiver performance characteristic curve, and cut-off amount), the biosensor showed a meaningful discrepancy between the native and positive groups with 100% specificity and 100% sensitivity. While, RT-qPCR showed less specificity and sensitivity (70% specificity, 100% sensitivity) than the proposed biosensor. To assess the quantitative capacity and biosensor detection limit for clinical tests, the biosensor diagnosis performance for continually diluted miRNA extracted from patients was compared to that gained by RT-qPCR results, indicating that the biosensor detection limit was lower than RT-qPCR. ssDNA/AuHFGN/PnBA-MXene/GCE displayed little cross-reaction with other sequences and also showed desirable stability, reproducibility, and specificity and stayed stable until 32 days. As a result, the designed biosensor can perform as a hopeful method for diagnosis applications.
Collapse
Affiliation(s)
- Sara Ranjbari
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Majid Rezayi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Reza Arefinia
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | | - Behnaz Hatamluyi
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Yang Y, Li K, Wang Y, Wu Z, Russell TP, Shi S. MXene-Based Porous Monoliths. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3792. [PMID: 36364567 PMCID: PMC9654234 DOI: 10.3390/nano12213792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
In the past decade, a thriving family of 2D nanomaterials, transition-metal carbides/nitrides (MXenes), have garnered tremendous interest due to its intriguing physical/chemical properties, structural features, and versatile functionality. Integrating these 2D nanosheets into 3D monoliths offers an exciting and powerful platform for translating their fundamental advantages into practical applications. Introducing internal pores, such as isotropic pores and aligned channels, within the monoliths can not only address the restacking of MXenes, but also afford a series of novel and, in some cases, unique structural merits to advance the utility of the MXene-based materials. Here, a brief overview of the development of MXene-based porous monoliths, in terms of the types of microstructures, is provided, focusing on the pore design and how the porous microstructure affects the application performance.
Collapse
Affiliation(s)
- Yang Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kaijuan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yaxin Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhanpeng Wu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Thomas P. Russell
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
13
|
Wang Q, Cui L, Xu J, Dong F, Xiong Y. Ionic liquid decorated MXene/Poly (N-isopropylacrylamide) composite hydrogel with high strength, chemical stability and strong adsorption. CHEMOSPHERE 2022; 303:135083. [PMID: 35618063 DOI: 10.1016/j.chemosphere.2022.135083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Organic phenolic pollutants in industrial wastewater cause severe environmental pollution and physiological damage. Poly (N-isopropylacrylamide) (PNIPAM) hydrogels generally have poor mechanical strength and are also intrinsically frangible, limiting their widespread applications in wastewater treatment. Combining them with 2-dimensional materials can also only improve the mechanical properties of hydrogels. Here, we report a high-strength, chemical stability and strong adsorption MXene/poly (N-isopropylacrylamide) (PNIPAM) thermosensitive composite hydrogel for efficient removal of phenolic pollutants from industrial wastewater. Ionic liquids (ILs) were grafted onto the surface of MXenes and introduced into NIPAM monomer solution to obtain composite hydrogels by in-situ polymerization for improved mechanical strength and adsorption capacity of the composite hydrogel. Compared with the MXene/PNIPAM composite hydrogel, the introduction of ILs simultaneously improves the mechanical and adsorption properties of the composite hydrogel. The ILs bind to the surface of MXene flakes through electrostatic interactions, which improved the thermal stability and oxidation resistance of MXenes while maintaining its good dispersion. Using 1-Ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4) modified MXene (MXene-EMIMBF4) did not change significantly were observed after aging for 45 days. As-prepared composite hydrogels demonstrated excellent mechanical properties, reusability, and high adsorption capacity for p-Nitrophenol (4-NP). The MXene-EMIMBF4/PNIPAM hydrogel could recover after ten 95% strain compression cycles under the synergistic effect of chemical bonding and electrostatic attraction. Its maximum adsorption capacity for 4-NP was 200.29 mg g-1 at room temperature, and the adsorption capacity maintained at ∼90% of its initial value after five adsorption cycles, which was related to the introduction of EMIMBF4 to form a denser network structure. The adsorption data followed the pseudo-second-order kinetics and Freundlich models.
Collapse
Affiliation(s)
- Qian Wang
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Lingfeng Cui
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Jing Xu
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Fuping Dong
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Yuzhu Xiong
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
14
|
Liao J, Li Y, Luo Y, Meng S, Zhang C, Xiong L, Wang T, Lu Y. Recent Advances in Targeted Nanotherapies for Ischemic Stroke. Mol Pharm 2022; 19:3026-3041. [PMID: 35905397 DOI: 10.1021/acs.molpharmaceut.2c00383] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ischemic stroke (IS) is a severe neurological disease caused by the narrowing or occlusion of cerebral blood vessels and is known for high morbidity, disability, and mortality rates. Clinically available treatments of stroke include the surgical removal of the thrombus and thrombolysis with tissue fibrinogen activator. Pharmaceuticals targeting IS are uncommon, and the development of new therapies is hindered by the low bioavailability and stability of many drugs. Nanomedicine provides new opportunities for the development of novel neuroprotective and thrombolytic strategies for the diagnosis and treatment of IS. Numerous nanotherapeutics with different physicochemical properties are currently being developed to facilitate drug delivery by accumulation and controlled release and to improve their restorative properties. In this review, we discuss recent developments in IS therapy, including assisted drug delivery and targeting, neuroprotection through regulation of the neuron environment, and sources of endogenous biomimetic specific targeting. In addition, we discuss the role and neurotoxic effects of inorganic metal nanoparticles in IS therapy. This study provides a theoretical basis for the utilization of nano-IS therapies that may contribute to the development of new strategies for a range of embolic diseases.
Collapse
Affiliation(s)
- Jun Liao
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yi Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yunchun Luo
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Sha Meng
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Chuan Zhang
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Liyan Xiong
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Tingfang Wang
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Ying Lu
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
15
|
Zhou C, Wu T, Xie X, Song G, Ma X, Mu Q, Huang Z, Liu X, Sun C, Xu W. Advances and challenges in conductive hydrogels: From properties to applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
16
|
Meng J, Luo J, Wang H, Quan Y, Li J, Sun X. Silver-decorated MXene nanosheets as a radical initiator for polymerization and multifunctional hydrogels. Chem Commun (Camb) 2022; 58:6821-6824. [PMID: 35615963 DOI: 10.1039/d2cc00504b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Silver nanoparticle-decorated multilayered titanium carbide MXene (Ag/Ti3C2Tx) itself is capable of initiating the polymerization of a variety of acrylic monomers, due to it being able to generate hydroxyl radicals via the pseudo-Fenton reaction. Furthermore, double-network hydrogel Ag/Ti3C2Tx@gelatin/PAAm is synthesized by a one-pot procedure and displays a good near-infrared light-triggered shape-memory performance.
Collapse
Affiliation(s)
- Jianqiang Meng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Jiasheng Luo
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Hongyang Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Yongwang Quan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Juan Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Xiaoyi Sun
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
17
|
Yu L, Xu L, Lu L, Alhalili Z, Zhou X. Thermal Properties of MXenes and Relevant Applications. Chemphyschem 2022; 23:e202200203. [PMID: 35674280 DOI: 10.1002/cphc.202200203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/26/2022] [Indexed: 11/10/2022]
Abstract
The properties and applications of MXenes (a family of layered transition metal carbides, nitrides, and carbonitrides) have aroused enormous research interests for a decade since the successful synthesis of few-layer transition metal carbides in 2011. Though MXenes, as the building blocks, have already been applied in various fields (such as wearable electronics) owing to the distinctive optical, mechanical and electrical properties, their thermal stability and intrinsic thermal properties were less thoroughly investigated compared to other characteristics in early reports. The pioneering theoretical prediction of the thermoelectric nature of MXenes was performed in 2013 while the first experiment-based report concerning the degradation behavior of the 2D structure at elevated temperatures in a controlled atmosphere was published in 2015, followed by numerous discoveries regarding the thermal properties of MXenes. Herein, after a brief description of the synthesis, this Review summarized the latest insights into the thermal stability and thermophysical properties of MXenes, and further associated these unique properties with relevant applications by multiple examples. Finally, current hurdles and challenges in this field were provided along with some advices on potential research directions in the future.
Collapse
Affiliation(s)
- LePing Yu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu 214153, People's Republic of China
| | - Lyu Xu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu 214153, People's Republic of China
| | - Lu Lu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu 214153, People's Republic of China
| | - Zahrah Alhalili
- College of Sciences and Arts, Shaqra University, Sajir, Riyadh, Saudi Arabia
| | - XiaoHong Zhou
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu 214153, People's Republic of China
| |
Collapse
|
18
|
Wang L, Du L, Wang M, Wang X, Tian S, Chen Y, Wang X, Zhang J, Nie J, Ma G. Chitosan for constructing stable polymer-inorganic suspensions and multifunctional membranes for wound healing. Carbohydr Polym 2022; 285:119209. [DOI: 10.1016/j.carbpol.2022.119209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/10/2022] [Accepted: 01/31/2022] [Indexed: 12/15/2022]
|
19
|
Damptey L, Jaato BN, Ribeiro CS, Varagnolo S, Power NP, Selvaraj V, Dodoo‐Arhin D, Kumar RV, Sreenilayam SP, Brabazon D, Kumar Thakur V, Krishnamurthy S. Surface Functionalized MXenes for Wastewater Treatment-A Comprehensive Review. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2100120. [PMID: 35712023 PMCID: PMC9189136 DOI: 10.1002/gch2.202100120] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/03/2022] [Indexed: 06/15/2023]
Abstract
Over 80% of wastewater worldwide is released into the environment without proper treatment. Whilst environmental pollution continues to intensify due to the increase in the number of polluting industries, conventional techniques employed to clean the environment are poorly effective and are expensive. MXenes are a new class of 2D materials that have received a lot of attention for an extensive range of applications due to their tuneable interlayer spacing and tailorable surface chemistry. Several MXene-based nanomaterials with remarkable properties have been proposed, synthesized, and used in environmental remediation applications. In this work, a comprehensive review of the state-of-the-art research progress on the promising potential of surface functionalized MXenes as photocatalysts, adsorbents, and membranes for wastewater treatment is presented. The sources, composition, and effects of wastewater on human health and the environment are displayed. Furthermore, the synthesis, surface functionalization, and characterization techniques of merit used in the study of MXenes are discussed, detailing the effects of a range of factors (e.g., PH, temperature, precursor, etc.) on the synthesis, surface functionalization, and performance of the resulting MXenes. Finally, the limits of MXenes and MXene-based materials as well as their potential future research directions, especially for wastewater treatment applications are highlighted.
Collapse
Affiliation(s)
- Lois Damptey
- School of Engineering & InnovationThe Open UniversityWalton HallMilton KeynesMK7 6AAUK
| | - Bright N. Jaato
- Department of Materials Science & MetallurgyUniversity of Cambridge27 Charles Baggage RoadCambridgeCB3 0FSUK
| | - Camila Silva Ribeiro
- School of Engineering & InnovationThe Open UniversityWalton HallMilton KeynesMK7 6AAUK
| | - Silvia Varagnolo
- School of Engineering & InnovationThe Open UniversityWalton HallMilton KeynesMK7 6AAUK
| | - Nicholas P. Power
- School of LifeHealth & Chemical SciencesThe Open UniversityWalton HallMilton KeynesMK7 6AAUK
| | - Vimalnath Selvaraj
- Department of Materials Science & MetallurgyUniversity of Cambridge27 Charles Baggage RoadCambridgeCB3 0FSUK
| | - David Dodoo‐Arhin
- Department of Materials Science & EngineeringUniversity of GhanaP.O. Box LG 77Legon‐AccraGhana
| | - R. Vasant Kumar
- Department of Materials Science & MetallurgyUniversity of Cambridge27 Charles Baggage RoadCambridgeCB3 0FSUK
| | - Sithara Pavithran Sreenilayam
- I‐FormAdvanced Manufacturing Research Centreand Advanced Processing Technology Research CentreSchool of Mechanical and Manufacturing EngineeringDublin City UniversityGlasnevinDublin‐9Ireland
| | - Dermot Brabazon
- I‐FormAdvanced Manufacturing Research Centreand Advanced Processing Technology Research CentreSchool of Mechanical and Manufacturing EngineeringDublin City UniversityGlasnevinDublin‐9Ireland
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research CenterSRUCEdinburghEH9 3JGUK
| | | |
Collapse
|
20
|
Ouyang J, Xie A, Zhou J, Liu R, Wang L, Liu H, Kong N, Tao W. Minimally invasive nanomedicine: nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Chem Soc Rev 2022; 51:4996-5041. [PMID: 35616098 DOI: 10.1039/d1cs01148k] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Traditional treatments such as chemotherapy and surgery usually cause severe side effects and excruciating pain. The emergence of nanomedicines and minimally invasive therapies (MITs) has brought hope to patients with malignant diseases. Especially, minimally invasive nanomedicines (MINs), which combine the advantages of nanomedicines and MITs, can effectively target pathological cells/tissues/organs to improve the bioavailability of drugs, minimize side effects and achieve painless treatment with a small incision or no incision, thereby acquiring good therapeutic effects. In this review, we provide a comprehensive review of the research status and challenges of MINs, which generally refers to the medical applications of nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Additionally, we also discuss their combined application in various fields including cancers, cardiovascular diseases, tissue engineering, neuro-functional diseases, and infectious diseases. The prospects, and potential bench-to-bedside translation of MINs are also presented in this review. We expect that this review can inspire the broad interest for a wide range of readers working in the fields of interdisciplinary subjects including (but not limited to) chemistry, nanomedicine, bioengineering, nanotechnology, materials science, pharmacology, and biomedicine.
Collapse
Affiliation(s)
- Jiang Ouyang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Angel Xie
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Jun Zhou
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Runcong Liu
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong 519000, China
| | - Liqiang Wang
- Henan Province Industrial Technology Research Institute of Resources and Materials, School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Haijun Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Velusamy K, Chellam P, Kumar PS, Venkatachalam J, Periyasamy S, Saravanan R. Functionalization of MXene-based nanomaterials for the treatment of micropollutants in aquatic system: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:119034. [PMID: 35196563 DOI: 10.1016/j.envpol.2022.119034] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
The increased industrialization and urbanization generate a larger quantity of effluent that is discharged into the environment regularly. Based on the effluent composition produced from various industries, the number of hazardous substances such as heavy metals, hydrocarbons, volatile organic compounds, organic chemicals, microorganisms introduced into the aquatic systems vary. The conventional wastewater treatment systems do not meet the effluent standards before discharge and require a different treatment system before reuse. Adsorption is an eco-friendly technique that uses selective adsorbents to remove hazardous pollutants even at microscale levels. MXene, a 2-Dimensional nanomaterial with resplendent properties like conductivity, hydrophilicity, stability, and functionalized surface characteristics, is found as a potential candidate for pollutant removal systems. This review discusses the fabrication, characterization, and application of MXene based nanoparticles to remove many pollutants in water treatment systems. The improvement in surface properties and adsorption capacity of MXene based NPs, when modified using different modification agents, has also been discussed. Their feasibility in terms of economic and environmental aspects has been evaluated to understand their scope for practical application in large-scale industries. The challenges towards the synthesis and toxicity's importance have been discussed, with the appropriate recommendations.
Collapse
Affiliation(s)
- Karthik Velusamy
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, Tamilnadu, India
| | | | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | | | - Selvakumar Periyasamy
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama, 1888, Ethiopia
| | - R Saravanan
- Department of Mechanical Engineering, Universidad de Tarapacá, Arica, Chile
| |
Collapse
|
22
|
Wang L, Cao Q, Wang X, Wu D. Visible light triggered controlled formation of rapidly self-healing hydrogels based on thiol-disulfide exchange. SOFT MATTER 2022; 18:3004-3012. [PMID: 35355026 DOI: 10.1039/d1sm01698a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The properties of stimuli-responsive hydrogels can be tailored under various external stimuli, but it is difficult to realize the customized adjustment of hydrogel properties since the crosslinking degree in the gelation process is intractable. Here, a visible light triggered thiol-disulfide exchange reaction was applied for constructing disulfide-crosslinked hydrogels from P(EMA-SS-PEG), a poly(ethylene glycol) grafted poly(ethyl methacrylate) derivative with a disulfide linkage as the grafting point. This photochemical method provides mild gelation conditions to handily regulate the morphology, mechanical properties, swelling ratio, and degradation rate of hydrogels by simply varying the irradiation time. Based on this strategy, these disulfide-crosslinked hydrogel coatings showed rapid self-healing in 10 min under ambient conditions, which was dependent on the width of the scratch, temperature, and humidity. Notably, spraying water on these coatings could significantly accelerate the self-healing process of large scratches (360 μm) at room temperature with a self-healing time of 1 hour, enabling the practical application of hydrogel coatings in a natural environment.
Collapse
Affiliation(s)
- Linlin Wang
- Key Laboratory of Special Functional Aggregated Materials (Shandong University), Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Qingchen Cao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
23
|
Wang Q, Xiong Y, Xu J, Dong F, Xiong Y. Oxidation-Resistant Cyclodextrin-Encapsulated-MXene/Poly (N-isopropylacrylamide) composite hydrogel as a thermosensitive adsorbent for phenols. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Zhou C, Zhao X, Xiong Y, Tang Y, Ma X, Tao Q, Sun C, Xu W. A review of etching methods of MXene and applications of MXene conductive hydrogels. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Damiri F, Rahman MH, Zehravi M, Awaji AA, Nasrullah MZ, Gad HA, Bani-Fwaz MZ, Varma RS, Germoush MO, Al-Malky HS, Sayed AA, Rojekar S, Abdel-Daim MM, Berrada M. MXene (Ti 3C 2T x)-Embedded Nanocomposite Hydrogels for Biomedical Applications: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1666. [PMID: 35268907 PMCID: PMC8911478 DOI: 10.3390/ma15051666] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023]
Abstract
Polymeric nanocomposites have been outstanding functional materials and have garnered immense attention as sustainable materials to address multi-disciplinary problems. MXenes have emerged as a newer class of 2D materials that produce metallic conductivity upon interaction with hydrophilic species, and their delamination affords monolayer nanoplatelets of a thickness of about one nm and a side size in the micrometer range. Delaminated MXene has a high aspect ratio, making it an alluring nanofiller for multifunctional polymer nanocomposites. Herein, we have classified and discussed the structure, properties and application of major polysaccharide-based electroactive hydrogels (hyaluronic acid (HA), alginate sodium (SA), chitosan (CS) and cellulose) in biomedical applications, starting with the brief historical account of MXene's development followed by successive discussions on the synthesis methods, structures and properties of nanocomposites encompassing polysaccharides and MXenes, including their biomedical applications, cytotoxicity and biocompatibility aspects. Finally, the MXenes and their utility in the biomedical arena is deliberated with an eye on potential opportunities and challenges anticipated for them in the future, thus promoting their multifaceted applications.
Collapse
Affiliation(s)
- Fouad Damiri
- Labortory of Biomolecules and Organic Synthesis (BioSynthO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco
| | - Md Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon, Korea
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University Alkharj, Alkharj 11942, Saudi Arabia
| | - Aeshah A Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohammed Z Nasrullah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Heba A Gad
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Mutasem Z Bani-Fwaz
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Mousa O Germoush
- Biology Department, College of Science, Jouf University, Sakaka 72388, Saudi Arabia
| | - Hamdan S Al-Malky
- Regional Drug Information Center, Ministry of Health, Jeddah 21589, Saudi Arabia
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Satish Rojekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohammed Berrada
- Labortory of Biomolecules and Organic Synthesis (BioSynthO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco
| |
Collapse
|
26
|
He S, Sun X, Zhang H, Yuan C, Wei Y, Li J. Preparation Strategies and Applications of MXene-Polymer Composites: A Review. Macromol Rapid Commun 2021; 42:e2100324. [PMID: 34254708 DOI: 10.1002/marc.202100324] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/28/2021] [Indexed: 01/07/2023]
Abstract
As a new member of the 2D material family, MXene integrates high metallic conductivity and hydrophilic property simultaneously. It shows tremendous potential in fields of energy storage, sensing, electromagnetic shielding, and so forth. Due to the abundant surface functional groups, the physical and chemical properties of MXene can be tuned by the formation of MXene-polymer composites. The introduction of polymers can expand the interlayer spacing, reduce the distance of ion/electron transport, improve the surface hydrophilicity, and thus guide the assembly of MXene-polymer structures. Herein, the preparation strategies of MXene-polymer composites including physical mixing, surface modification, such as anchoring through TiN and Ti-O-C bonds, bonding through esterification, grafting functional groups through TiOSi/TiOP bonds, photograft reaction, as well as in situ polymerization are highlighted. In addition, the possible mechanisms for each strategy are explained. Furthermore, the applications of MXene-polymer composites obtained by different preparation strategies are summarized. Finally, perspectives and challenges are presented for the designs of MXene-polymer composites.
Collapse
Affiliation(s)
- Shaoshuai He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Xia Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Hong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.,Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Caideng Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Yuping Wei
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China.,Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.,Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| |
Collapse
|
27
|
Zhu B, Wang K, Gao H, Wang Q, Pan X, Fan M. Functional Group Modification and Bonding Characteristics of Ti 3 C 2 MXene-Organic Composites from First-Principles Calculations. Chemphyschem 2021; 22:1675-1683. [PMID: 34142761 DOI: 10.1002/cphc.202100450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Indexed: 11/07/2022]
Abstract
The unique physical structure and abundant surface functional groups of MXene make the grafted organic molecules exhibit specific electrical and optical properties. This work reports the results of first-principles calculations to investigate the composite systems formed by different organic molecular monomers, namely acrylic acid (AA), acrylamide (AM), 1-aziridineethanol (1-AD) and glucose, and Ti3 C2 MXene saturated with different functional groups, namely -OH, -O and -F. The results show that the interaction between organic molecules and the MXene surface depends on the type of functional groups of the organic molecules, while the strength of the interaction is determined by the type of surface functional groups and the number of hydrogen bonds. The bare Ti3 C2 and Ti3 C2 (OH)2 can readily form strong chemical and hydrogen bonds with AA and AM molecules, leading to strong adsorption energy and a large amount of charge transfer, while the interaction between organic molecules and MXene saturated by -F or -O groups mainly exhibits physical interactions, accompanied by low adsorption energy and a small amount of charge transfer. This research provides theoretical guidance for the synthesis of high-performance MXene organic composite systems.
Collapse
Affiliation(s)
- Bowen Zhu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kexuan Wang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Haili Gao
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qinhua Wang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaofeng Pan
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mizi Fan
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,College of Engineering, Design and Physical Sciences, Brunel University London, London, UB8 3PH, United Kingdom
| |
Collapse
|
28
|
Khodeir M, Jia H, Vlad A, Gohy JF. Application of Redox-Responsive Hydrogels Based on 2,2,6,6-Tetramethyl-1-Piperidinyloxy Methacrylate and Oligo(Ethyleneglycol) Methacrylate in Controlled Release and Catalysis. Polymers (Basel) 2021; 13:1307. [PMID: 33923527 PMCID: PMC8073720 DOI: 10.3390/polym13081307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 11/29/2022] Open
Abstract
Hydrogels have reached momentum due to their potential application in a variety of fields including their ability to deliver active molecules upon application of a specific chemical or physical stimulus and to act as easily recyclable catalysts in a green chemistry approach. In this paper, we demonstrate that the same redox-responsive hydrogels based on polymer networks containing 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) stable nitroxide radicals and oligoethylene glycol methyl ether methacrylate (OEGMA) can be successfully used either for the electrochemically triggered release of aspirin or as catalysts for the oxidation of primary alcohols into aldehydes. For the first application, we take the opportunity of the positive charges present on the oxoammonium groups of oxidized TEMPO to encapsulate negatively charged aspirin molecules. The further electrochemical reduction of oxoammonium groups into nitroxide radicals triggers the release of aspirin molecules. For the second application, our hydrogels are swelled with benzylic alcohol and tert-butyl nitrite as co-catalyst and the temperature is raised to 50 °C to start the oxidation reaction. Interestingly enough, benzaldehyde is not miscible with our hydrogels and phase-separate on top of them allowing the easy recovery of the reaction product and the recyclability of the hydrogel catalyst.
Collapse
Affiliation(s)
| | | | | | - Jean-François Gohy
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain, Place L. Pasteur 1, B-1348 Louvain-la-Neuve, Belgium; (M.K.); (H.J.); (A.V.)
| |
Collapse
|
29
|
Fu B, Sun J, Wang C, Shang C, Xu L, Li J, Zhang H. MXenes: Synthesis, Optical Properties, and Applications in Ultrafast Photonics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006054. [PMID: 33590637 DOI: 10.1002/smll.202006054] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Recently, 2D materials are in great demand for various applications such as optical devices, supercapacitors, sensors, and biomedicine. MXenes as a kind of novel 2D material have attracted considerable research interest due to their outstanding mechanical, thermal, electrical, and optical properties. Especially, the excellent nonlinear optical response enables them to be potential candidates for the applications in ultrafast photonics. Here, a review of MXenes synthesis, optical properties, and applications in ultrafast lasers is presented. First, aqueous acid etching and chemical vapor deposition methods for preparing MXenes are introduced, in which the storage stability and challenges of the existing synthesis techniques are also discussed. Then, the optical properties of MXenes are discussed specifically, including plasmonic properties, optical detection, photothermal effects, and ultrafast dynamics. Furthermore, the typical ultrafast pulsed lasers enabled by MXene-based saturable absorbers operated at different wavelength regions are summarized. Finally, a summary and outlook on the development of MXenes is presented in the perspectives section.
Collapse
Affiliation(s)
- Bo Fu
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine, Ministry of Industry and Information Technology, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, 100191, China
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
| | - Jingxuan Sun
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
| | - Cong Wang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, Collaborative Innovation Center for Optoelectronic Science and Technology, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ce Shang
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Lijun Xu
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, 100191, China
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
| | - Jiebo Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, Collaborative Innovation Center for Optoelectronic Science and Technology, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
30
|
Ge G, Zhang YZ, Zhang W, Yuan W, El-Demellawi JK, Zhang P, Di Fabrizio E, Dong X, Alshareef HN. Ti 3C 2T x MXene-Activated Fast Gelation of Stretchable and Self-Healing Hydrogels: A Molecular Approach. ACS NANO 2021; 15:2698-2706. [PMID: 33470788 DOI: 10.1021/acsnano.0c07998] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
MXene-based hydrogels, a flourishing family of soft materials, have recently emerged as promising candidates for stretchable electronics. Despite recent progress, most works use MXenes as conductive nanofillers. Herein, by tuning the molecular interactions between MXene nanosheets and other constituents within the hydrogels, we demonstrate Ti3C3Tx MXene can act as a versatile cross-linker to activate the fast gelation of a wide range of hydrogels, starting from various monomer- and polymer-based precursors. The gelation behavior varies significantly across hydrogels. In general, the fast gelation mechanism is attributed to the easier generation of free radicals with the help of Ti3C2Tx MXene and the presence of multiscale molecular interactions between MXene and polymers. The use of MXene as a dynamic cross-linker leads to superior mechanical properties, adhesion, and self-healing ability. Owing to the inherent photothermal behavior of Ti3C3Tx and the heterogeneous phase-transforming features of polymers, a polymer-MXene hydrogel is demonstrated to exhibit distinctive thermosensation-based actuation upon near-infrared illumination, accompanied by rapid shape transformation.
Collapse
Affiliation(s)
- Gang Ge
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
- Physical Science and Engineering Division, Materials Science & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yi-Zhou Zhang
- Physical Science and Engineering Division, Materials Science & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Wenli Zhang
- Physical Science and Engineering Division, Materials Science & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Wei Yuan
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Jehad K El-Demellawi
- Physical Science and Engineering Division, Materials Science & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Peng Zhang
- Physical Science and Engineering Division, Materials Science & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Enzo Di Fabrizio
- Physical Science and Engineering Division, Materials Science & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Husam N Alshareef
- Physical Science and Engineering Division, Materials Science & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
31
|
Zhang P, Wang L, Du K, Wang S, Huang Z, Yuan L, Li Z, Wang H, Zheng L, Chai Z, Shi W. Effective removal of U(VI) and Eu(III) by carboxyl functionalized MXene nanosheets. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122731. [PMID: 32339877 DOI: 10.1016/j.jhazmat.2020.122731] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/04/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
With the development of nuclear power, the negative environmental impact such as radioactive pollution has become an urgent issue to impede the utilization of nuclear energy. The construction of promising organic-inorganic hybrid materials is considered as an effective strategy for environmental remediation of radioactive contamination. In this work, two-dimensional transition metal carbide (MXene), an emerging inorganic layered material, has been successfully modified by carboxyl terminated aryl diazonium salt to both enhance its chelating ability to radionuclides and improve its water stability. The carboxyl functionalized Ti3C2Tx MXene (TCCH) shows excellent removal ability for U(VI) and Eu(III), evidenced by ultrafast adsorption kinetics (3 min), high maximum adsorption capacities (344.8 mg/g for U and 97.1 mg/g for Eu) and high removal percentage of radionuclides from artificial groundwater (> 90%). The adsorption of U(VI) and Eu(III) on TCCH are in good accord with the Langmuir adsorption isotherm model and the pseudo-second-order kinetic model. Ionic strength experiments, X-ray photoelectron spectroscopy (XPS) and Extended X-ray absorption fine structure (EXAFS) analyses were conducted to assess the detailed adsorption mechanism. The results reveal that the adsorption of U(VI) on TCCH follows an inner-sphere configuration, whereas the adsorption of Eu(III) is determined by both inner-sphere complexation and electrostatic interaction.
Collapse
Affiliation(s)
- Pengcheng Zhang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Ke Du
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Siyi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwei Huang
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201, China
| | - Liyong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zijie Li
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Hongqing Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhifang Chai
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201, China
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
32
|
Ti 3C 2T x MXene-Based Light-Responsive Hydrogel Composite for Bendable Bilayer Photoactuator. NANOMATERIALS 2020; 10:nano10071419. [PMID: 32708124 PMCID: PMC7407751 DOI: 10.3390/nano10071419] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/01/2020] [Accepted: 07/16/2020] [Indexed: 01/12/2023]
Abstract
Soft actuators based on hydrogel materials, which can convert light energy directly into mechanical energy, are of the utmost importance, especially with enhancements in device development. However, the hunt for specific photothermal nanomaterials with distinct performance remains challenging. In this study, we successfully fabricated a bilayer hydrogel actuator consisting of an active photothermal layer from incorporated Ti3C2Tx MXene in poly(N-isopropylacrylamide) p(NIPAm)hydrogel structure and a passive layer from the N-(2-hydroxylethylpropyl)acrylamide (HEAA) hydrogel structure. The uniform and effective incorporation of MXene into the NIPAm hydrogel structures were characterized by a battery of techniques. The light responsive swelling properties of the MXene-embedded NIPAm-based hydrogel demonstrated fully reversible and repeatable behavior in the light on–off regime for up to ten consecutive cycles. The effect of MXene loading, the shape of the actuator, and the light source effects on the bilayer NIPAm-HEAA hydrogel structure were investigated. The bilayer hydrogel with MXene loading of 0.3% in the NIPAm hydrogel exhibited a 200% change of the bending angle in terms of its bidirectional shape/volume after 100 s exposure to white light at an intensity of 70 mW cm−2. Additionally, the bending behavior under real sunlight was evaluated, showing the material’s potential applicability in practical environments.
Collapse
|
33
|
Tao N, Liu Y, Wu Y, Li X, Li J, Sun X, Chen S, Liu YN. Minimally Invasive Antitumor Therapy Using Biodegradable Nanocomposite Micellar Hydrogel with Functionalities of NIR-II Photothermal Ablation and Vascular Disruption. ACS APPLIED BIO MATERIALS 2020; 3:4531-4542. [DOI: 10.1021/acsabm.0c00465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Na Tao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Yandi Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Yingjiao Wu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Xilong Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Juan Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Xiaoyi Sun
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, P.R. China
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| |
Collapse
|
34
|
Zhang Y, Yang J, Zhang J, Li S, Zheng L, Zhang Y, Meng H, Zhang X, Wu Z. A bio-inspired injectable hydrogel as a cell platform for real-time glycaemic regulation. J Mater Chem B 2020; 8:4627-4641. [PMID: 32373901 DOI: 10.1039/d0tb00561d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Frequent subcutaneous insulin injection and islet transplantation are promising therapeutic options for type 1 diabetes mellitus. However, poor patient compliance, insufficient appropriate islet β cell donors and body immune rejection limit their clinical applications. The design of a platform capable of encapsulating insulin-secreting cells and achieving real-time blood glucose regulation, is a so far unmet need. Herein, inspired by the natural processes of regulating blood glucose in pancreatic islet β cells, we developed a poly(N-isopropylacrylamide-co-dextran-maleic acid-co-3-acrylamidophenylboronic acid) (P(AAPBA-Dex-NIPAM)) hydrogel as a cell platform with glucose responsiveness and thermo-responsiveness for the therapy of diabetes. This platform showed good biocompatibility against insulin-secreting cells and presented glucose-dependent insulin release behaviour. The bioinspired P(AAPBA6-Dex-NIPAM64) hydrogel had a positive effect on real-time glycaemic regulation, as observed by intraperitoneal glucose tolerance tests. The non-fasting blood glucose of diabetic rats was restored to a normal level during the period of treatment. Additionally, the inflammatory response did not occur after administration of the platform. Collectively, we expected that the bio-mimetic platform combined with an insulin-secreting capability could be a new diabetic treatment strategy.
Collapse
Affiliation(s)
- Yu Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chen J, Huang Q, Huang H, Mao L, Liu M, Zhang X, Wei Y. Recent progress and advances in the environmental applications of MXene related materials. NANOSCALE 2020; 12:3574-3592. [PMID: 32016223 DOI: 10.1039/c9nr08542d] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
MXenes are a new type of two-dimensional (2D) transition metal carbide or carbonitride material with a 2D structure similar to graphene. The general formula of MXenes is Mn+1XnTx, in which M is an early transition metal element, X represents carbon, nitrogen and boron, and T is a surface oxygen-containing or fluorine-containing group. These novel 2D materials possess a unique 2D layered structure, large specific surface area, good conductivity, stability, and mechanical properties. Benefitting from these properties, MXenes have received increasing attention and emerged as new substrate materials for exploration of various applications including, energy storage and conversion, photothermal treatment, drug delivery, environmental adsorption and catalytic degradation. The progress on various applications of MXene-based materials has been reviewed; while only a few of them covered environmental remediation, surface modification of MXenes has never been highlighted. In this review, we highlight recent advances and achievements in surface modification and environmental applications (such as environmental adsorption and catalytic degradation) of MXene-based materials. The current studies on the biocompatibility and toxicity of MXenes and related materials are summarized in the following sections. The challenges and future directions of the environmental applications of MXene-based materials are also discussed and highlighted.
Collapse
Affiliation(s)
- Junyu Chen
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Qiang Huang
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Hongye Huang
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Liucheng Mao
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Meiying Liu
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Xiaoyong Zhang
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, P. R. China. and Department of Chemistry and Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Chung-Li 32023, Taiwan
| |
Collapse
|
36
|
Zhang YZ, El-Demellawi JK, Jiang Q, Ge G, Liang H, Lee K, Dong X, Alshareef HN. MXene hydrogels: fundamentals and applications. Chem Soc Rev 2020; 49:7229-7251. [PMID: 32936169 DOI: 10.1039/d0cs00022a] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hydrogels have recently garnered tremendous interest due to their potential application in soft electronics, human-machine interfaces, sensors, actuators, and flexible energy storage. Benefiting from their impressive combination of hydrophilicity, metallic conductivity, high aspect ratio morphology, and widely tuneable properties, when two-dimensional (2D) transition metal carbides/nitrides (MXenes) are incorporated into hydrogel systems, they offer exciting and versatile platforms for the design of MXene-based soft materials with tunable application-specific properties. The intriguing and, in some cases, unique properties of MXene hydrogels are governed by complex gel structures and gelation mechanisms, which require in-depth investigation and engineering at the nanoscale. On the other hand, the formulation of MXenes into hydrogels can significantly increase the stability of MXenes, which is often the limiting factor for many MXene-based applications. Moreover, through simple treatments, derivatives of MXene hydrogels, such as aerogels, can be obtained, further expanding their versatility. This tutorial review intends to show the enormous potential of MXene hydrogels in expanding the application range of both hydrogels and MXenes, as well as increasing the performance of MXene-based devices. We elucidate the existing structures of various MXene-containing hydrogel systems along with their gelation mechanisms and the interconnecting driving forces. We then discuss their distinctive properties stemming from the integration of MXenes into hydrogels, which have revealed an enhanced performance, compared to either MXenes or hydrogels alone, in many applications (energy storage/harvesting, biomedicine, catalysis, electromagnetic interference shielding, and sensing).
Collapse
Affiliation(s)
- Yi-Zhou Zhang
- Physical Science and Engineering Division, Materials Science & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Jehad K El-Demellawi
- Physical Science and Engineering Division, Materials Science & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Qiu Jiang
- Physical Science and Engineering Division, Materials Science & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Gang Ge
- Physical Science and Engineering Division, Materials Science & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia. and Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Hanfeng Liang
- Physical Science and Engineering Division, Materials Science & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Kanghyuck Lee
- Physical Science and Engineering Division, Materials Science & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211800, China and School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Husam N Alshareef
- Physical Science and Engineering Division, Materials Science & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|