1
|
Shreenag Meda U, Madan Raikar O, Adaguru Rudregowda C, Rangappa D, Rani N, Ranga SS, Pandey A. MXenes as Versatile Materials for Hydrogen Technology and Multifunctional Applications. Chem Asian J 2025; 20:e202401678. [PMID: 40070074 DOI: 10.1002/asia.202401678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 04/05/2025]
Abstract
MXenes are the carbides and nitrides of transition metals which are two dimensional in structure. High surface area, remarkable hydrophilicity, enhanced electrical conductivity, and unique surface functional groups are some of the distinguished properties of MXenes. These features make them suitable for numerous applications across domains such as sensing, biomedicine, catalysis, and electromagnetic interference shielding followed by hydrogen generation and storage at the forefront. This article encompasses the discovery, structure, fabrication routes, and varied applications of MXenes with an emphasis on electrocatalysis in hydrogen evolution reactions and storage. The article depicts diverse compositions and surface modification routes for enhancing their properties. MXene-derived Z-scheme photocatalysts have also been explored for their applications in degrading organic pollutants and volatile organic compounds. The article brings out various concerns such as the self-restacking of MXenes due to van der Waals forces of attraction and their aggregation. Furthermore, it sheds light on the current status of MXenes and future development for sustainable energy technologies. Scaleup and high production costs are a few challenges that need to be addressed.
Collapse
Affiliation(s)
- Ujwal Shreenag Meda
- Department of Chemical Engineering, RV College of Engineering, Bengaluru, India
- Centre for Hydrogen and Green Technology, RV College of Engineering, Bengaluru, India
| | - Om Madan Raikar
- Department of Chemical Engineering, RV College of Engineering, Bengaluru, India
- Centre for Hydrogen and Green Technology, RV College of Engineering, Bengaluru, India
| | - Charanya Adaguru Rudregowda
- Department of Chemical Engineering, RV College of Engineering, Bengaluru, India
- Centre for Hydrogen and Green Technology, RV College of Engineering, Bengaluru, India
| | - Dinesh Rangappa
- Department of Applied Sciences, VIAT, Visvesvaraya Technological University, Muddenahalli Campus, Chikkaballapur, India
| | - Navya Rani
- Center for Research and Development, Department of Chemistry, Nagarjuana College of Engineering and Technology, Bengaluru, India
| | - Shravan S Ranga
- Department of Chemical Engineering, RV College of Engineering, Bengaluru, India
- Centre for Hydrogen and Green Technology, RV College of Engineering, Bengaluru, India
| | - Aditi Pandey
- Department of Chemical Engineering, RV College of Engineering, Bengaluru, India
- Centre for Hydrogen and Green Technology, RV College of Engineering, Bengaluru, India
| |
Collapse
|
2
|
Mei L, Ouyang W, Xu L, Huang Y, Liu Q, Bai Y, Lu Q, Luo T, Wu Z. Super Tough Multifunctional MXene/PAA-CS Double Network Hydrogels with High Mechanical Sensing Properties and Excellent EMI Shielding Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410687. [PMID: 39723729 DOI: 10.1002/smll.202410687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/07/2024] [Indexed: 12/28/2024]
Abstract
Hydrogels present significant potential in flexible materials designed for electromagnetic interference (EMI) shielding, attributed to their soft, stretchable mechanical properties and water-rich porous structures. Unfortunately, EMI shielding hydrogels commonly suffer from low mechanical properties, deficient fracture energy, and low strength, which limit the serviceability of these materials in complex mechanical environments. In this study, the double network strategy is successfully utilized along with the Hofmeister effect to create MXene/PAA (polyacrylic acid)-CS (chitosan) hydrogels and further strengthen and toughen the gel with (NH4)2SO4 solution. The gel exhibits enhanced functionalities such as outstanding stretchability, excellent strain sensitivity (11.66), and super fracture energy (≥9 kJ m-2). Notably, it demonstrates outstanding shielding effectiveness of 73.8 dB in the terahertz (THz) range, and the shielding properties can be effectively tuned by varying the MXene content, the (NH4)2SO4 concentration, and the thickness of the hydrogel. Additionally, the gel shows robust and superior shielding effectiveness after repeated stretching and long-term dehydration. The MXene/PAA-CS double-network (DN) hydrogels would be an excellent candidate for EMI shielding materials in advanced flexible electronic equipment and soft robots.
Collapse
Affiliation(s)
- Lin Mei
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, China
| | - Wenchong Ouyang
- Deep Space Exploration Laboratory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
- Joint Laboratory of Plasma Application Technology, Institute of Advanced Technology, University of Science and Technology of China, Hefei, 230031, China
| | - Limin Xu
- Advanced Institute of Photonics Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuanlong Huang
- Advanced Institute of Photonics Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qi Liu
- School of Engineering, Yunnan University, Kunming, 650091, China
| | - Yu Bai
- Experimental Center of Engineering and Materials Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Quanming Lu
- Deep Space Exploration Laboratory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Tianzhi Luo
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, China
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, China
| | - Zhengwei Wu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China
- Joint Laboratory of Plasma Application Technology, Institute of Advanced Technology, University of Science and Technology of China, Hefei, 230031, China
| |
Collapse
|
3
|
Zhou L, Zhao Z, Banitaba SN, Khademolqorani S, Han X, Chen G. Multipurpose triadic MXene/garlic/gellan gum-based architecture in the horizon of bone tissue regeneration. NANOSCALE 2025; 17:2528-2544. [PMID: 39820160 DOI: 10.1039/d4nr03995e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The use of bioresorbable compositions has been considered a promising therapeutic approach for treating compromised bone tissues. Gellan gum (GG) is a predominant polysaccharide recognized for its exceptional biocompatibility and biodegradability, facile bio-fabrication, and customizable mechanical attributes, rendering it well-suited for developing versatile bone scaffolds. On the other hand, MXene nanosheets have been declared a representational filler to augment the osteogenic effect and amend the mechanical properties of the polymeric biomaterials. Herein, the GG/MXene system was formulated to investigate the synergistic impact of gellan gum and MXene on promoting bone tissue engineering. Accordingly, Ti3C2Tx MXene nanogalleries were synthesized and loaded with 1, 3, and 5 wt% ratios into the GG matrix to fortify the overall performances. Based on the outcomes, the GG containing 1 wt% MXene showed a homogeneous surface with an optimized topography, providing greater amorphous regions (15%), boosted hydrophilicity (27.5°), and a favorable Young's modulus (13.43 MPa). Additionally, the designed scaffold provided exceptional osteogenetic adhesion and bactericidal behavior against both Gram-positive (S. aureus) and -negative (E. coli) bacteria. To achieve more desirable biological performance, 1 ml garlic extract (GA) was introduced to the freeze-dried composite network. The results exhibited better cell attachment in the porous GA-mediated scaffold with furthered antibacterial features through an increase in the zone diameter breakpoint from 4.8 ± 0.2 and 5.0 ± 0.1 mm to 5.9 ± 0.3 and 6.2 ± 0.2 mm against S. aureus and E. coli, respectively. Therefore, embedding GA, alongside MXene layered nanomaterials, into the GG-based matrix could provide a convenient scaffolding architecture for guided bone regeneration, facilitating appropriate cell attachment, growth, and proliferation.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Orthopedic Surgery, The Second Hospital of Dalian Medical University, No. 467, Zhongshan Road, Shahekou District, Dalian City, Liaoning 116021, China.
| | - Zhuo Zhao
- Department of Hands and Feet Microsurgery, The Second Hospital of Dalian Medical University, Liaoning 116021, China
| | | | - Sanaz Khademolqorani
- Emerald Experts laboratory, Isfahan Science and Technology Town, Isfahan 84156-83111, Iran
| | - Xin Han
- Department of Orthopedic Surgery, The Second Hospital of Dalian Medical University, No. 467, Zhongshan Road, Shahekou District, Dalian City, Liaoning 116021, China.
| | - Guang Chen
- Department of Orthopedic Surgery, The Second Hospital of Dalian Medical University, No. 467, Zhongshan Road, Shahekou District, Dalian City, Liaoning 116021, China.
| |
Collapse
|
4
|
Liu XC, Luo YM, Xu FY, Wu XL, Wei XA, Liu DB, Wang BB. Design and characterization of high-performance energetic hydrogels with enhanced mechanical and explosive properties. Sci Rep 2024; 14:30104. [PMID: 39627277 PMCID: PMC11615406 DOI: 10.1038/s41598-024-79737-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/12/2024] [Indexed: 12/06/2024] Open
Abstract
Polymeric hydrogels, known for their excellent mechanical properties and pre-cross-linking flowability, provide a promising solution for recycling waste propellants, ensuring safety and maintaining explosive performance. This study developed a double cross-linked network energetic hydrogel that effectively combines mechanical strength with explosive capabilities. Using a Ford 4 Cup, temperature data logger, universal testing machine, and detonation performance tests, we examined the impacts of kinematic viscosity, cross-linking time, compressive strength, and explosive properties. The optimal kinematic viscosity for stabilizing hollow glass microspheres (GM) was found to be 129.7 mm2/s. Cross-linking time was negatively correlated with initiator, catalyst levels, and reaction temperature, but positively correlated with retarder content. Compressive strength increased with acrylamide (AM) content and showed an initial rise before decreasing with N,N'-methylenebisacrylamide (MBAA) content and reaction temperature. The maximum compressive strength was achieved with 5% MBAA (of AM mass fraction) at 40 °C. Detonation velocity and steel plate damage decreased with increasing AM content and initially increased then decreased with GM content. A balance of mechanical and explosive properties was achieved with 6% AM and 4% GM, resulting in a detonation velocity of 4536 m/s. This hydrogel shows significant potential for waste munitions management.
Collapse
Affiliation(s)
- Xi-Chen Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Yi-Min Luo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Fei-Yang Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Xing-Liang Wu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Xiao-An Wei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Da-Bin Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China.
| | - Bin-Bin Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China.
| |
Collapse
|
5
|
Paramasivam G, Yadavali SP, Atchudan R, Arya S, Sundramoorthy AK. Recent advances in the medical applications of two-dimensional MXene nanosheets. Nanomedicine (Lond) 2024; 19:2633-2654. [PMID: 39552604 DOI: 10.1080/17435889.2024.2422806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024] Open
Abstract
MXene-based materials are gaining significant attention due to their exceptional properties and adaptability, leading to diverse advanced applications. In 3D printing, MXenes enhance the performance of photoblockers, photocurable inks, and composites, enabling the creation of precise, flexible and durable structures. MXene/siloxane composites offer both flexibility and resilience, while MXene/spidroin scaffolds provide excellent biocompatibility and mechanical strength, making them ideal for tissue engineering. Sustainable inks such as MXene/cellulose nano inks, alginate/MXene and MXene/emulsion underscore their role in high-performance printed materials. In cancer therapy, MXenes enable innovative photothermal and photodynamic therapies, where nanosheets generate heat and reactive oxygen species to destroy cancer cells. MXene theranostic nanoprobes combine imaging and treatment, while MXene/niobium composites support hyperthermia therapy and MXene/cellulose hydrogels allow controlled drug release. Additionally, MXene-based nanozymes enhance catalytic activity, and MXene/gold nanorods enable near-infrared-triggered drug release for noninvasive treatments. In antimicrobial applications, MXene composites enhance material durability and hygiene, providing anticorrosive protection for metals. For instance, MXene/graphene, MXene/polycaprolactone nanofibers and MXene/chitosan hydrogels exhibit significant antibacterial activity. Additionally, MXene sensors have been developed to detect antibiotic residues. MXene cryogels also promote tissue regeneration, while MXene nanohybrids facilitate photocatalytic antibacterial therapy. These advancements underscore the potential of MXenes in regenerative medicine and other fields.
Collapse
Affiliation(s)
- Gokul Paramasivam
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India
| | - Siva Prasad Yadavali
- Department of Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Sandeep Arya
- Department of Physics, University of Jammu, Jammu, Jammu & Kashmir, 180006, India
| | - Ashok K Sundramoorthy
- Department of Prosthodontics & Materials Science, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Chennai, 600077, Tamil Nadu, India
| |
Collapse
|
6
|
Li X, Wang S, Zheng M, Ma Z, Chen Y, Deng L, Xu W, Fan G, Khademolqorani S, Banitaba SN, Osman AI. Synergistic integration of MXene nanostructures into electrospun fibers for advanced biomedical engineering applications. NANOSCALE HORIZONS 2024; 9:1703-1724. [PMID: 39087682 DOI: 10.1039/d4nh00209a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
MXene-based architectures have paved the way in various fields, particularly in healthcare area, owing to their remarkable physiochemical and electromagnetic characteristics. Moreover, the modification of MXene structures and their combination with polymeric networks have gained considerable prominence to further develop their features. The combination of electrospun fibers with MXenes would be promising in this regard since electrospinning is a well-established technique that is now being directed toward commercial biomedical applications. The introduction of MXenes into electrospun fibrous frameworks has highlighted outcomes in various biomedical applications, including cancer therapy, controlled drug delivery, antimicrobial targets, sensors, and tissue engineering. Correspondingly, this review describes the employed strategies for the preparation of electrospun configurations in tandem with MXene nanostructures with remarkable characteristics. Next, the advantages of MXene-decorated electrospun fibers for use in biomedical applications are comprehensively discussed. According to the investigations, rich surface functional groups, hydrophilicity, large surface area, photothermal features, and antimicrobial and antibacterial activities of MXenes could synergize the performance of electrospun layers to engineer versatile biomedical targets. Moreover, the future of this path is clarified to combat the challenges related to the electrospun fibers decorated with MXene nanosheets.
Collapse
Affiliation(s)
- Xiaobo Li
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Shan Wang
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Minyan Zheng
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Zhanying Ma
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Yan Chen
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Lingjuan Deng
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Weixia Xu
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Guang Fan
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Sanaz Khademolqorani
- Emerald Experts laboratory, Isfahan Science and Technology Town, Isfahan 84156-83111, Iran
| | | | - Ahmed I Osman
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland, UK.
| |
Collapse
|
7
|
Hameed S, Sharif S, Ovais M, Xiong H. Emerging trends and future challenges of advanced 2D nanomaterials for combating bacterial resistance. Bioact Mater 2024; 38:225-257. [PMID: 38745587 PMCID: PMC11090881 DOI: 10.1016/j.bioactmat.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The number of multi-drug-resistant bacteria has increased over the last few decades, which has caused a detrimental impact on public health worldwide. In resolving antibiotic resistance development among different bacterial communities, new antimicrobial agents and nanoparticle-based strategies need to be designed foreseeing the slow discovery of new functioning antibiotics. Advanced research studies have revealed the significant disinfection potential of two-dimensional nanomaterials (2D NMs) to be severed as effective antibacterial agents due to their unique physicochemical properties. This review covers the current research progress of 2D NMs-based antibacterial strategies based on an inclusive explanation of 2D NMs' impact as antibacterial agents, including a detailed introduction to each possible well-known antibacterial mechanism. The impact of the physicochemical properties of 2D NMs on their antibacterial activities has been deliberated while explaining the toxic effects of 2D NMs and discussing their biomedical significance, dysbiosis, and cellular nanotoxicity. Adding to the challenges, we also discussed the major issues regarding the current quality and availability of nanotoxicity data. However, smart advancements are required to fabricate biocompatible 2D antibacterial NMs and exploit their potential to combat bacterial resistance clinically.
Collapse
Affiliation(s)
- Saima Hameed
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
- School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Sumaira Sharif
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Ovais
- BGI Genomics, BGI Shenzhen, Shenzhen, 518083, Guangdong, PR China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
| |
Collapse
|
8
|
Rasheed T, Sorour AA. Unveiling the power of MXenes: Solid lubrication perspectives and future directions. Adv Colloid Interface Sci 2024; 329:103186. [PMID: 38763047 DOI: 10.1016/j.cis.2024.103186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 03/13/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024]
Abstract
The interaction between two surfaces leads to the generation of friction and wear of material. Friction and wear are some of the major challenges that may readily be overcome by the third part of tribology called lubrication. Utilizing solid lubricants including polymers, carbon-based materials, soft metals, transition metal dichalcogenides, along with their potential benefits and drawbacks in dry environments can reduce friction. Recently, an emerging class of two-dimensional (2D) transition metal nitrides, carbides or carbonitrides commonly known as MXenes have emerged as an attractive alternative for solid lubrication because of their ability to establish wear-resistant tribo layers and well as low friction and shear strength. Furthermore, the inherent hydrophilic nature of these substances has led to limited dispersion stability and phase compatibility when combined with pure base oils. As a result, their potential use as solid lubricants and lubricant additives has been impeded. To address this issue and enhance the applicability of MXenes as solid lubricants, their surface modification can be an attractive tool. Therefore, this review provides a succinct summary of the current state-of-the-art in surface functionalization of MXenes, a subject that has not yet been thoroughly addressed. Further, the mechanical behavior of MXenes and composites has been discussed, followed by the potential of MXenes as a solid lubricant at micro- and macro-scale. Finally, the existing opportunities and challenges of the research area have been discussed with possible future research directions. We believe, this article will be a valuable resource for MXenes and opens the door to improve the chemical, physical and mechanical properties of MXenes in various applications, such as solid lubrication.
Collapse
Affiliation(s)
- Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| | - A A Sorour
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
9
|
Wong KJ, Foo JJ, Siang TJ, Khoo V, Ong W. Harnessing the Power of Light: The Synergistic Effects of Crystalline Carbon Nitride and Ti 3C 2T x MXene in Photocatalytic Hydrogen Production. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300235. [PMID: 38868601 PMCID: PMC11165523 DOI: 10.1002/gch2.202300235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/11/2024] [Indexed: 06/14/2024]
Abstract
Photocatalytic hydrogen evolution is an environmentally friendly means of energy generation. Although g-C3N4 possesses fascinating features, its inherent shortcomings limit its photocatalytic applications. Therefore, modifying the intrinsic properties of g-C3N4 and introducing cocatalysts are essential to ameliorate the photocatalytic efficiency. To achieve this, metal-like Ti3C2Tx is integrated with crystalline g-C3N4 via a combined salt-assisted and freeze-drying approach to form crystalline g-C3N4/Ti3C2Tx (CCN/TCT) hybrids with different Ti3C2Tx loading amounts (0, 0.2, 0.3, 0.4, 0.5, 1, 5, 10 wt.%). Benefiting from the crystallization of CN, as evidenced by the XRD graph, and the marvelous conductivity of Ti3C2Tx supported by EIS plots, CCN/TCT/Pt loaded with 0.5 wt.% Ti3C2Tx displays an elevated H2 (2) should be subscripted evolution rate of 2651.93 µmol g-1 h-1 and a high apparent quantum efficiency of 7.26% (420 nm), outperforming CN/Pt, CCN/Pt, and other CCN/TCT/Pt hybrids. The enhanced performance is attributed to the synergistic effect of the highly crystalline structure of CCN that enables fleet charge transport and the efficient dual cocatalysts, Ti3C2Tx and Pt, that foster charge separation and provide plentiful active sites. This work demonstrates the potential of CCN/TCT as a promising material for hydrogen production, suggesting a significant advancement in the design of CCN heterostructures for effective photocatalytic systems.
Collapse
Affiliation(s)
- Khai Jie Wong
- School of Energy and Chemical EngineeringXiamen University MalaysiaSelangorSelangor Darul Ehsan43900Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT)Xiamen University MalaysiaSelangorSelangor Darul Ehsan43900Malaysia
| | - Joel Jie Foo
- School of Energy and Chemical EngineeringXiamen University MalaysiaSelangorSelangor Darul Ehsan43900Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT)Xiamen University MalaysiaSelangorSelangor Darul Ehsan43900Malaysia
| | - Tan Ji Siang
- School of Energy and Chemical EngineeringXiamen University MalaysiaSelangorSelangor Darul Ehsan43900Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT)Xiamen University MalaysiaSelangorSelangor Darul Ehsan43900Malaysia
| | - Valerine Khoo
- School of Energy and Chemical EngineeringXiamen University MalaysiaSelangorSelangor Darul Ehsan43900Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT)Xiamen University MalaysiaSelangorSelangor Darul Ehsan43900Malaysia
| | - Wee‐Jun Ong
- School of Energy and Chemical EngineeringXiamen University MalaysiaSelangorSelangor Darul Ehsan43900Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT)Xiamen University MalaysiaSelangorSelangor Darul Ehsan43900Malaysia
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
- Gulei Innovation InstituteXiamen UniversityZhangzhou363200China
- Shenzhen Research Institute of Xiamen UniversityShenzhen518057China
| |
Collapse
|
10
|
Parajuli D. MXenes-polymer nanocomposites for biomedical applications: fundamentals and future perspectives. Front Chem 2024; 12:1400375. [PMID: 38863676 PMCID: PMC11165207 DOI: 10.3389/fchem.2024.1400375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/04/2024] [Indexed: 06/13/2024] Open
Abstract
The article discusses the promising synergy between MXenes and polymers in developing advanced nanocomposites with diverse applications in biomedicine domains. MXenes, possessing exceptional properties, are integrated into polymer matrices through various synthesis and fabrication methods. These nanocomposites find applications in drug delivery, imaging, diagnostics, and environmental remediation. They offer improved therapeutic efficacy and reduced side effects in drug delivery, enhanced sensitivity and specificity in imaging and diagnostics, and effectiveness in water purification and pollutant removal. The perspective also addresses challenges like biocompatibility and toxicity, while suggesting future research directions. In totality, it highlights the transformative potential of MXenes-polymer nanocomposites in addressing critical issues across various fields.
Collapse
Affiliation(s)
- D. Parajuli
- Research Center for Applied Science and Technology, Tribhuvan University, Kathmandu, Nepal
| |
Collapse
|
11
|
Ji X, Fan X, Liu X, Gu J, Lu H, Luan Z, Liang J. Highly Elastic, Robust, and Efficient Hydrogel Solar Absorber against Harsh Environmental Impacts. NANO LETTERS 2024; 24:3498-3506. [PMID: 38440992 DOI: 10.1021/acs.nanolett.4c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Solar distillation is a promising approach for addressing water scarcity, but relentless stress/strain perturbations induced by wind and waves would inevitably cause structural damage to solar absorbers. Despite notable advances in efficient solar absorbers, there have been no reports of compliant and robust solar absorbers withstanding practical mechanical impacts. Herein, an elastic and robust hydrogel absorber that exhibited a high level of evaporation performance was fabricated by introducing ion-coordinated MXene nanosheets as photothermal conversion units and mechanically enhanced fillers. The ion-coordinated MXene nanosheets acting as strong cross-linking points provided excellent elasticity and robustness to the hydrogel absorber. As a result, the evaporation rate of hydrogel absorber, with a high initial value of 2.61 kg m-2 h-1 under one sun irradiation, remained at 2.15 kg m-2 h-1 under a 100% tensile strain state and 2.40 kg m-2 h-1 after 10 000 stretching-releasing cycles. This continuous and stable water desalination approach provides a promising device for actual seawater distillation.
Collapse
Affiliation(s)
- Xinyi Ji
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Xiangqian Fan
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
- School of Energy and Power Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Xue Liu
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Jianfeng Gu
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Haolin Lu
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Zhaohui Luan
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Jiajie Liang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300350, P. R. China
- Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
12
|
Krasian T, Punyodom W, Molloy R, Topham PD, Tighe BJ, Mahomed A, Chaiwarit T, Panraksa P, Rachtanapun P, Jantanasakulwong K, Worajittiphon P. Low cytotoxicity, antibacterial property, and curcumin delivery performance of toughness-enhanced electrospun composite membranes based on poly(lactic acid) and MAX phase (Ti 3AlC 2). Int J Biol Macromol 2024; 262:129967. [PMID: 38316324 DOI: 10.1016/j.ijbiomac.2024.129967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/20/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
MXenes, synthesized from their precursor MAX phases, have been extensively researched as additives to enhance the drug delivery performance of polymer matrices, whereas there is a limited number of previous reports on the use of MAX phases themselves for such applications. The use of MAX phases can exclude the complicated synthesis procedure and lessen resultant production and environmental costs required to convert MAX phases to MXenes. Herein, electrospun membranes of poly(lactic acid) (PLA) and a MAX phase (Ti3AlC2) have been fabricated for curcumin delivery. The composite membrane exhibits significantly higher toughness (8.82 MJ m-3) than the plasticized PLA membrane (0.63 MJ m-3) with low cytotoxicity, supporting proliferation of mouse fibroblast L929 cells. The curcumin-loaded composite membrane exhibits high water vapor transmission (∼7350 g m-2 day-1), porosity (∼85 %), water wettability, and antibacterial properties against E. coli and S. aureus. Seven-day curcumin release is enhanced from 45 % (PLA) to 67 % (composite) due to curcumin diffusion from the polymer fibers and MAX phase surface that contributes to overall increased curcumin adsorption and release sites. This work demonstrates the potential of the MAX phase to enhance both properties and curcumin delivery, promising for other eco-friendly systems for sustainable drug delivery applications.
Collapse
Affiliation(s)
- Tharnthip Krasian
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Winita Punyodom
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Robert Molloy
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Paul D Topham
- College of Engineering and Physical Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Brian J Tighe
- College of Engineering and Physical Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Anisa Mahomed
- College of Engineering and Physical Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Tanpong Chaiwarit
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pattaraporn Panraksa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornchai Rachtanapun
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kittisak Jantanasakulwong
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Patnarin Worajittiphon
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
13
|
Liao M, Cui Q, Hu Y, Xing J, Wu D, Zheng S, Zhao Y, Yu Y, Sun J, Chai R. Recent advances in the application of MXenes for neural tissue engineering and regeneration. Neural Regen Res 2024; 19:258-263. [PMID: 37488875 PMCID: PMC10503607 DOI: 10.4103/1673-5374.379037] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/21/2023] [Accepted: 05/05/2023] [Indexed: 07/26/2023] Open
Abstract
Transition metal carbides and nitrides (MXenes) are crystal nanomaterials with a number of surface functional groups such as fluorine, hydroxyl, and oxygen, which can be used as carriers for proteins and drugs. MXenes have excellent biocompatibility, electrical conductivity, surface hydrophilicity, mechanical properties and easy surface modification. However, at present, the stability of most MXenes needs to be improved, and more synthesis methods need to be explored. MXenes are good substrates for nerve cell regeneration and nerve reconstruction, which have broad application prospects in the repair of nervous system injury. Regarding the application of MXenes in neuroscience, mainly at the cellular level, the long-term in vivo biosafety and effects also need to be further explored. This review focuses on the progress of using MXenes in nerve regeneration over the last few years; discussing preparation of MXenes and their biocompatibility with different cells as well as the regulation by MXenes of nerve cell regeneration in two-dimensional and three-dimensional environments in vitro. MXenes have great potential in regulating the proliferation, differentiation, and maturation of nerve cells and in promoting regeneration and recovery after nerve injury. In addition, this review also presents the main challenges during optimization processes, such as the preparation of stable MXenes and long-term in vivo biosafety, and further discusses future directions in neural tissue engineering.
Collapse
Affiliation(s)
- Menghui Liao
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu Province, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Qingyue Cui
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu Province, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Yangnan Hu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu Province, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jiayue Xing
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu Province, China
| | - Danqi Wu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu Province, China
| | - Shasha Zheng
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu Province, China
| | - Yu Zhao
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yafeng Yu
- First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jingwu Sun
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu Province, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Zhong Y, Lai Y, Feng Z, Huang S, Fu Y, Huang L, Lan KF, Mo A. Multifunctional MXene-doped photothermal microneedles for drug-resistant bacteria-infected wound healing. Biomater Sci 2024; 12:660-673. [PMID: 38063374 DOI: 10.1039/d3bm01676e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Skin injuries and drug-resistant bacterial infections pose serious challenges to human health. It is essential to establish a novel multifunctional platform with good anti-infection and wound-healing abilities. In this study, a new MXene-doped composite microneedle (MN) patch with excellent mechanical strength and photothermal antibacterial and ROS removal properties has been developed for infected wound healing. When the MN tips carrying the MXene nanosheets are inserted into the cuticle of the skin, they will quickly dissolve and subsequently release the nanomaterials into the subcutaneous infection area. Under 808 nm NIR irradiation, the MXene, as a "nano-thermal knife", sterilizes and inhibits bacterial growth through synergistic effects of sharp edges and photothermal antibacterial activity. Furthermore, ROS caused by injury and infection can be cleared by MXene-doped MNs to avoid excessive inflammatory responses. Based on the synergistic antibacterial and antioxidant strategy, the MXene-doped MNs have demonstrated excellent wound-healing properties in an MRSA-infected wound model, such as promoting re-epithelialization, collagen deposition, and angiogenesis and inhibiting the expression of pro-inflammatory factors. Therefore, the multifunctional MXene-doped MN patches provide an excellent alternative for clinical drug-resistant bacteria-infected wound management.
Collapse
Affiliation(s)
- Yongjin Zhong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yancheng Lai
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Zeru Feng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Si Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yu Fu
- Department of Stomatology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lirong Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Keng-Fu Lan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Anchun Mo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
15
|
Bose N, Danagody B, Rajappan K, Ramanujam GM, Anilkumar AK. Sustainable Routed Mxene-Based Aminolyzed PU/PCL Film for Increased Oxidative Stress and a pH-Sensitive Drug Delivery System for Anticancer Therapy. ACS APPLIED BIO MATERIALS 2024; 7:379-393. [PMID: 38141040 DOI: 10.1021/acsabm.3c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
A remarkable challenge in the anticancer drug delivery system is developing an implantable system that can improve the chemotherapeutic effect. Polyurethane is an excellent implantable substrate, with flaws in hydrophobicity. We modified polyurethane via the chemical aminolysis technique to enhance the wettability and protein interaction. The created pores can release the rutin complex incorporated in the polyurethane matrix. In this work, the hybrid polymer matrix consists of Mxene synthesized via a sustainable and simple method by introducing a toxic-free MAX phase and etchants. The incorporation of Mxene and PCL can enhance physicochemical and biological compatibility. Sustainable Mxene increases oxidative stress, cell death, and antibacterial activity, which also resulted in the Mxene@APU/PCL film. Meanwhile, the drug release with respect to pH sensitivity was demonstrated in which Mxene and Mxene@APU/PCL films showed the highest release at pH 5.2; this indicates that the prepared Mxene and aminolyzed polyurethane can function according to the biological system and release the drug from the polymer matrix on slow degradation and swellability. The Mxene and Mxene@APU/PCL films showed 93.2% drug release with oxidative stress on THP-1 cells, which causes rupturing and apoptosis of cancerous cells. The Mxene@APU/PCL film can show great potential in future implantable anticancer drug delivery systems.
Collapse
Affiliation(s)
- Neeraja Bose
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Balaganesh Danagody
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Kalaivizhi Rajappan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ganesh Munuswamy Ramanujam
- Molecular biology and Immunobiology Division, Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Aswathy Karanath Anilkumar
- Molecular biology and Immunobiology Division, Interdisciplinary Institute of Indian System of Medicine (IIISM), Department of Biotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
16
|
Mondal H, Karmakar M, Datta B. An MXene-Grafted Terpolymer Hydrogel for Adsorptive Immobilization of Toxic Pb(II) and Post-Adsorption Application of Metal Ion Hydrogel. Gels 2023; 9:827. [PMID: 37888400 PMCID: PMC10606399 DOI: 10.3390/gels9100827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Toxic metal ions present in industrial waste, such as Pb(II), introduce deleterious effects on the environment. Though the adsorptive removal of Pb(II) is widely reported, there is a dearth of research on the suitable utilization and disposal of the Pb(II)-adsorbed adsorbent. In this work, an MXene-grafted terpolymer (MXTP) hydrogel has been designed for the adsorption of Pb(II) under ambient conditions of pH and temperature. The hydrogel MXTP was synthesized by facile one-pot polymerization in aqueous solvent, and the detailed structural characterization of terpolymer (TP), MXTP, and Pb(II)-loaded MXTP, i.e., Pb(II)-MXTP, was carried out by a combination of proton nuclear magnetic resonance (1H NMR), Fourier-transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffractometric (XRD), thermogravimetric/differential thermogravimetric (TG/ DTG), and field emission scanning electron microscopic (FESEM) analyses. The specific capacitance and conductivities of Pb(II)-MXTP were studied with cyclic voltammetry (CV) and electrical impedance spectroscopy (EIS), which unambiguously indicate successful post-adsorption application. The specific capacitance of MXTP decreased after Pb(II) adsorption, whereas the conductivity increased significantly after Pb(II) adsorption, showing that MXTP can be successfully deployed as a solid electrolyte/anode after Pb(II) adsorption. This study covers the synthesis of a novel MXene-grafted terpolymer hydrogel for adsorptive exclusion of Pb(II) and assessment of the as-adsorbed Pb(II)-loaded hydrogel as a solid electrolyte/anode material and is the first demonstration of such post-adsorptive application.
Collapse
Affiliation(s)
- Himarati Mondal
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj 382055, Gujarat, India
| | - Mrinmoy Karmakar
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj 382055, Gujarat, India
- Presently in Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea
| | - Bhaskar Datta
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj 382055, Gujarat, India
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj 382055, Gujarat, India
| |
Collapse
|
17
|
Tian J, Sun Z, Shi C, Huang Z. Rapid fabrication of tough sodium alginate/MXene/poly(vinyl alcohol) dual-network hydrogel electrolytes for flexible all-solid-state supercapacitors. Int J Biol Macromol 2023; 248:125937. [PMID: 37488001 DOI: 10.1016/j.ijbiomac.2023.125937] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/10/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
With the rapid development of flexible portable devices, polymer-based hydrogel electrolytes have drawn tremendous attention and widespread interest to replace conventional liquid electrolytes. Herein, an eco-friendly, low cost and fast method was adopted to synthesize novel cross-linked dual-network hydrogel electrolytes (PVA/SA/MXene-NaCl) within 5 min due to the formation of borate bonds. The unique dual-network structure of hydrogel enabled hydrogel electrolytes to efficiently dissipate energy under deformation and the formation of borate bonds endowed hydrogel with self-healing ability. Benefited from the introduction of NaCl and MXene, the hydrogels displayed a high ionic conductivity (40.8 mS/cm) and enhanced mechanical strength (650 kPa). Notedly, the flexible supercapacitor with low concentration of NaCl (0.3 mol L-1) delivered a superior areal capacitance of 130.8 mF cm-2 at 1 mA cm-2 and 106.2 mF cm-2 at 3 mA cm-2, and simultaneously offered remarkable capacitance retention under the state of bending, self-healing (five cycles), compression and stretching. Moreover, as-assembled supercapacitor maintained about 88.9 % of its original capacitance and 90.5 % of Coulombic efficiency after 5000 charge-discharge cycles. Our research presented a simple and universally pathway to prepare flexible energy storage devices with excellent mechanical and electrochemical properties.
Collapse
Affiliation(s)
- Jiangyang Tian
- Key Laboratory of Bio-based Material Science & Technology, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Zhe Sun
- Key Laboratory of Bio-based Material Science & Technology, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Cai Shi
- Key Laboratory of Bio-based Material Science & Technology, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Zhanhua Huang
- Key Laboratory of Bio-based Material Science & Technology, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
18
|
Zhang P, Chen K, Li J, Wang M, Li M, Liu Y, Pan Y. Bifunctional Single Atom Catalysts for Rechargeable Zinc-Air Batteries: From Dynamic Mechanism to Rational Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303243. [PMID: 37283478 DOI: 10.1002/adma.202303243] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/21/2023] [Indexed: 06/08/2023]
Abstract
Ever-growing demands for rechargeable zinc-air batteries (ZABs) call for efficient bifunctional electrocatalysts. Among various electrocatalysts, single atom catalysts (SACs) have received increasing attention due to the merits of high atom utilization, structural tunability, and remarkable activity. Rational design of bifunctional SACs relies heavily on an in-depth understanding of reaction mechanisms, especially dynamic evolution under electrochemical conditions. This requires a systematic study in dynamic mechanisms to replace current trial and error modes. Herein, fundamental understanding of dynamic oxygen reduction reaction and oxygen evolution reaction mechanisms for SACs is first presented combining in situ and/or operando characterizations and theoretical calculations. By highlighting structure-performance relationships, rational regulation strategies are particularly proposed to facilitate the design of efficient bifunctional SACs. Furthermore, future perspectives and challenges are discussed. This review provides a thorough understanding of dynamic mechanisms and regulation strategies for bifunctional SACs, which are expected to pave the avenue for exploring optimum single atom bifunctional oxygen catalysts and effective ZABs.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Kuo Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiaye Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Minmin Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Min Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
19
|
Lu X, Xie D, Zhu K, Wei S, Mo Z, Du C, Liang L, Chen G, Liu Z. Swift Assembly of Adaptive Thermocell Arrays for Device-Level Healable and Energy-Autonomous Motion Sensors. NANO-MICRO LETTERS 2023; 15:196. [PMID: 37566154 PMCID: PMC10421839 DOI: 10.1007/s40820-023-01170-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/08/2023] [Indexed: 08/12/2023]
Abstract
The evolution of wearable technology has prompted the need for adaptive, self-healable, and energy-autonomous energy devices. This study innovatively addresses this challenge by introducing an MXene-boosted hydrogel electrolyte, which expedites the assembly process of flexible thermocell (TEC) arrays and thus circumvents the complicated fabrication of typical wearable electronics. Our findings underscore the hydrogel electrolyte's superior thermoelectrochemical performance under substantial deformations and repeated self-healing cycles. The resulting hydrogel-based TEC yields a maximum power output of 1032.1 nW under the ΔT of 20 K when being stretched to 500% for 1000 cycles, corresponding to 80% of its initial state; meanwhile, it sustains 1179.1 nW under the ΔT of 20 K even after 60 cut-healing cycles, approximately 92% of its initial state. The as-assembled TEC array exhibits device-level self-healing capability and high adaptability to human body. It is readily applied for touch-based encrypted communication where distinct voltage signals can be converted into alphabet letters; it is also employed as a self-powered sensor to in-situ monitor a variety of body motions for complex human actions. The swift assembly approach, combined with the versatile functionality of the TEC device, paves the way for future advancements in wearable electronics targeting at fitness monitoring and human-machine interfaces.
Collapse
Affiliation(s)
- Xin Lu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Daibin Xie
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Kaihua Zhu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Shouhao Wei
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Ziwei Mo
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Chunyu Du
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Lirong Liang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Guangming Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
| | - Zhuoxin Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
20
|
Pant B, Park M, Kim AA. MXene-Embedded Electrospun Polymeric Nanofibers for Biomedical Applications: Recent Advances. MICROMACHINES 2023; 14:1477. [PMID: 37512788 PMCID: PMC10384458 DOI: 10.3390/mi14071477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Recently MXenes has gained immense attention as a new and exciting class of two-dimensional material. Due to their unique layered microstructure, the presence of various functional groups at the surface, earth abundance, and attractive electrical, optical, and thermal properties, MXenes are considered promising candidates for various applications such as energy, environmental, and biomedical. The ease of dispersibility and metallic conductivity of MXene render them promising candidates for use as fillers in polymer nanocomposites. MXene-polymer nanocomposites simultaneously benefit from the attractive properties of MXenes and the flexibility and facile processability of polymers. However, the potentiality of MXene to modify the electrospun nanofibers has been less studied. Understanding the interactions between polymeric nanofibers and MXenes is important to widen their role in biomedical applications. This review explores diverse methods of MXene synthesis, discusses our current knowledge of the various biological characteristics of MXene, and the synthesis of MXene incorporated polymeric nanofibers and their utilization in biomedical applications. The information discussed in this review serves to guide the future development and application of MXene-polymer nanofibers in biomedical fields.
Collapse
Affiliation(s)
- Bishweshwar Pant
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju 55338, Republic of Korea
- Department of Automotive Engineering, Woosuk University, Wanju 55338, Republic of Korea
| | - Mira Park
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju 55338, Republic of Korea
- Department of Automotive Engineering, Woosuk University, Wanju 55338, Republic of Korea
| | - Allison A Kim
- Department of Healthcare Management, Woosong University, Daejon 34606, Republic of Korea
| |
Collapse
|
21
|
Lee SH, Kang MS, Jeon S, Jo HJ, Hong SW, Kim B, Han DW. 3D bioprinting of human mesenchymal stem cells-laden hydrogels incorporating MXene for spontaneous osteodifferentiation. Heliyon 2023; 9:e14490. [PMID: 36994406 PMCID: PMC10040522 DOI: 10.1016/j.heliyon.2023.e14490] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Contemporary advances in three-dimensional (3D) bioprinting technologies have enabled the fabrication of tailored live 3D tissue mimetics. Furthermore, the development of advanced bioink materials has been highlighted to accurately reproduce the composition of a native extracellular matrix and mimic the intrinsic properties of laden cells. Recent research has shown that MXene is one of promising nanobiomaterials with osteogenic activity for bone grafts and scaffolds due to its unique atomic structure of three titanium layers between two carbon layers. In this study, the MXene-incorporated gelatin methacryloyl (GelMA) and hyaluronic acid methacryloyl (HAMA) (i.e., GelMA/HAMA-MXene) bioinks were prepared to explore if they have the potential to enable the spontaneous osteodifferentiation of human mesenchymal stem cells (hMSCs) when the hMSCs-laden GelMA/HAMA-MXene bioinks were 3D printed. The physicochemical and rheological characteristics of the GelMA/HAMA-MXene hydrogels were proven to be unprecedentedly favorable supportive matrices suited for the growth and survival of hMSCs. Furthermore, hMSCs were shown to spontaneously differentiate into osteoblasts within GelMA-HAMA/MXene composites to provide favorable microenvironments for osteogenesis. Therefore, our results suggest that the remarkable biofunctional advantages of the MXene-incorporated GelMA/HAMA bioink can be utilized in a wide range of strategies for the development of effective scaffolds in bone tissue regeneration.
Collapse
Affiliation(s)
- Seok Hyun Lee
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Sangheon Jeon
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyo Jung Jo
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
- Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University, Busan, 46241, Republic of Korea
| | - Bongju Kim
- Dental Life Science Research Institute / Innovation Research & Support Center for Dental Science, Seoul 8 National University Dental Hospital, Seoul, 03080, Republic of Korea
- Corresponding author.
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
- BIO-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, Republic of Korea
- Corresponding author. Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
22
|
A review on recent advances in 2D-transition metal carbonitride-MXenes nano-sheets/polymer composites' electromagnetic shields, mechanical and thermal properties. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
23
|
Fu Y, Huang S, Feng Z, Huang L, Zhang X, Lin H, Mo A. MXene-Functionalized Ferroelectric Nanocomposite Membranes with Modulating Surface Potential Enhance Bone Regeneration. ACS Biomater Sci Eng 2023; 9:900-917. [PMID: 36715700 DOI: 10.1021/acsbiomaterials.2c01174] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rapid and effective bone defect repair remains a challenging issue for clinical treatment. Applying biomaterials with endogenous surface potential has been widely studied to enhance bone regeneration, but how to regulate the electric potential and surface morphology of the implanted materials precisely to achieve an optimal bioelectric microenvironment is still a major challenge. The aim of this study is to develop electroactive biomaterials that better mimic the extracellular microenvironment for bone regeneration. Hence, MXene/polyvinylidene fluoride (MXene/PVDF) ferroelectric nanocomposite membranes were prepared by electrospinning. Physicochemical characterization demonstrated that Ti3C2Tx MXene nanosheets were wrapped in PVDF shell layer and the surface morphology and potential were modulated by altering the content of MXene, where uniform distribution of fibers and enhanced electric potential can be obtained and precisely assembled into a natural extracellular matrix (ECM) in bone tissue. Consequently, the MXene/PVDF membranes facilitated cell adhesion, stretching, and growth, showing good biocompatibility; meanwhile, their intrinsic electric potential promoted the recruitment of osteogenic cells and accelerated the differentiation of osteoblast. Furthermore, 1 wt % MXene/PVDF membrane with a suitable surface potential and better topographical structure for bone regeneration qualitatively and quantitatively promoted bone tissue formation in a rat calvarial bone defect after 4 and 8 weeks of healing. The fabricated MXene/PVDF ferroelectric nanocomposite membranes show a biomimetic microenvironment with a sustainable electric potential and optimal 3D topographical structure, providing an innovative and well-suited strategy for application in bone regeneration.
Collapse
Affiliation(s)
- Yu Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, 14th 3 sect of Renmin South Road, Chengdu610041, China
| | - Si Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, 14th 3 sect of Renmin South Road, Chengdu610041, China
| | - Zeru Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, 14th 3 sect of Renmin South Road, Chengdu610041, China
| | - Lirong Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, 14th 3 sect of Renmin South Road, Chengdu610041, China
| | - Xiaoqing Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, 14th 3 sect of Renmin South Road, Chengdu610041, China
| | - Hua Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, 14th 3 sect of Renmin South Road, Chengdu610041, China
| | - Anchun Mo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, 14th 3 sect of Renmin South Road, Chengdu610041, China
| |
Collapse
|
24
|
Facile fabrication of a novel self-healing and flame-retardant hydrogel/MXene coating for wood. Sci Rep 2023; 13:1826. [PMID: 36725969 PMCID: PMC9892570 DOI: 10.1038/s41598-023-28228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/16/2023] [Indexed: 02/03/2023] Open
Abstract
To improve flame retardancy of wood, a novel high-water-retention and self-healing polyvinyl alcohol/phytic acid/MXene hydrogel coating was developed through facile one-pot heating and freeze-thaw cycle methods, and then painted on wood surface. The coating exhibit excellent self-healing property and significantly enhanced water-retention property (water content ≥ 90 wt%), due to the increased hydrogen bonds within the coating system with the presence of MXene nanosheets. Compared to pristine wood, the flame retardancy of coated wood is greatly improved, such as passed V0 rating in UL-94 test, increasing time to ignition (TTI, from 32 to 69 s), and decreased heat release rate and total heat release by 41.6% and 36.14%. The cooling effect and large thermal capacity of high-water-retention hydrogel, and physical barrier effects for flammable gas products, heat and oxygen by MXene nanosheets and the compact char layer formed during combustion play key roles in the flame retardancy enhancements of the wood. High thermal stability of MXene nanosheets is another beneficial factor. The detailed flame-retardant and self-healing mechanisms were proposed.
Collapse
|
25
|
Muresanu DF, Sharma A, Tian ZR, Lafuente JV, Nozari A, Feng L, Buzoianu AD, Wiklund L, Sharma HS. Nanowired Delivery of Cerebrolysin with Mesenchymal Stem Cells Attenuates Heat Stress-Induced Exacerbation of Neuropathology Following Brain Blast Injury. ADVANCES IN NEUROBIOLOGY 2023; 32:231-270. [PMID: 37480463 DOI: 10.1007/978-3-031-32997-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Blast brain injury (bBI) following explosive detonations in warfare is one of the prominent causes of multidimensional insults to the central nervous and other vital organs injury. Several military personnel suffered from bBI during the Middle East conflict at hot environment. The bBI largely occurs due to pressure waves, generation of heat together with release of shrapnel and gun powders explosion with penetrating and/or impact head trauma causing multiple brain damage. As a result, bBI-induced secondary injury causes breakdown of the blood-brain barrier (BBB) and edema formation that further results in neuronal, glial and axonal injuries. Previously, we reported endocrine imbalance and influence of diabetes on bBI-induced brain pathology that was significantly attenuated by nanowired delivery of cerebrolysin in model experiments. Cerebrolysin is a balanced composition of several neurotrophic factors, and active peptide fragment is capable of neuroprotection in several neurological insults. Exposure to heat stress alone causes BBB damage, edema formation and brain pathology. Thus, it is quite likely that hot environment further exacerbates the consequences of bBI. Thus, novel therapeutic strategies using nanodelivery of stem cell and cerebrolysin may further enhance superior neuroprotection in bBI at hot environment. Our observations are the first to show that combined nanowired delivery of mesenchymal stem cells (MSCs) and cerebrolysin significantly attenuated exacerbation of bBI in hot environment and induced superior neuroprotection, not reported earlier. The possible mechanisms of neuroprotection with MSCs and cerebrolysin in bBI are discussed in the light of current literature.
Collapse
Affiliation(s)
- Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan, Hebei Province, China
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
26
|
Siwal SS, Kaur H, Chauhan G, Thakur VK. MXene‐Based Nanomaterials for Biomedical Applications: Healthier Substitute Materials for the Future. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Affiliation(s)
- Samarjeet Singh Siwal
- Department of Chemistry M.M. Engineering College Maharishi Markandeshwar (Deemed to be University) Mullana-Ambala Haryana 133207 India
| | - Harjot Kaur
- Department of Chemistry M.M. Engineering College Maharishi Markandeshwar (Deemed to be University) Mullana-Ambala Haryana 133207 India
| | - Gunjan Chauhan
- Department of Chemistry M.M. Engineering College Maharishi Markandeshwar (Deemed to be University) Mullana-Ambala Haryana 133207 India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center Scotland's Rural College (SRUC) Kings Buildings, West Mains Road Edinburgh EH9 3JG UK
- School of Engineering University of Petroleum & Energy Studies (UPES) Dehradun Uttarakhand 248007 India
- Centre for Research & Development Chandigarh University Mohali Punjab 140413 India
| |
Collapse
|
27
|
Parra-Muñoz N, Soler M, Rosenkranz A. Covalent functionalization of MXenes for tribological purposes - a critical review. Adv Colloid Interface Sci 2022; 309:102792. [DOI: 10.1016/j.cis.2022.102792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/01/2022]
|
28
|
Yang Y, Li K, Wang Y, Wu Z, Russell TP, Shi S. MXene-Based Porous Monoliths. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3792. [PMID: 36364567 PMCID: PMC9654234 DOI: 10.3390/nano12213792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
In the past decade, a thriving family of 2D nanomaterials, transition-metal carbides/nitrides (MXenes), have garnered tremendous interest due to its intriguing physical/chemical properties, structural features, and versatile functionality. Integrating these 2D nanosheets into 3D monoliths offers an exciting and powerful platform for translating their fundamental advantages into practical applications. Introducing internal pores, such as isotropic pores and aligned channels, within the monoliths can not only address the restacking of MXenes, but also afford a series of novel and, in some cases, unique structural merits to advance the utility of the MXene-based materials. Here, a brief overview of the development of MXene-based porous monoliths, in terms of the types of microstructures, is provided, focusing on the pore design and how the porous microstructure affects the application performance.
Collapse
Affiliation(s)
- Yang Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kaijuan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yaxin Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhanpeng Wu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Thomas P. Russell
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
29
|
Lu D, Zhao H, Zhang X, Chen Y, Feng L. New Horizons for MXenes in Biosensing Applications. BIOSENSORS 2022; 12:820. [PMID: 36290957 PMCID: PMC9599192 DOI: 10.3390/bios12100820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 05/06/2023]
Abstract
Over the last few decades, biosensors have made significant advances in detecting non-invasive biomarkers of disease-related body fluid substances with high sensitivity, high accuracy, low cost and ease in operation. Among various two-dimensional (2D) materials, MXenes have attracted widespread interest due to their unique surface properties, as well as mechanical, optical, electrical and biocompatible properties, and have been applied in various fields, particularly in the preparation of biosensors, which play a critical role. Here, we systematically introduce the application of MXenes in electrochemical, optical and other bioanalytical methods in recent years. Finally, we summarise and discuss problems in the field of biosensing and possible future directions of MXenes. We hope to provide an outlook on MXenes applications in biosensing and to stimulate broader interests and research in MXenes across different disciplines.
Collapse
Affiliation(s)
- Decheng Lu
- Department of Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Huijuan Zhao
- Department of Materials Genome Institute, Shanghai University, Shanghai 200444, China
- Qing Wei Chang College, Shanghai University, Shanghai 200444, China
| | - Xinying Zhang
- Department of Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Yingying Chen
- Department of Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Lingyan Feng
- Department of Materials Genome Institute, Shanghai University, Shanghai 200444, China
- Shanghai Engineering Research Center of Organ Repair, Shanghai 200444, China
| |
Collapse
|
30
|
Ranjbari S, Darroudi M, Hatamluyi B, Arefinia R, Aghaee-Bakhtiari SH, Rezayi M, Khazaei M. Application of MXene in the diagnosis and treatment of breast cancer: A critical overview. Front Bioeng Biotechnol 2022; 10:984336. [PMID: 36091438 PMCID: PMC9449700 DOI: 10.3389/fbioe.2022.984336] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/26/2022] [Indexed: 12/07/2022] Open
Abstract
Breast cancer is the second most common cancer worldwide. Prognosis and timely treatment can reduce the illness or improve it. The use of nanomaterials leads to timely diagnosis and effective treatment. MXenes are a 2D material with a unique composition of attributes, containing significant electrical conductance, high optical characteristics, mechanical consistency, and excellent optical properties. Current advances and insights show that MXene is far more promising in biotechnology applications than current nanobiotechnology systems. MXenes have various applications in biotechnology and biomedicine, such as drug delivery/loading, biosensor, cancer treatment, and bioimaging programs due to their high surface area, excellent biocompatibility, and physicochemical properties. Surface modifications MXenes are not only biocompatible but also have multifunctional properties, such as aiming ligands for preferential agglomeration at the tumor sites for photothermal treatment. Studies have shown that these nanostructures, detection, and breast cancer therapy are more acceptable than present nanosystems in in vivo and in vitro. This review article aims to investigate the structure of MXene, its various synthesis methods, its application to cancer diagnosis, cytotoxicity, biodegradability, and cancer treatment by the photothermal process (in-vivo and in-vitro).
Collapse
Affiliation(s)
- Sara Ranjbari
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahdieh Darroudi
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, School of Science, Mashhad University of Medical Science, Mashhad, Iran
| | - Behnaz Hatamluyi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Arefinia
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, School of Science, Mashhad University of Medical Science, Mashhad, Iran
| | - Majid Rezayi
- Department of Medical Biotechnology and Nanotechnology, School of Science, Mashhad University of Medical Science, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Science, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Science, Mashhad, Iran
- *Correspondence: Majid Rezayi, ; Majid Khazaei,
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Science, Mashhad, Iran
- *Correspondence: Majid Rezayi, ; Majid Khazaei,
| |
Collapse
|
31
|
Zhong Y, Huang S, Feng Z, Fu Y, Mo A. Recent advances and trends in the applications of MXene nanomaterials for tissue engineering and regeneration. J Biomed Mater Res A 2022; 110:1840-1859. [PMID: 35975580 DOI: 10.1002/jbm.a.37438] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/14/2022] [Accepted: 08/03/2022] [Indexed: 11/08/2022]
Abstract
MXene, as a new two-dimensional nanomaterial, is endowed with lots of particular properties, such as large surface area, excellent conductivity, biocompatibility, biodegradability, hydrophilicity, antibacterial activity, and so on. In the past few years, MXene nanomaterials have become a rising star in biomedical fields including biological imaging, tumor diagnosis, biosensor, and tissue engineering. In this review, we sum up the recent applications of MXene nanomaterials in the field of tissue engineering and regeneration. First, we briefly introduced the synthesis and surface modification engineering of MXene. Then we focused on the application and development of MXene and MXene-based composites in skin, bone, nerve and heart tissue engineering. Uniquely, we also paid attention to some research on MXene with few achievements at present but might become a new trend in tissue engineering and regeneration in the future. Finally, this paper will also discuss several challenges faced by MXene nanomaterials in the clinical application of tissue engineering.
Collapse
Affiliation(s)
- Yongjin Zhong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Si Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zeru Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Anchun Mo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Idumah CI. Emerging advancements in MXene polysaccharide bionanoarchitectures and biomedical applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2098297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University Awka, Awka, Anambra State, Nigeria
| |
Collapse
|
33
|
Cao Y, Chang T, Fang C, Zhang Y, Liu H, Zhao G. Inhibition Effect of Ti 3C 2T x MXene on Ice Crystals Combined with Laser-Mediated Heating Facilitates High-Performance Cryopreservation. ACS NANO 2022; 16:8837-8850. [PMID: 35696325 DOI: 10.1021/acsnano.1c10221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The phenomena of ice formation and growth are of great importance for climate science, regenerative medicine, cryobiology, and food science. Hence, how to control ice formation and growth remains a challenge in these fields and attracts great interest from widespread researchers. Herein, the ice regulation ability of the two-dimensional MXene Ti3C2Tx in both the cooling and thawing processes is explored. Molecularly speaking, the ice growth inhibition mechanism of Ti3C2Tx MXene is ascribed to the formation of hydrogen bonds between functional groups of -O-, -OH, and -F distributed on the surface of Ti3C2Tx and ice/water molecules, which was elucidated by the molecular dynamics simulation method. In the cooling process, Ti3C2Tx can decrease the supercooling degree and inhibit the sharp edge morphology of ice crystals. Moreover, taking advantage of the outstanding photothermal conversion property of Ti3C2Tx, rapid ice melting can be achieved, thus reducing the phenomena of devitrification and ice recrystallization. Based on the ice restriction performance of Ti3C2Tx mentioned above, Ti3C2Tx is applied for cryopreservation of stem-cell-laden hydrogel constructs. The results show that Ti3C2Tx can reduce cryodamage to stem cells induced by ice injury in both the cooling and thawing processes and finally increase the cell viability from 38.4% to 80.9%. In addition, Ti3C2Tx also shows synergetic antibacterial activity under laser irradiation, thus realizing sterile cryopreservation of stem cells. Overall, this work explores the ice inhibition performance of Ti3C2Tx, elucidates the physical mechanism, and further achieves application of Ti3C2Tx in the field of cell cryopreservation.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Blood Transfusion, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Tie Chang
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
| | - Chao Fang
- Department of Blood Transfusion, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yuanyuan Zhang
- Department of Blood Transfusion, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Huilan Liu
- Department of Blood Transfusion, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Gang Zhao
- Department of Blood Transfusion, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
34
|
Koyappayil A, Chavan SG, Roh YG, Lee MH. Advances of MXenes; Perspectives on Biomedical Research. BIOSENSORS 2022; 12:454. [PMID: 35884257 PMCID: PMC9313156 DOI: 10.3390/bios12070454] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/25/2022]
Abstract
The last decade witnessed the emergence of a new family of 2D transition metal carbides and nitrides named MXenes, which quickly gained momentum due to their exceptional electrical, mechanical, optical, and tunable functionalities. These outstanding properties also rendered them attractive materials for biomedical and biosensing applications, including drug delivery systems, antimicrobial applications, tissue engineering, sensor probes, auxiliary agents for photothermal therapy and hyperthermia applications, etc. The hydrophilic nature of MXenes with rich surface functional groups is advantageous for biomedical applications over hydrophobic nanoparticles that may require complicated surface modifications. As an emerging 2D material with numerous phases and endless possible combinations with other 2D materials, 1D materials, nanoparticles, macromolecules, polymers, etc., MXenes opened a vast terra incognita for diverse biomedical applications. Recently, MXene research picked up the pace and resulted in a flood of literature reports with significant advancements in the biomedical field. In this context, this review will discuss the recent advancements, design principles, and working mechanisms of some interesting MXene-based biomedical applications. It also includes major progress, as well as key challenges of various types of MXenes and functional MXenes in conjugation with drug molecules, metallic nanoparticles, polymeric substrates, and other macromolecules. Finally, the future possibilities and challenges of this magnificent material are discussed in detail.
Collapse
Affiliation(s)
- Aneesh Koyappayil
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, Korea; (A.K.); (S.G.C.)
| | - Sachin Ganpat Chavan
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, Korea; (A.K.); (S.G.C.)
| | - Yun-Gil Roh
- Department of Convergence in Health and Biomedicine, Chungbuk University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Korea;
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, Korea; (A.K.); (S.G.C.)
| |
Collapse
|
35
|
Recent advances in lignosulfonate filled hydrogel for flexible wearable electronics: A mini review. Int J Biol Macromol 2022; 212:393-401. [PMID: 35618087 DOI: 10.1016/j.ijbiomac.2022.05.154] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/22/2022] [Indexed: 12/26/2022]
Abstract
With the rapid development of flexible wearable devices, various polymer hydrogels have gained immense progress due to their adjustable mechanical properties, high conductivity, super sensitivity, good biocompatibility and adaptable wearability. Lignosulfonate (LS), generating from the sulfite pulping industry, was emerged as a promising filler in polymer hydrogels with great potential for multifunctional wearable electronics. Herein, we comprehensively review the latest research progress associated with LS-based hydrogels. Firstly, the function mechanism of lignosulfonate in diverse polymer hydrogels was introduced in detail. Then, the rational design strategies of LS filled multifunctional hydrogels was summarized as toughening filler, adhesive agent, conductive filler dispersant, UV protectant and catalysts. Finally, the future development of LS filled hydrogel for flexible wearable electronics was proposed.
Collapse
|
36
|
2D MXenes for combatting COVID-19 Pandemic: A perspective on latest developments and innovations. FLATCHEM 2022; 33. [PMCID: PMC9055790 DOI: 10.1016/j.flatc.2022.100377] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The COVID-19 pandemic has adversely affected the world, causing enormous loss of lives. A greater impact on the economy was also observed worldwide. During the pandemic, the antimicrobial aprons, face masks, sterilizers, sensor processed touch-free sanitizers, and highly effective diagnostic devices having greater sensitivity and selectivity helped to foster the healthcare facilities. Furthermore, the research and development sectors are tackling this emergency with the rapid invention of vaccines and medicines. In this regard, two-dimensional (2D) nanomaterials are greatly explored to combat the extreme severity of the pandemic. Among the nanomaterials, the 2D MXene is a prospective element due to its unique properties like greater surface functionalities, enhanced conductivity, superior hydrophilicity, and excellent photocatalytic and/or photothermal properties. These unique properties of MXene can be utilized to fabricate face masks, PPE kits, face shields, and biomedical instruments like efficient biosensors having greater antiviral activities. MXenes can also cure comorbidities in COVID-19 patients and have high drug loading as well as controlled drug release capacity. Moreover, the remarkable biocompatibility of MXene adds a feather in its cap for diverse biomedical applications. This review briefly explains the different synthesis processes of 2D MXenes, their biocompatibility, cytotoxicity and antiviral features. In addition, this review also discusses the viral cycle of SARS-CoV-2 and its inactivation mechanism using MXene. Finally, various applications of MXene for combatting the COVID-19 pandemic and their future perspectives are discussed.
Collapse
|
37
|
Zhou X, Hao Y, Li Y, Peng J, Wang G, Ong W, Li N. MXenes: An emergent materials for packaging platforms and looking beyond. NANO SELECT 2022. [DOI: 10.1002/nano.202200023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Xing Zhou
- Faculty of Printing Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an P. R. China
| | - Yaya Hao
- Faculty of Printing Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an P. R. China
| | - Yaxin Li
- Faculty of Printing Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an P. R. China
| | - Jiahe Peng
- Key Laboratory of Silicate Materials for Architectures & Research Center for Materials Genome Engineering Wuhan University of Technology Hubei P. R. China
| | - Guosheng Wang
- Faculty of Printing Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an P. R. China
| | - Wee‐Jun Ong
- School of Energy and Chemical Engineering Xiamen University Malaysia Selangor Darul Ehsan Malaysia
| | - Neng Li
- Key Laboratory of Silicate Materials for Architectures & Research Center for Materials Genome Engineering Wuhan University of Technology Hubei P. R. China
- Shenzhen Research Institute of Wuhan University of Technology Shenzhen China
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| |
Collapse
|
38
|
Pires LS, Magalhães FD, Pinto AM. New Polymeric Composites Based on Two-Dimensional Nanomaterials for Biomedical Applications. Polymers (Basel) 2022; 14:1464. [PMID: 35406337 PMCID: PMC9003422 DOI: 10.3390/polym14071464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023] Open
Abstract
The constant evolution and advancement of the biomedical field requires robust and innovative research. Two-dimensional nanomaterials are an emerging class of materials that have risen the attention of the scientific community. Their unique properties, such as high surface-to-volume ratio, easy functionalization, photothermal conversion, among others, make them highly versatile for a plethora of applications ranging from energy storage, optoelectronics, to biomedical applications. Recent works have proven the efficiency of 2D nanomaterials for cancer photothermal therapy (PTT), drug delivery, tissue engineering, and biosensing. Combining these materials with hydrogels and scaffolds can enhance their biocompatibility and improve treatment for a variety of diseases/injuries. However, given that the use of two-dimensional nanomaterials-based polymeric composites for biomedical applications is a very recent subject, there is a lot of scattered information. Hence, this review gathers the most recent works employing these polymeric composites for biomedical applications, providing the reader with a general overview of their potential.
Collapse
Affiliation(s)
- Laura S. Pires
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal; (L.S.P.); (F.D.M.)
| | - Fernão D. Magalhães
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal; (L.S.P.); (F.D.M.)
| | - Artur M. Pinto
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal; (L.S.P.); (F.D.M.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| |
Collapse
|
39
|
Szuplewska A, Kulpińska D, Jakubczak M, Dybko A, Chudy M, Olszyna A, Brzózka Z, Jastrzębska AM. The 10th anniversary of MXenes: Challenges and prospects for their surface modification toward future biotechnological applications. Adv Drug Deliv Rev 2022; 182:114099. [PMID: 34990793 DOI: 10.1016/j.addr.2021.114099] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/01/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023]
Abstract
A broad family of two-dimensional (2D) materials - carbides, nitrides, and carbonitrides of early transition metals, called MXenes, became a newcomer in the flatland at the turn of 2010 and 2011 (over ten years ago). Their unique physicochemical properties made them attractive for many applications, highly boosting the development of various fields, including biotechnological. However, MXenes' functional features that impact their bioactivity and toxicity are still not fully well understood. This study discusses the essentials for MXenes's surface modifications toward their application in modern biotechnology and nanomedicine. We survey modification strategies in context of cytotoxicity, biocompatibility, and most prospective applications ready to implement in medical practice. We put the discussion on the material-structure-chemistry-property relationship into perspective and concentrate on overarching challenges regarding incorporating MXenes into nanostructured organic/inorganic bioactive architectures. It is another emerging group of materials that are interesting from the biomedical point of view as well. Finally, we present an influential outlook on the growing demand for future research in this field.
Collapse
Affiliation(s)
- Aleksandra Szuplewska
- Warsaw University of Technology, Faculty of Chemistry, 00-664 Warsaw, Noakowskiego 3, Poland.
| | - Dominika Kulpińska
- Warsaw University of Technology, Faculty of Chemistry, 00-664 Warsaw, Noakowskiego 3, Poland
| | - Michał Jakubczak
- Warsaw University of Technology, Faculty of Materials Science and Engineering, 02-507 Warsaw, Wołoska 141, Poland
| | - Artur Dybko
- Warsaw University of Technology, Faculty of Chemistry, 00-664 Warsaw, Noakowskiego 3, Poland
| | - Michał Chudy
- Warsaw University of Technology, Faculty of Chemistry, 00-664 Warsaw, Noakowskiego 3, Poland
| | - Andrzej Olszyna
- Warsaw University of Technology, Faculty of Materials Science and Engineering, 02-507 Warsaw, Wołoska 141, Poland
| | - Zbigniew Brzózka
- Warsaw University of Technology, Faculty of Chemistry, 00-664 Warsaw, Noakowskiego 3, Poland
| | - Agnieszka M Jastrzębska
- Warsaw University of Technology, Faculty of Materials Science and Engineering, 02-507 Warsaw, Wołoska 141, Poland.
| |
Collapse
|
40
|
Damiri F, Rahman MH, Zehravi M, Awaji AA, Nasrullah MZ, Gad HA, Bani-Fwaz MZ, Varma RS, Germoush MO, Al-Malky HS, Sayed AA, Rojekar S, Abdel-Daim MM, Berrada M. MXene (Ti 3C 2T x)-Embedded Nanocomposite Hydrogels for Biomedical Applications: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1666. [PMID: 35268907 PMCID: PMC8911478 DOI: 10.3390/ma15051666] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023]
Abstract
Polymeric nanocomposites have been outstanding functional materials and have garnered immense attention as sustainable materials to address multi-disciplinary problems. MXenes have emerged as a newer class of 2D materials that produce metallic conductivity upon interaction with hydrophilic species, and their delamination affords monolayer nanoplatelets of a thickness of about one nm and a side size in the micrometer range. Delaminated MXene has a high aspect ratio, making it an alluring nanofiller for multifunctional polymer nanocomposites. Herein, we have classified and discussed the structure, properties and application of major polysaccharide-based electroactive hydrogels (hyaluronic acid (HA), alginate sodium (SA), chitosan (CS) and cellulose) in biomedical applications, starting with the brief historical account of MXene's development followed by successive discussions on the synthesis methods, structures and properties of nanocomposites encompassing polysaccharides and MXenes, including their biomedical applications, cytotoxicity and biocompatibility aspects. Finally, the MXenes and their utility in the biomedical arena is deliberated with an eye on potential opportunities and challenges anticipated for them in the future, thus promoting their multifaceted applications.
Collapse
Affiliation(s)
- Fouad Damiri
- Labortory of Biomolecules and Organic Synthesis (BioSynthO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco
| | - Md Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon, Korea
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University Alkharj, Alkharj 11942, Saudi Arabia
| | - Aeshah A Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohammed Z Nasrullah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Heba A Gad
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Mutasem Z Bani-Fwaz
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Mousa O Germoush
- Biology Department, College of Science, Jouf University, Sakaka 72388, Saudi Arabia
| | - Hamdan S Al-Malky
- Regional Drug Information Center, Ministry of Health, Jeddah 21589, Saudi Arabia
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Satish Rojekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohammed Berrada
- Labortory of Biomolecules and Organic Synthesis (BioSynthO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco
| |
Collapse
|
41
|
Wang T, Wang J, Li Z, Yue M, Qing X, Zhang P, Liao X, Fan Z, Yang S. PVA
/
SA
/
MXene
dual‐network conductive hydrogel for wearable sensor to monitor human motions. J Appl Polym Sci 2022. [DOI: 10.1002/app.51627] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tingting Wang
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
- School of Chemical Engineering Northwest Minzu University Lanzhou China
| | - Jinqing Wang
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
| | - Zhangpeng Li
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou China
- Qingdao Center of Resource Chemistry & New Materials Qingdao China
| | - Mingqiang Yue
- School of Chemical Engineering Northwest Minzu University Lanzhou China
| | - Xiaoli Qing
- School of Stomatology Lanzhou University Lanzhou China
| | - Pengxia Zhang
- School of Stomatology Lanzhou University Lanzhou China
| | - Xiaozhu Liao
- School of Stomatology Lanzhou University Lanzhou China
| | - Zengjie Fan
- School of Stomatology Lanzhou University Lanzhou China
| | - Shengrong Yang
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
42
|
Zhu S, Wang D, Li M, Zhou C, Yu D, Lin Y. Recent advances in flexible and wearable chemo- and bio-sensors based on two-dimensional transition metal carbides and nitrides (MXenes). J Mater Chem B 2022; 10:2113-2125. [DOI: 10.1039/d1tb02759j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Due to their excellent hydrophilicity, outstanding conductivity, unique structures, and physicochemical properties, MXenes have become a potential candidate material for flexible and wearable chemo- and bio-sensors.
Collapse
Affiliation(s)
- Shuihong Zhu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Di Wang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Mancai Li
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Chuan Zhou
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, P. R. China
| | - Deshuai Yu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Youhui Lin
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361102, China
| |
Collapse
|
43
|
Huang R, Lan R, Shen C, Zhang Z, Wang Z, Bao J, Wang Z, Zhang L, Hu W, Yu Z, Zhu S, Wang L, Yang H. Remotely Controlling Drug Release by Light-Responsive Cholesteric Liquid Crystal Microcapsules Triggered by Molecular Motors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59221-59230. [PMID: 34851087 DOI: 10.1021/acsami.1c16367] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stimuli-responsive smart nanocarriers are an emerging class of materials applicable in fields including drug delivery and tissue engineering. Instead of constructing responsive polymer shells to control the release and delivery of drugs, in this work, we put forward a novel strategy to endow the internal drugs with light responsivity. The microcapsule consisted of molecular motor (MM)-doped cholesteric liquid crystals (CLCs) and drugs. The drug in gelatin-gum arabic microcapsules can protect the carried drugs for a long time with a low release speed totally resulting from drug diffusion. Under UV light, the MM isomerizes and the chirality changes, inducing the alteration of the superstructure of the CLCs. In this process, the cooperative molecular disturbance accelerates the diffusion of the drugs from the microcapsule core to the outside. As a result, thanks to the cooperative effect of liquid crystalline mesogens, molecular-scale geometric changes of motors could be amplified to the microscale disturbance of the self-organized superstructure of the CLCs, resulting in the acceleration of the drug release. This method is hoped to provide opportunities in the design and fabrication of novel functional drug delivery systems.
Collapse
Affiliation(s)
- Rui Huang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Ruochen Lan
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Chen Shen
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Zhongping Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Zichen Wang
- College of Materials Science and Opto-Electronic Technology, University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinying Bao
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Zizheng Wang
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Lanying Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Wei Hu
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Zhan Yu
- Beijing Anzhen Hospital of Capital Medical University, 2 Anzhen Road, Chaoyang District, Beijing 100020, P. R. China
| | - Siquan Zhu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
- Beijing Anzhen Hospital of Capital Medical University, 2 Anzhen Road, Chaoyang District, Beijing 100020, P. R. China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
| | - Huai Yang
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
44
|
Davis R, Urbanowski RA, Gaharwar AK. 2D layered nanomaterials for therapeutics delivery. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 20. [DOI: 10.1016/j.cobme.2021.100319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Zhang Z, Jiang W, Xie X, Liang H, Chen H, Chen K, Zhang Y, Xu W, Chen M. Recent Developments of Nanomaterials in Hydrogels: Characteristics, Influences, and Applications. ChemistrySelect 2021. [DOI: 10.1002/slct.202103528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Zongzheng Zhang
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Wenqing Jiang
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Xinmin Xie
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Haiqing Liang
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Hao Chen
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Kun Chen
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Ying Zhang
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Wenlong Xu
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Mengjun Chen
- School of Qilu Transportation Shandong University Jinan 250002 China
| |
Collapse
|
46
|
Wang G, Yang Z, Wu L, Wang J, Liu X. Studies on improved stability and electrochemical activity of titanium carbide MXene-polymer nanocomposites. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Review on MXenes-based nanomaterials for sustainable opportunities in energy storage, sensing and electrocatalytic reactions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Chaudhary V, Gautam A, Mishra YK, Kaushik A. Emerging MXene-Polymer Hybrid Nanocomposites for High-Performance Ammonia Sensing and Monitoring. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2496. [PMID: 34684936 PMCID: PMC8538932 DOI: 10.3390/nano11102496] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/12/2021] [Accepted: 09/18/2021] [Indexed: 12/22/2022]
Abstract
Ammonia (NH3) is a vital compound in diversified fields, including agriculture, automotive, chemical, food processing, hydrogen production and storage, and biomedical applications. Its extensive industrial use and emission have emerged hazardous to the ecosystem and have raised global public health concerns for monitoring NH3 emissions and implementing proper safety strategies. These facts created emergent demand for translational and sustainable approaches to design efficient, affordable, and high-performance compact NH3 sensors. Commercially available NH3 sensors possess three major bottlenecks: poor selectivity, low concentration detection, and room-temperature operation. State-of-the-art NH3 sensors are scaling up using advanced nano-systems possessing rapid, selective, efficient, and enhanced detection to overcome these challenges. MXene-polymer nanocomposites (MXP-NCs) are emerging as advanced nanomaterials of choice for NH3 sensing owing to their affordability, excellent conductivity, mechanical flexibility, scalable production, rich surface functionalities, and tunable morphology. The MXP-NCs have demonstrated high performance to develop next-generation intelligent NH3 sensors in agricultural, industrial, and biomedical applications. However, their excellent NH3-sensing features are not articulated in the form of a review. This comprehensive review summarizes state-of-the-art MXP-NCs fabrication techniques, optimization of desired properties, enhanced sensing characteristics, and applications to detect airborne NH3. Furthermore, an overview of challenges, possible solutions, and prospects associated with MXP-NCs is discussed.
Collapse
Affiliation(s)
- Vishal Chaudhary
- Research Cell and Department of Physics, Bhagini Nivedita College, University of Delhi, New Delhi 110045, India
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad 500046, India;
| | - Yogendra K. Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark;
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA
| |
Collapse
|
49
|
Sun Z, Song C, Zhou J, Hao C, Liu W, Liu H, Wang J, Huang M, He S, Yang M. Rapid Photothermal Responsive Conductive MXene Nanocomposite Hydrogels for Soft Manipulators and Sensitive Strain Sensors. Macromol Rapid Commun 2021; 42:e2100499. [PMID: 34480782 DOI: 10.1002/marc.202100499] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/24/2021] [Indexed: 02/04/2023]
Abstract
Stimulus-responsive hydrogels are of great significance in soft robotics, wearable electronic devices, and sensors. Near-infrared (NIR) light is considered an ideal stimulus as it can trigger the response behavior remotely and precisely. In this work, a smart flexible stimuli-responsive hydrogel with excellent photothermal property and decent conductivity are prepared by incorporating MXene nanosheets into the physically cross-linked poly(N-isopropyl acrylamide) hydrogel matrix. Because of outstanding photothermal effect and dispersion of MXene, the composite hydrogel exhibits rapid photothermal responsiveness and excellent photothermal stability under the NIR irradiation. Furthermore, the anisotropic bilayer hydrogel actuator shows fast and controllable light-driven bending behavior, which can be used as a light-controlled soft manipulator. Meanwhile, the hydrogel sensor exhibits cycling stability and good durability in detecting various deformation and real-time human activities. Therefore, the present study involving the fabrication of MXene nanocomposite hydrogels for potential applications in remotely controlled actuator and wearable electronic device provides a new method for the development of photothermal responsive conductive hydrogels.
Collapse
Affiliation(s)
- Zhichao Sun
- School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, P. R. China
| | - Changyuan Song
- School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, P. R. China
| | - Junjie Zhou
- School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, P. R. China
| | - Chaobo Hao
- School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, P. R. China
| | - Wentao Liu
- School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, P. R. China
| | - Hao Liu
- School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, P. R. China
| | - Jianfeng Wang
- School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, P. R. China
| | - Miaoming Huang
- School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, P. R. China
| | - Suqin He
- School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, P. R. China.,Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
| | - Mingcheng Yang
- Henan Academy of Sciences, Isotope Institute Co., Ltd., 7 Songshan South Road, Zhengzhou, 450015, China
| |
Collapse
|
50
|
Lin X, Li Z, Qiu J, Wang Q, Wang J, Zhang H, Chen T. Fascinating MXene nanomaterials: emerging opportunities in the biomedical field. Biomater Sci 2021; 9:5437-5471. [PMID: 34296233 DOI: 10.1039/d1bm00526j] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In recent years, there has been rapid progress in MXene research due to its distinctive two-dimensional structure and outstanding properties. Especially in biomedical applications, MXenes have attracted widespread favor with numerous studies on biosafety, bioimaging, therapy, and biosensing, although their development is still in the experimental stage. A comprehensive understanding of the current status of MXenes in biomedicine will promote their use in clinical applications. Here, we review advances in MXene research. First, we introduce the methods of synthesis, surface modification and functionalization of MXenes. Then, we summarize the biosafety and biocompatibility, paving the way for specific biomedical applications. On this basis, MXene nanostructures are described with respect to their use in antibacterial, bioimaging, cancer therapy, tissue regeneration and biosensor applications. Finally, we discuss MXene as a promising candidate material for further applications in biomedicine.
Collapse
Affiliation(s)
- Xiangping Lin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Zhongjun Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Jinmei Qiu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Jianxin Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China. and Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Han Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|