1
|
Wu X, Zhang J, Wang M, Sun Z, Chang C, Ying Y, Li D, Zheng H. Effect of emulsifier type on camellia oil-based nanostructured lipid carriers for delivery of curcumin. Food Chem 2025; 482:144193. [PMID: 40209370 DOI: 10.1016/j.foodchem.2025.144193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025]
Abstract
In this study, a camellia oil-based nanostructured lipid carrier (NLC) was developed for the delivery of curcumin (Cur). To identify suitable natural emulsifiers, the effects of three different types, including tea saponin (TS), sodium caseinate (SC), and soy lecithin (SL), on the structure, stability, and digestibility of Cur-NLCs were investigated, with Tween 80 (T80) serving as a positive control. The results showed that the absolute zeta potential of NLCs prepared with natural emulsifiers exceeded 30 mV, and their encapsulation efficiency was above 85 %. Among them, TS-Cur-NLC demonstrated good uniformity and stability after 30 days of storage at 25 °C. Meanwhile, the bioavailability of SC-Cur-NLC reached 67.48 %, showing no significant difference from that of T80-Cur-NLC (p > 0.05). This study broadens the application scope of camellia oil and provides a theoretical foundation for utilizing natural emulsifiers in the development of delivery systems for fat-soluble active substances.
Collapse
Affiliation(s)
- Xinghui Wu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiaxin Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Mengqi Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhouliang Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chengfu Chang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - YunXin Ying
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Dan Li
- Heilongjiang Green Food Science Research Institute, Harbin, Heilongjiang 150028, China.
| | - Huanyu Zheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science Research Institute, Harbin, Heilongjiang 150028, China.
| |
Collapse
|
2
|
Arzeni C, Pilosof AMR. Modulation of coconut oil crystallization by DATEM and glycerol monostearate for the creation of nanostructured lipid carriers. Food Chem 2025; 482:144146. [PMID: 40187325 DOI: 10.1016/j.foodchem.2025.144146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/27/2025] [Accepted: 03/29/2025] [Indexed: 04/07/2025]
Abstract
The feasibility of developing nanostructured lipid carriers (NLCs) based on coconut oil (CO) was analyzed by studying the crystallization behavior of bulk and emulsified CO in the presence of diacetyl tartaric acid ester of monoglycerides (DATEM) and glycerol monostearate (GM). Supercooling was almost halved compared to pure CO, and crystallization began at higher temperatures due to the seed effect of the emulsifiers. A significant difference in the crystallization enthalpy (ΔH) of CO was observed. Consequently, the solid fat content decreased to only 63-66 % when CO was emulsified. Both pure and emulsified CO crystallized in the β'-2 polymorph. The Avrami model showed reduced crystal dimensionality in CO-emulsifier blends and emulsions. NLCs derived from CO emulsions formulated with GM as emulsifier were most suitable due to the absence of flocculation, reduced CO crystallization, and melting above 37 °C.
Collapse
Affiliation(s)
- Carolina Arzeni
- ITAPROQ - Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Ana M R Pilosof
- ITAPROQ - Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
3
|
Feng J, Wang Z, Song H, Huang W, Xu L, Teng C, Li Y. Boosting curcumin's chemical stability and intestinal absorption via nanostructured lipid carriers: The impact of lipid composition. Food Chem 2025; 479:143785. [PMID: 40112622 DOI: 10.1016/j.foodchem.2025.143785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/15/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025]
Abstract
This study investigated how the lipid composition of nanostructured lipid carriers (NLCs) affects the chemical stability and intestinal absorption of encapsulated curcumin. Spherical NLCs ranging from 210 to 260 nm in diameter were prepared, and structural transition occurred at 25.67 % (w/w) medium-chain triglyceride (MCT) content. NLCs with 30 % MCT exhibited the longest curcumin half-lives: 247.10, 50.01, and 28.30 days at 4 °C, 25 °C, and 50 °C, respectively. The optimal solid shell thickness for curcumin stabilization was 38.52 nm. Inflamed enterocytes internalized NLCs via cluster differentiation-44-mediated endocytosis due to the hyaluronic acid-receptor specific binding. The high lipid phase-interface fusogenicity and surface hydrophobicity promote the cellular uptake of NLCs containing 20 % or 30 % MCT and the caveolin-related routes. These NLCs were integrated into chylomicron assembly process and exocytosed as chylomicron mimics. Consequently, encapsulated curcumin bypassed lysosomal degradation and hepatic first-pass effect, leading to enhanced anti-inflammatory activity and bioavailability, up to 10.74 times higher.
Collapse
Affiliation(s)
- Jin Feng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| | - Zhen Wang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Wuyang Huang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Lujing Xu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Cong Teng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Ying Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| |
Collapse
|
4
|
Xing Z, Chen H, Yan Y, Gong D, Zhang G. Emulsions and oleogels stabilized by egg white protein-tannic acid-xanthan gum conjugate: Preparation, characterization and potential application in curcumin. Int J Biol Macromol 2025; 312:144211. [PMID: 40373925 DOI: 10.1016/j.ijbiomac.2025.144211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 05/07/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
In this study, the egg white protein (EWP)-tannic acid (TA)-xanthan gum (XG) ternary conjugate was used to construct emulsion and oleogel delivery systems to load curcumin. The effect of EWP-TA-XG conjugate concentration on the properties of emulsions and oleogels as well as the digestion characteristics of curcumin-loaded emulsion and oleogel were investigated. It was found that with the increase of EWP-TA-XG conjugate concentration, the D[4, 3] of emulsions decreased, while the absolute value of zeta potential and the stability of the emulsions increased. All emulsions showed good stability after centrifugation at different temperature, pH and ionic strength. Additionally, the emulsions at high concentrations of EWP-TA-XG conjugate (0.6-1.0 %, wt) had high viscosity and good gel property. As the concentration of EWP-TA-XG conjugate increased, the oil binding capacity of oleogels enhanced (90.38-99.87 %), and all oleogels showed solid behaviors (G' > G″). The oleogels had a higher antioxidant activity than bulk oil, and their antioxidant capacity was positively correlated with the concentration of EWP-TA-XG conjugate. It was also found that the free fatty acid release rate and bioaccessibility of curcumin in the emulsion (66.63 % and 65.53 %) and oleogel (64.24 % and 62.20 %) systems were significantly improved compared to those in bulk oil (30.63 % and 29.75 %), indicating that the emulsion and oleogel delivery systems played a good protective role in the delivery of curcumin. This study may offer novel insights into the development of EWP-TA-XG conjugates-based emulsion and oleogel as delivery systems in encapsulating and delivering fat-soluble active substances.
Collapse
Affiliation(s)
- Zenghong Xing
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hongtao Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yuzhong Yan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Deming Gong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang 330200, China.
| |
Collapse
|
5
|
Yusoff MHM, Salleh MSH, Shafie MH. Isolation and characterization of antioxidant and anti-tyrosinase activities of Cosmos caudatus leaf polysaccharides using microwave-assisted extraction. Int J Biol Macromol 2025; 311:144154. [PMID: 40368199 DOI: 10.1016/j.ijbiomac.2025.144154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 05/08/2025] [Accepted: 05/10/2025] [Indexed: 05/16/2025]
Abstract
This study investigates the extraction of Cosmos caudatus leaf polysaccharides (CCLP) using citric acid monohydrate (CAM) as the extraction medium. Moreover, the extraction was assisted with microwave-assisted extraction due to its advantages as high extraction efficiency with low energy consumption and short extraction period. Optimal conditions yielded a maximum of 36.06 % which achieved by Box-Behnken design analysis. Characterization studies revealed that CCLP has β-configuration with branching properties, indicated by the presence of methyl, acetyl, and sugar ring structures. CCLP exhibit low methoxyl and considered as glucose-rich polysaccharides due to glucose as its major monosaccharide compositions. Additionally, CCLP demonstrated good gelling properties, moderate viscosity and high-water solubility which further supported by high water and oil-holding capacities, enhancing its formulation potential. Bioactivity evaluation revealed significant antioxidant properties with IC50 values of 2.15 mg/mL and 8.00 mg/mL for DPPH and ABTS radicals, respectively. CCLP also exhibited potent tyrosinase inhibition, with IC50 values of 1.69 mg/mL for monophenolase and 1.31 mg/mL for diphenolase. Furthermore, its photoprotective potential, reflected by a sun protection factor (SPF) of 25.33 %, highlights its potential utility in skincare applications. These findings suggest that CCLP, with its unique structural features and strong bioactivities is a promising bioactive ingredient for managing hyperpigmentation.
Collapse
Affiliation(s)
- Muhammad Hasnun Md Yusoff
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (I(2)U), sains@usm Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Muhammad Syahmi Hairul Salleh
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (I(2)U), sains@usm Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Muhammad Hakimin Shafie
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (I(2)U), sains@usm Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia.
| |
Collapse
|
6
|
Gopan G, Jose J, Khot KB, Bandiwadekar A, Deshpande N S. Hyaluronic acid-based hesperidin nanostructured lipid carriers loaded dissolving microneedles: A localized delivery approach loaded for the management of obesity. Int J Biol Macromol 2025; 305:140948. [PMID: 39971044 DOI: 10.1016/j.ijbiomac.2025.140948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
Obesity, a persistent imbalance of calories, has become one of the major clinical factors that result in many metabolic disorders. Despite excellent anti-obesity properties, the poor aqueous solubility of hesperidin (HES), a flavonoid, hampers its applicability. To resolve this issue and conquer oral administration's drawbacks, our study has concentrated on encapsulating HES in nanostructured lipid carriers (NLCs) and incorporating the NLCs into microneedles (MNs). By developing HES-loaded NLCs (HES-NLCs) with hyaluronic acid (HA) as a base design to form a microneedle patch (HES-NLCMNP), the study aimed to increase the stability and bioavailability of HES and provide an innovative way for the management of obesity. HES-NLCs were loaded to the microneedle, to promote anti-obesity activity. The microneedle tip, which has been composed of HA, will act as a biodegradable polymer that could effectively deliver the activity of HES-NLC to the blood stream. Furthermore, the base of the microneedle patch composed of polyvinyl alcohol (PVA) offered excellent flexibility, releasing HES and providing resistance to any adverse effects. Analysis revealed that the prepared HES-NLCs have desirable physical characteristics with an extended-release profile. The optimised NLC formulation (F3F) was later incorporated into HA-base-designed MNs that demonstrated mechanical solid integrity and effective skin penetration. In vivo pharmacokinetics significantly improved all parameters with a reduced elimination rate. Physiological, haematological, and antioxidant markers improved in treated rats, with histopathological analysis showing significant tissue alterations. The results suggest that HES-NLCMNP is a promising platform to improve drug effectiveness, patient compliance, and treatment outcomes for obesity.
Collapse
Affiliation(s)
- Gopika Gopan
- NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore, 575018, Karnataka, India
| | - Jobin Jose
- NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore, 575018, Karnataka, India.
| | - Kartik Bhairu Khot
- NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore, 575018, Karnataka, India
| | - Akshay Bandiwadekar
- NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore, 575018, Karnataka, India
| | - Shridhar Deshpande N
- NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmacology, Mangalore, 575018, Karnataka, India
| |
Collapse
|
7
|
Feng J, Liu D, Wang Z, Li C, Huang W, Liu S, Li Y. Interpenetrating network hydrogels loaded with nanostructured lipid carriers for curcumin delivery: Impact of dual crosslinking with genipin and calcium ions. Food Res Int 2025; 202:115704. [PMID: 39967160 DOI: 10.1016/j.foodres.2025.115704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 02/20/2025]
Abstract
Interpenetrating network hydrogels (IPNs) gained significant attention for applications in food structure modification and nutraceutical delivery. In this study, curcumin (Cur)-loaded nanostructured lipid carriers (NLCs) were prepared using whey protein isolate and pectic polysaccharide as emulsifiers. The NLCs were then incorporated into IPNs formed through in-situ gelation, where genipin and Ca2+ were used as gelators to crosslink the protein and pectic polysaccharide, respectively. IPNs with the highest gel compactness and rheological restoration were achieved when both gelator concentrations were set at 4.0 %. These gelators demonstrated synergistic effects, enhancing intermolecular interactions and water immobilization. Under these conditions, the IPNs exhibited optimal polymorphic stability, as well as improved chemical stability, controlled release, and in vivo retention of Cur. Furthermore, the bioavailability of Cur was enhanced by 11-fold. This study demonstrates the potential of NLC-loaded biopolymer hydrogels for efficient nutraceutical delivery.
Collapse
Affiliation(s)
- Jin Feng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| | - Dian Liu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Zhen Wang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Chunyang Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Wuyang Huang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Songbai Liu
- Department of Food Science and Nutrition, Innovation Center of Yangtze River Delta, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Ying Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| |
Collapse
|
8
|
Ferreira JGDJ, Flores VG, Marco MR, Fraga BB, Zorzo RR, de Morais PDF, Morisso FDP, Fleck JD, Charão MF, de Mattos CB, Betti AH. Diazepam nanocapsules as an alternative for sleep induction: Development study and toxicity assessment. Food Chem Toxicol 2024; 192:114962. [PMID: 39197520 DOI: 10.1016/j.fct.2024.114962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Diazepam (DZP) is a sedative medication prescribed to treat anxiety and as a sleep inducer, although its residual effects are unfavorable to patients. Nanotechnology represents a tool to improve the pharmacological characteristics of drugs, reducing their side effects. This study aimed to develop and characterize DZP nanocapsules and to evaluate their toxicity in alternative models and the hypnotic-sedative effect in mice. Nanocapsules were prepared by the nanoprecipitation method and properly characterized. Long-term and accelerated stability studies were performed. The in vitro release profile was determined by diffusion in Franz cells. The safety of the formulation was evaluated in the Caenorhabditis elegans (C. elegans) and the oral acute toxicity in mice. Pharmacological evaluation was performed using thiopental-induced sleeping time. DZP was successfully incorporated into Poly-(ɛ-caprolactone) (PCL) nanocapsules, with high entrapment efficiency. The nanocapsule did not affect the development or survival of C. elegans, different from the free drug, which affected the nematode development at the higher tested dose. No signs of toxicity, nor body mass or feed consumption changes were observed during the 14 days evaluated. Finally, this innovative formulation carrying DZP can produce a hypnotic-effect at a reduced dose compared to the free drug, with no toxicity in alternative models.
Collapse
Affiliation(s)
- Julia Gabriele de Jesus Ferreira
- Bioanalysis Laboratory, Health Sciences Institute, Universidade FEEVALE, Novo Hamburgo, RS, Brazil; Postgraduate Program on Toxicology and Analytical Toxicology, Universidade FEEVALE, Novo Hamburgo, Brazil
| | | | - Mariana Roza Marco
- Bioanalysis Laboratory, Health Sciences Institute, Universidade FEEVALE, Novo Hamburgo, RS, Brazil
| | - Bianca Bordignon Fraga
- Bioanalysis Laboratory, Health Sciences Institute, Universidade FEEVALE, Novo Hamburgo, RS, Brazil
| | - Roberta Rodrigues Zorzo
- Bioanalysis Laboratory, Health Sciences Institute, Universidade FEEVALE, Novo Hamburgo, RS, Brazil
| | | | - Fernando Dal Pont Morisso
- Advanced Materials Studies Laboratory, Health Sciences Institute, Universidade FEEVALE, Novo Hamburgo, RS, Brazil
| | - Juliane Deise Fleck
- Molecular Microbiology Laboratory, Health Sciences Institute, Universidade FEEVALE, Novo Hamburgo, RS, Brazil; Postgraduate Program on Toxicology and Analytical Toxicology, Universidade FEEVALE, Novo Hamburgo, Brazil
| | - Mariele Feiffer Charão
- Bioanalysis Laboratory, Health Sciences Institute, Universidade FEEVALE, Novo Hamburgo, RS, Brazil; Postgraduate Program on Toxicology and Analytical Toxicology, Universidade FEEVALE, Novo Hamburgo, Brazil
| | - Cristiane Bastos de Mattos
- Bioanalysis Laboratory, Health Sciences Institute, Universidade FEEVALE, Novo Hamburgo, RS, Brazil; Postgraduate Program on Toxicology and Analytical Toxicology, Universidade FEEVALE, Novo Hamburgo, Brazil
| | - Andresa Heemann Betti
- Bioanalysis Laboratory, Health Sciences Institute, Universidade FEEVALE, Novo Hamburgo, RS, Brazil; Postgraduate Program on Toxicology and Analytical Toxicology, Universidade FEEVALE, Novo Hamburgo, Brazil.
| |
Collapse
|
9
|
Tie S. Microgel delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:147-171. [PMID: 39218501 DOI: 10.1016/bs.afnr.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microgels delivery system have great potential in functional substances encapsulation, protection, release, precise delivery and nutritional intervention. Microgel is a three-dimensional network structure formed by physical or chemical crosslinking of biopolymers, whose characteristics include dispersion and swelling, stable structure, small volume and high specific surface area, and is a special kind of colloid. In this chapter, the common wall materials for preparing food grade microgels, and the main preparation principles, methods, advantages and disadvantages of microgels loaded with functional substances were firstly reviewed. Then the main characteristics of microgel as delivery system, such as deformability, high encapsulation, stimulus-responsive release and targeted delivery, and its potential benefits in intervening chronic diseases were summarized. Finally, the applications of microgel delivery system for functional substance in the field of precision nutrition were discussed. This chapter will help to design of next-generation advanced targeting microgel delivery system, and realize precision nutrition intervention of food functional substances on body health.
Collapse
Affiliation(s)
- Shanshan Tie
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, P.R. China.
| |
Collapse
|
10
|
D'Amore T, Chaari M, Falco G, De Gregorio G, Zaraî Jaouadi N, Ali DS, Sarkar T, Smaoui S. When sustainability meets health and innovation: The case of Citrus by-products for cancer chemoprevention and applications in functional foods. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2024; 58:103163. [DOI: 10.1016/j.bcab.2024.103163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
|
11
|
Sun S, Zhang X, Li J, Li Y, Zhou C, Xiang S, Tan M. Preparation and evaluation of ovalbumin-fucoidan nanoparticles for nicotinamide mononucleotide encapsulation with enhanced stability and anti-aging activity. Food Chem 2023; 418:135982. [PMID: 36996645 DOI: 10.1016/j.foodchem.2023.135982] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/16/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
Nicotinamide mononucleotide (NMN) has been recognized as a promising bio-active compound in relieving aging-related mitochondrial dysfunction. Self-assembled nanoparticles were prepared based on interaction between ovalbumin (OVA) and fucoidan to improve the stability and bio-accessibility of NMN. The OVA-fucoidan nanoparticles (OFNPs) displayed outstanding thermal stability and entrapment ability of NMN. The reactive oxygen species (ROS) analysis and senescence-associated β-galactosidase (SA-β-gal) staining characterization indicated that NMN encapsulated by OFNPs could effectively alleviate the cellular senescence of d-galactose-induced senescent cells. In vivo Caenorhabitis elegans experiment demonstrated that NMN-loaded OFNPs caused less accumulation of lipofuscin and protected NMN from thermal damage. Compared with free NMN, the NMN-loaded OFNPs prolonged lifespan from 28 to 31 days, increased 26% reproductive ability, and improved 12% body length of Caenorhabitis elegans. The results indicated that the use of nanocarriers could be a good strategy to improve anti-oxidative stress and anti-aging ability of NMN.
Collapse
Affiliation(s)
- Shan Sun
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xuedi Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jiaxuan Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yu Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Chengfu Zhou
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Siyuan Xiang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
12
|
Yu Y, Chen D, Lee YY, Chen N, Wang Y, Qiu C. Physicochemical and In Vitro Digestion Properties of Curcumin-Loaded Solid Lipid Nanoparticles with Different Solid Lipids and Emulsifiers. Foods 2023; 12:foods12102045. [PMID: 37238863 DOI: 10.3390/foods12102045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Curcumin-loaded solid lipid nanoparticles (Cur-SLN) were prepared using medium- and long chain diacylglycerol (MLCD) or glycerol tripalmitate (TP) as lipid matrix and three kinds of surfactants including Tween 20 (T20), quillaja saponin (SQ) and rhamnolipid (Rha). The MLCD-based SLNs had a smaller size and lower surface charge than TP-SLNs with a Cur encapsulation efficiency of 87.54-95.32% and the Rha-based SLNs exhibited a small size but low stability to pH decreases and ionic strength. Thermal analysis and X-ray diffraction results confirmed that the SLNs with different lipid cores showed varying structures, melting and crystallization profiles. The emulsifiers slightly impacted the crystal polymorphism of MLCD-SLNs but largely influenced that of TP-SLNs. Meanwhile, the polymorphism transition was less significant for MLCD-SLNs, which accounted for the better stabilization of particle size and higher encapsulation efficiency of MLCD-SLNs during storage. In vitro studies showed that emulsifier formulation greatly impacted on the Cur bioavailability, whereby T20-SLNs showed much higher digestibility and bioavailability than that of SQ- and Rha-SLNs possibly due to the difference in the interfacial composition. Mathematical modeling analysis of the membrane release further confirmed that Cur was mainly released from the intestinal phase and T20-SLNs showed a faster release rate compared with other formulations. This work contributes to a better understanding of the performance of MLCD in lipophilic compound-loaded SLNs and has important implications for the rational design of lipid nanocarriers and in instructing their application in functional food products.
Collapse
Affiliation(s)
- Yasi Yu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Dechu Chen
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Yee Ying Lee
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Nannan Chen
- Department of Nutrition and Food Hygiene, Guangzhou Medical University, Guangzhou 511436, China
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Chaoying Qiu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| |
Collapse
|
13
|
Yan H, Xu Y, Dai Z, Zhang Z, Bao Y, Li DJ. Comparative study of the properties of lutein nanoliposomes coated with chitosan/(-)-epigallocatechin- 3-gallate (EGCG) complexes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3306-3314. [PMID: 36737411 DOI: 10.1002/jsfa.12484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Numerous positive effects have been attributed to lutein, a lipophilic nutrient, including resisting ultraviolet radiation and protecting retinal pigment epithelial (RPE) cells against blue light damage. It also has preventive effects against cardiovascular disease and cancer. However, its use could be limited by its poor stability and low bioaccessibility in the human digestive system. An encapsulation delivery system was therefore developed to resolve these limitations. In this study, chitosan-modified lutein nanoliposomes (CS-LNLs), chitosan-EGCG covalently modified lutein nanoliposomes (C-CS-EGCG-LNLs), and chitosan-EGCG noncovalently modified lutein nanoliposomes (non-C-CS-EGCG-LNLs) were designed. The average particle size, ζ-potential, and retention of lutein during storage were measured to indicate the physicochemical stability of the modified lutein nanoliposomes. The bioaccessibility of modified lutein nanoliposomes was also investigated to demonstrate the availability of lutein in the human digestive system. RESULTS First, Fourier-transform infrared spectroscopy (FTIR) verified that covalent bonds between chitosan and EGCG were formed. Subsequently, ζ-potential results revealed that C-CS-EGCG-LNLs had a relatively stable structure in comparison with lutein nanoliposomes (LNLs). The retention rate of lutein in CS-LNLs, C-CS-EGCG-LNLs, and non-C-CS-EGCG-LNLs was improved, especially in C-CS-EGCG-LNLs (at around 70% of lutein in initial system). An in vitro digestion experiment illustrated that CS-LNLs, C-CS-EGCG-LNLs, and non-C-CS-EGCG-LNLs presented relatively higher bioaccessibility, especially in C-CS-EGCG-LNLs (at around 33% of luein in initial system), which increased 2.5 and 1.65 times in comparison with free lutein and LNLs, respectively. CONCLUSION Overall, the results showed that C-CS-EGCG-LNLs presented greater physicochemical stability and bioaccessibility than LNLs, CS-LNLs, and non-C-CS-EGCG-LNLs. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongxu Yan
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang Province, China
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yayuan Xu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhuqing Dai
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhongyuan Zhang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yihong Bao
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Da-Jing Li
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
14
|
Xu Y, Li X, Dai Z, Zhang Z, Feng L, Nie M, Liu C, Li D, Zhang M. Study on the relationship between lutein bioaccessibility and in vitro lipid digestion of nanostructured lipid carriers with different interface structures. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
15
|
Patel AS, Balasubramaniam SL, Nayak B, Camire ME. Lauric acid adsorbed cellulose nanocrystals reduced the in vitro gastrointestinal digestion of oil-water pickering emulsions. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Zhao C, Liu D, Feng L, Cui J, Du H, Wang Y, Xiao H, Zheng J. Research advances of in vivo biological fate of food bioactives delivered by colloidal systems. Crit Rev Food Sci Nutr 2022; 64:5414-5432. [PMID: 36576258 DOI: 10.1080/10408398.2022.2154741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Food bioactives exhibit various health-promoting effects and are widely used in functional foods to maintain human health. After oral intake, bioactives undergo complex biological processes before reaching the target organs to exert their biological effects. However, several factors may reduce their bioavailability. Colloidal systems have attracted special attention due to their great potential to improve bioavailability and bioefficiency. Herein, we focus on the importance of in vivo studies of the biological fates of bioactives delivered by colloidal systems. Increasing evidence demonstrates that the construction, composition, and physicochemical properties of the delivery systems significantly influence the in vivo biological fates of bioactives. These results demonstrate the great potential to control the in vivo behavior of food bioactives by designing specific delivery systems. We also compare in vivo and in vitro models used for biological studies of the fate of food bioactives delivered by colloidal systems. Meanwhile, the significance of the gut microbiota, targeted delivery, and personalized nutrition should be carefully considered. This review provides new insight for further studies of food bioactives delivered by colloidal systems, as well as scientific guidance for the reasonable design of personalized nutrition.
Collapse
Affiliation(s)
- Chengying Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Liping Feng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiefen Cui
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Yanqi Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Jinkai Zheng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Arif ST, Zaman SU, Khan MA, Tabish TA, Sohail MF, Arshad R, Kim JK, Zeb A. Augmented Oral Bioavailability and Prokinetic Activity of Levosulpiride Delivered in Nanostructured Lipid Carriers. Pharmaceutics 2022; 14:2347. [PMID: 36365165 PMCID: PMC9695558 DOI: 10.3390/pharmaceutics14112347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 09/29/2023] Open
Abstract
The present study is aimed to develop and optimize levosulpiride-loaded nanostructured lipid carriers (LSP-NLCs) for improving oral bioavailability and prokinetic activity of LSP. LSP-NLCs were optimized with D-optimal mixture design using solid lipid, liquid lipid and surfactant concentrations as independent variables. The prepared LSP-NLCs were evaluated for physicochemical properties and solid-state characterization. The in vivo oral pharmacokinetics and prokinetic activity of LSP-NLCs were evaluated in rats. LSP-NLCs formulation was optimized at Precirol® ATO 5/Labrasol (80.55/19.45%, w/w) and Tween 80/Span 80 concentration of 5% (w/w) as a surfactant mixture. LSP-NLCs showed a spherical shape with a particle size of 152 nm, a polydispersity index of 0.230 and an entrapment efficiency of 88%. The DSC and PXRD analysis revealed conversion of crystalline LSP to amorphous state after loading into the lipid matrix. LSP-NLCs displayed a 3.42- and 4.38-flods increase in AUC and Cmax after oral administration compared to LSP dispersion. In addition, LSP-NLCs showed enhanced gastric emptying (61.4%), intestinal transit (63.0%), and fecal count (68.8) compared to LSP dispersion (39.7%, 38.0% and 51.0, respectively). Taken together, these results show improved oral bioavailability and prokinetic activity of LSP-NLCs and presents a promising strategy to improve therapeutic activity of LSP for efficient treatment of gastric diseases.
Collapse
Affiliation(s)
- Sadia Tabassam Arif
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Shahiq uz Zaman
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Muhammad Ayub Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Tanveer A. Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Headington, Oxford OX37BN, UK
| | - Muhammad Farhan Sohail
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore Campus, Lahore 54000, Pakistan
| | - Rabia Arshad
- Faculty of Pharmacy, University of Lahore, Lahore 54000, Pakistan
| | - Jin-Ki Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Gyeonggi, Korea
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| |
Collapse
|
18
|
Sharmila DJS, Lakshmanan A. Molecular dynamics study of plant bioactive nutraceutical keto-Curcumin encapsulated in medium chain triglyceride oil-in-Water nanoemulsion that are stabilized by globular whey proteins. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Xiao J, Tian W, Abdullah, Wang H, Chen M, Huang Q, Zhang M, Lu M, Song M, Cao Y. Updated design strategies for oral delivery systems: maximized bioefficacy of dietary bioactive compounds achieved by inducing proper digestive fate and sensory attributes. Crit Rev Food Sci Nutr 2022; 64:817-836. [PMID: 35959723 DOI: 10.1080/10408398.2022.2109583] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Interest in the application of dietary bioactive compounds (DBC) in healthcare and pharmaceutical industries has motivated researchers to develop functional delivery systems (FDS) aiming to maximize their bioefficacy. As the direct and indirect health benefiting effects of DBC are acknowledged, traditional design principle of FDS aiming at improving the bioavailability of intact DBC is challenged by the updated one, where the maximized bioefficacy of DBC delivered by FDS will be achieved via rationally absorbed at target sites with proper metabolism pathways. This article briefly summarized the absorption and metabolic fates of orally digested DBC along with their direct and indirect mechanisms to perform health benefiting effects. Current strategies in designing the next generation FDS with an emphasis on their modulation effects on the distribution portion between the upper and lower digestive tract, portal vein and lymphatic absorption, human digestive and gut microbiota enzymatic mediated metabolism were highlighted. Updated research progresses of FDS in adjusting sensory attributes of food end products and inducing synergistic effects rooting from matrix materials and co-delivered cargos were also discussed. Challenges as well as future perspectives concerning the precise nutrition and the critical role of delivery systems in dietary intervention were proposed.
Collapse
Affiliation(s)
- Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Wenni Tian
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Abdullah
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Haonan Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Meimiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingrong Huang
- Department of Food Science, Rutgers, the State University of New Jersey, New Jersey, New Brunswick, USA
| | - Man Zhang
- Department of Food Science, Rutgers, the State University of New Jersey, New Jersey, New Brunswick, USA
| | - Muwen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
20
|
Zheng M, Guo Y, Li W, Wu M, Xu M, Shao M, He G, Liu Y. Medium Chain Triglycerides Promote the Uptake of β-Carotene in O/W Emulsions via Intestinal Transporter SR-B1 in Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9377-9387. [PMID: 35861437 DOI: 10.1021/acs.jafc.2c02660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study aimed to elucidate the impacts of carrier oil types (long chain triglycerides (LCT), medium chain triglycerides (MCT), and orange oil (indigestible oil)) on the micellization and cellular uptake of β-carotene (BC) formulated in O/W emulsions, with an emphasis on the role of intestinal transporters. The micellization and cellular uptake of BC in the gastrointestinal tract were evaluated via an in vitro digestion model and a Caco-2 cell monolayer. And the interactions between lipids and intestinal transporters were monitored by nontargeted lipidomics, RT-PCR, and Western blot. The BC micellization rates followed a decreasing trend in emulsions: corn oil (69.47 ± 4.19%) > MCT (22.22 ± 0.89%) > orange oil (11.01 ± 2.86%), whereas the cellular uptake rate of BC was significantly higher in MCT emulsion (56.30 ± 20.13%) than in corn oil emulsion (14.01 ± 1.04%, p < 0.05). The knockdown of SR-B1 led to a 31.63% loss of BC cellular uptake from MCT micelles but had no effect on corn oil micelles. Lipidomics and transporter analysis revealed that TG (10:0/10:0/12:0) and TG (10:0/12:0/12:0) might be the fingerprint lipids that promoted the cellular absorption of BC-MCT micelles via stimulating the mRNA expression of SR-B1.
Collapse
Affiliation(s)
- Mengman Zheng
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China
- Department of Nutriology, Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, Zhejiang 312000, China
| | - Yi Guo
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China
| | - Wenyun Li
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China
| | - Min Wu
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China
| | - Mingjing Xu
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China
| | - Manman Shao
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China
| | - Gengsheng He
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China
| | - Yuwei Liu
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China
| |
Collapse
|
21
|
Li C, Liu D, Huang M, Huang W, Li Y, Feng J. Interfacial engineering strategy to improve the stabilizing effect of curcumin-loaded nanostructured lipid carriers. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
22
|
Zhang S, Xu X, Yang J, Ren J. Impact of Emulsifier Structure and Concentration on Lipolysis Dynamics and Curcumin Bioaccessibility in the Nanoemulsions Stabilized by Polyglycerol Fatty Acid Esters. FOOD BIOPHYS 2022; 17:575-585. [PMID: 35645654 PMCID: PMC9128773 DOI: 10.1007/s11483-021-09681-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/18/2021] [Indexed: 11/04/2022]
|
23
|
Tan Y, Zhou H, McClements DJ. Application of static in vitro digestion models for assessing the bioaccessibility of hydrophobic bioactives: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Abuhassira-Cohen Y, Livney YD. Enhancing bioavailability of encapsulated hydrophobic nutraceuticals: Insights from in-vitro, in-vivo and clinical studies. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Guo Y, Xu Y, Zhang T, Wang Y, Liu R, Chang M, Wang X. Medium and long-chain structured triacylglycerol enhances vitamin D bioavailability in an emulsion-based delivery system: combination of in vitro and in vivo studies. Food Funct 2022; 13:1762-1773. [PMID: 35112696 DOI: 10.1039/d1fo03407c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vitamin D (VitD) is an essential fat-soluble micronutrient required for maintaining and regulating calcium homeostasis. Although sunlight can provide VitD, epidemiological studies indicate that the occurrence of VitD deficiency and insufficiency is widespread. Lipids are required at all stages of VitD digestion and absorption. In this research two different medium and long-chain triacylglycerol structures, possessing identical fatty acid composition lipids, namely structured triacylglycerol (STG), and physical mixtures of medium/long-chain triacylglycerol (MCT/LCT), were selected. Our results demonstrated that STG had a significant VitD bioavailability compared to MCT/LCT. In terms of the lipid digestion and absorption, the extent of the higher free fatty acid released (69.42%, p < 0.05), extent of lipolysis (89.28%, p < 0.05), lipolysis rate (0.06 s-1, p < 0.05), and the ratio of the long-chain fatty acid to medium-chain fatty acid of STG (4.8, p < 0.05), result in a higher capacity for accommodating VitD when forming mixed micelles (61.31%, p < 0.05). An in vivo animal study also demonstrated that STG significantly increases the delivery ability of VitD (18.75 ng mL-1, p < 0.05). The findings of this work may have unique applications for designing novel interesterified lipids with an effective delivery capacity for fat-soluble nutrients.
Collapse
Affiliation(s)
- Yiwen Guo
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ying Xu
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yandan Wang
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ruijie Liu
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ming Chang
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xingguo Wang
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
26
|
Marze S. Compositional, Structural, and Kinetic Aspects of Lipid Digestion and Bioavailability: In Vitro, In Vivo, and Modeling Approaches. Annu Rev Food Sci Technol 2022; 13:263-286. [DOI: 10.1146/annurev-food-052720-093515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lipid digestion and bioavailability are usually investigated separately, using different approaches (in vitro, modeling, in vivo). However, a few inclusive studies show that their kinetics are closely linked. Lipid bioavailability kinetics is likely involved in the development and evolution of several diseases, so lipid digestion kinetics could be involved as well and can be modulated by food design or combination. To illustrate this possibility, the compositional and structural aspects of lipid digestion kinetics, as investigated using in vitro and modeling approaches, are presented first. Then, in vivo and mixed approaches enabling the study of both kinetics are reviewed and discussed. Finally, disparate modeling approaches are introduced, and a unifying modeling scheme is proposed, opening new perspectives for understanding the role and interactions of various factors (chemical, physical, and biological) involved in lipid metabolism. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sébastien Marze
- INRAE, Biopolymères Interactions Assemblages, Nantes, France
| |
Collapse
|
27
|
Li Y, Liang W, Huang M, Huang W, Feng J. Green preparation of holocellulose nanocrystals from burdock and their inhibitory effects against α-amylase and α-glucosidase. Food Funct 2022; 13:170-185. [PMID: 34874372 DOI: 10.1039/d1fo02012a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this work, holocellulose nanocrystals (hCNCs) were isolated from burdock insoluble dietary fiber (IDF) by enzymatic hydrolysis and ultrasonic treatment and their inhibitory effects against α-amylase and α-glucosidase were investigated. The hydrodynamic diameter of hCNCs decreased from about 600 to 200 nm with increasing sonication time, accompanied by an improvement in cellulose and glucose contents. Steady-state fluorescence studies suggested that static complexes were formed between hCNCs and α-amylase or α-glucosidase via a spontaneous and endothermic approach, which was driven by both hydrophobic interactions and hydrogen bonding. The median inhibitory concentration (IC50) values of hCNCs against the tested enzymes were positively correlated with their size, and non-competitive and mixed types of inhibition were detected using the Lineweaver-Burk plots. During the simulated digestion, the inclusion of burdock hCNCs obviously retarded the starch hydrolysis in both dose- and size-dependent manners, suggesting their potential in blocking the postprandial serum glucose upsurge.
Collapse
Affiliation(s)
- Ying Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| | - Wei Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.,Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| | - Meigui Huang
- Department of food science and engineering, College of light industry and food engineering, Nanjing forestry university, 159 Longpan Road, Nanjing 210037, China
| | - Wuyang Huang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| | - Jin Feng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| |
Collapse
|
28
|
Carrera Sánchez C, Rodríguez Patino JM. Contribution of the engineering of tailored interfaces to the formulation of novel food colloids. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Pharmacokinetic Investigation of Commercially Available Edible Marijuana Products in Humans: Potential Influence of Body Composition and Influence on Glucose Control. Pharmaceuticals (Basel) 2021; 14:ph14080817. [PMID: 34451914 PMCID: PMC8398280 DOI: 10.3390/ph14080817] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022] Open
Abstract
The purpose of the study was to describe and compare the pharmacokinetics of five commercial edible marijuana products, determine the influence of body composition on pharmacokinetics, and, in light of epidemiology suggesting marijuana may offer diabetes protection, explore the influence of edible marijuana on glucose tolerance. Seven regular users of marijuana self-administered five edible products in a randomized crossover design; each product contained 10 mg of delta-9-tetrahydrocannabinol (THC). Thirty minutes following marijuana ingestion, participants imbibed a 75 g glucose beverage. Time-to-peak plasma THC concentration ranged between 35 and 90 min; maximal plasma THC concentration (Cmax) ranged between 3.2 and 5.5 ng/mL. Differences between products in plasma THC concentration during the first 20–30 min were detected (p = 0.019). Relations were identified between body composition and pharmacokinetic parameters for some products; however, none of these body composition characteristics were consistently related to pharmacokinetics across all five of the products. Edible marijuana had no effect on oral glucose tolerance compared with a marijuana-free control (Matsuda Index; p > 0.395). Commercially available edible marijuana products evoke different plasma THC concentrations shortly after ingestion, but do not appear to influence acute glucose regulation. These data may allow recreational marijuana users to make informed decisions pertaining to rates of edible marijuana ingestion and avoid overdose.
Collapse
|
30
|
Shanshan W, Meigui H, Chunyang L, Zhi C, Li C, Wuyang H, Ying L, Jin F. Fabrication of ovalbumin-burdock polysaccharide complexes as interfacial stabilizers for nanostructured lipid carriers: Effects of high-intensity ultrasound treatment. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106407] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
31
|
Comparison of Five Oral Cannabidiol Preparations in Adult Humans: Pharmacokinetics, Body Composition, and Heart Rate Variability. Pharmaceuticals (Basel) 2021; 14:ph14010035. [PMID: 33418866 PMCID: PMC7825058 DOI: 10.3390/ph14010035] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022] Open
Abstract
Data supporting the physiological effects of cannabidiol (CBD) ingestion in humans are conflicting. Differences between CBD preparations and bioavailability may contribute to these discrepancies. Further, an influence of body composition on CBD bioavailability is feasible, but currently undocumented. The aims of this study were to: (1) compare the pharmacokinetics of five oral CBD preparations over 4 h; (2) examine the relationship between body composition and CBD pharmacokinetics; and, (3) explore the influence of CBD on heart rate variability. In total, five preparations of CBD, standardized to 30 mg, were orally administered to 15 healthy men and women (21-62 years) in a randomized, crossover design. Prior to and 60 min following CBD ingestion, heart rate variability was determined. Body composition was assessed using dual energy X-ray absorptiometry. Peak circulating CBD concentration, time to peak concentration, and area under the curve was superior in a preparation comprising 5% CBD concentration liquid. Fat free mass was a significant predictor (R
2 = 0.365, p = 0.017) of time to peak concentration for this preparation. Several heart rate variability parameters, including peak frequency of the high frequency band, were favorably, but modestly modified following CBD ingestion. These data confirm an influence of CBD preparation and body composition on CBD bioavailability, and suggest that acute CBD ingestion may have a modest influence on autonomic regulation of heart rate.
Collapse
|
32
|
Ding Y, Zhou Q, Han A, Zhou H, Chen R, Guo S. Fabrication of Poly(ε-caprolactone)-Based Biodegradable Packaging Materials with High Water Vapor Barrier Property. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c05311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yitong Ding
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Chengdu 610065, China
| | - Qian Zhou
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Chengdu 610065, China
| | - Aichun Han
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Chengdu 610065, China
| | - Hongxun Zhou
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Chengdu 610065, China
| | - Rong Chen
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Chengdu 610065, China
| | - Shaoyun Guo
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Chengdu 610065, China
| |
Collapse
|