1
|
Yang M, Qin X, Liu X. A review of polysaccharides from Ganoderma lucidum: Preparation methods, structural characteristics, bioactivities, structure-activity relationships and potential applications. Int J Biol Macromol 2025; 303:140645. [PMID: 39909264 DOI: 10.1016/j.ijbiomac.2025.140645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/16/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Ganoderma lucidum (G. lucidum), commonly known as "fairy grass", is a saprophyte fungus belonging to the Polyporaceae family with a lengthy history of use as a food ingredient and traditional medicine in China. G. lucidum is abundant in diverse chemical compounds that encompass polysaccharides, alkaloids, steroids, terpenoids, proteins, as well as amino acids. Among these, polysaccharides as the main active ingredients prepared from G. lucidum have exhibited a multitude of biological activities, such as anti-tumor effect, antioxidant activity, antidiabetic effect, anti-inflammatory effect, immune regulation and so forth. The main methods for extracting GLPs are hot water extraction, ultrasound-assisted extraction, microwave-assisted extraction and enzyme-assisted extraction. The research on GLPs poses challenges, especially in optimizing extraction and purification processes to enhance the yield and preserve the structural characteristics. Furthermore, it remains ambiguous whether the bioactivities of GLPs are closely related to their extraction methods and structural characteristics, necessitating further exploration and elucidation of the structure-activity relationships. This review comprehensively and systematically outlines an overview of the preparation methods, structural characteristics, bioactivities, structure-activity relationships and potential applications of GLPs. The review emphasizes their therapeutic potential and health functions, providing a reference for further exploitation and application in various fields of GLPs.
Collapse
Affiliation(s)
- Maohui Yang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China.
| | - Xiaojie Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China.
| |
Collapse
|
2
|
Wu Y, Sun J, Xie W, Xue S, Li X, Guo J, Shan J, Peng G, Zheng Y. Immunomodulation of Glycyrrhiza Polysaccharides In Vivo Based on Microbiome and Metabolomics Approaches. Foods 2025; 14:874. [PMID: 40077577 PMCID: PMC11898905 DOI: 10.3390/foods14050874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Glycyrrhiza uralensis Fisch. is a medicinal herb that can be added to food to provide therapeutic effects and reduce the burden of medications. Herein, the immunomodulatory effects of Glycyrrhiza polysaccharides (GPs) were verified and illustrated by intervening immunocompromised rats treated with different doses of GPs, which were reflected for adjusting the composition and structure of the intestinal microbiota and altering the metabolic profile. The immunomodulatory effects of GPs were exerted by regulating the intestinal microenvironment. In particular, GPs could promote the growth of probiotic bacteria Allobaculum, norank__o_Clostridia_UCG-014, Dubosiella, and g__norank_o___RF39 and curb the growth of harmful bacteria Enterococcus. The results showed that GPs had a prebiotic effect, which contributed to improving the intestinal environment and maintaining intestinal health. In addition, the content of beneficial differential metabolites was up-regulated, especially short-chain fatty acids, with alanine, aspartate, and glutamate metabolism; arginine biosynthesis; glyoxylate and dicarboxylate metabolism being the most enriched pathways. These metabolic pathways imply the metabolic process of GPs, and the metabolic pathways and differential effector metabolites of it are focused. Overall, the purpose of this article lies in providing support for the application of GPs for regulating immune function.
Collapse
Affiliation(s)
- Yixuan Wu
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (Y.W.); (J.S.); (W.X.); (S.X.); (X.L.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jie Sun
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (Y.W.); (J.S.); (W.X.); (S.X.); (X.L.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenjie Xie
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (Y.W.); (J.S.); (W.X.); (S.X.); (X.L.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Simin Xue
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (Y.W.); (J.S.); (W.X.); (S.X.); (X.L.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinli Li
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (Y.W.); (J.S.); (W.X.); (S.X.); (X.L.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianming Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China;
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| | - Guoping Peng
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (Y.W.); (J.S.); (W.X.); (S.X.); (X.L.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| | - Yunfeng Zheng
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (Y.W.); (J.S.); (W.X.); (S.X.); (X.L.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| |
Collapse
|
3
|
Fan X, Su Y, Wu Y, Li M, Lu Y, Xue H, Li G. Comprehensive understanding of impacts of steam explosion on facilitated extraction and transformation of flavonoids from Astragali Radix. Food Chem 2025; 463:141410. [PMID: 39326311 DOI: 10.1016/j.foodchem.2024.141410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Recalcitrant structure of cell walls restricts the extraction of bioactive components from edible plants. In this study, the impacts of steam explosion (SE) on the release and transformation of flavonoids in Astragali Radix (AR) were evaluated. Results revealed that SE destroyed the compact structure of cell walls. Furthermore, the porous network was reformed due to the degradation of hemicelluloses and water-soluble components. The maximum extraction contents of ethanol-soluble and water-soluble flavonoids of 6.34 and 1.48 mg/g were obtained from the pretreated AR (1.5 MPa, 5 min), which were 5.22 and 2.88 times higher than those obtained from the untreated AR, respectively. SE not only released bound flavonoids from cell walls by cleaving glycoside or ester bonds, but also transformed some flavonoid glycosides into aglycones through deglycosylation. In conclusion, SE can reduce mass transfer hindrance and facilitate flavonoid transformation, thus providing a green and facile processing method for traditional edible plants.
Collapse
Affiliation(s)
- Xueyan Fan
- Key Laboratory of Herbage and Endemic Crop Biology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Youla Su
- Key Laboratory of Herbage and Endemic Crop Biology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yue Wu
- Key Laboratory of Herbage and Endemic Crop Biology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Min Li
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot 010070, China
| | - Yan Lu
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Huiting Xue
- Key Laboratory of Herbage and Endemic Crop Biology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; College of Basic Medicine, Inner Mongolia Medical University, Hohhot 010070, China.
| | - Guanhua Li
- Key Laboratory of Herbage and Endemic Crop Biology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| |
Collapse
|
4
|
Zhang Y, Li H, Hai X, Guo X, Di X. Designing green and recyclable switchable supramolecular deep eutectic solvents for efficient extraction of flavonoids from Scutellariae Radix and mechanism exploration. J Chromatogr A 2024; 1730:465084. [PMID: 38879980 DOI: 10.1016/j.chroma.2024.465084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
A green and recyclable switchable supramolecular deep eutectic solvent (SS-DES) was designed and prepared for effective extraction of flavonoids from Scutellariae Radix. The novel SS-DES has both excellent extraction performance of DES and the host guest inclusion of cyclodextrin, thereby showing superior extraction efficiency and selectivity. The characteristic of polarity switching can endow the SS-DES with achieving homogeneous extraction and rapid two-phase separation, shorting per-treatment time largely. Parameters affecting the extraction performance were investigated by the response surface methodology. The results indicated that the SS-DES showed better extraction yield of total flavonoids (157.95 mg/g) compared with pure DES (135 mg/g) and traditional organic solvent (60 % ethanol, 104.87 mg/g). Moreover, the switching mechanism of SS-DES was characterized by FT-IR and 1H NMR, and the extraction mechanism was studied by density functional theory and molecular docking analysis. After evaluating the ecological impact of the method, the cytotoxicity of SS-DES was investigated and the result displayed that its toxicity was very low or even negligible with the EC50>2000 mg/L. After being adsorbed by macroporous AB-8 resin, the regenerated SS-DES was recycled 5 times and the extraction efficiency still remained above 90 %, indicating the desirable reusability. Therefore, the proposed method was efficient and sustainable, and revealed favorable application prospect for the extraction of bio-active compounds from plant materials.
Collapse
Affiliation(s)
- Yanhui Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Hongbo Li
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoqin Hai
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoli Guo
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| | - Xin Di
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
5
|
Hou F, Song S, Yang S, Wang Y, Jia F, Wang W. Study on the Optimization, Extraction Kinetics and Thermodynamics of the Ultrasound-Assisted Enzymatic Extraction of Tremella fuciformis Polysaccharides. Foods 2024; 13:1408. [PMID: 38731779 PMCID: PMC11083265 DOI: 10.3390/foods13091408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
In this study, Tremella fuciformis polysaccharides (TFPs) were extracted by ultrasound-assisted enzymatic extraction (UAE) at different extraction parameters in order to explore the potential of ultrasound in intensifying the extraction yield. The effects of experimental conditions on the extraction yields were optimized using response surface methodology, with the optimal ultrasonic power of 700 W, temperature of 45 °C and time of 50 min. The kinetic analysis revealed that UAE significantly promoted the dissolution, diffusion and migration with the maximum yield of 26.39%, which was enhanced by 40.45% and 156.96% compared with individual ultrasonic extraction (UE) and enzymatic extraction (EE). According to the modified Fick's second law of diffusion, the extraction process of TFPs illustrated a good linear correlation (R2 ≥ 0.9), and the rate constant gradually elevated as the temperature increased from 25 to 45 °C, while the presence of ultrasound exerted a vital role in extracting TFPs. Regarding to the thermodynamic results, the positive values of ΔH and ΔG demonstrated that UAE, UE and EE were endothermic and unspontaneous processes. This study provides a theoretical basis for polysaccharide extraction processing.
Collapse
Affiliation(s)
- Furong Hou
- Institute of Agro-Food Sciences and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (F.H.); (S.S.); (S.Y.); (Y.W.); (F.J.)
| | - Shasha Song
- Institute of Agro-Food Sciences and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (F.H.); (S.S.); (S.Y.); (Y.W.); (F.J.)
| | - Shuhui Yang
- Institute of Agro-Food Sciences and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (F.H.); (S.S.); (S.Y.); (Y.W.); (F.J.)
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Yansheng Wang
- Institute of Agro-Food Sciences and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (F.H.); (S.S.); (S.Y.); (Y.W.); (F.J.)
| | - Fengjuan Jia
- Institute of Agro-Food Sciences and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (F.H.); (S.S.); (S.Y.); (Y.W.); (F.J.)
| | - Wenliang Wang
- Institute of Agro-Food Sciences and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (F.H.); (S.S.); (S.Y.); (Y.W.); (F.J.)
| |
Collapse
|
6
|
Qin G, Zhang F, Ren M, Chen X, Liu C, Li G, Gao Q, Qiao L, Jiang Y, Zhu L, Guo Y, Wang G. Eco-friendly and efficient extraction of polyphenols from Ligustrum robustum by deep eutectic solvent assisted ultrasound. Food Chem 2023; 429:136828. [PMID: 37478601 DOI: 10.1016/j.foodchem.2023.136828] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/13/2023] [Accepted: 07/05/2023] [Indexed: 07/23/2023]
Abstract
An eco-friendly and efficient extraction method using deep eutectic solvents assisted ultrasound extraction (DESs-UAE) for the polyphenols from Ligustrum robustum was developed. Among the 34 kinds of DESs prepared, tetraethyl ammonium bromide: 1,2,4-butanol (Teab: 1,2,4-But) was proved to be a suitable extraction solvent based on the extraction efficiency. The extraction parameters including temperature, water content, liquid-solid ratio were optimized with response surface methodology (RSM). Under the optimal conditions, the total phenolic content (TPC) and total flavonoid content (TFC) were 101.46 ± 2.96 mg GAE/g DW and 264.17 ± 5.39 mg RE/g DW, respectively. Furthermore, the extraction mechanism of DESs-UAE was investigated by extraction kinetics, molecular dynamic simulation and theory calculations of interaction. In particular, 9 kinds of polyphenols compounds from Ligustrum robustum were firstly identified by UPLC-Q-TOF-MS. Moreover, the recovered polyphenols exhibited significant antioxidant, α-glucosidase inhibition, acetylcholinesterase inhibition and anticancer activity.
Collapse
Affiliation(s)
- Guifang Qin
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Feng Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Mengdie Ren
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Xiuwen Chen
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Chao Liu
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Gang Li
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Qiong Gao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Lei Qiao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Yongmei Jiang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Lei Zhu
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yingying Guo
- College of Pharmacy, Chengdu Medical College, Chengdu 610000, China.
| | - Gang Wang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China.
| |
Collapse
|
7
|
Liu S, Kong T, Feng Y, Fan Y, Yu J, Duan Y, Cai M, Hu K, Ma H, Zhang H. Effects of slit dual-frequency ultrasound-assisted pulping on the structure, functional properties and antioxidant activity of Lycium barbarum proteins and in situ real-time monitoring process. ULTRASONICS SONOCHEMISTRY 2023; 101:106696. [PMID: 37988957 PMCID: PMC10696417 DOI: 10.1016/j.ultsonch.2023.106696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
To improve the protein dissolution rate and the quality of fresh Lycium barbarum pulp (LBP), we optimized the slit dual-frequency ultrasound-assisted pulping process, explored the dissolution kinetics of Lycium barbarum protein (LBPr), and established a near-infrared spectroscopy in situ real-time monitoring model for LBPr dissolution through spectral information analysis and chemometric methods. The results showed that under optimal conditions (dual-frequency 28-33 kHz, 300 W, 31 min, 40 °C, interval ratio 5:2 s/s), ultrasonic treatment not only significantly increased LBPr dissolution rate (increased by 71.48 %, p < 0.05), improved other nutrient contents and color, but also reduced the protein particle size, changed the amino acid composition ratio and protein structure, and increased the surface hydrophobicity, zeta potential, and free sulfhydryl content of protein, as well as the antioxidant activity of LBPr. In addition, ultrasonication significantly improved the functional properties of the protein, including thermal stability, foaming, emulsification and oil absorption capacity. Furthermore, the real-time monitoring model of the dissolution process was able to quantitatively predict the dissolution rate of LBPr with good calibration and prediction performance (Rc = 0.9835, RMSECV = 2.174, Rp = 0.9841, RMSEP = 1.206). These findings indicated that dual-frequency ultrasound has great potential to improve the quality of LBP and may provide a theoretical basis for the establishment of an intelligent control system in the industrialized production of LBP and the functional development of LBPr.
Collapse
Affiliation(s)
- Shuhan Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tianyu Kong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqin Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yanli Fan
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
| | - Junwei Yu
- Ningxia Zhongning Goji Industry Innovation Research Institute, Zhongning 755100, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Meihong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kai Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
8
|
Liu C, Qiao L, Gao Q, Zhang F, Zhang X, Lei J, Ren M, Xiao S, Kuang J, Deng S, Yuan X, Jiang Y, Wang G. Total biflavonoids extraction from Selaginella chaetoloma utilizing ultrasound-assisted deep eutectic solvent: Optimization of conditions, extraction mechanism, and biological activity in vitro. ULTRASONICS SONOCHEMISTRY 2023; 98:106491. [PMID: 37379745 PMCID: PMC10320385 DOI: 10.1016/j.ultsonch.2023.106491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/01/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
In this study, the deep eutectic solvent based ultrasound-assisted extraction (DES-UAE) was investigated for the efficient and environmentally friendly extraction of Selaginella chaetoloma total biflavonoids (SCTB). As an extractant for optimization, tetrapropylaminium bromide-1,4-butanediol (Tpr-But) was employed for the first time. 36 DESs were created, with Tpr-But producing the most effective results. Based on response surface methodology (RSM), the greatest extraction rate of SCTB was determined to be 21.68 ± 0.78 mg/g, the molar ratio of HBD to HBA was 3.70:1, the extraction temperature was 57 °C, and the water content of DES was 22 %. In accordance with Fick's second rule, a kinetic model for the extraction of SCTB by DES-UAE has been derived. With correlation coefficients 0.91, the kinetic model of the extraction process was significantly correlated with the general and exponential equations of kinetics, and some important kinetic parameters such as rate constants, energy of activation and raffinate rate were determined. In addition, molecular dynamics simulations were used to study the extraction mechanisms generated by different solvents. Comparing the effect of several extraction methods on S.chaetoloma using ultrasound-assisted extraction and conventional methods, together with SEM examination, revealed that DES-UAE not only saved time but also enhanced SCTB extraction rate by 1.5-3 folds. SCTB demonstrated superior antioxidant activity in three studies in vitro. Furthermore, the extract could suppress the growth of A549, HCT-116, HepG2, and HT-29 cancer cells. Alpha-Glucosidase (AG) inhibition experiment and molecular docking studies suggested that SCTB exhibited strong inhibitory activity against AG and potential hypoglycemic effects. The results of this study indicated that a Tpr-But-based UAE method was suitable for the efficient and environmentally friendly extraction of SCTB, and also shed light on the mechanisms responsible for the increased extraction efficiency, which could aid in the application of S.chaetoloma and provide insight into the extraction mechanism of DES.
Collapse
Affiliation(s)
- Chao Liu
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Lei Qiao
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Qiong Gao
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Feng Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Xin Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Jie Lei
- Huabang Shengkai Pharmaceutical Co., Ltd, 400000 Chongqing, China
| | - Mengdie Ren
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Shiji Xiao
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Juxiang Kuang
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Shixing Deng
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Xinglin Yuan
- School of Pharmacy, Zunyi Medical and Pharmaceutical College, Zunyi 563003, Guizhou, China
| | - Yongmei Jiang
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China.
| | - Gang Wang
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China.
| |
Collapse
|
9
|
Niu Y, Liu W, Fan X, Wen D, Wu D, Wang H, Liu Z, Li B. Beyond cellulose: pharmaceutical potential for bioactive plant polysaccharides in treating disease and gut dysbiosis. Front Microbiol 2023; 14:1183130. [PMID: 37293228 PMCID: PMC10244522 DOI: 10.3389/fmicb.2023.1183130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/04/2023] [Indexed: 06/10/2023] Open
Abstract
Polysaccharides derived from plants, algae, or fungi serve as the major components of some human diets. Polysaccharides have been shown to exhibit diverse biological activities in improving human health, and have also been proposed to function as potent modulators of gut microbiota composition, thus playing a bi-directional regulatory role in host health. Here, we review a variety of polysaccharide structures potentially linked to biological functions, and cover current research progress in characterizing their pharmaceutical effects in various disease models, including antioxidant, anticoagulant, anti-inflammatory, immunomodulatory, hypoglycemic, and antimicrobial activities. We also highlight the effects of polysaccharides on modulating gut microbiota via enrichment for beneficial taxa and suppression of potential pathogens, leading to increased microbial expression of carbohydrate-active enzymes and enhanced short chain fatty acid production. This review also discusses polysaccharide-mediated improvements in gut function by influencing interleukin and hormone secretion in host intestinal epithelial cells.
Collapse
Affiliation(s)
- Yuanlin Niu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Wei Liu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xueni Fan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Dongxu Wen
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Dan Wu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Hongzhuang Wang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Bin Li
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| |
Collapse
|
10
|
Banerjee S, Baidya SK, Adhikari N, Ghosh B, Jha T. Glycyrrhizin as a promising kryptonite against SARS-CoV-2: Clinical, experimental, and theoretical evidences. J Mol Struct 2022; 1275:134642. [DOI: 10.1016/j.molstruc.2022.134642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/24/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
|
11
|
Guo D, Yin X, Wu D, Chen J, Ye X. Natural polysaccharides from Glycyrrhiza uralensis residues with typical glucan structure showing inhibition on α-glucosidase activities. Int J Biol Macromol 2022; 224:776-785. [DOI: 10.1016/j.ijbiomac.2022.10.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
|
12
|
Huan C, Xu Y, Zhang W, Ni B, Gao S. Glycyrrhiza Polysaccharide Inhibits Pseudorabies Virus Infection by Interfering with Virus Attachment and Internalization. Viruses 2022; 14:v14081772. [PMID: 36016393 PMCID: PMC9413916 DOI: 10.3390/v14081772] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022] Open
Abstract
Pseudorabies virus (PRV) is one of the most important pathogens causing serious diseases and leads to huge economic losses in the global swine industry. With the continuous emergence of PRV variants and the increasing number of cases of human infection, there is an urgent need to develop antiviral drugs. In this study, we discover that Glycyrrhiza polysaccharide (GCP) has anti-PRV infection activity in vitro, and 600 μg/mL GCP can completely block viral infection. The addition of GCP simultaneously with or after PRV infection had a significant inhibitory effect on PRV. Addition of GCP at different times of the virus life cycle mainly led to the inhibition of the attachment and internalization of PRV but does not affect viral replication and release. Our findings suggest that GCP has potential as a drug against PRV infection.
Collapse
Affiliation(s)
- Changchao Huan
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, China
| | - Yao Xu
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, China
| | - Wei Zhang
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, China
| | - Bo Ni
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Song Gao
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, China
- China Animal Health and Epidemiology Center, Qingdao 266011, China
- Correspondence:
| |
Collapse
|
13
|
Ain NU, Wu S, Li X, Li D, Zhang Z. Isolation, Characterization, Pharmacology and Biopolymer Applications of Licorice Polysaccharides: Review. MATERIALS 2022; 15:ma15103654. [PMID: 35629680 PMCID: PMC9147829 DOI: 10.3390/ma15103654] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022]
Abstract
Licorice is known as "Gan-Cao" in traditional Chinese Medicine (TCM), belonging to the genus Glycyrrhiza (Family: Fabaceae/Leguminosae). It has a long medicinal history and wide applications in China. Polysaccharides of licorice (LPs) are one of the key bioactive components. As herbal polysaccharides attracted increasing interest in the past several decades, their extraction, isolation, structural characterization, pharmacological activities, and medicinal application have been explored extensively. It is worth heeding that the method of extraction and purification effects LPs, apart from specie and origin specificity. This review evaluates the method of extraction and purification and demonstrates its performance in gaining specific composition and its structure-activity relationship, which might lead the readers to a fresh horizon for developing advanced treatment strategies. It is recently reported that the conformation of LPs plays a vital role as biopolymers, such as selenized modification, microencapsulation, nanocomposite, liposome formulation, drug/hydrogel combinations, biosensor device, and synergistic effect with a vaccine. In addition, LPs showed a good thermodynamics profile, as these properties enable them to interact with additional supramolecular interaction by chemical modifications or copolymerization. Functional polymers that are responsive to various external stimuli, such as physical, chemical, and biological signals, are a promising study topic. Thus, LPs are emerging as a new biomaterial that can enhance intended formulation along exerting its inherent medicinal effects. It is hoped that this review will provide a basis for the utilization and further developments of licorice polysaccharides in the vast medium.
Collapse
|
14
|
Guo X, Liu S, Wang Z, Zhang G. Ultrasonic-assisted extraction of polysaccharide from Dendrobium officinale: Kinetics, thermodynamics and optimization. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Liu G, Zhang J, Hou T, An S, Guo B, Liu C, Hu L, Huang Y, Zhang S, Song M, Cao Y. Extraction kinetics, physicochemical properties and immunomodulatory activity of the novel continuous phase transition extraction of polysaccharides from Ganoderma lucidum. Food Funct 2021; 12:9708-9718. [PMID: 34664607 DOI: 10.1039/d1fo02185k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ganoderma lucidum polysaccharides (GLP) possess remarkable bioactivity and have been studied widely. However, the application of new technologies in the polysaccharide extraction has not been investigated. Herein, a novel continuous phase transition extraction (CPTE) technology was applied for the extraction of polysaccharides from Ganoderma lucidum. The extraction kinetics, physicochemical properties and immunomodulatory activity of GLP were evaluated. The kinetics results showed that the extraction process could be fitted to a two-site kinetic model due to the high R2 values in the range of 0.9939-0.9999. Polysaccharides extracted by different technologies showed that GLP yield by CPTE could be significantly improved, which was 3.34 times and 2.68 times that of hot water and ultrasonic-assisted extraction, respectively. Molecular weight distribution analysis indicated that high molecular mass polysaccharide proportion by CPTE was the highest among the three extraction methods, which was 2.03 times and 3.41 times as much as that of the hot water and ultrasonic-assisted extraction. Morphology analysis showed that CPTE treatment caused disruption of most of the cells and effective release of intracellular components, implying that CPTE was beneficial to extract polysaccharides. Furthermore, the immunomodulatory assays demonstrated that GLP significantly enhanced the proliferation and production of NO, TNF-α and IL-6 in macrophages. Therefore, CPTE was more effective for extracting polysaccharides from Ganoderma lucidum than the common extraction.
Collapse
Affiliation(s)
- Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China. .,College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Tao Hou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Siyu An
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Baoyan Guo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China. .,College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Cencen Liu
- Infinitus China Co Ltd, Guangzhou, 510623, China
| | - Liuyun Hu
- Infinitus China Co Ltd, Guangzhou, 510623, China
| | - Yahui Huang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Shuai Zhang
- School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, China
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
16
|
Development of Broad-Spectrum Antiviral Agents-Inspiration from Immunomodulatory Natural Products. Viruses 2021; 13:v13071257. [PMID: 34203182 PMCID: PMC8310077 DOI: 10.3390/v13071257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 01/04/2023] Open
Abstract
Developing broad-spectrum antiviral drugs remains an important issue as viral infections continue to threaten public health. Host-directed therapy is a method that focuses on potential targets in host cells or the body, instead of viral proteins. Its antiviral effects are achieved by disturbing the life cycles of pathogens or modulating immunity. In this review, we focus on the development of broad-spectrum antiviral drugs that enhance the immune response. Some natural products present antiviral effects mediated by enhancing immunity, and their structures and mechanisms are summarized here. Natural products with immunomodulatory effects are also discussed, although their antiviral effects remain unknown. Given the power of immunity and the feasibility of host-directed therapy, we argue that both of these categories of natural products provide clues that may be beneficial for the discovery of broad-spectrum antiviral drugs.
Collapse
|
17
|
Wang L, Cai C, Liu J, Tan Z. Selective separation of the homologues of baicalin and baicalein from Scutellaria baicalensis Georgi using a recyclable ionic liquid-based liquid-liquid extraction system. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Guo Y, Li Y, Li Z, Yan W, Chen P, Yao S. Extraction assisted by far infrared radiation and hot air circulation with deep eutectic solvent for bioactive polysaccharides from Poria cocos (Schw.) wolf. GREEN CHEMISTRY 2021. [DOI: 10.1039/d1gc01773j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this study, a new ternary choline chloride-deep eutectic solvent was used to efficiently extract bioactive polysaccharides from poria cocos assisted by the new tool of the far infrared radiation (FIR) together with hot air circulation (HAC).
Collapse
Affiliation(s)
- Yingying Guo
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yueshan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zicheng Li
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Wentao Yan
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Peng Chen
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|