1
|
Wang Z, Sun X, Sun M, Wang C, Yang L. Game Changers: Blockbuster Small-Molecule Drugs Approved by the FDA in 2024. Pharmaceuticals (Basel) 2025; 18:729. [PMID: 40430547 PMCID: PMC12114780 DOI: 10.3390/ph18050729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2025] [Revised: 05/04/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
This article profiles 27 innovative advancements in small-molecule drugs approved by the U.S. Food and Drug Administration (FDA) in 2024. These drugs target various therapeutic areas including non-small cell lung cancer, advanced or metastatic breast cancer, glioma, relapsed or refractory acute leukemia, urinary tract infection, Staphylococcus aureus bloodstream infections, nonalcoholic steatohepatitis, primary biliary cholangitis, Duchenne muscular dystrophy, hypertension, anemia due to chronic kidney disease, extravascular hemolysis, primary axillary hyperhidrosis, chronic obstructive pulmonary disease, severe alopecia areata, WHIM syndrome, Niemann-Pick disease type C, schizophrenia, supraventricular tachycardia, congenital adrenal hyperplasia, and cystic fibrosis. Among these approved small-molecule drugs, those with unique mechanisms of action and designated as breakthrough therapies by the FDA represent a significant proportion, highlighting ongoing innovation. Notably, eight of these drugs (including Rezdiffra®, Voydeya®, Iqirvo®, Voranigo®, Livdelzi®, Miplyffa®, Revuforj®, and Crenessity®) are classified as "first-in-class" and have received breakthrough therapy designation. These agents not only exhibit distinct mechanisms of action but also offer substantial improvements in efficacy for patients compared to prior therapeutic options. This article offers a comprehensive analysis of the mechanisms of action, clinical trials, drug design, and synthetic methodologies related to representative drugs, aiming to provide crucial insights for future pharmaceutical development.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates, Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China;
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus, Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Xin Sun
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China; (X.S.); (M.S.)
| | - Mingyu Sun
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China; (X.S.); (M.S.)
| | - Chao Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates, Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China;
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China; (X.S.); (M.S.)
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Wang Z, Song XQ, Xu W, Lei S, Zhang H, Yang L. Stand Up to Stand Out: Natural Dietary Polyphenols Curcumin, Resveratrol, and Gossypol as Potential Therapeutic Candidates against Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Nutrients 2023; 15:3885. [PMID: 37764669 PMCID: PMC10535599 DOI: 10.3390/nu15183885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The COVID-19 pandemic has stimulated collaborative drug discovery efforts in academia and the industry with the aim of developing therapies and vaccines that target SARS-CoV-2. Several novel therapies have been approved and deployed in the last three years. However, their clinical application has revealed limitations due to the rapid emergence of viral variants. Therefore, the development of next-generation SARS-CoV-2 therapeutic agents with a high potency and safety profile remains a high priority for global health. Increasing awareness of the "back to nature" approach for improving human health has prompted renewed interest in natural products, especially dietary polyphenols, as an additional therapeutic strategy to treat SARS-CoV-2 patients, owing to its good safety profile, exceptional nutritional value, health-promoting benefits (including potential antiviral properties), affordability, and availability. Herein, we describe the biological properties and pleiotropic molecular mechanisms of dietary polyphenols curcumin, resveratrol, and gossypol as inhibitors against SARS-CoV-2 and its variants as observed in in vitro and in vivo studies. Based on the advantages and disadvantages of dietary polyphenols and to obtain maximal benefits, several strategies such as nanotechnology (e.g., curcumin-incorporated nanofibrous membranes with antibacterial-antiviral ability), lead optimization (e.g., a methylated analog of curcumin), combination therapies (e.g., a specific combination of plant extracts and micronutrients), and broad-spectrum activities (e.g., gossypol broadly inhibits coronaviruses) have also been emphasized as positive factors in the facilitation of anti-SARS-CoV-2 drug development to support effective long-term pandemic management and control.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; (W.X.); (S.L.); (H.Z.)
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus, Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Xian-qing Song
- General Surgery Department, Baoan Central Hospital, Affiliated Baoan Central Hospital of Guangdong Medical University, Shenzhen 518000, China
| | - Wenjing Xu
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; (W.X.); (S.L.); (H.Z.)
| | - Shizeng Lei
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; (W.X.); (S.L.); (H.Z.)
| | - Hao Zhang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; (W.X.); (S.L.); (H.Z.)
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
3
|
Yang L, Wang Z. Bench-to-bedside: Innovation of small molecule anti-SARS-CoV-2 drugs in China. Eur J Med Chem 2023; 257:115503. [PMID: 37229831 PMCID: PMC10193775 DOI: 10.1016/j.ejmech.2023.115503] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/19/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
The ongoing COVID-19 pandemic has resulted in millions of deaths globally, highlighting the need to develop potent prophylactic and therapeutic strategies against SARS-CoV-2. Small molecule inhibitors (remdesivir, Paxlovid, and molnupiravir) are essential complements to vaccines and play important roles in clinical treatment of SARS-CoV-2. Many advances have been made in development of anti-SARS-CoV-2 inhibitors in China, but progress in discovery and characterization of pharmacological activity, antiviral mechanisms, and clinical efficacy are limited. We review development of small molecule anti-SARS-CoV-2 drugs (azvudine [approved by the NMPA of China on July 25, 2022], VV116 [approved by the NMPA of China on January 29, 2023], FB2001, WPV01, pentarlandir, and cepharanthine) in China and summarize their pharmacological activity, potential mechanisms of action, clinical trials and use, and important milestones in their discovery. The role of structural biology in drug development is also reviewed. Future studies should focus on development of diverse second-generation inhibitors with excellent oral bioavailability, superior plasma half-life, increased antiviral activity against SARS-CoV-2 and its variants, high target specificity, minimal side effects, reduced drug-drug interactions, and improved lung histopathology.
Collapse
Affiliation(s)
- Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, PR China; Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, PR China; School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus, Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
4
|
Ma Y, Wang J, Pan X, Zhang J, Shan Y. Identification of potential targets against SARS-CoV-2 of antiviral drugs based on photoaffinity probes. Drug Dev Res 2023; 84:1142-1158. [PMID: 37165797 DOI: 10.1002/ddr.22075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 04/08/2023] [Indexed: 05/12/2023]
Abstract
Facing the sudden outbreak of coronavirus disease 2019 (COVID-19), it is extremely urgent to develop effective antiviral drugs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Drug repurposing is a promising strategy for the treatment of COVID-19. To identify the precise target protein of marketed medicines, we initiate a chemical biological program to identify precise target of potential antivirus drugs. In this study, two types of recombinant human coronavirus SARS-CoV-2 RdRp protein capturing probes with various photoaffinity labeling units were designed and synthesized based on the structure of FDA-approved drugs stavudine, remdesivir, acyclovir, and aladenosine. Fortunately, it was found that one novel photoaffinity probe, RD-1, could diaplayed good affinity with SARS-CoV-2 RdRp around the residue ARG_553. In addition, RD-1 probe also exhibited potent inhibitory activity against 3CLpro protease. Taken together, our findings will elucidate the structural basis for the efficacy of marketed drugs, and explore a rapid and efficient strategy of drug repurposing based on the identification of new targets. Moreover, these results could also provide a scientific basis for the clinical application of marketed drugs.
Collapse
Affiliation(s)
- Yuexiang Ma
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Jin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yuanyuan Shan
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
5
|
Zhang J, Zou M, Tian Q, Sun Z, Chu W. N-Cyano-2,2'-biphenyldicarboimide as a Cyanation Reagent for Co(III)-Catalyzed C-H Cyanation of Indoles in Ionic Liquids. Org Lett 2023; 25:1436-1440. [PMID: 36856532 DOI: 10.1021/acs.orglett.3c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
A mild strategy for Co(III)-catalyzed C(sp2)-H cyanation of indoles was developed by using NCBLD as an electrophilic cyanation reagent and 1-butyl-3-acetylimidazole ditrifluoromethylsulfonimide ([BAIM]NTf2) as an environmentally friendly and recyclable solvent, and a series of 2-cyano products were obtained at room temperature. Adopting this strategy, the unnatural nucleotide fragment precursor of Remdesivir, which was a drug for COVID-19, was synthesized through cyano transformation, further proving the practicability of this cyanation method.
Collapse
Affiliation(s)
- Jingchao Zhang
- School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang 150080, P.R. China
| | - MengQi Zou
- School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang 150080, P.R. China
| | - QinYe Tian
- School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang 150080, P.R. China
| | - Zhizhong Sun
- School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang 150080, P.R. China
| | - Wenyi Chu
- School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang 150080, P.R. China
| |
Collapse
|
6
|
Chavda VP, Teli D, Balar PC, Vaghela D, Solanki HK, Vaishnav A, Vora L. Potential Anti-SARS-CoV-2 Prodrugs Activated by Phosphorylation and Their Role in the Aged Population. Molecules 2023; 28:2332. [PMID: 36903575 PMCID: PMC10004871 DOI: 10.3390/molecules28052332] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The COVID-19 pandemic has flared across every part of the globe and affected populations from different age groups differently. People aged from 40 to 80 years or older are at an increased risk of morbidity and mortality due to COVID-19. Therefore, there is an urgent requirement to develop therapeutics to decrease the risk of the disease in the aged population. Over the last few years, several prodrugs have demonstrated significant anti-SARS-CoV-2 effects in in vitro assays, animal models, and medical practice. Prodrugs are used to enhance drug delivery by improving pharmacokinetic parameters, decreasing toxicity, and attaining site specificity. This article discusses recently explored prodrugs such as remdesivir, molnupiravir, favipiravir, and 2-deoxy-D-glucose (2-DG) and their implications in the aged population, as well as investigating recent clinical trials.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380008, India
| | - Divya Teli
- Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Pankti C. Balar
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380008, India
| | - Dixa Vaghela
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380008, India
| | - Hetvi K. Solanki
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380008, India
| | - Akta Vaishnav
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380008, India
| | - Lalitkumar Vora
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
7
|
Khan SA, Lee TKW. Identifying potential pharmacological targets and molecular pathways of Meliae cortex for COVID-19 therapy. Front Immunol 2023; 14:1128164. [PMID: 36817449 PMCID: PMC9932519 DOI: 10.3389/fimmu.2023.1128164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Coronavirus disease-19 (COVID-19), caused by SARS-CoV-2, has contributed to a significant increase in mortality. Proinflammatory cytokine-mediated cytokine release syndrome (CRS) contributes significantly to COVID-19. Meliae cortex has been reported for its several ethnomedical applications in the Chinese Pharmacopoeia. In combination with other traditional Chinese medicines (TCM), the Meliae cortex suppresses coronavirus. Due to its phytoconstituents and anti-inflammatory capabilities, we postulated that the Meliae cortex could be a potential therapeutic for treating COVID-19. The active phytonutrients, molecular targets, and pathways of the Meliae cortex have not been explored yet for COVID-19 therapy. We performed network pharmacology analysis to determine the active phytoconstituents, molecular targets, and pathways of the Meliae cortex for COVID-19 treatment. 15 active phytonutrients of the Meliae cortex and 451 their potential gene targets were retrieved from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) and SwissTargetPrediction website tool, respectively. 1745 COVID-19-related gene targets were recovered from the GeneCards. 104 intersection gene targets were determined by performing VENNY analysis. Using the DAVID tool, gene ontology (GO) and KEGG pathway enrichment analysis were performed on the intersection gene targets. Using the Cytoscape software, the PPI and MCODE analyses were carried out on the intersection gene targets, which resulted in 41 potential anti-COVID-19 core targets. Molecular docking was performed with AutoDock Vina. The 10 anti-COVID-19 core targets (AKT1, TNF, HSP90AA1, IL-6, mTOR, EGFR, CASP3, HIF1A, MAPK3, and MAPK1), three molecular pathways (the PI3K-Akt signaling pathway, the HIF-1 signaling pathway, and the pathways in cancer) and three active phytonutrients (4,8-dimethoxy-1-vinyl-beta-carboline, Trichilinin D, and Nimbolin B) were identified as molecular targets, molecular pathways, and key active phytonutrients of the Meliae cortex, respectively that significantly contribute to alleviating COVID-19. Molecular docking analysis further corroborated that three Meliae cortex's key active phytonutrients may ameliorate COVID-19 disease by modulating identified targets. Hence, this research offers a solid theoretic foundation for the future development of anti-COVID-19 therapeutics based on the phytonutrients of the Meliae cortex.
Collapse
Affiliation(s)
- Shakeel Ahmad Khan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China,*Correspondence: Shakeel Ahmad Khan, ; Terence Kin Wah Lee,
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China,Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China,State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China,*Correspondence: Shakeel Ahmad Khan, ; Terence Kin Wah Lee,
| |
Collapse
|
8
|
Kawall A, Lewis DSM, Sharma A, Chavada K, Deshmukh R, Rayalam S, Mody V, Taval S. Inhibitory effect of phytochemicals towards SARS-CoV-2 papain like protease (PLpro) proteolytic and deubiquitinase activity. Front Chem 2023; 10:1100460. [PMID: 36712981 PMCID: PMC9878345 DOI: 10.3389/fchem.2022.1100460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/26/2022] [Indexed: 01/14/2023] Open
Abstract
Recent studies have shown that RNA-dependent RNA polymerase (RdRp), 3-chymotrypsin-like protease (3CLpro), and papain-like protease (PLpro) are necessary for SARS-CoV-2 replication. Among these three enzymes, PLpro exhibits both proteolytic and deubiquitinase (DUB) activity and is responsible for disrupting the host's innate immune response against SARS-CoV-2. Because of this unique property of PLpro, we investigated the inhibitory effects of phytochemicals on the SARS-CoV-2 PLpro enzyme. Our data indicates that the phytochemicals such as catechin, epigallocatechin gallate (EGCG), mangiferin, myricetin, rutin, and theaflavin exhibited inhibitory activity with IC50 values of 14.2, 128.4, 95.3, 12.1, and 43.4, and 7.3 μM, respectively, towards PLpro proteolytic activity. However, the IC50 values of quercetin, oleuropein, and γ-mangostin are ambiguous. We observed that EGCG, mangiferin, myricetin, oleuropein, rutin, and theaflavin have also inhibited the DUB activity with IC50 values of 44.7, 104.3, 29.2, 131.5, 61.7, and 13.2 μM, respectively. Mechanistically, the ligand-protein interaction structural modeling suggests that mangiferin, EGCG, theaflavin, and oleuropein shows that these four ligands interact with Glu167, and Tyr268, however mangiferin and oleuropein showed very weak interaction with Glu167 as compared to EGCG, and theaflavin which reflects their low IC50 values for DUB activity. Our data indicate that the phytochemicals mentioned above inhibit the proteolytic and DUB activity of SARS-CoV-2 PLpro, thus preventing viral replication and promoting host innate immune response. However, the therapeutic potential of these phytochemicals needs to be validated by pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Anasha Kawall
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine—Georgia Campus, Suwanee, GA, United States
| | - Devin S. M. Lewis
- Division of Research, Philadelphia College of Osteopathic Medicine—Georgia Campus, Suwanee, GA, United States
| | - Avini Sharma
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine—Georgia Campus, Suwanee, GA, United States
| | - Krishna Chavada
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine—Georgia Campus, Suwanee, GA, United States
| | - Rahul Deshmukh
- Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Srujana Rayalam
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine—Georgia Campus, Suwanee, GA, United States
| | - Vicky Mody
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine—Georgia Campus, Suwanee, GA, United States,*Correspondence: Shashidharamurthy Taval, ; Vicky Mody,
| | - Shashidharamurthy Taval
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine—Georgia Campus, Suwanee, GA, United States,*Correspondence: Shashidharamurthy Taval, ; Vicky Mody,
| |
Collapse
|
9
|
Başer KHC, Karadağ AE, Biltekin SN, Ertürk M, Demirci F. In Vitro Antiviral Evaluations of Coldmix ®: An Essential Oil Blend against SARS-CoV-2. Curr Issues Mol Biol 2023; 45:677-684. [PMID: 36661531 PMCID: PMC9857070 DOI: 10.3390/cimb45010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Coldmix® is a commercially available Eucalyptus aetheroleum and, Abies aetheroleum blend for medicinal applications. In this present study, the in vitro antiviral potential of Coldmix®, and its major constituents 1,8-cineole and α-pinene were evaluated by using the in vitro ACE2 enzyme inhibition assay as well as the direct contact test against SARS-CoV-2. The observed ACE2 enzyme inhibitory activity of Coldmix®, 1,8-cineole, and α-pinene were 72%, 88%, and 80%, respectively; whereas in the direct contact test in the vapor phase, the destruction of the virus was 79.9% within 5 min and 93.2% in the 30th min, respectively. In a similar Coldmix® vapor phase setup using the in vitro cytotoxicity cell assay, E6 VERO healthy cells were experimentally not affected by toxicity. According to the promising initial antiviral results of Coldmix® and the individually tested constituents, detailed further in vivo evaluation using different virus classes is suggested.
Collapse
Affiliation(s)
- Kemal Hüsnü Can Başer
- Department of Pharmacognosy, Faculty of Pharmacy, Near East University, N. Cyprus, Mersin 10, 99138 Nicosia, Türkiye
- Badebio Biotechnology Ltd., ATAP, Anadolu University, Tepebaşı, 26470 Eskişehir, Türkiye
| | - Ayşe Esra Karadağ
- Department of Pharmacognosy, School of Pharmacy, Istanbul Medipol University, 34810 Istanbul, Türkiye
- Department of Pharmacognosy, Graduate School of Health Sciences, Anadolu University, 26470 Eskişehir, Türkiye
| | - Sevde Nur Biltekin
- Department of Pharmaceutical Microbiology, School of Pharmacy, Istanbul Medipol University, 34810 Istanbul, Türkiye
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134 Istanbul, Türkiye
| | - Murat Ertürk
- Department of Microbiology, Medical School of Yüksek İhtisas University, 06520 Ankara, Türkiye
| | - Fatih Demirci
- Badebio Biotechnology Ltd., ATAP, Anadolu University, Tepebaşı, 26470 Eskişehir, Türkiye
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Türkiye
- Faculty of Pharmacy, Eastern Mediterranean University, N. Cyprus, Mersin 10, 99628 Famagusta, Türkiye
| |
Collapse
|
10
|
Zhang K, Wang L, Peng J, Sangji K, Luo Y, Zeng Y, Zeweng Y, Fan G. Traditional Tibetan medicine to fight against COVID-19: Basic theory and therapeutic drugs. Front Pharmacol 2023; 14:1098253. [PMID: 36874035 PMCID: PMC9978713 DOI: 10.3389/fphar.2023.1098253] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
The Coronavirus Diseases 2019 (COVID-19) has been rapidly spreading globally and has caused severe harm to the health of people and a substantial social burden. In response to this situation, experts around the world have considered various treatments, including the use of traditional medicine. Traditional Tibetan medicine (TTM), one of the traditional medicines in China, has played an important role in the treatment of infectious diseases in history. It has formed a solid theoretical foundation and accumulated rich experience in the treatment of infectious diseases. In this review, we provide a comprehensive introduction to the basic theory, treatment strategies, and commonly used drugs of TTM for the treatment of COVID-19. In addition, the efficacies and potential mechanisms of these TTM drugs against COVID-19 are discussed based on available experimental data. This review may provide important information for the basic research, clinical application and drug development of traditional medicines for the treatment of COVID-19 or other infectious diseases. More pharmacological studies are needed to reveal the therapeutic mechanisms and active ingredients of TTM drugs in the treatment of COVID-19.
Collapse
Affiliation(s)
- Kun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lijie Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiayan Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kangzhuo Sangji
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuting Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yujiao Zeng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yongzhong Zeweng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Senghor AS, Mbaye MS, Diop R, Tosam MJ, Kabou P, Niang A, Okoye G. Towards a transactional medicine approach to combating global emerging pathogens: the case of COVID-19. Glob Public Health 2023; 18:2272710. [PMID: 37917803 DOI: 10.1080/17441692.2023.2272710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 10/15/2023] [Indexed: 11/04/2023]
Abstract
When the COVID-19 pandemic struck and China reported the first case to the World Health Organization in December 2019, there was no evidence-based treatment to combat it. With the catastrophic situation that followed, materialised by a considerable number of deaths, researchers, doctors, traditional healers, and governments of all nations committed themselves to find therapeutic solutions, including preventive and curative. There are effective treatments offered both by modern medicine and traditional medicine for COVID-19 today. However, other therapeutic proposals have not been approved due to the lack of effectiveness and scientific rigour during their development process. Proponents of modern medicine prefer biomedical therapies while in some countries, traditional treatments are used regularly because of their availability, affordability and satisfaction they bring to the population. In this paper, we propose a transactional medicine approach where the interaction between traditional and modern medicine produces a change. With this approach, the promoters of traditional medicine and those of modern medicine will be able to acquire knowledge through the experience produced by their encounters. Transactional medicine aims to be a model for decolonising medicine and recognising the value of both traditional and modern medicine in the fight against COVID-19 and other global emerging pathogens.
Collapse
Affiliation(s)
- Abdou Simon Senghor
- Department of Practice, Sciences, and Health Outcomes Research (P-SHOR), University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Mame Salah Mbaye
- Department sociétés, territoires et développement, chaire de recherche du Canada en Innovation sociale et développement du territoire, Université du Québec à Rimouski, Rimouski, Canada
| | - Rougui Diop
- Department of Sociology, Université de Montréal, Montreal, Canada
| | - Mbih Jerome Tosam
- Department of Philosophy, The University of Bamenda, Bamenda, Cameroon
| | - Patrick Kabou
- Department of Law, University of Toulouse 1 Capitole, Toulouse, France
| | - Abdoulaye Niang
- Department of Sociology, Gaston Berger University, Saint-Louis, Senegal
| | - Godwin Okoye
- Department of Practice, Sciences, and Health Outcomes Research (P-SHOR), University of Maryland School of Pharmacy, Baltimore, MD, USA
| |
Collapse
|
12
|
Wang Z, Yang L, Song XQ. Oral GS-441524 derivatives: Next-generation inhibitors of SARS-CoV-2 RNA-dependent RNA polymerase. Front Immunol 2022; 13:1015355. [PMID: 36561747 PMCID: PMC9763260 DOI: 10.3389/fimmu.2022.1015355] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
GS-441524, an RNA-dependent RNA polymerase (RdRp) inhibitor, is a 1'-CN-substituted adenine C-nucleoside analog with broad-spectrum antiviral activity. However, the low oral bioavailability of GS-441524 poses a challenge to its anti-SARS-CoV-2 efficacy. Remdesivir, the intravenously administered version (version 1.0) of GS-441524, is the first FDA-approved agent for SARS-CoV-2 treatment. However, clinical trials have presented conflicting evidence on the value of remdesivir in COVID-19. Therefore, oral GS-441524 derivatives (VV116, ATV006, and GS-621763; version 2.0, targeting highly conserved viral RdRp) could be considered as game-changers in treating COVID-19 because oral administration has the potential to maximize clinical benefits, including decreased duration of COVID-19 and reduced post-acute sequelae of SARS-CoV-2 infection, as well as limited side effects such as hepatic accumulation. This review summarizes the current research related to the oral derivatives of GS-441524, and provides important insights into the potential factors underlying the controversial observations regarding the clinical efficacy of remdesivir; overall, it offers an effective launching pad for developing an oral version of GS-441524.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China,School of Pharmaceutical Sciences, Tsinghua University, Beijing, China,*Correspondence: Zhonglei Wang, ; Liyan Yang, ; Xian-qing Song,
| | - Liyan Yang
- Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, School of Physics and Physical Engineering, Qufu Normal University, Qufu, China,*Correspondence: Zhonglei Wang, ; Liyan Yang, ; Xian-qing Song,
| | - Xian-qing Song
- General Surgery Department, Ningbo Fourth Hospital, Xiangshan, China,*Correspondence: Zhonglei Wang, ; Liyan Yang, ; Xian-qing Song,
| |
Collapse
|
13
|
Yi Y, Fang J, Liu Y, Gao Y, Lin W, Hao D, Zhang X, Zhang M. Clinical Characteristics of 254 COVID-19 Inpatients in Yichang, Hubei, China, and Efficacy of Integrated Chinese and Western Medicine Treatment. Int J Gen Med 2022; 15:8191-8200. [PMID: 36411815 PMCID: PMC9675424 DOI: 10.2147/ijgm.s391024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction There is no effective treatment plan for coronavirus disease 2019 (COVID-19). We employed a combination of Chinese and Western medicine treatment for some COVID-19 inpatients. Methods This study was a prospective cohort study that observed non-critical COVID-19 inpatients. The differences will be observed in the time from admission to two consecutive 2019-nCoV nucleic acid test negatives and the Visual Analog Scale (VAS) score between the two groups. Results A total of 254 confirmed COVID-19 patients were included in this study. The median time from the admission to two consecutive negative nucleic acid tests was 14 days for the integrated Chinese and Western Medicine (ICWM) group, while the Western Medicine (WM) group was 16 days. Besides, the median VAS score of the ICWM group was 0, which was an average decrease of 2 points compared to the time of admission. Conclusion For non-critical COVID-19 patients, it was safe and have more benefits to add traditional Chinese medicine decoction based on WM treatment.
Collapse
Affiliation(s)
- Yongxin Yi
- Department of Encephalopathy, the Third People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, People’s Republic of China
| | - Jiayang Fang
- Department of Encephalopathy, the Third People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, People’s Republic of China
| | - Yunzhu Liu
- Department of Encephalopathy, the Third People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, People’s Republic of China
| | - Yidong Gao
- Department of Encephalopathy, the Third People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, People’s Republic of China
| | - Weizhi Lin
- Department of Encephalopathy, the Third People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, People’s Republic of China
| | - Dongdong Hao
- Department of Outpatient, Lanzhou 7th Rest Center for Retired Cadre, Gansu Military Region, Lanzhou, People’s Republic of China
| | - Xing Zhang
- Department of Medicine, the State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, People’s Republic of China
- Department of Medicine, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, People’s Republic of China
| | - Min Zhang
- Department of Encephalopathy, the Third People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, People’s Republic of China
- Correspondence: Min Zhang, Department of Encephalopathy, the Third People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, People’s Republic of China, Email
| |
Collapse
|
14
|
Su YC, Huang GJ, Lin JG. Chinese herbal prescriptions for COVID-19 management: Special reference to Taiwan Chingguan Yihau (NRICM101). Front Pharmacol 2022; 13:928106. [PMID: 36278162 PMCID: PMC9581083 DOI: 10.3389/fphar.2022.928106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a strain of coronavirus that causes COVID-19 (coronavirus disease 2019), the respiratory illness responsible for the ongoing COVID-19 pandemic. As at June 2022, increasing numbers of newly diagnosed COVID-19-associated pneumonia cases worldwide have attracted close attention from the international community. The present review analyzes and summarizes the treatment of COVID-19 with traditional Chinese medicine (TCM). A systematic analysis of the efficacies and benefits of TCM for the treatment of COVID-19 was performed, and the mechanisms underlying such treatment are summarized. This analysis of the literature highlights the potential of TCM to prevent and treat COVID-19 via antiviral, anti-inflammatory and immunomodulatory activities, with evidence showing that many TCM components act upon multiple targets and pathways. Famous TCM formulas include Qing-Fei-Pai-Du-Tang (QFPDT), Lianhuaqingwen Capsule (LHC), Taiwan Chingguan Yihau (NRICM101), and Jing Si herbal drink (JSHD). In particular, the botanical preparation NRICM101 was developed in 2020 for use in viral respiratory tract infections and is recommended for treating non-severe and mild COVID-19 infections. NRICM101 has been adopted for use in Taiwan for the clinical treatment of COVID-19. The common components and active ingredients of 10 TCM preparations have been analyzed for the most promising substances. This review aims to provide reliable evidence demonstrating the therapeutic efficacy of TCM substances in support of their further development against novel coronavirus infectious diseases in Taiwan.
Collapse
Affiliation(s)
- Yi-Chang Su
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung, Taiwan
- *Correspondence: Guan-Jhong Huang, ; Jaung-Geng Lin,
| | - Jaung-Geng Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- *Correspondence: Guan-Jhong Huang, ; Jaung-Geng Lin,
| |
Collapse
|
15
|
Wang Z, Wang N, Yang L, Song XQ. Bioactive natural products in COVID-19 therapy. Front Pharmacol 2022; 13:926507. [PMID: 36059994 PMCID: PMC9438897 DOI: 10.3389/fphar.2022.926507] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
The devastating COVID-19 pandemic has caused more than six million deaths worldwide during the last 2 years. Effective therapeutic agents are greatly needed, yet promising magic bullets still do not exist. Numerous natural products (cordycepin, gallinamide A, plitidepsin, telocinobufagin, and tylophorine) have been widely studied and play a potential function in treating COVID-19. In this paper, we reviewed published studies (from May 2021 to April 2022) relating closely to bioactive natural products (isolated from medicinal plants, animals products, and marine organisms) in COVID-19 therapy in vitro to provide some essential guidance for anti-SARS-CoV-2 drug research and development.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Ning Wang
- General Surgery Department, Ningbo Fourth Hospital, Xiangshan, China
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, China
| | - Xian-qing Song
- General Surgery Department, Ningbo Fourth Hospital, Xiangshan, China
| |
Collapse
|
16
|
Wang Z, Yang L. Post-acute Sequelae of SARS-CoV-2 Infection: A Neglected Public Health Issue. Front Public Health 2022; 10:908757. [PMID: 35784200 PMCID: PMC9247346 DOI: 10.3389/fpubh.2022.908757] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022] Open
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, China
| |
Collapse
|
17
|
Jeong HJ, Min S, Kim S, Namgoong SK, Jeong K. Hyperpolarization study on remdesivir with its biological reaction monitoring via signal amplification by reversible exchange. RSC Adv 2022; 12:4377-4381. [PMID: 35425403 PMCID: PMC8981083 DOI: 10.1039/d2ra00062h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/20/2022] [Indexed: 12/22/2022] Open
Abstract
Our experiments indicate hyperpolarized proton signals in the entire structure of remdesivir are obtained due to a long-distance polarization transfer by para-hydrogen. SABRE-based biological real-time reaction monitoring, by using a protein enzyme under mild conditions is carried out. It represents the first successful para-hydrogen based hyperpolarization application in biological reaction monitoring. Hyperpolarized proton signals in the entire structure of remdesivir are obtained due to a long-distance polarization transfer by para-hydrogen. Biological real-time reaction monitoring, by using a protein enzyme under mild conditions is carried out.![]()
Collapse
Affiliation(s)
- Hye Jin Jeong
- Department of Physics and Chemistry, Korea Military Academy, Seoul 01805, South Korea
| | - Sein Min
- Department of Chemistry, Seoul Women's University, Seoul 01797, South Korea
| | - Sarah Kim
- Department of Chemistry, Seoul Women's University, Seoul 01797, South Korea
| | - Sung Keon Namgoong
- Department of Chemistry, Seoul Women's University, Seoul 01797, South Korea
| | - Keunhong Jeong
- Department of Physics and Chemistry, Korea Military Academy, Seoul 01805, South Korea
| |
Collapse
|
18
|
Wang Z, Yang L. Broad-spectrum prodrugs with anti-SARS-CoV-2 activities: Strategies, benefits, and challenges. J Med Virol 2021; 94:1373-1390. [PMID: 34897729 DOI: 10.1002/jmv.27517] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 01/18/2023]
Abstract
In this era, broad-spectrum prodrugs with anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) activities are gaining considerable attention owing to their potential clinical benefits and role in combating the fast-spreading coronavirus disease 2019 (COVID-19) pandemic. The last 2 years have seen a surge of reports on various broad-spectrum prodrugs against SARS-CoV-2, and in in vitro studies, animal models, and clinical practice. Currently, only remdesivir (with many controversies and limitations) has been approved by the U.S. FDA for the treatment of SARS-CoV-2 infection, and additional potent anti-SARS-CoV-2 drugs are urgently required to enrich the defense arsenals. The world has ubiquitously grappled with the COVID-19 pandemic, and the availability of broad-spectrum prodrugs provides great hope for us to subdue this global threat. This article reviews promising treatment strategies, antiviral mechanisms, potential benefits, and daunting clinical challenges of anti-SARS-CoV-2 agents to provide some important guidance for future clinical treatment.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, P. R. China.,Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Tsinghua University, Beijing, P. R. China
| | - Liyan Yang
- Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong, P. R. China
| |
Collapse
|
19
|
Wang Z, Yang L, Zhao XE. Co-crystallization and structure determination: An effective direction for anti-SARS-CoV-2 drug discovery. Comput Struct Biotechnol J 2021; 19:4684-4701. [PMID: 34426762 PMCID: PMC8373586 DOI: 10.1016/j.csbj.2021.08.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/29/2021] [Accepted: 08/17/2021] [Indexed: 01/18/2023] Open
Abstract
Safer and more-effective drugs are urgently needed to counter infections with the highly pathogenic SARS-CoV-2, cause of the COVID-19 pandemic. Identification of efficient inhibitors to treat and prevent SARS-CoV-2 infection is a predominant focus. Encouragingly, using X-ray crystal structures of therapeutically relevant drug targets (PLpro, Mpro, RdRp, and S glycoprotein) offers a valuable direction for anti-SARS-CoV-2 drug discovery and lead optimization through direct visualization of interactions. Computational analyses based primarily on MMPBSA calculations have also been proposed for assessing the binding stability of biomolecular structures involving the ligand and receptor. In this study, we focused on state-of-the-art X-ray co-crystal structures of the abovementioned targets complexed with newly identified small-molecule inhibitors (natural products, FDA-approved drugs, candidate drugs, and their analogues) with the assistance of computational analyses to support the precision design and screening of anti-SARS-CoV-2 drugs.
Collapse
Key Words
- 3CLpro, 3C-Like protease
- ACE2, angiotensin-converting enzyme 2
- COVID-19, coronavirus disease 2019
- Candidate drugs
- Co-crystal structures
- DyKAT, dynamic kinetic asymmetric transformation
- EBOV, Ebola virus
- EC50, half maximal effective concentration
- EMD, Electron Microscopy Data
- FDA, U.S. Food and Drug Administration
- FDA-approved drugs
- HCoV-229E, human coronavirus 229E
- HPLC, high-performance liquid chromatography
- IC50, half maximal inhibitory concentration
- MD, molecular dynamics
- MERS-CoV, Middle East respiratory syndrome coronavirus
- MMPBSA, molecular mechanics Poisson-Boltzmann surface area
- MTase, methyltransferase
- Mpro, main protease
- Natural products
- Nsp, nonstructural protein
- PDB, Protein Data Bank
- PLpro, papain-like protease
- RTP, ribonucleoside triphosphate
- RdRp, RNA-dependent RNA polymerase
- SAM, S-adenosylmethionine
- SARS-CoV, severe acute respiratory syndrome coronavirus
- SARS-CoV-2
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SI, selectivity index
- Ugi-4CR, Ugi four-component reaction
- cryo-EM, cryo-electron microscopy
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, PR China
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Xian-En Zhao
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| |
Collapse
|
20
|
Vargas D, Larghi EL, Kaufman TS. Evolution of the Synthesis of Remdesivir. Classical Approaches and Most Recent Advances. ACS OMEGA 2021; 6:19356-19363. [PMID: 34368522 PMCID: PMC8340098 DOI: 10.1021/acsomega.1c03082] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
The broad-spectrum antiviral Remdesivir, a monophosphate nucleoside analogue prodrug (ProTide), was repurposed. In May 2020, it received emergency approval by the FDA, being the first drug approved to fight the new coronavirus (COVID-19) disease which targets the virus directly. The main synthetic strategies toward Remdesivir, and their relevant modifications, are presented and discussed, to provide a panoramic view of the state-of-the-art and the more important advances in this field. Recent progress, proposed improvements, and uses of novel technologies for the synthetic sequence are also detailed.
Collapse
Affiliation(s)
- Didier
F. Vargas
- Instituto de Química Rosario
(IQUIR, CONICET-UNR) and National University of Rosario (UNR), Suipacha 531, 2000 Rosario, Argentina
| | - Enrique L. Larghi
- Instituto de Química Rosario
(IQUIR, CONICET-UNR) and National University of Rosario (UNR), Suipacha 531, 2000 Rosario, Argentina
| | - Teodoro S. Kaufman
- Instituto de Química Rosario
(IQUIR, CONICET-UNR) and National University of Rosario (UNR), Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
21
|
Yang L, Wang Z. Natural Products, Alone or in Combination with FDA-Approved Drugs, to Treat COVID-19 and Lung Cancer. Biomedicines 2021; 9:689. [PMID: 34207313 PMCID: PMC8234041 DOI: 10.3390/biomedicines9060689] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
As a public health emergency of international concern, the highly contagious coronavirus disease 2019 (COVID-19) pandemic has been identified as a severe threat to the lives of billions of individuals. Lung cancer, a malignant tumor with the highest mortality rate, has brought significant challenges to both human health and economic development. Natural products may play a pivotal role in treating lung diseases. We reviewed published studies relating to natural products, used alone or in combination with US Food and Drug Administration-approved drugs, active against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and lung cancer from 1 January 2020 to 31 May 2021. A wide range of natural products can be considered promising anti-COVID-19 or anti-lung cancer agents have gained widespread attention, including natural products as monotherapy for the treatment of SARS-CoV-2 (ginkgolic acid, shiraiachrome A, resveratrol, and baicalein) or lung cancer (daurisoline, graveospene A, deguelin, and erianin) or in combination with FDA-approved anti-SARS-CoV-2 agents (cepharanthine plus nelfinavir, linoleic acid plus remdesivir) and anti-lung cancer agents (curcumin and cisplatin, celastrol and gefitinib). Natural products have demonstrated potential value and with the assistance of nanotechnology, combination drug therapies, and the codrug strategy, this "natural remedy" could serve as a starting point for further drug development in treating these lung diseases.
Collapse
Affiliation(s)
- Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China;
| | - Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Zarenezhad E, Behrouz S, Farjam M, Rad MNS. A Mini Review on Discovery and Synthesis of Remdesivir as an Effective and Promising Drug against COVID-19. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021; 47:609-621. [PMID: 34149273 PMCID: PMC8193954 DOI: 10.1134/s1068162021030183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/08/2020] [Accepted: 12/12/2020] [Indexed: 01/03/2023]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) as a new human coronavirus has begun spreading over Wuhan City/China in December 2019, and then spread rapidly worldwide, causing pneumonia called COVID-19. Up to now, the scientists have extensively attempted to find effective vaccines and drugs for treatment of coronavirus infections. To this end, various pharmaceutical agents are undergoing the clinical studies to assess their potency and efficacy against COVID-19. Based on the new findings, the U.S. food and drug administration (FDA) has issued an emergency use authorization for remdesivir as an effective anti-viral for remedying the hospitalized COVID-19 patients. Recently, the European medicines agency has authorized the use of remdesivir for the treatment of COVID-19. Remdesivir as a nucleotide prodrug exhibits broad-spectrum antiviral activities against RNA viruses. In this short review, we have rendered a brief overview of discovery and synthesis for remdesivir.
Collapse
Affiliation(s)
- E. Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - S. Behrouz
- Medicinal Chemistry Research Laboratory, Department of Chemistry Shiraz University of Technology, 71555-313 Shiraz, Iran
| | - M. Farjam
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Medical Pharmacology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - M. N. Soltani Rad
- Medicinal Chemistry Research Laboratory, Department of Chemistry Shiraz University of Technology, 71555-313 Shiraz, Iran
| |
Collapse
|
23
|
Shiryaev VA, Klimochkin YN. Main Chemotypes of SARS-CoV-2 Reproduction Inhibitors. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [PMCID: PMC8188765 DOI: 10.1134/s107042802105002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The COVID-19 pandemic has forced scientists all over the world to focus their effort on searching for targeted drugs for coronavirus chemotherapy. The present review is an attempt to systematize low-molecular-weight compounds, including well-known pharmaceuticals and natural substances that have exhibited high anti-coronavirus activity, not in terms of action on their targets, but in terms of their structural type.
Collapse
Affiliation(s)
- V. A. Shiryaev
- Samara State Technical University, 443100 Samara, Russia
| | | |
Collapse
|