1
|
Flatschacher D, Eschlböck A, Pierson S, Schreiner U, Stock V, Schiller A, Ruso D, Doppler M, Ruzsanyi V, Gründlinger M, Büschl C, Schuhmacher R, Zeilinger S. Linking a polyketide synthase gene cluster to 6-pentyl-alpha-pyrone, a Trichoderma metabolite with diverse bioactivities. Microb Cell Fact 2025; 24:89. [PMID: 40259335 PMCID: PMC12010586 DOI: 10.1186/s12934-025-02718-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/09/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND Members of the fungal genus Trichoderma are well-known for their mycoparasitic and plant protecting activities, rendering them important biocontrol agents. One of the most significant specialized metabolites (SMs) produced by various Trichoderma species is the unsaturated lactone 6-pentyl-alpha-pyrone (6-PP). Although first identified more than 50 years ago and having pronounced antifungal and plant growth-promoting properties, the biosynthetic pathway of 6-PP still remains unresolved. RESULTS Here, we demonstrate that 6-PP is biosynthesized via the polyketide biosynthesis pathway. We identified Pks1, an iterative type I polyketide synthase, as crucial for its biosynthesis in Trichoderma atroviride, a species recognized for its prominent 6-PP production abilities. Phylogenetic and comparative genomic analyses revealed that the pks1 gene is part of a biosynthetic gene cluster conserved in those Trichoderma species that are known to produce 6-PP. Deletion of pks1 caused a complete loss of 6-PP production in T. atroviride and a significant reduction in antifungal activity against Botrytis cinerea and Rhizoctonia solani. Surprisingly, the absence of pks1 led to enhanced lateral root formation in Arabidopsis thaliana during interaction with T. atroviride. Transcriptomic analysis revealed co-regulation of pks1 with adjacent genes, including candidates coding for a C3H1-type zinc finger protein and lytic polysaccharide monooxygenase, suggesting coordination between 6-PP biosynthesis and environmental response mechanisms. CONCLUSION Our findings establish pks1 as an essential gene for 6-PP biosynthesis in T. atroviride, providing novel insights into the production of one of the most significant compounds of this mycoparasite. These findings may pave the way for the development of improved biocontrol agents and the application of 6-PP as potent biopesticide contributing to an eco-friendly and sustainable way of plant disease management.
Collapse
Affiliation(s)
- Daniel Flatschacher
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Alexander Eschlböck
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Siebe Pierson
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Ulrike Schreiner
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Valentina Stock
- Institute for Breath Research, University of Innsbruck, Innsbruck, Austria
| | - Arne Schiller
- Institute for Breath Research, University of Innsbruck, Innsbruck, Austria
| | - David Ruso
- Core Facility Bioactive Molecules: Screening and Analysis, University of Natural Resources and Life Sciences, Tulln, Austria
| | - Maria Doppler
- Core Facility Bioactive Molecules: Screening and Analysis, University of Natural Resources and Life Sciences, Tulln, Austria
| | - Veronika Ruzsanyi
- Institute for Breath Research, University of Innsbruck, Innsbruck, Austria
| | - Mario Gründlinger
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Christoph Büschl
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Tulln, Austria
| | - Rainer Schuhmacher
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Tulln, Austria
| | - Susanne Zeilinger
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria.
| |
Collapse
|
2
|
Shang Z, Arishi AA, Wu C, Lao F, Gilchrist CLM, Moggach SA, Lacey E, Piggott AM, Chooi YH. Self-Resistance Gene-Guided Discovery of the Molecular Basis for Biosynthesis of the Fatty Acid Synthase Inhibitor Cerulenin. Angew Chem Int Ed Engl 2025; 64:e202414941. [PMID: 39363718 DOI: 10.1002/anie.202414941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
Cerulenin (1) is the first reported natural fatty acid synthase inhibitor and has been intensively researched for its antifungal, anticancer and anti-obesity properties. However, the molecular basis for its biosynthesis has remained a mystery for six decades. Here, we have identified the polyketide biosynthetic gene cluster (cer) responsible for the biosynthesis of 1 from two Sarocladium species using a self-resistance gene mining approach, which we validated via heterologous reconstitution of cer cluster in an Aspergillus nidulans host. Expression of various combinations of cer genes uncovered key pathway intermediates, electrocyclisation products derived from PKS-encoded polyenoic acids, and a suite of 13 new analogues of 1. This enabled us to establish a biosynthetic pathway to 1 that starts with a C12 polyketide precursor containing both E and Z double bonds and involves a complex series of epoxidations, double bond shifts, E/Z isomerisation and epoxide reduction. Using in vitro assays, we further validated the roles of amidotransferase CerD in amidation, and oxidase CerF and reductase CerE in the final two-electron oxidation and enone reduction steps towards 1. These findings expand our understanding of complex tailoring modifications in highly reducing PKS pathways and pave the way for the engineered biosynthesis of cerulenin analogues.
Collapse
Affiliation(s)
- Zhuo Shang
- School of Molecular Sciences, The University of Western Australia, 6009, Perth, WA, Australia
- School of Pharmaceutical Sciences, Shandong University, 250012, Jinan, Shandong, China
| | - Amr A Arishi
- School of Molecular Sciences, The University of Western Australia, 6009, Perth, WA, Australia
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Changzheng Wu
- School of Pharmaceutical Sciences, Shandong University, 250012, Jinan, Shandong, China
| | - Fangzheng Lao
- School of Molecular Sciences, The University of Western Australia, 6009, Perth, WA, Australia
| | - Cameron L M Gilchrist
- School of Molecular Sciences, The University of Western Australia, 6009, Perth, WA, Australia
- Present address: School of Biological Sciences, Seoul National University, 08826, Seoul, South Korea
| | - Stephen A Moggach
- School of Molecular Sciences, The University of Western Australia, 6009, Perth, WA, Australia
| | - Ernest Lacey
- Microbial Screening Technologies Pty. Ltd., 2164, Smithfield, NSW, Australia
- School of Natural Sciences, Macquarie University, 2109, Sydney, NSW, Australia
| | - Andrew M Piggott
- School of Natural Sciences, Macquarie University, 2109, Sydney, NSW, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, 6009, Perth, WA, Australia
| |
Collapse
|
3
|
Alferova VA, Baranova AA, Belozerova OA, Gulyak EL, Mikhaylov AA, Solovev YV, Zhitlov MY, Sinichich AA, Tyurin AP, Trusova EA, Beletsky AV, Mardanov AV, Ravin NV, Lapchinskaya OA, Korshun VA, Gabibov AG, Terekhov SS. Molecular Decoration and Unconventional Double Bond Migration in Irumamycin Biosynthesis. Antibiotics (Basel) 2024; 13:1167. [PMID: 39766557 PMCID: PMC11672594 DOI: 10.3390/antibiotics13121167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Irumamycin (Iru) is a complex polyketide with pronounced antifungal activity produced by a type I polyketide (PKS) synthase. Iru features a unique hemiketal ring and an epoxide group, making its biosynthesis and the structural diversity of related compounds particularly intriguing. In this study, we performed a detailed analysis of the iru biosynthetic gene cluster (BGC) to uncover the mechanisms underlying Iru formation. We examined the iru PKS, including the domain architecture of individual modules and the overall spatial structure of the PKS, and uncovered discrepancies in substrate specificity and iterative chain elongation. Two potential pathways for the formation of the hemiketal ring, involving either an olefin shift or electrocyclization, were proposed and assessed using 18O-labeling experiments and reaction activation energy calculations. Based on our findings, the hemiketal ring is likely formed by PKS-assisted double bond migration and TE domain-mediated cyclization. Furthermore, putative tailoring enzymes mediating epoxide formation specific to Iru were identified. The revealed Iru biosynthetic machinery provides insight into the complex enzymatic processes involved in Iru production, including macrocycle sculpting and decoration. These mechanistic details open new avenues for a targeted architecture of novel macrolide analogs through synthetic biology and biosynthetic engineering.
Collapse
Affiliation(s)
- Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (A.A.B.); (O.A.B.); (A.A.M.); (Y.V.S.); (M.Y.Z.); (A.A.S.); (A.P.T.); (E.A.T.); (V.A.K.); (A.G.G.)
| | - Anna A. Baranova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (A.A.B.); (O.A.B.); (A.A.M.); (Y.V.S.); (M.Y.Z.); (A.A.S.); (A.P.T.); (E.A.T.); (V.A.K.); (A.G.G.)
| | - Olga A. Belozerova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (A.A.B.); (O.A.B.); (A.A.M.); (Y.V.S.); (M.Y.Z.); (A.A.S.); (A.P.T.); (E.A.T.); (V.A.K.); (A.G.G.)
| | - Evgeny L. Gulyak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (A.A.B.); (O.A.B.); (A.A.M.); (Y.V.S.); (M.Y.Z.); (A.A.S.); (A.P.T.); (E.A.T.); (V.A.K.); (A.G.G.)
| | - Andrey A. Mikhaylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (A.A.B.); (O.A.B.); (A.A.M.); (Y.V.S.); (M.Y.Z.); (A.A.S.); (A.P.T.); (E.A.T.); (V.A.K.); (A.G.G.)
| | - Yaroslav V. Solovev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (A.A.B.); (O.A.B.); (A.A.M.); (Y.V.S.); (M.Y.Z.); (A.A.S.); (A.P.T.); (E.A.T.); (V.A.K.); (A.G.G.)
| | - Mikhail Y. Zhitlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (A.A.B.); (O.A.B.); (A.A.M.); (Y.V.S.); (M.Y.Z.); (A.A.S.); (A.P.T.); (E.A.T.); (V.A.K.); (A.G.G.)
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia
| | - Arseniy A. Sinichich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (A.A.B.); (O.A.B.); (A.A.M.); (Y.V.S.); (M.Y.Z.); (A.A.S.); (A.P.T.); (E.A.T.); (V.A.K.); (A.G.G.)
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia
| | - Anton P. Tyurin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (A.A.B.); (O.A.B.); (A.A.M.); (Y.V.S.); (M.Y.Z.); (A.A.S.); (A.P.T.); (E.A.T.); (V.A.K.); (A.G.G.)
| | - Ekaterina A. Trusova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (A.A.B.); (O.A.B.); (A.A.M.); (Y.V.S.); (M.Y.Z.); (A.A.S.); (A.P.T.); (E.A.T.); (V.A.K.); (A.G.G.)
| | - Alexey V. Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33-2, Moscow 119071, Russia; (A.V.B.); (A.V.M.)
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33-2, Moscow 119071, Russia; (A.V.B.); (A.V.M.)
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33-2, Moscow 119071, Russia; (A.V.B.); (A.V.M.)
| | | | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (A.A.B.); (O.A.B.); (A.A.M.); (Y.V.S.); (M.Y.Z.); (A.A.S.); (A.P.T.); (E.A.T.); (V.A.K.); (A.G.G.)
| | - Alexander G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (A.A.B.); (O.A.B.); (A.A.M.); (Y.V.S.); (M.Y.Z.); (A.A.S.); (A.P.T.); (E.A.T.); (V.A.K.); (A.G.G.)
| | - Stanislav S. Terekhov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (A.A.B.); (O.A.B.); (A.A.M.); (Y.V.S.); (M.Y.Z.); (A.A.S.); (A.P.T.); (E.A.T.); (V.A.K.); (A.G.G.)
| |
Collapse
|
4
|
Fallon TR, Shende VV, Wierzbicki IH, Pendleton AL, Watervoort NF, Auber RP, Gonzalez DJ, Wisecaver JH, Moore BS. Giant polyketide synthase enzymes in the biosynthesis of giant marine polyether toxins. Science 2024; 385:671-678. [PMID: 39116217 PMCID: PMC11416037 DOI: 10.1126/science.ado3290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
Prymnesium parvum are harmful haptophyte algae that cause massive environmental fish kills. Their polyketide polyether toxins, the prymnesins, are among the largest nonpolymeric compounds in nature and have biosynthetic origins that have remained enigmatic for more than 40 years. In this work, we report the "PKZILLAs," massive P. parvum polyketide synthase (PKS) genes that have evaded previous detection. PKZILLA-1 and -2 encode giant protein products of 4.7 and 3.2 megadaltons that have 140 and 99 enzyme domains. Their predicted polyene product matches the proposed pre-prymnesin precursor of the 90-carbon-backbone A-type prymnesins. We further characterize the variant PKZILLA-B1, which is responsible for the shorter B-type analog prymnesin-B1, from P. parvum RCC3426 and thus establish a general model of haptophyte polyether biosynthetic logic. This work expands expectations of genetic and enzymatic size limits in biology.
Collapse
Affiliation(s)
- Timothy R. Fallon
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and University of California, San Diego; 9500 Gilman Dr #0204, La Jolla, CA 92093, USA
| | - Vikram V. Shende
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and University of California, San Diego; 9500 Gilman Dr #0204, La Jolla, CA 92093, USA
| | - Igor H. Wierzbicki
- Department of Pharmacology, University of California, San Diego; 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Amanda L. Pendleton
- Department of Biochemistry, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
| | - Nathan F. Watervoort
- Department of Biochemistry, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
| | - Robert P. Auber
- Department of Biochemistry, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
| | - David J. Gonzalez
- Department of Pharmacology, University of California, San Diego; 9500 Gilman Dr, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego; 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Jennifer H. Wisecaver
- Department of Biochemistry, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and University of California, San Diego; 9500 Gilman Dr #0204, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego; 9500 Gilman Dr, La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Xiang C, Yao S, Wang R, Zhang L. Bioinformatic prediction of the stereoselectivity of modular polyketide synthase: an update of the sequence motifs in ketoreductase domain. Beilstein J Org Chem 2024; 20:1476-1485. [PMID: 38978744 PMCID: PMC11228615 DOI: 10.3762/bjoc.20.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024] Open
Abstract
Polyketides are a major class of natural products, including bioactive medicines such as erythromycin and rapamycin. They are often rich in stereocenters biosynthesized by the ketoreductase (KR) domain within the polyketide synthase (PKS) assembly line. Previous studies have identified conserved motifs in KR sequences that enable the bioinformatic prediction of product stereochemistry. However, the reliability and applicability of these prediction methods have not been thoroughly assessed. In this study, we conducted a comprehensive bioinformatic analysis of 1,762 KR sequences from cis-AT PKSs to reevaluate the residues involved in conferring stereoselectivity. Our findings indicate that the previously identified fingerprint motifs remain valid for KRs in β-modules from actinobacteria, but their reliability diminishes for KRs from other module types or taxonomic origins. Additionally, we have identified several new motifs that exhibit a strong correlation with the stereochemical outcomes of KRs. These updated fingerprint motifs for stereochemical prediction not only enhance our understanding of the enzymatic mechanisms governing stereocontrol but also facilitate accurate stereochemical prediction and genome mining of polyketides derived from modular cis-AT PKSs.
Collapse
Affiliation(s)
- Changjun Xiang
- Department of Chemistry, Fudan University, Shanghai 200433, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
| | - Shunyu Yao
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
| | - Ruoyu Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
| | - Lihan Zhang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310030, China
| |
Collapse
|
6
|
Kweon B, Blank L, Soika J, Messara A, Daniliuc CG, Gilmour R. Regio- and Stereo-Selective Isomerization of Borylated 1,3-Dienes Enabled by Selective Energy Transfer Catalysis. Angew Chem Int Ed Engl 2024; 63:e202404233. [PMID: 38545942 DOI: 10.1002/anie.202404233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Indexed: 04/23/2024]
Abstract
Configurationally-defined dienes are pervasive across the bioactive natural product spectrum, where they typically manifest themselves as sorbic acid-based fragments. These C5 motifs reflect the biosynthesis algorithms that facilitate their construction. To complement established biosynthetic paradigms, a chemical platform to facilitate the construction of stereochemically defined, functionalizable dienes by light-enabled isomerization has been devised. Enabled by selective energy transfer catalysis, a variety of substituted β-boryl sorbic acid derivatives can be isomerized in a regio- and stereo-selective manner (up to 97 : 3). Directionality is guided by a stabilizing nO→pB interaction in the product: this constitutes a formal anti-hydroboration of the starting alkyne. This operationally simple reaction employs low catalyst loadings (1 mol %) and is complete in 1 h. X-ray analysis supports the hypothesis that the nO→pB interaction leads to chromophore bifurcation: this provides a structural foundation for selective energy transfer.
Collapse
Affiliation(s)
- Byeongseok Kweon
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| | - Lukas Blank
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| | - Julia Soika
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| | - Amélia Messara
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| | - Constantin G Daniliuc
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| | - Ryan Gilmour
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
7
|
Yin Z, Dickschat JS. Substrate specificity of a ketosynthase domain involved in bacillaene biosynthesis. Beilstein J Org Chem 2024; 20:734-740. [PMID: 38590531 PMCID: PMC10999986 DOI: 10.3762/bjoc.20.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
An isotopic labelling method was developed to investigate substrate binding by ketosynthases, exemplified by the second ketosynthase of the polyketide synthase BaeJ involved in bacillaene biosynthesis (BaeJ-KS2). For this purpose, both enantiomers of a 13C-labelled N-acetylcysteamine thioester (SNAC ester) surrogate of the proposed natural intermediate of BaeJ-KS2 were synthesised, including an enzymatic step with glutamate decarboxylase, and incubated with BaeJ-KS2. Substrate binding was demonstrated through 13C NMR analysis of the products against the background of various control experiments.
Collapse
Affiliation(s)
- Zhiyong Yin
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| |
Collapse
|
8
|
Kishore S, Del Rio Flores A, Lynch SR, Yuet KP, Khosla C. Discovery and Characterization of the Fully Decorated Nocardiosis-Associated Polyketide Natural Product. J Am Chem Soc 2024; 146:4212-4220. [PMID: 38295028 PMCID: PMC11009873 DOI: 10.1021/jacs.3c13670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The genomes of 40 strains of Nocardia, most of which were associated with life-threatening human infections, encode a highly conserved assembly line polyketide synthase designated as the NOCAP (NOCardiosis-Associated Polyketide) synthase, whose product structure has been previously described. Here we report the structure and inferred biosynthetic pathway of the fully decorated glycolipid natural product. Its structure reveals a fully substituted benzaldehyde headgroup harboring an unusual polyfunctional tail and an O-linked disaccharide comprising a 3-α-epimycarose and 2-O-methyl-α-rhamnose whose installation requires flavin monooxygenase-dependent hydroxylation of the polyketide product. Production of the fully decorated glycolipid was verified in cultures of two patient-derived Nocardia species. In both E. coli and Nocardia spp., the glycolipid was only detected in culture supernatants, consistent with data from genetic knockout experiments implicating roles for two dedicated proteins in installing the second sugar substituent only after the monoglycosyl intermediate is exported across the bacterial cell membrane. With the NOCAP product in hand, the stage is set for investigating the evolutionary benefit of this polyketide biosynthetic pathway for Nocardia strains capable of infecting human hosts.
Collapse
Affiliation(s)
- Shreya Kishore
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | | | - Stephen R Lynch
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Kai P Yuet
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Sarafan ChEM-H, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
9
|
Hou A, Dickschat JS. Labelling studies in the biosynthesis of polyketides and non-ribosomal peptides. Nat Prod Rep 2023; 40:470-499. [PMID: 36484402 DOI: 10.1039/d2np00071g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: 2015 to 2022In this review, we discuss the recent advances in the use of isotopically labelled compounds to investigate the biosynthesis of polyketides, non-ribosomally synthesised peptides, and their hybrids. Also, we highlight the use of isotopes in the elucidation of their structures and investigation of enzyme mechanisms. The biosynthetic pathways of selected examples are presented in detail to reveal the principles of the discussed labelling experiments. The presented examples demonstrate that the application of isotopically labelled compounds is still the state of the art and can provide valuable information for the biosynthesis of natural products.
Collapse
Affiliation(s)
- Anwei Hou
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, West 7th Avenue No. 32, 300308 Tianjin, China.,Institute of Microbiology, Jiangxi Academy of Sciences, Changdong Road No. 7777, 330096 Nanchang, China
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| |
Collapse
|
10
|
Xu H, Wochele A, Luo M, Schnakenburg G, Sun Y, Brötz-Oesterhelt H, Dickschat JS. Synthesis of tryptophan-dehydrobutyrine diketopiperazine and biological activity of hangtaimycin and its co-metabolites. Beilstein J Org Chem 2022; 18:1159-1165. [PMID: 36128431 PMCID: PMC9475180 DOI: 10.3762/bjoc.18.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/29/2022] [Indexed: 11/23/2022] Open
Abstract
An improved synthesis for tryptophan-dehydrobutyrine diketopiperazine (TDD), a co-metabolite of the hybrid polyketide/non-ribosomal peptide hangtaimycin, starting from ʟ-tryptophan is presented. Comparison to TDD isolated from the hangtaimycin producer Streptomyces spectabilis confirmed its S configuration. The X-ray structure of the racemate shows an interesting dimerisation through hydrogen bridges. The results from bioactivity testings of hangtaimycin, TDD and the hangtaimycin degradation product HTM222 are given.
Collapse
Affiliation(s)
- Houchao Xu
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Anne Wochele
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Microbial Bioactive Compounds, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Minghe Luo
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, People's Republic of China
| | - Gregor Schnakenburg
- Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Yuhui Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, People's Republic of China
| | - Heike Brötz-Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Microbial Bioactive Compounds, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| |
Collapse
|
11
|
Iorio M, Gentile A, Brunati C, Tocchetti A, Landini P, Maffioli SI, Donadio S, Sosio M. Allopeptimicins: unique antibacterial metabolites generated by hybrid PKS-NRPS, with original self-defense mechanism in Actinoallomurus. RSC Adv 2022; 12:16640-16655. [PMID: 35754877 PMCID: PMC9169493 DOI: 10.1039/d2ra02094g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/25/2022] [Indexed: 11/21/2022] Open
Abstract
In the search for structurally novel metabolites with antibacterial activity, innovative approaches must be implemented to increase the probability of discovering novel chemistry from microbial sources. Here we report on the application of metabolomic tools to the genus Actinoallomurus, a poorly explored member of the Actinobacteria. From examining extracts derived from 88 isolates belonging to this genus, we identified a family of cyclodepsipeptides acylated with a C20 polyketide chain, which we named allopeptimicins. These molecules possess unusual structural features, including several double bonds in the amino-polyketide chain and four non-proteinogenic amino acids in the octapeptide. Remarkably, allopeptimicins are produced as a complex of active and inactive congeners, the latter carrying a sulfate group on the polyketide amine. This modification is also a mechanism of self-protection in the producer strain. The structural uniqueness of allopeptimicins is reflected in a biosynthetic gene cluster showing a mosaic structure, with dedicated gene cassettes devoted to formation of specialized precursors and modular assembly lines related to those from different pathways.
Collapse
|
12
|
Caffrey P, Hogan M, Song Y. New Glycosylated Polyene Macrolides: Refining the Ore from Genome Mining. Antibiotics (Basel) 2022; 11:334. [PMID: 35326797 PMCID: PMC8944477 DOI: 10.3390/antibiotics11030334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 01/26/2023] Open
Abstract
Glycosylated polyene macrolides include effective antifungal agents, such as pimaricin, nystatin, candicidin, and amphotericin B. For the treatment of systemic mycoses, amphotericin B has been described as a gold-standard antibiotic because of its potent activity against a broad spectrum of fungal pathogens, which do not readily become resistant. However, amphotericin B has severe toxic side effects, and the development of safer alternatives remains an important objective. One approach towards obtaining such compounds is to discover new related natural products. Advances in next-generation sequencing have delivered a wealth of microbial genome sequences containing polyene biosynthetic gene clusters. These typically encode a modular polyketide synthase that catalyzes the assembly of the aglycone core, a cytochrome P450 that oxidizes a methyl branch to a carboxyl group, and additional enzymes for synthesis and attachment of a single mycosamine sugar residue. In some cases, further P450s catalyze epoxide formation or hydroxylation within the macrolactone. Bioinformatic analyses have identified over 250 of these clusters. Some are predicted to encode potentially valuable new polyenes that have not been uncovered by traditional screening methods. Recent experimental studies have characterized polyenes with new polyketide backbones, previously unknown late oxygenations, and additional sugar residues that increase water-solubility and reduce hemolytic activity. Here we review these studies and assess how this new knowledge can help to prioritize silent polyene clusters for further investigation. This approach should improve the chances of discovering better antifungal antibiotics.
Collapse
Affiliation(s)
- Patrick Caffrey
- School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8 Dublin, Ireland; (M.H.); (Y.S.)
| | | | | |
Collapse
|
13
|
Neveselý T, Molloy JJ, McLaughlin C, Brüss L, Daniliuc CG, Gilmour R. Leveraging the n→π* Interaction in Alkene Isomerization by Selective Energy Transfer Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tomáš Neveselý
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstrasse 36 48149 Münster Germany
| | - John J. Molloy
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstrasse 36 48149 Münster Germany
- Current address: Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Calum McLaughlin
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstrasse 36 48149 Münster Germany
| | - Linda Brüss
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstrasse 36 48149 Münster Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstrasse 36 48149 Münster Germany
| | - Ryan Gilmour
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstrasse 36 48149 Münster Germany
| |
Collapse
|
14
|
Neveselý T, Molloy JJ, McLaughlin C, Brüss L, Daniliuc CG, Gilmour R. Leveraging the n→π* Interaction in Alkene Isomerization by Selective Energy Transfer Catalysis. Angew Chem Int Ed Engl 2022; 61:e202113600. [PMID: 34748684 PMCID: PMC9299456 DOI: 10.1002/anie.202113600] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Indexed: 11/09/2022]
Abstract
Examples of geometric alkene isomerization in nature are often limited to the net exergonic direction (ΔG°<0), with the antipodal net endergonic processes (ΔG°>0) comparatively under-represented. Inspired by the expansiveness of the maleate to fumarate (Z→E) isomerization in biochemistry, we investigated the inverse E→Z variant to validate nO →πC=O * interactions as a driving force for contra-thermodynamic isomerization. A general protocol involving selective energy transfer catalysis with inexpensive thioxanthone as a sensitizer (λmax =402 nm) is disclosed. Whilst in the enzymatic process nO →πC=O * interactions commonly manifest themselves in the substrate, these same interactions are shown to underpin directionality in the antipodal reaction by shortening the product alkene chromophore. The process was validated with diverse fumarate derivatives (>30 examples, up to Z:E>99:1), including the first examples of tetrasubstituted alkenes, and the involvement of nO →πC=O * interactions was confirmed by X-ray crystallography.
Collapse
Affiliation(s)
- Tomáš Neveselý
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| | - John J. Molloy
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
- Current address: Max Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Calum McLaughlin
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| | - Linda Brüss
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| | - Ryan Gilmour
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| |
Collapse
|
15
|
Yin Z, Liebhart E, Stegmann E, Brötz-Oesterhelt H, Dickschat JS. An isotopic probe to follow the stereochemical course of dehydratase reactions in polyketide and fatty acid biosynthesis. Org Chem Front 2022. [DOI: 10.1039/d2qo00272h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four stereoisomeric and isotopically labelled probes that are suitable to easily follow the stereochemical course of dehydratases have been synthesised.
Collapse
Affiliation(s)
- Zhiyong Yin
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Elisa Liebhart
- Interfaculty Institute of Microbiology and Infection Medicine, Deptartment of Microbial Bioactive Compounds, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Evi Stegmann
- Interfaculty Institute of Microbiology and Infection Medicine, Deptartment of Microbial Bioactive Compounds, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine, Deptartment of Microbial Bioactive Compounds, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Jeroen S. Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| |
Collapse
|
16
|
Sbaraini N, Hu J, Roux I, Phan CS, Motta H, Rezaee H, Schrank A, Chooi YH, Staats CC. Polyketides produced by the entomopathogenic fungus Metarhizium anisopliae induce Candida albicans growth. Fungal Genet Biol 2021; 152:103568. [PMID: 33991663 DOI: 10.1016/j.fgb.2021.103568] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/16/2021] [Accepted: 04/18/2021] [Indexed: 11/15/2022]
Abstract
Metarhizium anisopliae is an important entomopathogenic species and model for arthropod-fungus interaction studies. This fungus harbors a diverse arsenal of unexplored secondary metabolite biosynthetic gene clusters, which are suggested to perform diverse roles during host interaction and soil subsistence as a saprophytic species. Here we explored an unusual carnitine acyltransferase domain-containing highly reducing polyketide synthase found in the genome of M. anisopliae. Employing heterologous expression in Aspergillus nidulans, two new polyketides were obtained, named BAA and BAB, as well as one known polyketide [(2Z,4E,6E)-octa-2,4,6-trienedioic acid]. Intra-hemocoel injection of the most abundant compound (BAA) in the model-arthropod Galleria mellonella larvae did not induce mortality or noticeable alterations, suggesting that this compound may not harbor insecticidal activity. Also, the potential role of such molecules in polymicrobial interactions was evaluated. Determination of minimum inhibitory concentration assays using distinct fungal species revealed that BAA and BAB did not alter Cryptococcus neoformans growth, while BAA exhibited weak antifungal activity against Saccharomyces cerevisiae. Unexpectedly, these compounds increased Candida albicans growth compared to control conditions. Furthermore, BAA can mitigate the fungicidal effects of fluconazole over C. albicans. Although the exact role of these compounds on the M. anisopliae life cycle is elusive, the described results add up to the complexity of secondary metabolites produced by Metarhizium spp. Moreover, up to our knowledge, these are the first polyketides isolated from filamentous fungi that can boost the growth of another fungal species.
Collapse
Affiliation(s)
- Nicolau Sbaraini
- Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Jinyu Hu
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Indra Roux
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Chin-Soon Phan
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Heryk Motta
- Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Hamideh Rezaee
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Augusto Schrank
- Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| | - Charley Christian Staats
- Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|