1
|
Gu Y, Wang ZJ, Wang H, Su A, Dai Q, Zhang Y, Huo L, Yan F. Biosynthetic Investigations of Ulbactins Unveil Two Novel Thiazolinyl Imine Reductases Crucial for the Generation of Siderophore Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8352-8366. [PMID: 40153524 DOI: 10.1021/acs.jafc.5c02142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
Abstract
Siderophores are ferric ion chelating natural products secreted by microorganisms to survive in an iron-deficient environment. During screening for siderophores from marine bacteria, four interconvertible ulbactins C1-C4 and oxidized derivatives were identified in the bacterium Pseudoalteromonas flavipulchra S16. Iron-ion chelating activity assays revealed that the reduction of thiazoline rings is critical for the activity. The ulbactins biosynthetic gene cluster (ubt) was identified in the genome of P. flavipulchra S16 and validated via gene knockout and heterologous expression. A unique feature of ulbactin biosynthetic machinery involves UbtA, an atypical didomain enzyme (ASal-SalS) converting chorismate to salicyl-AMP. Two novel thiazolinyl imine reductases, UbtL and UbtM, were characterized as being essential for thiazolidine formation. Substitution of the native promoter of the ubt gene cluster with a constitutive promoter yielded new ulbactin variants and intermediate compounds, including unprecedented hydroxylated and dehydroalanine-containing ulbactins. In vitro reconstitution of ulbactins uncovered a distinctive synergistic catalytic mechanism between UbtL and UbtM for heterocycle reduction, which drives structural diversification during ulbactin biosynthesis.
Collapse
Affiliation(s)
- Yuan Gu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Zong-Jie Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Huimei Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Anqi Su
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Quan Dai
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Liujie Huo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Fu Yan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
2
|
Hernández Delgado JG, Acedos MG, de la Calle F, Rodríguez P, García JL, Galán B. Regulation of Safracin Biosynthesis and Transport in Pseudomonas poae PMA22. Mar Drugs 2024; 22:418. [PMID: 39330299 PMCID: PMC11432991 DOI: 10.3390/md22090418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Pseudomonas poae PMA22 produces safracins, a family of compounds with potent broad-spectrum anti-bacterial and anti-tumor activities. The safracins' biosynthetic gene cluster (BGC sac) consists of 11 ORFs organized in two divergent operons (sacABCDEFGHK and sacIJ) that are controlled by Pa and Pi promoters. Contiguous to the BGC sac, we have located a gene that encodes a putative global regulator of the LysR family annotated as MexT that was originally described as a transcriptional activator of the MexEF-OprN multidrug efflux pump in Pseudomonas. Through both in vitro and in vivo experiments, we have demonstrated the involvement of the dual regulatory system MexT-MexS on the BGC sac expression acting as an activator and a repressor, respectively. The MexEF-OprN transport system of PMA22, also controlled by MexT, was shown to play a fundamental role in the metabolism of safracin. The overexpression of mexEF-oprN in PMA22 resulted in fourfold higher production levels of safracin. These results illustrate how a pleiotropic regulatory system can be critical to optimizing the production of tailored secondary metabolites, not only through direct interaction with the BGC promoters, but also by controlling their transport.
Collapse
Affiliation(s)
- J Gerardo Hernández Delgado
- Department of Biothecnology, Centro de Investigaciones Biológicas Margarita Salas, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Miguel G Acedos
- Department of Biothecnology, Centro de Investigaciones Biológicas Margarita Salas, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | | | - Pilar Rodríguez
- Research and Development Department, PharmaMar S.A., 28770 Madrid, Spain
| | - José Luis García
- Department of Biothecnology, Centro de Investigaciones Biológicas Margarita Salas, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Beatriz Galán
- Department of Biothecnology, Centro de Investigaciones Biológicas Margarita Salas, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| |
Collapse
|
3
|
Irie R, Hitora Y, Watanabe R, Clark H, Suyama Y, Sekiya S, Suzuki T, Takada K, Matsunaga S, Hosokawa S, Oikawa M. Stereochemical Assignment of the 36-Membered Macrolide Ring Portion of Poecillastrin C. Org Lett 2024; 26:5290-5294. [PMID: 38864719 DOI: 10.1021/acs.orglett.4c01632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Absolute configuration at 12 stereocenters in the 36-membered macrocyclic ring portion of poecillastrin C (1) was disclosed by chemical degradation and NMR analyses of 1, chemical synthesis, and molecular modeling techniques.
Collapse
Affiliation(s)
- Raku Irie
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Yuki Hitora
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryuichi Watanabe
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama 236-8648, Japan
| | - Hugh Clark
- Department of Applied Chemistry, Faculty of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Yu Suyama
- Department of Applied Chemistry, Faculty of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Shinji Sekiya
- Department of Applied Chemistry, Faculty of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Toshiyuki Suzuki
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama 236-8648, Japan
| | - Kentaro Takada
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shigeki Matsunaga
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Seijiro Hosokawa
- Department of Applied Chemistry, Faculty of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Masato Oikawa
- Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| |
Collapse
|
4
|
Zhao S, Feng R, Gu Y, Han L, Cong X, Liu Y, Liu S, Shen Q, Huo L, Yan F. Heterologous expression facilitates the discovery and characterization of marine microbial natural products. ENGINEERING MICROBIOLOGY 2024; 4:100137. [PMID: 39629329 PMCID: PMC11610975 DOI: 10.1016/j.engmic.2023.100137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/07/2024]
Abstract
Microbial natural products and their derivatives have been developed as a considerable part of clinical drugs and agricultural chemicals. Marine microbial natural products exhibit diverse chemical structures and bioactivities with substantial potential for the development of novel pharmaceuticals. However, discovering compounds with new skeletons from marine microbes remains challenging. In recent decades, multiple approaches have been developed to discover novel marine microbial natural products, among which heterologous expression has proven to be an effective method. Facilitated by large DNA cloning and comparative metabolomic technologies, a few novel bioactive natural products from marine microorganisms have been identified by the expression of their biosynthetic gene clusters (BGCs) in heterologous hosts. Heterologous expression is advantageous for characterizing gene functions and elucidating the biosynthetic mechanisms of natural products. This review provides an overview of recent progress in heterologous expression-guided discovery, biosynthetic mechanism elucidation, and yield optimization of natural products from marine microorganisms and discusses the future directions of the heterologous expression strategy in facilitating novel natural product exploitation.
Collapse
Affiliation(s)
- Shuang Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Ruiying Feng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yuan Gu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Liyuan Han
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaomei Cong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Shuo Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Qiyao Shen
- Helmholtz-Institute for Pharmaceutical Research Saarland, Saarland University Campus, 66123, Saarbrücken, Germany
| | - Liujie Huo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Fu Yan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
5
|
Hu J, He L, Wang G, Liu L, Wang Y, Song J, Qu J, Peng X, Yuan Y. Rapid and accurate identification of marine bacteria spores at a single-cell resolution by laser tweezers Raman spectroscopy and deep learning. JOURNAL OF BIOPHOTONICS 2024; 17:e202300510. [PMID: 38302112 DOI: 10.1002/jbio.202300510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 02/03/2024]
Abstract
Marine bacteria have been considered as important participants in revealing various carbon/sulfur/nitrogen cycles of marine ecosystem. Thus, how to accurately identify rare marine bacteria without a culture process is significant and valuable. In this work, we constructed a single-cell Raman spectra dataset from five living bacteria spores and utilized convolutional neural network to rapidly, accurately, nondestructively identify bacteria spores. The optimal CNN architecture can provide a prediction accuracy of five bacteria spore as high as 94.93% ± 1.78%. To evaluate the classification weight of extracted spectra features, we proposed a novel algorithm by occluding fingerprint Raman bands. Based on the relative classification weight arranged from large to small, four Raman bands located at 1518, 1397, 1666, and 1017 cm-1 mostly contribute to producing such high prediction accuracy. It can be foreseen that, LTRS combined with CNN approach have great potential for identifying marine bacteria, which cannot be cultured under normal condition.
Collapse
Affiliation(s)
- Jianchang Hu
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, Guangdong, China
- School of Electronic Engineering and Intelligentization, Dongguan University of Technology, Dongguan, Guangdong, China
| | - Lin He
- School of Electronic Engineering and Intelligentization, Dongguan University of Technology, Dongguan, Guangdong, China
| | - Guiwen Wang
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Liwei Liu
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, Guangdong, China
| | - Yiping Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, Guangdong, China
| | - Jun Song
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, Guangdong, China
| | - Junle Qu
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, Guangdong, China
- Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Lab of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiao Peng
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, Guangdong, China
| | - Yufeng Yuan
- School of Electronic Engineering and Intelligentization, Dongguan University of Technology, Dongguan, Guangdong, China
| |
Collapse
|
6
|
Suárez‐Moo P, Prieto‐Davó A. Biosynthetic potential of the sediment microbial subcommunities of an unexplored karst ecosystem and its ecological implications. Microbiologyopen 2024; 13:e1407. [PMID: 38593340 PMCID: PMC11003711 DOI: 10.1002/mbo3.1407] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 04/11/2024] Open
Abstract
Microbial communities from various environments have been studied in the quest for new natural products with a broad range of applications in medicine and biotechnology. We employed an enrichment method and genome mining tools to examine the biosynthetic potential of microbial communities in the sediments of a coastal sinkhole within the karst ecosystem of the Yucatán Peninsula, Mexico. Our investigation led to the detection of 203 biosynthetic gene clusters (BGCs) and 55 secondary metabolites (SMs) within 35 high-quality metagenome-assembled genomes (MAGs) derived from these subcommunities. The most abundant types of BGCs were Terpene, Nonribosomal peptide-synthetase, and Type III polyketide synthase. Some of the in silico identified BGCs and SMs have been previously reported to exhibit biological activities against pathogenic bacteria and fungi. Others could play significant roles in the sinkhole ecosystem, such as iron solubilization and osmotic stress protection. Interestingly, 75% of the BGCs showed no sequence homology with bacterial BGCs previously reported in the MiBIG database. This suggests that the microbial communities in this environment could be an untapped source of genes encoding novel specialized compounds. The majority of the BGCs were identified in pathways found in the genus Virgibacillus, followed by Sporosarcina, Siminovitchia, Rhodococcus, and Halomonas. The latter, along with Paraclostridium and Lysinibacillus, had the highest number of identified BGC types. This study offers fresh insights into the potential ecological role of SMs from sediment microbial communities in an unexplored environment, underscoring their value as a source of novel natural products.
Collapse
Affiliation(s)
- Pablo Suárez‐Moo
- Unidad de Química‐Sisal, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoSisalYucatánMéxico
| | - Alejandra Prieto‐Davó
- Unidad de Química‐Sisal, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoSisalYucatánMéxico
| |
Collapse
|
7
|
Li Y, Wang Y, Wang H, Shi T, Wang B. The Genus Cladosporium: A Prospective Producer of Natural Products. Int J Mol Sci 2024; 25:1652. [PMID: 38338931 PMCID: PMC10855219 DOI: 10.3390/ijms25031652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Cladosporium, a genus of ascomycete fungi in the Dematiaceae family, is primarily recognized as a widespread environmental saprotrophic fungus or plant endophyte. Further research has shown that the genus is distributed in various environments, particularly in marine ecosystems, such as coral reefs, mangroves and the polar region. Cladosporium, especially the marine-derived Cladosporium, is a highly resourceful group of fungi whose natural products have garnered attention due to their diverse chemical structures and biological activities, as well as their potential as sources of novel leads to compounds for drug production. This review covers the sources, distribution, bioactivities, biosynthesis and structural characteristics of compounds isolated from Cladosporium in the period between January 2000 and December 2022, and conducts a comparative analysis of the Cladosporium isolated compounds derived from marine and terrestrial sources. Our results reveal that 34% of Cladosporium-derived natural products are reported for the first time. And 71.79% of the first reported compounds were isolated from marine-derived Cladosporium. Cladosporium-derived compounds exhibit diverse skeletal chemical structures, concentrating in the categories of polyketides (48.47%), alkaloids (19.21%), steroids and terpenoids (17.03%). Over half of the natural products isolated from Cladosporium have been found to have various biological activities, including cytotoxic, antibacterial, antiviral, antifungal and enzyme-inhibitory activities. These findings testify to the tremendous potential of Cladosporium, especially the marine-derived Cladosporium, to yield novel bioactive natural products, providing a structural foundation for the development of new drugs.
Collapse
Affiliation(s)
- Yanjing Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Y.L.); (Y.W.); (H.W.)
| | - Yifei Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Y.L.); (Y.W.); (H.W.)
| | - Han Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Y.L.); (Y.W.); (H.W.)
| | - Ting Shi
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Y.L.); (Y.W.); (H.W.)
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266200, China
| | - Bo Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Y.L.); (Y.W.); (H.W.)
| |
Collapse
|
8
|
Zha X, Ji R, Zhou S. Marine Bacteria: A Source of Novel Bioactive Natural Products. Curr Med Chem 2024; 31:6842-6854. [PMID: 37605398 DOI: 10.2174/0929867331666230821102521] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/29/2023] [Accepted: 07/07/2023] [Indexed: 08/23/2023]
Abstract
Marine natural products have great pharmacological potential due to their unique and diverse chemical structures. The marine bacterial biodiversity and the unique marine environment lead to a high level of complexity and ecological interaction among marine species. This results in the production of metabolic pathways and adaptation mechanisms that are different from those of terrestrial organisms, which has drawn significant attention from researchers in the field of natural medicine. This review provides an analysis of the distribution and frequency of keywords in the literature on marine bacterial natural products as well as an overview of the new natural products isolated from the secondary metabolites of marine bacteria in recent years. Finally, it discusses the current research hotspots in this field and speculates on future directions and limitations.
Collapse
Affiliation(s)
- Xiangru Zha
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Key Laboratory of Tropical Molecular Pharmacology and Advanced Diagnostic Technology, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Rong Ji
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Key Laboratory of Tropical Molecular Pharmacology and Advanced Diagnostic Technology, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Songlin Zhou
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Key Laboratory of Tropical Molecular Pharmacology and Advanced Diagnostic Technology, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| |
Collapse
|
9
|
Labes A. Marine Resources Offer New Compounds and Strategies for the Treatment of Skin and Soft Tissue Infections. Mar Drugs 2023; 21:387. [PMID: 37504918 PMCID: PMC10381745 DOI: 10.3390/md21070387] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Bioprospecting of the marine environment for drug development has gained much attention in recent years owing to its massive chemical and biological diversity. Drugs for the treatment of skin and soft tissue infections have become part of the search, mainly with respect to enlarging the number of available antibiotics, with a special focus on multidrug-resistant Gram-positive bacteria, being the major causative agents in this field. Marine resources offer novel natural products with distinct biological activities of pharmaceutical importance, having the chance to provide new chemical scaffolds and new modes of action. New studies advance the field by proposing new strategies derived from an ecosystemic understanding for preventive activities against biofilms and new compounds suitable as disinfectants, which sustain the natural flora of the skin. Still, the development of new compounds is often stuck at the discovery level, as marine biotechnology also needs to overcome technological bottlenecks in drug development. This review summarizes its potential and shows these bottlenecks and new approaches.
Collapse
Affiliation(s)
- Antje Labes
- Department of Energy and Biotechnology, Flensburg University of Applied Sciences ZAiT, Kanzleistraße 91-93, D-24943 Flensburg, Germany
| |
Collapse
|
10
|
Abstract
Covering: January to December 2021This review covers the literature published in 2021 for marine natural products (MNPs), with 736 citations (724 for the period January to December 2021) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1425 in 416 papers for 2021), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of the number of authors, their affiliations, domestic and international collection locations, focus of MNP studies, citation metrics and journal choices is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
11
|
Armes AC, Walton JL, Buchan A. Quorum Sensing and Antimicrobial Production Orchestrate Biofilm Dynamics in Multispecies Bacterial Communities. Microbiol Spectr 2022; 10:e0261522. [PMID: 36255295 PMCID: PMC9769649 DOI: 10.1128/spectrum.02615-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 01/07/2023] Open
Abstract
Microbial interactions are often mediated by diffusible small molecules, including secondary metabolites, that play roles in cell-to-cell signaling and inhibition of competitors. Biofilms are often "hot spots" for high concentrations of bacteria and their secondary metabolites, which make them ideal systems for the study of small-molecule contributions to microbial interactions. Here, we use a five-member synthetic community consisting of Roseobacteraceae representatives to investigate the role of secondary metabolites on microbial biofilm dynamics. One synthetic community member, Rhodobacterales strain Y4I, possesses two acylated homoserine lactone (AHL)-based cell-to-cell signaling systems (pgaRI and phaRI) as well as a nonribosomal peptide synthase gene (igi) cluster that encodes the antimicrobial indigoidine. Through serial substitution of Y4I with mutants deficient in single signaling molecule pathways, the contribution of these small-molecule systems could be assessed. As secondary metabolite production is dependent upon central metabolites, the influence of growth substrate (i.e., complex medium versus defined medium with a single carbon substrate) on these dynamics was also considered. Depending on the Y4I mutant genotype included, community dynamics ranged from competitive to cooperative. The observed interactions were mostly competitive in nature. However, the community harboring a Y4I variant that was both impaired in quorum sensing (QS) pathways and unable to produce indigoidine (pgaR variant) shifted toward more cooperative interactions over time. These cooperative interactions were enhanced in the defined growth medium. The results presented provide a framework for deciphering complex, small-molecule-mediated interactions that have broad application to microbial biology. IMPORTANCE Microbial biofilms play critical roles in marine ecosystems and are hot spots for microbial interactions that play a role in the development and function of these communities. Roseobacteraceae are an abundant and active family of marine heterotrophic bacteria forming close associations with phytoplankton and carrying out key transformations in biogeochemical cycles. Group members are aggressive primary colonizers of surfaces, where they set the stage for the development of multispecies biofilm communities. Few studies have examined the impact of secondary metabolites, such as cell-to-cell signaling and antimicrobial production, on marine microbial biofilm community structure. Here, we assessed the impact of secondary metabolites on microbial interactions using a synthetic, five-member Roseobacteraceae community by measuring species composition and biomass production during biofilm growth. We present evidence that secondary metabolites influence social behaviors within these multispecies microbial biofilms, thereby improving understanding of bacterial secondary metabolite production influence on social behaviors within marine microbial biofilm communities.
Collapse
Affiliation(s)
- April C. Armes
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Jillian L. Walton
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Alison Buchan
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
12
|
Sukmarini L. Marine Bacterial Ribosomal Peptides: Recent Genomics- and Synthetic Biology-Based Discoveries and Biosynthetic Studies. Mar Drugs 2022; 20:md20090544. [PMID: 36135733 PMCID: PMC9505594 DOI: 10.3390/md20090544] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/27/2022] Open
Abstract
Marine biodiversity is represented by an exceptional and ample array of intriguing natural product chemistries. Due to their extensive post-translational modifications, ribosomal peptides—also known as ribosomally synthesized and post-translationally modified peptides (RiPPs)—exemplify a widely diverse class of natural products, endowing a broad range of pharmaceutically and biotechnologically relevant properties for therapeutic or industrial applications. Most RiPPs are of bacterial origin, yet their marine derivatives have been quite rarely investigated. Given the rapid advancement engaged in a more powerful genomics approach, more biosynthetic gene clusters and pathways for these ribosomal peptides continue to be increasingly characterized. Moreover, the genome-mining approach in integration with synthetic biology techniques has markedly led to a revolution of RiPP natural product discovery. Therefore, this present short review article focuses on the recent discovery of RiPPs from marine bacteria based on genome mining and synthetic biology approaches during the past decade. Their biosynthetic studies are discussed herein, particularly the organization of targeted biosynthetic gene clusters linked to the encoded RiPPs with potential bioactivities.
Collapse
Affiliation(s)
- Linda Sukmarini
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Jl. Raya Bogor, Km. 46, Cibinong 16911, West Java, Indonesia
| |
Collapse
|
13
|
Amiri Moghaddam J, Guo H, Willing K, Wichard T, Beemelmanns C. Identification of the new prenyltransferase Ubi-297 from marine bacteria and elucidation of its substrate specificity. Beilstein J Org Chem 2022; 18:722-731. [PMID: 35821696 PMCID: PMC9235831 DOI: 10.3762/bjoc.18.72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Aromatic prenylated metabolites have important biological roles and activities in all living organisms. Compared to their importance in all domains of life, we know relatively little about their substrate scopes and metabolic functions. Here, we describe a new UbiA-like prenyltransferase (Ptase) Ubi-297 encoded in a conserved operon of several bacterial taxa, including marine Flavobacteria and the genus Sacchromonospora. In silico analysis of Ubi-297 homologs indicated that members of this Ptase group are composed of several transmembrane α-helices and carry a conserved and distinct aspartic-rich Mg2+-binding domain. We heterologously produced UbiA-like Ptases from the bacterial genera Maribacter, Zobellia, and Algoriphagus in Escherichia coli. Investigation of their substrate scope uncovered the preferential farnesylation of quinoline derivatives, such as 8-hydroxyquinoline-2-carboxylic acid (8-HQA) and quinaldic acid. The results of this study provide new insights into the abundance and diversity of Ptases in marine Flavobacteria and beyond.
Collapse
Affiliation(s)
- Jamshid Amiri Moghaddam
- Chemical Biology Leibniz Institute for Natural Product Research and Infection Biology e.V., Hans-Knöll-Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Huijuan Guo
- Chemical Biology Leibniz Institute for Natural Product Research and Infection Biology e.V., Hans-Knöll-Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Karsten Willing
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology e.V., Hans-Knöll-Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Thomas Wichard
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr 8, 07743 Jena, Germany
| | - Christine Beemelmanns
- Chemical Biology Leibniz Institute for Natural Product Research and Infection Biology e.V., Hans-Knöll-Institute, Beutenbergstraße 11a, 07745 Jena, Germany
- Biochemistry of Microbial Metabolism, Institute of Biochemistry, Leipzig University, Johannisallee 21–23, 04103 Leipzig, Germany
| |
Collapse
|
14
|
Kaari M, Manikkam R, Baskaran A. Exploring Newer Biosynthetic Gene Clusters in Marine Microbial Prospecting. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:448-467. [PMID: 35394575 DOI: 10.1007/s10126-022-10118-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Marine microbes genetically evolved to survive varying salinity, temperature, pH, and other stress factors by producing different bioactive metabolites. These microbial secondary metabolites (SMs) are novel, have high potential, and could be used as lead molecule. Genome sequencing of microbes revealed that they have the capability to produce numerous novel bioactive metabolites than observed under standard in vitro culture conditions. Microbial genome has specific regions responsible for SM assembly, termed biosynthetic gene clusters (BGCs), possessing all the necessary genes to encode different enzymes required to generate SM. In order to augment the microbial chemo diversity and to activate these gene clusters, various tools and techniques are developed. Metagenomics with functional gene expression studies aids in classifying novel peptides and enzymes and also in understanding the biosynthetic pathways. Genome shuffling is a high-throughput screening approach to improve the development of SMs by incorporating genomic recombination. Transcriptionally silent or lower level BGCs can be triggered by artificially knocking promoter of target BGC. Additionally, bioinformatic tools like antiSMASH, ClustScan, NAPDOS, and ClusterFinder are effective in identifying BGCs of existing class for annotation in genomes. This review summarizes the significance of BGCs and the different approaches for detecting and elucidating BGCs from marine microbes.
Collapse
Affiliation(s)
- Manigundan Kaari
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600 119, Tamil Nadu, India
| | - Radhakrishnan Manikkam
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600 119, Tamil Nadu, India.
| | - Abirami Baskaran
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600 119, Tamil Nadu, India
| |
Collapse
|
15
|
Xu Y, Du X, Yu X, Jiang Q, Zheng K, Xu J, Wang P. Recent Advances in the Heterologous Expression of Biosynthetic Gene Clusters for Marine Natural Products. Mar Drugs 2022; 20:341. [PMID: 35736144 PMCID: PMC9225448 DOI: 10.3390/md20060341] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 12/29/2022] Open
Abstract
Marine natural products (MNPs) are an important source of biologically active metabolites, particularly for therapeutic agent development after terrestrial plants and nonmarine microorganisms. Sequencing technologies have revealed that the number of biosynthetic gene clusters (BGCs) in marine microorganisms and the marine environment is much higher than expected. Unfortunately, the majority of them are silent or only weakly expressed under traditional laboratory culture conditions. Furthermore, the large proportion of marine microorganisms are either uncultivable or cannot be genetically manipulated. Efficient heterologous expression systems can activate cryptic BGCs and increase target compound yield, allowing researchers to explore more unknown MNPs. When developing heterologous expression of MNPs, it is critical to consider heterologous host selection as well as genetic manipulations for BGCs. In this review, we summarize current progress on the heterologous expression of MNPs as a reference for future research.
Collapse
Affiliation(s)
- Yushan Xu
- Ocean College, Zhejiang University, Zhoushan 316021, China; (Y.X.); (X.D.); (X.Y.); (Q.J.); (K.Z.); (J.X.)
| | - Xinhua Du
- Ocean College, Zhejiang University, Zhoushan 316021, China; (Y.X.); (X.D.); (X.Y.); (Q.J.); (K.Z.); (J.X.)
| | - Xionghui Yu
- Ocean College, Zhejiang University, Zhoushan 316021, China; (Y.X.); (X.D.); (X.Y.); (Q.J.); (K.Z.); (J.X.)
| | - Qian Jiang
- Ocean College, Zhejiang University, Zhoushan 316021, China; (Y.X.); (X.D.); (X.Y.); (Q.J.); (K.Z.); (J.X.)
| | - Kaiwen Zheng
- Ocean College, Zhejiang University, Zhoushan 316021, China; (Y.X.); (X.D.); (X.Y.); (Q.J.); (K.Z.); (J.X.)
| | - Jinzhong Xu
- Ocean College, Zhejiang University, Zhoushan 316021, China; (Y.X.); (X.D.); (X.Y.); (Q.J.); (K.Z.); (J.X.)
| | - Pinmei Wang
- Ocean College, Zhejiang University, Zhoushan 316021, China; (Y.X.); (X.D.); (X.Y.); (Q.J.); (K.Z.); (J.X.)
- State Key Laboratory of Motor Vehicle Biofuel Technology, Zhejiang University, Zhoushan 316021, China
| |
Collapse
|
16
|
Abstract
The Matteson homologation with vinyl nucleophiles was found to be a versatile tool for the synthesis of highly substituted and functionalized allyl boronic esters. High yields and stereoselectivities are obtained with sterically demanding alkyl boronic esters and/or Grignard reagents. With the application of such vinyl Matteson homologations, the polyketide fragment of lagunamide B is synthesized.
Collapse
Affiliation(s)
- Thorsten Kinsinger
- Saarland University, Organic Chemistry I, Campus, Building C4.2, D-66123 Saarbrücken, Germany
| | - Uli Kazmaier
- Saarland University, Organic Chemistry I, Campus, Building C4.2, D-66123 Saarbrücken, Germany
| |
Collapse
|
17
|
Jiang J, Jiang H, Shen D, Chen Y, Shi H, He F. Citrinadin C, a new cytotoxic pentacyclic alkaloid from marine-derived fungus Penicillium citrinum. J Antibiot (Tokyo) 2022; 75:301-303. [DOI: 10.1038/s41429-022-00516-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 11/09/2022]
|
18
|
New Deoxyenhygrolides from Plesiocystis pacifica Provide Insights into Butenolide Core Biosynthesis. Mar Drugs 2022; 20:md20010072. [PMID: 35049927 PMCID: PMC8777810 DOI: 10.3390/md20010072] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Marine myxobacteria present a virtually unexploited reservoir for the discovery of natural products with diverse biological functions and novel chemical scaffolds. We report here the isolation and structure elucidation of eight new deoxyenhygrolides (1–8) from the marine myxobacterium Plesiocystis pacifica DSM 14875T. The herein described deoxyenhygrolides C–J (1–8) feature a butenolide core with an ethyl residue at C-3 of the γ-lactone in contrast to the previously described derivatives, deoxyenhygrolides A and B, which feature an isobutyl residue at this position. The butenolide core is 2,4-substituted with a benzyl (1, 2 and 7), benzoyl (3 and 4) or benzyl alcohol (5, 6 and 8) moiety in the 2-position and a benzylidene (1–6) or benzylic hemiketal (7 and 8) in the 4-position. The description of these new deoxyenhygrolide derivatives, alongside genomic in silico investigation regarding putative biosynthetic genes, provides some new puzzle pieces on how this natural product class might be formed by marine myxobacteria.
Collapse
|
19
|
Böhringer N, Green R, Liu Y, Mettal U, Marner M, Modaresi SM, Jakob RP, Wuisan ZG, Maier T, Iinishi A, Hiller S, Lewis K, Schäberle TF. Mutasynthetic Production and Antimicrobial Characterization of Darobactin Analogs. Microbiol Spectr 2021; 9:e0153521. [PMID: 34937193 PMCID: PMC8694152 DOI: 10.1128/spectrum.01535-21] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022] Open
Abstract
There is great need for therapeutics against multidrug-resistant, Gram-negative bacterial pathogens. Recently, darobactin A, a novel bicyclic heptapeptide that selectively kills Gram-negative bacteria by targeting the outer membrane protein BamA, was discovered. Its efficacy was proven in animal infection models of Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, thus promoting darobactin A as a promising lead compound. Originally discovered from members of the nematode-symbiotic genus Photorhabdus, the biosynthetic gene cluster (BGC) encoding the synthesis of darobactin A can also be found in other members of the class Gammaproteobacteria. Therein, the precursor peptides DarB to -F, which differ in their core sequence from darobactin A, were identified in silico. Even though production of these analogs was not observed in the putative producer strains, we were able to generate them by mutasynthetic derivatization of a heterologous expression system. The analogs generated were isolated and tested for their bioactivity. The most potent compound, darobactin B, was used for cocrystallization with the target BamA, revealing a binding site identical to that of darobactin A. Despite its potency, darobactin B did not exhibit cytotoxicity, and it was slightly more active against Acinetobacter baumannii isolates than darobactin A. Furthermore, we evaluated the plasma protein binding of darobactin A and B, indicating their different pharmacokinetic properties. This is the first report on new members of this new antibiotic class, which is likely to expand to several promising therapeutic candidates. IMPORTANCE Therapeutic options to combat Gram-negative bacterial pathogens are dwindling with increasing antibiotic resistance. This study presents a proof of concept for the heterologous-expression approach to expand on the novel antibiotic class of darobactins and to generate analogs with different activities and pharmacokinetic properties. In combination with the structural data of the target BamA, this approach may contribute to structure-activity relationship (SAR) data to optimize inhibitors of this essential outer membrane protein of Gram-negative pathogens.
Collapse
Affiliation(s)
- Nils Böhringer
- Justus-Liebig-University Gießen, Gießen, Germany
- German Center of Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, Gießen, Germany
| | - Robert Green
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Yang Liu
- Justus-Liebig-University Gießen, Gießen, Germany
| | - Ute Mettal
- Justus-Liebig-University Gießen, Gießen, Germany
| | - Michael Marner
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Bioresources, Gießen, Germany
| | | | | | | | - Timm Maier
- Biozentrum, University of Basel, Basel, Switzerland
| | - Akira Iinishi
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | | | - Kim Lewis
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Till F. Schäberle
- Justus-Liebig-University Gießen, Gießen, Germany
- German Center of Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, Gießen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Bioresources, Gießen, Germany
| |
Collapse
|
20
|
Advances in Biosynthesis of Natural Products from Marine Microorganisms. Microorganisms 2021; 9:microorganisms9122551. [PMID: 34946152 PMCID: PMC8706298 DOI: 10.3390/microorganisms9122551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/27/2021] [Accepted: 12/07/2021] [Indexed: 01/01/2023] Open
Abstract
Natural products play an important role in drug development, among which marine natural products are an underexplored resource. This review summarizes recent developments in marine natural product research, with an emphasis on compound discovery and production methods. Traditionally, novel compounds with useful biological activities have been identified through the chromatographic separation of crude extracts. New genome sequencing and bioinformatics technologies have enabled the identification of natural product biosynthetic gene clusters in marine microbes that are difficult to culture. Subsequently, heterologous expression and combinatorial biosynthesis have been used to produce natural products and their analogs. This review examines recent examples of such new strategies and technologies for the development of marine natural products.
Collapse
|
21
|
Sukmarini L. Recent Advances in Discovery of Lead Structures from Microbial Natural Products: Genomics- and Metabolomics-Guided Acceleration. Molecules 2021; 26:molecules26092542. [PMID: 33925414 PMCID: PMC8123854 DOI: 10.3390/molecules26092542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 01/17/2023] Open
Abstract
Natural products (NPs) are evolutionarily optimized as drug-like molecules and remain the most consistently successful source of drugs and drug leads. They offer major opportunities for finding novel lead structures that are active against a broad spectrum of assay targets, particularly those from secondary metabolites of microbial origin. Due to traditional discovery approaches’ limitations relying on untargeted screening methods, there is a growing trend to employ unconventional secondary metabolomics techniques. Aided by the more in-depth understanding of different biosynthetic pathways and the technological advancement in analytical instrumentation, the development of new methodologies provides an alternative that can accelerate discoveries of new lead-structures of natural origin. This present mini-review briefly discusses selected examples regarding advancements in bioinformatics and genomics (focusing on genome mining and metagenomics approaches), as well as bioanalytics (mass-spectrometry) towards the microbial NPs-based drug discovery and development. The selected recent discoveries from 2015 to 2020 are featured herein.
Collapse
Affiliation(s)
- Linda Sukmarini
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Cibinong, Bogor 16911, West Java, Indonesia
| |
Collapse
|