1
|
Niu M, Guo Y, Hu G, Li L, Lu Y, Lu Y, Yuan X, Shen Z, Su N. The GmMYB1-GmbHLHA-GmCPC-like module regulates light-induced anthocyanin production in soybean sprouts. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109738. [PMID: 40068457 DOI: 10.1016/j.plaphy.2025.109738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 05/07/2025]
Abstract
Soybean (Glycine max L.) is an important economic crop, flavonoids (such as anthocyanins) and some other nutrients of which were significantly promoted after germination. The accumulation of anthocyanin is influenced by many kinds of factors in plants, the regulatory mechanism of which is relatively complex. Here, soybean double mutant stf1/2 was utilized and found that GmSTF1/2 participated in light-mediated anthocyanin production in soybean. GmMYB1 was considered as a direct target of GmSTF1/2. Expressing GmMYB1 in soybean hair roots and tobacco significantly promoted anthocyanin content. GmMYB1 could directly bind to the promoters of GmDFR, GmANS, and GmUFGT, thereby promoting their transcriptions. In addition, GmMYB1 interacted with GmbHLHA, and their interaction could enhance the functions of GmMYB1 in positively regulating anthocyanin accumulation. R3-MYB GmCPC-like was activated by GmMYB1 when anthocyanin was abundant. Expressing GmCPC-like significantly inhibited anthocyanin contents in soybean hair roots and tobacco. GmCPC-like inhibited anthocyanin accumulation mainly through interacting with GmMYB1 and GmbHLHA, and then decreased their positive roles in anthocyanin production. Taken together, the GmMYB1-GmbHLHA-GmCPC-like module finely regulates anthocyanin production in soybean sprouts.
Collapse
Affiliation(s)
- Mengyang Niu
- College of Life Sciences, Nanjing Agricultural University, Nanjing (210095), China.
| | - Youyou Guo
- College of Life Sciences, Nanjing Agricultural University, Nanjing (210095), China.
| | - Gang Hu
- Modern Agricultural Analysis and Testing Center, Nanjing Agricultural University, Nanjing, China.
| | - Liuyi Li
- High School Affiliated to Nanjing Normal University Qinhuai Campus, Nanjing, China.
| | - Yaping Lu
- Biological Experiment Teaching Center, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Yanwu Lu
- Biological Experiment Teaching Center, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Xingxing Yuan
- College of Life Sciences, Nanjing Agricultural University, Nanjing (210095), China; Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing (210095), China.
| | - Nana Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing (210095), China.
| |
Collapse
|
2
|
Harshini P, Varghese R, Pachamuthu K, Ramamoorthy S. Enhanced pigment production from plants and microbes: a genome editing approach. 3 Biotech 2025; 15:129. [PMID: 40255449 PMCID: PMC12003259 DOI: 10.1007/s13205-025-04290-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 03/22/2025] [Indexed: 04/22/2025] Open
Abstract
Pigments are known for their vital roles in the growth and development of plants and microbes. In addition, they are also an imperative component of several industries, including textiles, foods, and pharmaceuticals, owing to their immense colours and therapeutic potential. Conventionally, pigments are obtained from plant resources, and the advent of in-vitro propagation techniques boosted the massive production. However, it could not meet the booming demand, leading to the incorporation of new genetic engineering tools. This review focuses on the role of various genetic engineering techniques in enhancing pigment production in plants and microorganisms. It also critically analyzes the efficacy and bottlenecks of these techniques in augmenting pigment biosynthesis. Furthermore, the use of microbes as pigment biofactories and the prospects in the field of genome editing to augment pigment synthesis are discussed. The limitations in the existing techniques underline the need for advanced genome editing strategies to broaden the mass production of pigments to meet the surging needs.
Collapse
Affiliation(s)
- P. Harshini
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
| | - Ressin Varghese
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
| | - Kannan Pachamuthu
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
| |
Collapse
|
3
|
Dai J, Zhu J, Cheng X, Xu Z, Kang T, Xu Y, Lu Z, Ma K, Wang X, Hu Y, Zhao C. NAC transcription factor PpNAP4 positively regulates the synthesis of carotenoid and abscisic acid (ABA) during peach ripening. Int J Biol Macromol 2025; 306:141647. [PMID: 40032094 DOI: 10.1016/j.ijbiomac.2025.141647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/16/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Yellow-fleshed peaches (Prunus persica (L.) Batsch) are recognized as an excellent dietary source of carotenoids. The metabolic process of carotenoids in plants has been extensively characterized; however, the molecular mechanisms controlling carotenoid accumulation in peaches, particularly the transcriptional regulators upstream this process, remain poorly understood. Here, we initially determined the expression profiles of carotenogenic genes, observing a predominant up-regulation during ripening phase in both yellow- and white-fleshed peaches. This finding, in conjunction with prior research, suggested a conserved biosynthetic pathway for carotenoid synthesis during peach ripening, irrespective of flesh colour. NAC transcription factor, PpNAP4, previously established as a central regulator in peach ripening, is implicated as a potential modulator of carotenoid synthesis. Overexpression assays in peach and tomato nor mutant demonstrated a significant up-regulation of multiple carotenoid components by PpNAP4. Subsequent biochemical experiments revealed that PpNAP4 directly targeted the promoters of carotenogenic genes, thereby activating their expression. Next, PpNAP4 was found to be involved in the synthesis of abscisic acid (ABA) through transcriptional activation of PpNCED2/3. Additionally, we discovered that PpNAP4 acts synergistically with PpNAP6 to jointly regulate carotenoid accumulation and ABA biosynthesis. Collectively, our findings highlight PpNAP4's regulatory function in carotenoids and ABA synthesis during peach fruit ripening.
Collapse
Affiliation(s)
- Jieyu Dai
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling 712100, PR China
| | - Jingwen Zhu
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling 712100, PR China
| | - Xi Cheng
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling 712100, PR China
| | - Ze Xu
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling 712100, PR China; Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, PR China
| | - Tongyang Kang
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling 712100, PR China
| | - Yuting Xu
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling 712100, PR China
| | - Zhanling Lu
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling 712100, PR China
| | - Kaisheng Ma
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling 712100, PR China
| | - Xiaoyu Wang
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling 712100, PR China
| | - Yanan Hu
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling 712100, PR China
| | - Caiping Zhao
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling 712100, PR China.
| |
Collapse
|
4
|
Ramzan K, Zehra SH, Balciunaitiene A, Viskelis P, Viskelis J. Valorization of Fruit and Vegetable Waste: An Approach to Focusing on Extraction of Natural Pigments. Foods 2025; 14:1402. [PMID: 40282804 PMCID: PMC12027361 DOI: 10.3390/foods14081402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/13/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025] Open
Abstract
The increasing demand for functional foods has spurred interest in bioactive compounds, particularly their role in health promotion and disease prevention. This review comprehensively explores the bioavailability, mechanisms of action, and potential applications of bioactive compounds derived from natural food sources. We have systematically compiled and synthesized data from the recent scientific literature, including peer-reviewed journal articles, clinical studies, and meta-analyses, to present an in-depth evaluation of these compounds' physicochemical properties, stability, and interactions within food matrices. Furthermore, this review discusses advanced delivery systems, such as nanoencapsulation and emulsification, for enhancing bioavailability and targeted release. By addressing critical gaps in the understanding of the functional and technological aspects of bioactive compounds, this review underscores their relevance in formulating novel nutraceuticals and functional foods. The insights presented herein provide a foundation for future research and practical applications in the food industry, ultimately contributing to improving human health and well-being. Although recovering bioactive compounds from food waste is a sustainable way to reduce waste and use resources, additional research is required to make these procedures more efficient for use on an industrial scale.
Collapse
Affiliation(s)
- Khadija Ramzan
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kaunas Str. 30, Kaunas District, 54333 Babtai, Lithuania; (S.H.Z.); (A.B.); (P.V.)
| | | | | | | | - Jonas Viskelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kaunas Str. 30, Kaunas District, 54333 Babtai, Lithuania; (S.H.Z.); (A.B.); (P.V.)
| |
Collapse
|
5
|
Hu H, Pradhan N, Xiao J, Xia R, Liao P. Chromatic symphony of fleshy fruits: functions, biosynthesis and metabolic engineering of bioactive compounds. MOLECULAR HORTICULTURE 2025; 5:19. [PMID: 40170175 PMCID: PMC11963455 DOI: 10.1186/s43897-024-00142-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/29/2024] [Indexed: 04/03/2025]
Abstract
Fleshy fruits are popular among consumers due to their significant nutritional value, which includes essential bioactive compounds such as pigments, vitamins, and minerals. Notably, plant-derived pigments are generally considered safe and reliable, helping to protect humans against various inflammatory diseases. Although the phytochemical diversity and their biological activities have been extensively reviewed and summarized, the status of bioactive nutrients in fleshy fruits, particularly with a focusing on different colors, has received less attention. Therefore, this review introduces five common types of fleshy fruits based on coloration and summarizes their major bioactive compounds. It also provides the latest advancements on the function, biosynthesis, and metabolic engineering of plant-derived pigments. In this review, we emphasize that promoting the consumption of a diverse array of colorful fruits can contribute to a balanced diet; however, optimal intake levels still require further clinical validation. This review may serve as a useful guide for decisions that enhance the understanding of natural pigments and accelerate their application in agriculture and medicine.
Collapse
Affiliation(s)
- Huimin Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Nirakar Pradhan
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain.
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.
| | - Pan Liao
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China.
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
6
|
Singh L, Prusty D, Behera M, Perveen K, Bukhari NA. Optimizing pH and Light for Enhanced Carotenoid Synthesis and Antioxidant Properties in Sub-Aerial Cyanobacteria. J Basic Microbiol 2025; 65:e2400570. [PMID: 39511752 DOI: 10.1002/jobm.202400570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 11/15/2024]
Abstract
Carotenoid, natural pigments, synthesized by plants and microbes are now much favored in global markets due to the awareness of their putative health benefits, and a wide array of commercial applications. There is a diversity of natural and synthetic carotenoid, but only a few of them are commercially produced, including carotenes (β-carotene and lycopene) and xanthophylls (astaxanthin, canthaxanthin, lutein, zeaxanthin, and capsanthin). However, for commercial production, plants and algae are more favored than cyanobacteria because of their much less carotenoid synthesis than land plants; although they are well known for producing commercially important carotenoid. But with advances in optimization of their carotenoid production, cyanobacteria can be used as a potential source of carotenoid production in the future allowing us to exploit its various applications. Hence, this study investigated the effects of pH and light conditions on carotenoid production in the sub-aerial cyanobacterium Desertifilum dzianense ON358232.1. The results revealed that the highest carotenoid synthesis occurred under alkaline conditions (pH 9) and red-light exposure, significantly increasing compared to the control (pH 7.2, white light). UV-Vis and FTIR analyses confirmed the presence of β-carotene as the primary carotenoid, demonstrating strong antioxidant potential. The study's findings highlight the optimal environmental parameters for enhancing carotenoid yield, which can be applied for industrial and pharmaceutical uses due to their antioxidant properties.
Collapse
Affiliation(s)
- Lakshmi Singh
- Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Dibyani Prusty
- Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Maheswari Behera
- Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Kahkashan Perveen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Najat A Bukhari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Polamraju SM, Manochkumar J, Ganeshbabu M, Ramamoorthy S. Unveiling astaxanthin: biotechnological advances, delivery systems and versatile applications in nutraceuticals and cosmetics. Arch Microbiol 2025; 207:45. [PMID: 39869136 DOI: 10.1007/s00203-025-04241-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/28/2025]
Abstract
Astaxanthin (ASX), "king of carotenoids", is a xanthophyll carotenoid that is characterized by a distinct reddish-orange hue, procured from diverse sources including plants, microalgae, fungi, yeast, and lichens. It exhibits potent antioxidant and anti-ageing properties and has been demonstrated to mitigate ultraviolet-induced cellular and DNA damage, enhance immune system function, and improve cardiovascular diseases. Despite its broad utilization across nutraceutical, cosmetic, aquaculture, and pharmaceutical sectors, the large-scale production and application of ASX are constrained by the limited availability of natural sources, low production yields and stringent production requirements. This review provides a comprehensive analysis of ASX applications, emphasizing its dual roles in cosmetic and nutraceutical fields. It integrates insights into the qualitative differences of ASX from various natural sources and assesses biosynthetic pathways across organisms. Advanced biotechnological strategies for industrial-scale production are explored alongside innovative delivery systems, such as emulsions, films, microcapsules, nanoliposomes, and nanoparticles, designed to enhance ASX's bioavailability and functional efficacy. By unifying perspectives on its nutraceutical and cosmetic applications, this review highlights the challenges and advancements in formulation and commercialization. Prospective research directions for optimizing ASX's production and applications are also discussed, providing a roadmap for its future development.
Collapse
Affiliation(s)
- Sai Manojna Polamraju
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Janani Manochkumar
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Madhubala Ganeshbabu
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
8
|
Kumar S, Møller AH, Ilmjärv T, Dalsgaard TK. Stability of R-phycoerythrin from Furcellaria lumbricalis - Dependence on purification strategies and purity. Food Res Int 2024; 190:114595. [PMID: 38945610 DOI: 10.1016/j.foodres.2024.114595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 07/02/2024]
Abstract
R-phycoerythrin (R-PE) is the most abundant, naturally occurring phycobiliproteins found in red algae. The spectroscopic and structural properties of phycobiliproteins exhibit unique absorption characteristics with two significant absorption maxima at 498 and 565 nm, indicating two different chromophores of R-PE, phycourobilin and phycoerythrobilin respectively. This study aimed to clarify how the stability of R-PE purified from F. lumbricalis was affected by different purification strategies. Crude extracts were compared to R-PE purified by i) microfiltration, ii) ultrafiltration, and iii) multi-step ammonium sulphate precipitation followed by dialysis. The stability of the different R-PE preparations was evaluated with respect to pH (2, 4, 6, 7, 8, 10 and 12) and temperature (20, 40, 60, 80 and 100 °C). The absorbance spectra indicated higher stability of phycourobilin as compared to phycoerythrobilin for heat and pH stability in the samples. All preparations of R-PE showed heat stability till 40 °C from the findings of color, concentration of R-PE and fluorescence emission. The crude extract showed stability from pH 6 to 8, whereas R-PE purified by ultrafiltration and multi-step ammonium sulphate precipitation were both stable from pH 4 to 8 and R-PE purified by microfiltration exhibited stability from pH 4 to 10 from the results of color, SDS-PAGE, and concentration of R-PE. At pH 2, the color changed to violet whereas a yellow color was observed at pH 12 in the samples along with the precipitation of the protein.
Collapse
Affiliation(s)
- Sruthi Kumar
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark; CBIO, Aarhus University Centre for Circular Bioeconomy, 8830 Tjele, Denmark.
| | - Anders Hauer Møller
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark; CBIO, Aarhus University Centre for Circular Bioeconomy, 8830 Tjele, Denmark; CiFOOD, Aarhus University Centre for Innovative Food Research, 8000 Aarhus C, Denmark.
| | - Tanel Ilmjärv
- Vetik OÜ, Lahe Farm, Muratsi Village, Saaremaa Parish, 93859 Saare County, Estonia.
| | - Trine K Dalsgaard
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark; CBIO, Aarhus University Centre for Circular Bioeconomy, 8830 Tjele, Denmark; CiFOOD, Aarhus University Centre for Innovative Food Research, 8000 Aarhus C, Denmark.
| |
Collapse
|
9
|
Thomas L, Mago P. Unearthing the therapeutic benefits of culinary-medicinal mushrooms for humans: Emerging sustainable bioresources of 21st century. J Basic Microbiol 2024; 64:e2400127. [PMID: 38774954 DOI: 10.1002/jobm.202400127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 08/06/2024]
Abstract
Global interest in mushroom farming techniques has grown in the last few years. Despite not making up a large amount of the human diet at the moment, the nutritional worth of mushrooms has prompted their usage. The three main segments of the global mushroom industry are wild, culinary (edible), and medicinal mushrooms. The quality food that mushrooms provide can be utilized to build agricultural ecosystems that are more sustainable for increasing productivity and enhancing the effectiveness of resource usage. This is mostly because mushrooms can be utilized for the recycling of biomass and remains from crop production. Culinary-medicinal mushrooms are becoming more and more important because of their nutrient density, dietary value, and health advantages. Given its many bioactive components, which include polysaccharides, proteins, vitamins, minerals, dietary fiber, and secondary metabolites, mushrooms have been utilized extensively as health foods. These mushrooms exhibit pharmacological activities and possess prebiotic and antibacterial capabilities. This review provides information on the latest advancements in the sustainable cultivation of mushrooms, particularly with nontraditional substrates, and their potential therapeutic uses. Furthermore, some of the newest developments and difficulties in the production of mushrooms are explored.
Collapse
Affiliation(s)
- Lebin Thomas
- Department of Botany, University of Delhi, New Delhi, Delhi, India
| | - Payal Mago
- Department of Botany, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, Delhi, India
- Campus of Open Learning, University of Delhi, New Delhi, Delhi, India
| |
Collapse
|
10
|
Thomsen PT, Nielsen SR, Borodina I. Recent advances in engineering microorganisms for the production of natural food colorants. Curr Opin Chem Biol 2024; 81:102477. [PMID: 38878611 DOI: 10.1016/j.cbpa.2024.102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/11/2024] [Accepted: 05/23/2024] [Indexed: 08/13/2024]
Abstract
Food colorants are frequently added to processed foods since color is an important tool in the marketing of food products, influencing consumer perceptions, preferences, and purchasing behavior. While synthetic dyes currently dominate the food colorant market, consumer concern regarding their safety and sustainability is driving a demand for their replacement with naturally derived alternatives. However, natural colorants are costly compared to their synthetic counterparts as the pigment content in the native sources is usually very low and extraction can be challenging. Recent advances in the engineering of microbial metabolism have sparked interest in the development of cell factories capable of producing natural colorants from renewable resources. This review summarizes major developments within metabolic engineering for the production of nature-identical food colorants by fermentation. Additionally, it highlights common applications, formulations, and physicochemical characteristics of prevalent pigment classes. Lastly, it outlines a workflow for accelerating the optimization of cell factories for the production or derivatization of nature-identical food colorants.
Collapse
Affiliation(s)
- Philip Tinggaard Thomsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Susanne Roenfeldt Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
11
|
Horn PJ, Chapman KD. Imaging plant metabolism in situ. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1654-1670. [PMID: 37889862 PMCID: PMC10938046 DOI: 10.1093/jxb/erad423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023]
Abstract
Mass spectrometry imaging (MSI) has emerged as an invaluable analytical technique for investigating the spatial distribution of molecules within biological systems. In the realm of plant science, MSI is increasingly employed to explore metabolic processes across a wide array of plant tissues, including those in leaves, fruits, stems, roots, and seeds, spanning various plant systems such as model species, staple and energy crops, and medicinal plants. By generating spatial maps of metabolites, MSI has elucidated the distribution patterns of diverse metabolites and phytochemicals, encompassing lipids, carbohydrates, amino acids, organic acids, phenolics, terpenes, alkaloids, vitamins, pigments, and others, thereby providing insights into their metabolic pathways and functional roles. In this review, we present recent MSI studies that demonstrate the advances made in visualizing the plant spatial metabolome. Moreover, we emphasize the technical progress that enhances the identification and interpretation of spatial metabolite maps. Within a mere decade since the inception of plant MSI studies, this robust technology is poised to continue as a vital tool for tackling complex challenges in plant metabolism.
Collapse
Affiliation(s)
- Patrick J Horn
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton TX 76203, USA
| | - Kent D Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton TX 76203, USA
| |
Collapse
|
12
|
|
13
|
Murthy HN, Joseph KS, Paek KY, Park SY. Anthocyanin Production from Plant Cell and Organ Cultures In Vitro. PLANTS (BASEL, SWITZERLAND) 2023; 13:117. [PMID: 38202425 PMCID: PMC10780419 DOI: 10.3390/plants13010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Anthocyanins are water-soluble pigments found in plants. They exist in various colors, including red, purple, and blue, and are utilized as natural colorants in the food and cosmetics industries. The pharmaceutical industry uses anthocyanins as therapeutic compounds because they have several medicinal qualities, including anti-obesity, anti-cancer, antidiabetic, neuroprotective, and cardioprotective effects. Anthocyanins are conventionally procured from colored fruits and vegetables and are utilized in the food, pharmaceutical, and cosmetic industries. However, the composition and concentration of anthocyanins from natural sources vary quantitively and qualitatively; therefore, plant cell and organ cultures have been explored for many decades to understand the production of these valuable compounds. A great deal of research has been carried out on plant cell cultures using varied methods, such as the selection of suitable cell lines, medium optimization, optimization culture conditions, precursor feeding, and elicitation for the production of anthocyanin pigments. In addition, metabolic engineering technologies have been applied for the hyperaccumulation of these compounds in varied plants, including tobacco and arabidopsis. In this review, we describe various strategies applied in plant cell and organ cultures for the production of anthocyanins.
Collapse
Affiliation(s)
- Hosakatte Niranjana Murthy
- Department of Botany, Karnatak University, Dharwad 580003, India
- Department of Horticultural Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | | | - Kee Yoeup Paek
- Department of Horticultural Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - So-Young Park
- Department of Horticultural Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
14
|
Pandiselvam R, Mitharwal S, Rani P, Shanker MA, Kumar A, Aslam R, Barut YT, Kothakota A, Rustagi S, Bhati D, Siddiqui SA, Siddiqui MW, Ramniwas S, Aliyeva A, Mousavi Khaneghah A. The influence of non-thermal technologies on color pigments of food materials: An updated review. Curr Res Food Sci 2023; 6:100529. [PMID: 37377494 PMCID: PMC10290997 DOI: 10.1016/j.crfs.2023.100529] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The color of any food is influenced by several factors, such as food attributes (presence of pigments, maturity, and variety), processing methods, packaging, and storage conditions. Thus, measuring the color profile of food can be used to control the quality of food and examine the changes in chemical composition. With the advent of non-thermal processing techniques and their growing significance in the industry, there is a demand to understand the effects of these technologies on various quality attributes, including color. This paper reviews the effects of novel, non-thermal processing technologies on the color attributes of processed food and the implications on consumer acceptability. The recent developments in this context and a discussion on color systems and various color measurement techniques are also included. The novel non-thermal techniques, including high-pressure processing, pulsed electric field, ultrasonication, and irradiation which employ low processing temperatures for a short period, have been found effective. Since food products are processed at ambient temperature by subjecting them to non-thermal treatment for a very short time, there is no possibility of damage to heat-sensitive nutrient components in the food, any deterioration in the texture of the food, and any toxic compounds in the food due to heat. These techniques not only yield higher nutritional quality but are also observed to maintain better color attributes. However, suppose foods are exposed to prolonged exposure or processed at a higher intensity. In that case, these non-thermal technologies can cause undesirable changes in food, such as oxidation of lipids and loss of color and flavor. Developing equipment for batch food processing using non-thermal technology, understanding the appropriate mechanisms, developing processing standards using non-thermal processes, and clarifying consumer myths and misconceptions about these technologies will help promote non-thermal technologies in the food industry.
Collapse
Affiliation(s)
- R. Pandiselvam
- Physiology, Biochemistry, and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute, Kasaragod, 671 124, Kerala, India
| | - Swati Mitharwal
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, India
| | - Poonam Rani
- Food Chemistry & Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - M. Anjaly Shanker
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat, Haryana, India
| | - Amit Kumar
- Food Chemistry & Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Raouf Aslam
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | - Yeliz Tekgül Barut
- Food Processing Department, Köşk Vocational School, Aydın Adnan Menderes University, Aydın, 09100, Turkey
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, 695 019, Kerala, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Dolly Bhati
- Department of Food Bioscienes, Teagasc, Agriculture and Food Development Authority, D15 DY05, Dublin, Ireland
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610 D-Quakenbrück, Germany
| | - Mohammed Wasim Siddiqui
- Department Food Science and Postharvest Technology, Bihar Agricultural University, Sabour, 813210, Bhagalpur, India
| | - Seema Ramniwas
- University Centre for Research and Development, University of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Aynura Aliyeva
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| | - Amin Mousavi Khaneghah
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
- Department of Fruit and Vegetable Product Technology, Prof. WacławDąbrowski Institute of Agricultural and Food Biotechnology – State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100 Thailand
| |
Collapse
|
15
|
Renita AA, Gajaria TK, Sathish S, Kumar JA, Lakshmi DS, Kujawa J, Kujawski W. Progress and Prospective of the Industrial Development and Applications of Eco-Friendly Colorants: An Insight into Environmental Impact and Sustainability Issues. Foods 2023; 12:foods12071521. [PMID: 37048342 PMCID: PMC10093929 DOI: 10.3390/foods12071521] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 04/14/2023] Open
Abstract
Color is the prime feature directly associated with the consumer's attraction and choice of their food. The flavor, safety, and nutritional value of any food product are directly associated with the food color. Natural and synthetic colorants (dyes and pigments) have diversified applications in various sectors such as food, feed, pharmaceutical, textiles, cosmetics, and others. Concerning the food industry, different types of natural and synthetic colorants are available in the market. Synthetic food colorants have gained popularity as they are highly stable and cheaply available. Consumers worldwide prefer delightful foodstuffs but are more concerned about the safety of the food. After its disposal, the colloidal particles present in the synthetic colorants do not allow sunlight to penetrate aquatic bodies. This causes a foul smell and turbidity formation and gives a bad appearance. Furthermore, different studies carried out previously have presented the toxicological, carcinogenic effects, hypersensitivity reactions, and behavioral changes linked to the usage of synthetic colorants. Natural food colorings, however, have nutraceutical qualities that are valuable to human health such as curcumin extracted from turmeric and beta-carotene extracted from carrots. In addition, natural colorants have beneficial properties such as excellent antioxidant properties, antimutagenic, anti-inflammatory, antineoplastic, and antiarthritic effects. This review summarizes the sources of natural and synthetic colorants, their production rate, demand, extraction, and characterization of food colorants, their industrial applications, environmental impact, challenges in the sustainable utilization of natural colorants, and their prospects.
Collapse
Affiliation(s)
- A Annam Renita
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Tejal K Gajaria
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara 391410, India
| | - S Sathish
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - J Aravind Kumar
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, SIMATS, Chennai 600119, India
| | | | - Joanna Kujawa
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland
| |
Collapse
|
16
|
‘Aqilah NMN, Rovina K, Felicia WXL, Vonnie JM. A Review on the Potential Bioactive Components in Fruits and Vegetable Wastes as Value-Added Products in the Food Industry. Molecules 2023; 28:molecules28062631. [PMID: 36985603 PMCID: PMC10052168 DOI: 10.3390/molecules28062631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/15/2023] Open
Abstract
The food production industry is a significant contributor to the generation of millions of tonnes of waste every day. With the increasing public concern about waste production, utilizing the waste generated from popular fruits and vegetables, which are rich in high-added-value compounds, has become a focal point. By efficiently utilizing food waste, such as waste from the fruit and vegetable industries, we can adopt a sustainable consumption and production pattern that aligns with the Sustainable Development Goals (SDGs). This paper provides an overview of the high-added-value compounds derived from fruit and vegetable waste and their sources. The inclusion of bioactive compounds with antioxidant, antimicrobial, and antibrowning properties can enhance the quality of materials due to the high phenolic content present in them. Waste materials such as peels, seeds, kernels, and pomace are also actively employed as adsorbents, natural colorants, indicators, and enzymes in the food industry. Therefore, this article compiles all consumer-applicable uses of fruit and vegetable waste into a single document.
Collapse
Affiliation(s)
| | - Kobun Rovina
- Correspondence: ; Tel.: +006-088-320000 (ext. 8713); Fax: +006-088-320993
| | | | | |
Collapse
|
17
|
Chen J, Zhan J, Wang H, Zhao Y, Zhang D, Chen X, Su N, Cui J. VrMYB90 Functions Synergistically with VrbHLHA and VrMYB3 to Regulate Anthocyanin Biosynthesis in Mung Bean. PLANT & CELL PHYSIOLOGY 2023; 64:221-233. [PMID: 36401878 DOI: 10.1093/pcp/pcac160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Mung bean is an important grain-legume crop and its sprout is an economical and nutrient vegetable for the public, but the genetic regulation of anthocyanin production, which is an antioxidant in mung bean, remains elusive. In our study, we characterized a subgroup (SG) 6 R2R3-MYB anthocyanin activator VrMYB90 and a SG 4 R2R3-MYB anthocyanin repressor VrMYB3, which synergistically function in regulating anthocyanin synthesis with VrbHLHA transcription factor. The overexpressed VrMYB90 protein activates the expression of VrMYB3 and VrbHLHA in mung bean hair roots, and also promotes VrDFR and VrANS transcript levels by directly binding to the corresponding promoters at specific motifs (CAACTG and CCGTTG). VrMYB90 interacts with VrbHLHA to enhance its regulatory activities on VrDFR and VrANS. Furthermore, the interaction between VrMYB3 with VrMYB90 and VrbHLHA could result in the restriction of anthocyanin synthesis to prevent excessive anthocyanin accumulation. Our results demonstrate that the VrMYB90 protein, in conjunction with VrMYB3 and VrbHLHA, forms a key regulatory module to fine-tune anthocyanin synthesis in mung bean.
Collapse
Affiliation(s)
- Jiahui Chen
- College of Life Sciences, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210032, China
| | - Junyi Zhan
- College of Life Sciences, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210032, China
| | - Haixia Wang
- College of Life Sciences, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210032, China
| | - Yingdi Zhao
- College of Life Sciences, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210032, China
| | - Derui Zhang
- College of Life Sciences, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210032, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, No. 50 Zhongling street, Nanjing, Jiangsu 210014, China
| | - Nana Su
- College of Life Sciences, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210032, China
| | - Jin Cui
- College of Life Sciences, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210032, China
| |
Collapse
|
18
|
Mannitol-Based Media and Static pH Are Efficient Conditions for Red Pigment Production from Monascus purpureus ATCC 36928 in Submerged Culture. Processes (Basel) 2023. [DOI: 10.3390/pr11020633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Fungi of the Monascus species are used in Asia for the production of fermented foods, mainly due to the ability of these fungi to produce secondary metabolites such as pigments. Due to the growing discussion about the use of synthetic dyes and the fact that their ingestion is associated with harm to human health, studies have sought to replace these dyes using natural pigments, and new alternatives for the production of these natural pigments have been presented. In this context, Monascus pigments are a viable alternative for application in the food industry. This study aimed to evaluate different main carbon sources and pH conditions in the red pigment production of Monascus sp. We found that mannitol, when used as the only carbon source, stimulated the production of extracellular red pigment, reaching a concentration of 8.36 AU in 48 h, while glucose and sucrose reached concentrations of 1.08 and 1.34 AU, respectively. Cultivation in a bioreactor using mannitol showed great potential for optimizing pigment production and obtaining a high concentration of extracellular pigment in a short time, reaching a concentration of 25 AU in 60 h of cultivation. The change in pH altered the production of extracellular red pigment in a culture medium containing mannitol as a carbon source, demonstrating less potential than the use of static pH during cultivation in a bioreactor. Mannitol proved to be an efficient carbon source for M. pupureus under static pH conditions for both flask and benchtop bioreactor cultivation.
Collapse
|
19
|
EFFECTS OF COLD PLASMA ON CHLOROPHYLLS, CAROTENOIDS, ANTHOCYANINS, AND BETALAINS. Food Res Int 2023; 167:112593. [PMID: 37087222 DOI: 10.1016/j.foodres.2023.112593] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/25/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Plasma is considered by several researchers to be the fourth state of matter. Cold plasma has been highlighted as an alternative to thermal treatments because heat induces less degradation of thermolabile bioactive compounds, such as natural pigments. In this review, we provide a compilation of the current information about the effects of cold plasma on natural pigments, such as the changes caused by plasma to the molecules of chlorophylls, carotenoids, anthocyanins, and betalains. As a result of the literature review, it is noted that can degrade cell membrane and promote damage to pigment storage sites; thereby releasing pigments and increasing their content in the extracellular space. However, the reactive species contained in the cold plasma can cause degradation of the pigments. Cold plasma is a promising technology for extracting pigments; however, case-by-case optimization of the extraction process is required.
Collapse
|
20
|
Chen H, Chiu TY, Sahu SK, Sun H, Wen J, Sun J, Li Q, Tang Y, Jin H, Liu H. Transcriptomic analyses provide new insights into green and purple color pigmentation in Rheum tanguticum medicinal plants. PeerJ 2022; 10:e14265. [PMID: 36530396 PMCID: PMC9756867 DOI: 10.7717/peerj.14265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/27/2022] [Indexed: 12/15/2022] Open
Abstract
Background Rheum tanguticum Maxim. ex Balf is a traditional Chinese medicinal plant that is commonly used to treat many ailments. It belongs to the Polygonacae family and grows in northwest and southwest China. At high elevations, the color of the plant's young leaves is purple, which gradually changes to green during the growth cycle. Anthraquinone, which is known for various biological activities, is the main bioactive compound in R. tanguticum. Although a significant amount of research has been done on R. tanguticum in the past, the lack of transcriptome data limits our knowledge of the gene regulatory networks involved in pigmentation and in the metabolism of bioactive compounds in Rheum species. Methods To fill this knowledge gap, we generated high-quality RNA-seq data and performed multi-tissue transcriptomic analyses of R. tanguticum. Results We found that three chlorophyll degradation enzymes (RtPPH, RtPao and RtRCCR) were highly expressed in purple samples, which suggests that the purple pigmentation is mainly due to the effects of chlorophyll degradation. Overall, these data may aid in drafting the transcriptional network in the regulation and biosynthesis of medicinally active compounds in the future.
Collapse
Affiliation(s)
- Haixia Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China,BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
| | - Tsan-Yu Chiu
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
| | - Sunil Kumar Sahu
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Haixi Sun
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
| | - Jiawen Wen
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
| | - Jianbo Sun
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen, China
| | - Qiyuan Li
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen, China
| | - Yangfan Tang
- Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan, PR China
| | - Hong Jin
- Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Huan Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China,BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
21
|
Kim JK, Kim DW, Gebru YA, Choi HS, Kim YH, Kim MK. The Identification and Quantitative Analysis of Unusual Keto-Carotenoids in Ripe Fruits of Maclura tricuspidate and Its Potential as a Valuable Source of Cryptocapsin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238317. [PMID: 36500410 PMCID: PMC9736378 DOI: 10.3390/molecules27238317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022]
Abstract
Ripe fruits of Maclura tricuspidata (MT) are used as food material and a natural colorant in Korea. Although MT fruits have a deep red color due to carotenoid-like pigments, their chemical nature has not been explored in detail so far. The present study aimed at elucidating the chemical structures and composition of carotenoids in MT fruits and changes at different maturity stages. Two carotenoids from saponified MT fruit extract were isolated using repeated silica gel column chromatography. Based on interpretations of spectroscopic data, these compounds were determined as keto-carotenoids, i.e., capsanthin (3,3'-dihydroxy-β,κ-caroten-6'-one) and cryptocapsin (3'-hydroxy-β,κ-caroten-6'-one), and the contents of individual carotenoids were quantified with HPLC based on calibration curves obtained from authentic standards. The contents of capsanthin and cryptocapsin in the sample of saponified MT fruits were 57.65 ± 1.97 µg/g and 171.66 ± 4.85 μg/g as dry weight base (dw). The majority of these keto-carotenoids in the MT fruits were present in esterified forms with lauric, myristic or palmitic acid rather than in their free forms. The results also showed that esterification of these compounds occurred starting from early stage (yellow-brownish stage) of maturation. Considering the high cryptocapsin content, MT fruits can be applied as a potentially valuable source of cryptocapsin for food and medicinal application as well as a source of provitamin A.
Collapse
Affiliation(s)
- Jong-Kuk Kim
- Department of Food Science and Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Dae-Woon Kim
- Department of Food Science and Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Institute of Jinan Red Ginseng, Jinan-gun 55442, Republic of Korea
| | - Yoseph Asmelash Gebru
- Department of Biological and Chemical Engineering, Mekelle University, Mekelle 231, Ethiopia
| | - Han-Seok Choi
- Department of Agriculture and Fisheries Processing, Korea National College of Agriculture and Fisheries, Jeonju 54874, Republic of Korea
| | - Young-Hoi Kim
- Department of Food Science and Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Myung-Kon Kim
- Department of Food Science and Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Correspondence: ; Tel.: +82-63-270-2551; Fax: +82-63-270-2572
| |
Collapse
|
22
|
Development of plant-based burgers using gelled emulsions as fat source and beetroot juice as colorant: Effects on chemical, physicochemical, appearance and sensory characteristics. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Ghosh S, Sarkar T, Chakraborty R, Shariati MA, Simal-Gandara J. Nature's palette: An emerging frontier for coloring dairy products. Crit Rev Food Sci Nutr 2022; 64:1508-1552. [PMID: 36066466 DOI: 10.1080/10408398.2022.2117785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Consumers all across the world are looking for the most delectable and appealing foods, while also demanding products that are safer, more nutritious, and healthier. Substitution of synthetic colorants with natural colorants has piqued consumer and market interest in recent years. Due to increasing demand, extensive research has been conducted to find natural and safe food additives, such as natural pigments, that may have health benefits. Natural colorants are made up of a variety of pigments, many of which have significant biological potential. Because of the promising health advantages, natural colorants are gaining immense interest in the dairy industry. This review goes over the use of various natural colorants in dairy products which can provide desirable color as well as positive health impacts. The purpose of this review is to provide an in-depth look into the field of food (natural or synthetic) colorants applied in dairy products as well as their potential health benefits, safety, general trends, and future prospects in food science and technology. In this paper, we listed a plethora of applications of natural colorants in various milk-based products.
Collapse
Affiliation(s)
- Susmita Ghosh
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Tanmay Sarkar
- Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Mohammad Ali Shariati
- Research Department, K. G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russian Federation
- Department of Scientific Research, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russian Federation
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Universidade de Vigo, Ourense, E32004, Spain
| |
Collapse
|
24
|
Roy S, Sarkar T, Chakraborty R. Vegetable seeds: A new perspective in future food development. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Sarita Roy
- Department of Food Technology and Biochemical Engineering Jadavpur University Kolkata India
| | - Tanmay Sarkar
- Malda Polytechnic West Bengal State Council of Technical Education, Govt. of West Bengal Malda India
| | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering Jadavpur University Kolkata India
| |
Collapse
|
25
|
Kamer DDA, Kaynarca GB, Yücel E, Gümüş T. Development of gelatin/PVA based colorimetric films with a wide pH sensing range winery solid by-product (Vinasse) for monitor shrimp freshness. Int J Biol Macromol 2022; 220:627-637. [PMID: 35995178 DOI: 10.1016/j.ijbiomac.2022.08.113] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022]
Abstract
Anthocyanins were extracted from a winery solid by-product (Vinasse) and added to fish gelatin (FG) and polyvinyl alcohol (PVA) matrices to create freshness monitoring labels. Three different colorimetric indicator smart films [PWE = polyvinyl alcohol with wine extract (WE), FWE = fish gelatin with WE, and PFWE = polyvinyl alcohol and FG blended film with WE] were generated and examined for their suitability to monitor the freshness of shrimp. The mechanical and optical properties, ammonia sensitivity, and colorimetric analysis of smart films were determined. Fourier transform-infrared spectroscopy (FTIR) was used to evaluate the interaction of anthocyanins with FG and PVA and changes in the film's chemical composition with storage. The film surfaces were characterized with atomic force microscopy (AFM). The incorporation of WE enhanced the films' flexibility by providing plasticizer and surfactant properties. The PWE film showed the best color stability. The FWE film showed the least amount of total color change with exposure to ammonia gas and was deemed suitable for refrigerated food packaging. The color of all indicator films showed significant changes suggesting that PWE, FWE, and PFWE films can be utilized in the intelligent packaging application for protein-rich foods to detect spoilage.
Collapse
Affiliation(s)
- Deniz Damla Altan Kamer
- Department of Food Engineering, Faculty of Agriculture, Tekirdag Namik Kemal University, 59030 Tekirdag, Türkiye
| | - Gülce Bedis Kaynarca
- Department of Food Engineering, Faculty of Engineering, Kirklareli University, 39100 Kirklareli, Türkiye
| | - Emel Yücel
- Department of Food Engineering, Faculty of Agriculture, Tekirdag Namik Kemal University, 59030 Tekirdag, Türkiye
| | - Tuncay Gümüş
- Department of Food Engineering, Faculty of Agriculture, Tekirdag Namik Kemal University, 59030 Tekirdag, Türkiye.
| |
Collapse
|
26
|
Structure and Stability Characterization of Natural Lake Pigments Made from Plant Extracts and Their Potential Application in Polymer Composites for Packaging Materials. MATERIALS 2022; 15:ma15134608. [PMID: 35806732 PMCID: PMC9267694 DOI: 10.3390/ma15134608] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
Natural dyes were extracted from various plant sources and converted into lake pigments based on aluminum and tin. Three different plants (weld, Persian berries, and Brazilwood) were chosen as representative sources of natural dyes. High-performance liquid chromatography (HPLC) and triple-quadrupole mass spectrometry (QqQ MS) were used to identify dyestuffs in the raw extracts. The natural dyes and lake pigments were further characterized by optical and scanning electron microscopy (SEM), UV-Vis spectrophotometry, and thermogravimetric analysis (TGA). The stabilization of the studied plant extracts onto aluminum and tin salts led to the formation of natural lake pigments characterized by different color shades. The natural lake pigments showed improved thermal and chemical stability, which was confirmed by their higher degradation temperatures and lower solubility in chemical agents compared to natural dyes extracted from plants. This improvement can be attributed to electrostatic attraction due to the process of chelation. Ethylene-norbornene (EN) composites colored with the lake pigments exhibited uniform color and improved resistance to long-term UV exposure aging. After 300 h of UV exposure, the aging factor of the neat EN copolymer reduced to 0.3, indicating an advanced aging process of polymer compared to colored samples. Prolonged UV exposure deteriorated the mechanical properties of EN by approximately 57%, compared to about 43% with the application of BW/Al lake pigment. Natural lake pigments could be used as effective substitutes for commercial colorants in plastics for packaging applications.
Collapse
|
27
|
Wu J, Fan J, Li Y, Cao K, Chen C, Wang X, Fang W, Zhu G, Wang L. Characterizing of carotenoid diversity in peach fruits affected by the maturation and varieties. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
Kim HJ, Roy S, Rhim JW. Gelatin/agar-based color-indicator film integrated with Clitoria ternatea flower anthocyanin and zinc oxide nanoparticles for monitoring freshness of shrimp. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107294] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Fanyuk M, Kumar Patel M, Ovadia R, Maurer D, Feygenberg O, Oren-Shamir M, Alkan N. Preharvest Application of Phenylalanine Induces Red Color in Mango and Apple Fruit's Skin. Antioxidants (Basel) 2022; 11:491. [PMID: 35326141 PMCID: PMC8944447 DOI: 10.3390/antiox11030491] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 02/01/2023] Open
Abstract
Anthocyanins are secondary metabolites responsible for the red coloration of mango and apple. The red color of the peel is essential for the fruit's marketability. Anthocyanins and flavonols are synthesized via the flavonoid pathway initiated from phenylalanine (Phe). Anthocyanins and flavonols have antioxidant, antifungal, and health-promoting properties. To determine if the external treatment of apple and mango trees with Phe can induce the red color of the fruit peel, the orchards were sprayed 1 to 4 weeks before the harvest of mango (cv. Kent, Shelly, and Tommy Atkins) and apple fruit (cv. Cripps pink, Gala and Starking Delicious). Preharvest Phe treatment increased the red coloring intensity and red surface area of both mango and apple fruit that was exposed to sunlight at the orchard. The best application of Phe was 2-4 weeks preharvest at a concentration of 0.12%, while a higher concentration did not have an additive effect. A combination of Phe and the positive control of prohydrojasmon (PDJ) or several applications of Phe did not have a significant added value on the increase in red color. Phe treatment increased total flavonoid, anthocyanin contents, and antioxidant activity in treated fruit compared to control fruits. High Performance Liquid Chromatography analysis of the peel of Phe treated 'Cripps pink' apples showed an increase in total flavonols and anthocyanins with no effect on the compound composition. HPLC analysis of 'Kent' mango fruit peel showed that Phe treatment had almost no effect on total flavonols content while significantly increasing the level of anthocyanins was observed. Thus preharvest application of Phe combined with sunlight exposure offers an eco-friendly, alternative treatment to improve one of the most essential quality traits-fruit color.
Collapse
Affiliation(s)
- Michal Fanyuk
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel; (M.F.); (M.K.P.); (D.M.); (O.F.)
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Manish Kumar Patel
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel; (M.F.); (M.K.P.); (D.M.); (O.F.)
| | - Rinat Ovadia
- Department of Plant Science, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel; (R.O.); (M.O.-S.)
| | - Dalia Maurer
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel; (M.F.); (M.K.P.); (D.M.); (O.F.)
| | - Oleg Feygenberg
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel; (M.F.); (M.K.P.); (D.M.); (O.F.)
| | - Michal Oren-Shamir
- Department of Plant Science, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel; (R.O.); (M.O.-S.)
| | - Noam Alkan
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel; (M.F.); (M.K.P.); (D.M.); (O.F.)
| |
Collapse
|
30
|
Sarkar T, Salauddin M, Roy A, Sharma N, Sharma A, Yadav S, Jha V, Rebezov M, Khayrullin M, Thiruvengadam M, Chung IM, Shariati MA, Simal-Gandara J. Minor tropical fruits as a potential source of bioactive and functional foods. Crit Rev Food Sci Nutr 2022; 63:6491-6535. [PMID: 35164626 DOI: 10.1080/10408398.2022.2033953] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tropical fruits are defined as fruits that are grown in hot and humid regions within the Tropic of Cancer and Tropic of Capricorn, covering most of the tropical and subtropical areas of Asia, Africa, Central America, South America, the Caribbean and Oceania. Depending on the cultivation area covered, economic value and popularity these tropical fruits are divided into major and minor tropical fruits. There is an annual increment of 3.8% in terms of commercialization of the tropical fruits. In total 26 minor tropical fruits (Kiwifruit, Lutqua, Carambola, Tree Tomato, Elephant apple, Rambutan, Bay berry, Mangosteen, Bhawa, Loquat, Silver berry, Durian, Persimon, Longan, Passion fruit, Water apple, Pulasan, Indian gooseberry, Guava, Lychee, Annona, Pitaya, Sapodilla, Pepino, Jaboticaba, Jackfruit) have been covered in this work. The nutritional composition, phytochemical composition, health benefits, traditional use of these minor tropical fruits and their role in food fortification have been portrayed.
Collapse
Affiliation(s)
- Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Malda, India
| | - Molla Salauddin
- Department of Food Processing Technology, Mir Madan Mohanlal Govt. Polytechnic, West Bengal State Council of Technical Education, Nadia, India
| | - Arpita Roy
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Nikita Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Apoorva Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Saanya Yadav
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Vaishnavi Jha
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Maksim Rebezov
- Liaocheng University, Liaocheng, Shandong, China
- V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russian Federation
- K.G. Razumovsky Moscow State University of Technologies, and Management (The First Cossack University), Moscow, Russian Federation
| | - Mars Khayrullin
- K.G. Razumovsky Moscow State University of Technologies, and Management (The First Cossack University), Moscow, Russian Federation
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Mohammad Ali Shariati
- Liaocheng University, Liaocheng, Shandong, China
- K.G. Razumovsky Moscow State University of Technologies, and Management (The First Cossack University), Moscow, Russian Federation
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
31
|
Otieno OD, Mulaa FJ, Obiero G, Midiwo J. Utilization of fruit waste substrates in mushroom production and manipulation of chemical composition. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
AMORIM IS, AMORIM DS, LOPES ABR, LEAL ADB, MONTEIRO JDS, CASTRO VCGD, BRAGA ACC, SILVA BAD. Effect of adding Theobroma grandiflorum and Hylocereus polyrhizus pulps on the nutritional value and sensory characteristics of bread. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.92921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Pu ZJ, Zhang S, Tang YP, Shi XQ, Tao HJ, Yan H, Chen JQ, Yue SJ, Chen YY, Zhu ZH, Zhou GS, Su SL, Duan JA. Study on changes in pigment composition during the blooming period of safflower based on plant metabolomics and semi-quantitative analysis. J Sep Sci 2021; 44:4082-4091. [PMID: 34514725 DOI: 10.1002/jssc.202100439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 11/11/2022]
Abstract
Red and yellow pigments are the major ingredients of safflower, often used to color food and cosmetics. Carthamin was the main component of red pigment and hydroxysafflor yellow A and anhydrosafflower yellow B were representative components of yellow pigment. Plant metabolomics and semi-quantitative analysis were used to analyze the changes of pigment composition during the blooming period, especially these characteristic components. Carthamin, hydroxysafflor yellow A, anhydrosafflower yellow B, and other components were screened out as differential metabolites based on plant metabolomics. Then semi-quantitative analysis was used to quantify these three representative components of pigments. Experimental results showed that the content of pigments has dynamic changes along with flowering, in the early blooming period, yellow pigment accumulated much and red pigment was low in content. In the middle period, the accumulation rate of the yellow pigment slowed down and content was stabilized. In the next step, the content of yellow pigments gradually decreased, and the content of red pigments gradually increased. Later, the level of yellow pigment decreased significantly, and the accumulation rate of red pigment increased significantly. Last, the appearance color of safflower was red, with yellow parts barely visible, and accumulation of red pigment was the highest and of the yellow pigment was the lowest in content.
Collapse
Affiliation(s)
- Zong-Jin Pu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, P. R. China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Shuo Zhang
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, P. R. China
| | - Xu-Qin Shi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Hui-Juan Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Jia-Qian Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, P. R. China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, P. R. China
| | - Zhen-Hua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Gui-Sheng Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Shu-Lan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| |
Collapse
|
34
|
Influence of Drying Type of Selected Fermented Vegetables Pomace on the Natural Colorants and Concentration of Lactic Acid Bacteria. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11177864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nowadays, foods with probiotic bacteria are valuable and desired, because of their influence on human gut and health. Currently, in the era of zero waste, the food industry is interested in managing its waste. Therefore, the aim of the study was to determine the influence of drying process on the physicochemical properties of fermented vegetable pomace. The work included examining the influence of the lactic acid bacteria (Levilactobacillus brevis, Lactiplantibacillus plantarum, Limosilactobacillus fermentum and its mixture in the ratio 1:1:1) used for vegetable fermentation (beetroot, red pepper, carrot), obtaining pomace from fermented vegetables, and then selection of drying technique using the following methods: convection drying (CD) or freeze-drying (FD) on the physical and chemical properties of pomace. In the obtained pomace and its dried form, dry substance, water activity, color, and active substances such as betalains and carotenoids by spectrophotometric method and also bacteria concentration were evaluated. After fermentation of pomace from the same vegetable, a similar concentration of lactic acid bacteria was found as well as dry substances, color and colorants. Results of physico-chemical properties were related to the used vegetable type. After drying of pomace, it could be seen a high decrease in bacteria and colorant concentration (betalains, carotenoids) independently from drying and vegetable type as well as used starter cultures. The smallest change was observed for spontaneously fermented vegetables compared to those in which the starter culture was used.
Collapse
|
35
|
Nowacka M, Dadan M, Janowicz M, Wiktor A, Witrowa-Rajchert D, Mandal R, Pratap-Singh A, Janiszewska-Turak E. Effect of nonthermal treatments on selected natural food pigments and color changes in plant material. Compr Rev Food Sci Food Saf 2021; 20:5097-5144. [PMID: 34402592 DOI: 10.1111/1541-4337.12824] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/21/2021] [Accepted: 07/12/2021] [Indexed: 12/01/2022]
Abstract
In recent years, traditional high-temperature food processing is continuously being replaced by nonthermal processes. Nonthermal processes have a positive effect on food quality, including color and maintaining natural food pigments. Thus, this article describes the influence of nonthermal, new, and traditional treatments on natural food pigments and color changes in plant materials. Characteristics of natural pigments, such as anthocyanins, betalains, carotenoids, chlorophylls, and so forth available in the plant tissue, are shortly presented. Also, the characteristics and mechanism of nonthermal processes such as pulsed electric field, ultrasound, high hydrostatic pressure, pulsed light, cold plasma, supercritical fluid extraction, and lactic acid fermentation are described. Furthermore, the disadvantages of these processes are mentioned. Each treatment is evaluated in terms of its effects on all types of natural food pigments, and the possible applications are discussed. Analysis of the latest literature showed that the use of nonthermal technologies resulted in better preservation of pigments contained in the plant tissue and improved yield of extraction. However, it is important to select the appropriate processing parameters and to optimize this process in relation to a specific type of raw material.
Collapse
Affiliation(s)
- Małgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Magdalena Dadan
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Monika Janowicz
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Artur Wiktor
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Dorota Witrowa-Rajchert
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Ronit Mandal
- Food, Nutrition and Health Program, Faculty of Land and Food Systems (LFS), The University of British Columbia, Vancouver, British Columbia, Canada
| | - Anubhav Pratap-Singh
- Food, Nutrition and Health Program, Faculty of Land and Food Systems (LFS), The University of British Columbia, Vancouver, British Columbia, Canada
| | - Emilia Janiszewska-Turak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| |
Collapse
|
36
|
Chen JY, Xie FF, Cui YZ, Chen CB, Lu WJ, Hu XD, Hua QZ, Zhao J, Wu ZJ, Gao D, Zhang ZK, Jiang WK, Sun QM, Hu GB, Qin YH. A chromosome-scale genome sequence of pitaya (Hylocereus undatus) provides novel insights into the genome evolution and regulation of betalain biosynthesis. HORTICULTURE RESEARCH 2021; 8:164. [PMID: 34230458 PMCID: PMC8260669 DOI: 10.1038/s41438-021-00612-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 05/03/2023]
Abstract
Pitaya (Hylocereus) is the most economically important fleshy-fruited tree of the Cactaceae family that is grown worldwide, and it has attracted significant attention because of its betalain-abundant fruits. Nonetheless, the lack of a pitaya reference genome significantly hinders studies focused on its evolution, as well as the potential for genetic improvement of this crop. Herein, we employed various sequencing approaches, namely, PacBio-SMRT, Illumina HiSeq paired-end, 10× Genomics, and Hi-C (high-throughput chromosome conformation capture) to provide a chromosome-level genomic assembly of 'GHB' pitaya (H. undatus, 2n = 2x = 22 chromosomes). The size of the assembled pitaya genome was 1.41 Gb, with a scaffold N50 of ~127.15 Mb. In total, 27,753 protein-coding genes and 896.31 Mb of repetitive sequences in the H. undatus genome were annotated. Pitaya has undergone a WGT (whole-genome triplication), and a recent WGD (whole-genome duplication) occurred after the gamma event, which is common to the other species in Cactaceae. A total of 29,328 intact LTR-RTs (~696.45 Mb) were obtained in H. undatus, of which two significantly expanded lineages, Ty1/copia and Ty3/gypsy, were the main drivers of the expanded genome. A high-density genetic map of F1 hybrid populations of 'GHB' × 'Dahong' pitayas (H. monacanthus) and their parents were constructed, and a total of 20,872 bin markers were identified (56,380 SNPs) for 11 linkage groups. More importantly, through transcriptomic and WGCNA (weighted gene coexpression network analysis), a global view of the gene regulatory network, including structural genes and the transcription factors involved in pitaya fruit betalain biosynthesis, was presented. Our data present a valuable resource for facilitating molecular breeding programs of pitaya and shed novel light on its genomic evolution, as well as the modulation of betalain biosynthesis in edible fruits.
Collapse
Affiliation(s)
- Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Fang-Fang Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Yan-Ze Cui
- Novogene Bioinformatics Institute, 100083, Beijing, China
| | - Can-Bin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Xiao-di Hu
- Novogene Bioinformatics Institute, 100083, Beijing, China
| | - Qing-Zhu Hua
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Jing Zhao
- Novogene Bioinformatics Institute, 100083, Beijing, China
| | - Zhi-Jiang Wu
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, 530007, Nanning, Guangxi, China
| | - Dan Gao
- Novogene Bioinformatics Institute, 100083, Beijing, China
| | - Zhi-Ke Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Wen-Kai Jiang
- Novogene Bioinformatics Institute, 100083, Beijing, China
| | - Qing-Ming Sun
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA)/Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, 510640, Guangzhou, China.
| | - Gui-Bing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, 510642, Guangzhou, Guangdong, China.
| | - Yong-Hua Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, 510642, Guangzhou, Guangdong, China.
| |
Collapse
|
37
|
Pistelli L, Sansone C, Smerilli A, Festa M, Noonan DM, Albini A, Brunet C. MMP-9 and IL-1β as Targets for Diatoxanthin and Related Microalgal Pigments: Potential Chemopreventive and Photoprotective Agents. Mar Drugs 2021; 19:354. [PMID: 34206447 PMCID: PMC8303339 DOI: 10.3390/md19070354] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 12/13/2022] Open
Abstract
Photochemoprevention can be a valuable approach to counteract the damaging effects of environmental stressors (e.g., UV radiations) on the skin. Pigments are bioactive molecules, greatly attractive for biotechnological purposes, and with promising applications for human health. In this context, marine microalgae are a valuable alternative and eco-sustainable source of pigments that still need to be taken advantage of. In this study, a comparative in vitro photochemopreventive effects of twenty marine pigments on carcinogenic melanoma model cell B16F0 from UV-induced injury was setup. Pigment modulation of the intracellular reactive oxygen species (ROS) concentration and extracellular release of nitric oxide (NO) was investigated. At the cell signaling level, interleukin 1-β (IL-1β) and matrix metallopeptidase 9 protein (MMP-9) protein expression was examined. These processes are known to be involved in the signaling pathway, from UV stress to cancer induction. Diatoxanthin resulted the best performing pigment in lowering MMP-9 levels and was able to strongly lower IL-1β. This study highlights the pronounced bioactivity of the exclusively aquatic carotenoid diatoxanthin, among the others. It is suggested increasing research efforts on this molecule, emphasizing that a deeper integration of plant ecophysiological studies into a biotechnological context could improve the exploration and exploitation of bioactive natural products.
Collapse
Affiliation(s)
- Luigi Pistelli
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie Marine, Villa Comunale, 80121 Napoli, Italy; (L.P.); (A.S.); (C.B.)
| | - Clementina Sansone
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie Marine, Villa Comunale, 80121 Napoli, Italy; (L.P.); (A.S.); (C.B.)
| | - Arianna Smerilli
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie Marine, Villa Comunale, 80121 Napoli, Italy; (L.P.); (A.S.); (C.B.)
| | - Marco Festa
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, 20138 Milan, Italy; (M.F.); (A.A.)
| | - Douglas M. Noonan
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20138 Milan, Italy
| | - Adriana Albini
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, 20138 Milan, Italy; (M.F.); (A.A.)
| | - Christophe Brunet
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie Marine, Villa Comunale, 80121 Napoli, Italy; (L.P.); (A.S.); (C.B.)
| |
Collapse
|
38
|
Janiszewska-Turak E, Rybak K, Grzybowska E, Konopka E, Witrowa-Rajchert D. The Influence of Different Pretreatment Methods on Color and Pigment Change in Beetroot Products. Molecules 2021; 26:3683. [PMID: 34208715 PMCID: PMC8235720 DOI: 10.3390/molecules26123683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022] Open
Abstract
Vegetable processing pomace contains valuable substances such as natural colors that can be reused as functional ingredients. Due to a large amount of water, they are an unstable material. The aim of our research was to assess how the pretreatment method (thermal or nonthermal) affects the properties of powders obtained from beet juice and pomace after the freeze-drying process. The raw material was steamed or sonicated for 10 or 15 min, and then squeezed into juice and pomace. Both squeezed products were freeze-dried. The content of dry substance; L*, a*, and b* color parameters; and the content of betalain pigments were analyzed. Pretreatments increased the proportion of red and yellow in the juices. Steam and ultrasound caused a significant reduction in parameter b* in the dried pomace. A significant increase in betanin in lyophilizates was observed after pretreatment with ultrasound and steam for 15 min. As a result of all experiments, dried juices and pomaces can also be used as a colorant source. However, there is higher potential with pomaces due to their additional internal substances as well as better storage properties. After a few hours, juice was sticky and not ready to use.
Collapse
Affiliation(s)
- Emilia Janiszewska-Turak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences–SGGW, 02-787 Warsaw, Poland; (K.R.); (E.G.); (E.K.); (D.W.-R.)
| | | | | | | | | |
Collapse
|
39
|
Arruda HS, Silva EK, Peixoto Araujo NM, Pereira GA, Pastore GM, Marostica Junior MR. Anthocyanins Recovered from Agri-Food By-Products Using Innovative Processes: Trends, Challenges, and Perspectives for Their Application in Food Systems. Molecules 2021; 26:2632. [PMID: 33946376 PMCID: PMC8125576 DOI: 10.3390/molecules26092632] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Anthocyanins are naturally occurring phytochemicals that have attracted growing interest from consumers and the food industry due to their multiple biological properties and technological applications. Nevertheless, conventional extraction techniques based on thermal technologies can compromise both the recovery and stability of anthocyanins, reducing their global yield and/or limiting their application in food systems. The current review provides an overview of the main innovative processes (e.g., pulsed electric field, microwave, and ultrasound) used to recover anthocyanins from agri-food waste/by-products and the mechanisms involved in anthocyanin extraction and their impacts on the stability of these compounds. Moreover, trends and perspectives of anthocyanins' applications in food systems, such as antioxidants, natural colorants, preservatives, and active and smart packaging components, are addressed. Challenges behind anthocyanin implementation in food systems are displayed and potential solutions to overcome these drawbacks are proposed.
Collapse
Affiliation(s)
- Henrique Silvano Arruda
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Eric Keven Silva
- Department of Food Engineering, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
| | - Nayara Macêdo Peixoto Araujo
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Gustavo Araujo Pereira
- School of Food Engineering, Institute of Technology, Federal University of Pará, Augusto Corrêa Street S/N, Belém 66075-110, Brazil;
| | - Glaucia Maria Pastore
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Mario Roberto Marostica Junior
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
| |
Collapse
|
40
|
Luzardo-Ocampo I, Ramírez-Jiménez AK, Yañez J, Mojica L, Luna-Vital DA. Technological Applications of Natural Colorants in Food Systems: A Review. Foods 2021; 10:634. [PMID: 33802794 PMCID: PMC8002548 DOI: 10.3390/foods10030634] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 01/02/2023] Open
Abstract
Natural colorants have emerged as an alternative to their synthetic counterparts due to an existing health concern of these later. Moreover, natural-food colorants are a renewable option providing health benefits and interesting technological and sensory attributes to the food systems containing them. Several sources of natural colorants have been explored aiming to deliver the required wide color range demanded by consumers. This review aimed to compare and discuss the technological applications of the main natural-food colorants into food system in the last six years, giving additional information about their extraction process. Although natural colorants are promising choices to replace synthetic ones, optimization of processing conditions, research on new sources, and new formulations to ensure stability are required to equate their properties to their synthetic counterparts.
Collapse
Affiliation(s)
- Ivan Luzardo-Ocampo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Santiago de Querétaro, QRO 76230, Mexico;
| | - Aurea K. Ramírez-Jiménez
- Tecnologico de Monterrey, School of Engineering and Science, Avenida Eugenio Garza Sada 2501 Sur, Monterrey, N. L. 64849, Mexico; (A.K.R.-J.); (J.Y.)
| | - Jimena Yañez
- Tecnologico de Monterrey, School of Engineering and Science, Avenida Eugenio Garza Sada 2501 Sur, Monterrey, N. L. 64849, Mexico; (A.K.R.-J.); (J.Y.)
| | - Luis Mojica
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A. C., Camino Arenero #1227 Col. El Bajío, Zapopan, JAL 45019, Mexico;
| | - Diego A. Luna-Vital
- Tecnologico de Monterrey, School of Engineering and Science, Avenida Eugenio Garza Sada 2501 Sur, Monterrey, N. L. 64849, Mexico; (A.K.R.-J.); (J.Y.)
| |
Collapse
|
41
|
Sharma M, Usmani Z, Gupta VK, Bhat R. Valorization of fruits and vegetable wastes and by-products to produce natural pigments. Crit Rev Biotechnol 2021; 41:535-563. [PMID: 33634717 DOI: 10.1080/07388551.2021.1873240] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Synthetic pigments from petrochemicals have been extensively used in a wide range of food products. However, these pigments have adverse effects on human health that has rendered it obligatory to the scientific community in order to explore for much safer, natural, and eco-friendly pigments. In this regard, exploiting the potential of agri-food wastes presumes importance, extracted mainly by employing green processing and extraction technologies. Of late, pigments market size is growing rapidly owing to their extensive uses. Hence, there is a need for sustainable production of pigments from renewable bioresources. Valorization of vegetal wastes (fruits and vegetables) and their by-products (e.g. peels, seeds or pomace) can meet the demands of natural pigment production at the industrial levels for potential food, pharmaceuticals, and cosmeceuticals applications. These wastes/by-products are a rich source of natural pigments such as: anthocyanins, betalains, carotenoids, and chlorophylls. It is envisaged that these natural pigments can contribute significantly to the development of functional foods as well as impart rich biotherapeutic potential. With a sustainability approach, we have critically reviewed vital research information and developments made on natural pigments from vegetal wastes, greener extraction and processing technologies, encapsulation techniques and potential bioactivities. Designed with an eco-friendly approach, it is expected that this review will benefit not only the concerned industries but also be of use to health-conscious consumers.
Collapse
Affiliation(s)
- Minaxi Sharma
- ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Tartu, Estonia
| | - Zeba Usmani
- Department of Chemistry and Biotechnology, Tallinn University of Technology (TalTech), Tallinn, Estonia
| | - Vijai Kumar Gupta
- Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh, UK.,Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh, UK
| | - Rajeev Bhat
- ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
42
|
G. Quiles L, Vidal J, Luzi F, Dominici F, Fernández Cuello Á, Castell P. Color Fixation Strategies on Sustainable Poly-Butylene Succinate Using Biobased Itaconic Acid. Polymers (Basel) 2020; 13:E79. [PMID: 33379171 PMCID: PMC7795375 DOI: 10.3390/polym13010079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Biopo-lybutylene succinate (bioPBS) is gaining attention in the biodegradable polymer market due to its promising properties, such as high biodegradability and processing versatility, representing a potential sustainable replacement for fossil-based commodities. However, there is still a need to enhance its properties for certain applications, with aesthetical and mechanical properties being a challenge. The aim of the present work is to improve these properties by adding selected additives that will confer bioPBS with comparable properties to that of current counterparts such as polypropylene (PP) for specific applications in the automotive and household appliances sectors. A total of thirteen materials have been studied and compared, being twelve biocomposites containing combinations of three different additives: a commercial red colorant, itaconic acid (IA) to enhance color fixation and zirconia (ZrO2) nanoparticles to maintain at least native PBS mechanical properties. The results show that the combination of IA and the coloring agent tends to slightly yellowish the blend due to the absorbance spectra of IA and also to modify the gloss due to the formation of IA nanocrystals that affects light scattering. In addition, for low amounts of IA (4 wt %), Young's Modulus seems to be kept while elongation at break is even raised. Unexpectedly, a strong aging affect was found after four weeks. IA increases the hydrophilic behavior of the samples and thus seems to accelerate the hydrolization of the matrix, which is accompanied by an accused disaggregation of phases and an overall softening and rigidization effect. The addition of low amounts of ZrO2 (2 wt %) seems to provide the desired effect for hardening the surface while almost not affecting the other properties; however, higher amounts tends to form aggregates saturating the compounds. As a conclusion, IA might be a good candidate for color fixing in biobased polymers.
Collapse
Affiliation(s)
- Lidia G. Quiles
- Tecnopackaging, Polígono Industrial Empresarium C/Romero Nº, 12, 50720 Zaragoza, Spain
| | - Julio Vidal
- Fundación Aitiip, Polígono Industrial Empresarium C/Romero Nº, 12, 50720 Zaragoza, Spain;
| | - Francesca Luzi
- Department of Civil and Environmental Engineering, University of Perugia, 05100 Terni, Italy; (F.L.); (F.D.)
| | - Franco Dominici
- Department of Civil and Environmental Engineering, University of Perugia, 05100 Terni, Italy; (F.L.); (F.D.)
| | - Ángel Fernández Cuello
- Escuela de Ingeniería y Arquitectura, University of Zaragoza, Av. María de Luna, 3, 50018 Zaragoza, Spain;
| | - Pere Castell
- Fundación Aitiip, Polígono Industrial Empresarium C/Romero Nº, 12, 50720 Zaragoza, Spain;
| |
Collapse
|
43
|
Yin T, Cai L, Ding Z. A systematic review on the chemical constituents of the genus Consolida (Ranunculaceae) and their biological activities. RSC Adv 2020; 10:35072-35089. [PMID: 35515663 PMCID: PMC9056944 DOI: 10.1039/d0ra06811j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
For centuries, species of the genus Consolida (Ranunculaceae) have been extensively utilized for their extremely high ornamental and medicinal values. Phytochemical investigations of Consolida species have revealed the presence of multiple active ingredients, including diterpenoid alkaloids, flavonoids, phenolic acids, phytosterols, fatty acids, and volatile constituents. These chemical constituents are of great research significance due to their novel structures and broad biological activities. This review addresses, for the first time, the chemical constituents of Consolida plants and the biological activities of these compounds to facilitate future research.
Collapse
Affiliation(s)
- Tianpeng Yin
- Zhuhai Key Laboratory of Fundamental and Applied Research in Traditional Chinese Medicine, Department of Bioengineering, Zhuhai Campus of Zunyi Medical University Zhuhai 519041 China
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University Kunming 650091 China
| | - Le Cai
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University Kunming 650091 China
| | - Zhongtao Ding
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University Kunming 650091 China
| |
Collapse
|