1
|
Liu Y, Huang Y, Yang Z, Lyu L, Li Y. Photodynamic therapy could serve as a promising approach to prevent posterior capsular opacification. Photochem Photobiol Sci 2025; 24:681-691. [PMID: 40332735 DOI: 10.1007/s43630-025-00707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/12/2025] [Indexed: 05/08/2025]
Abstract
Posterior capsular opacification (PCO) causes the vision that has been restored after cataract surgery to become blurred again. YAG laser treatment for PCO not only incurs additional costs but also poses risks of complications, including glaucoma and retinal disorders. Effective prevention and management of PCO remain an area requiring active research. Photodynamic therapy (PDT) utilizes a photosensitizer (PS) to transform oxygen into reactive oxygen species (ROS) under specific wavelengths of light, thereby inducing apoptosis. Given its minimal invasiveness and high specificity, PDT has been extensively applied in the treatment of conditions characterized by abnormal cell proliferation, such as tumors. Considering the pathogenesis of PCO, PDT has demonstrated promising clinical application potential in ophthalmic disease treatment. This review examines the impact of photodynamic therapy on the biological behavior of lens epithelial cells (LECs) and its efficacy in treating PCO. It also discusses the advantages and disadvantages of different photosensitizers and their clinical application potential.
Collapse
Affiliation(s)
- Yifan Liu
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Yihan Huang
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China
| | - Zhihui Yang
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Section 3, Zhongshan Road, Luzhou, 319646000, China.
| | - Lechun Lyu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China.
| | - Yue Li
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China.
| |
Collapse
|
2
|
Jia Q, Wei Y, Hu Y, Yang Y, Hong W, Huang H, Lin Q. Cascade catalytic multilayer modified intraocular lens for enhanced and safer posterior capsule opacification prevention. Acta Biomater 2025; 192:248-259. [PMID: 39644940 DOI: 10.1016/j.actbio.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/30/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Posterior capsule opacification (PCO) is the most common complication after cataract surgery. It is primarily caused by the proliferation, migration, and adhesion of residual lens epithelial cells within the capsular bag following phacoemulsification and intraocular lens (IOL) implantation. Although investigations of surface modification onto IOL have partially reduced PCO development in recent years, there are still challenges in long-term efficacy and intraocular biocompatibility. In this study, a cascade catalytic system is constructed using natural enzymes onto mesoporous silica nanoparticles (MSNs), which are subsequently fixed to the surface of IOL through layer-by-layer self-assemble of alternating positive and negative charges. The cascade catalytic reaction is trigged simply by glucose within the pouch to produce reactive oxygen species (ROS) without introducing any toxic drugs or external energy, attempting to minimize the possible toxic side effects to surrounding tissues. In vivo and in vitro experiments indicate the effective inhibition of PCO and favorable intraocular compatibility of the cascade catalytic platform modified IOL. More importantly, the modified IOL retains good optical performance and imaging quality, demonstrating promising prospects for application. This study provides a new possibility for enhanced and safer PCO prevention, playing great significance in clinical treatment. STATEMENT OF SIGNIFICANCE: Cascade catalytic nanoparticles-loaded multilayer modified IOL is obtained via LbL technique. The multilayer coating improves both the loading capacity and the activity of the cascade catalytic nanoparticles. The cascade catalytic reaction is trigged by glucose, producing ROS that efficiently induces apoptosis and death of remaining cells on IOL without introducing any toxic drugs or external energy. The innovative IOL provides a promising approach for enhanced and safer prevention of PCO.
Collapse
Affiliation(s)
- Qingqing Jia
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Youfei Wei
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yulin Hu
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yuexin Yang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Wenxin Hong
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Huiying Huang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Quankui Lin
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
3
|
Beena M, Ramesh P, Palaniappan A. Poly(amidoamine)-based dendrimers for biomedical applications. SYNTHETIC POLYMERS IN DRUG AND BIOTHERAPEUTICS DELIVERY 2025:105-132. [DOI: 10.1016/b978-0-323-95233-0.00017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Wu KY, Khammar R, Sheikh H, Marchand M. Innovative Polymeric Biomaterials for Intraocular Lenses in Cataract Surgery. J Funct Biomater 2024; 15:391. [PMID: 39728191 DOI: 10.3390/jfb15120391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024] Open
Abstract
Intraocular lenses (IOLs) play a pivotal role in restoring vision following cataract surgery. The evolution of polymeric biomaterials has been central to addressing challenges such as biocompatibility, optical clarity, mechanical stability, and resistance to opacification. This review explores essential requirements for IOL biomaterials, emphasizing their ability to mitigate complications like posterior capsule opacification (PCO) and dysphotopsias while maintaining long-term durability and visual quality. Traditional polymeric materials, including polymethyl methacrylate (PMMA), silicone, and acrylic polymers, are critically analyzed alongside cutting-edge innovations such as hydrogels, shape memory polymers, and light-adjustable lenses (LALs). Advances in polymer engineering have enabled these materials to achieve enhanced flexibility, transparency, and biocompatibility, driving their adoption in modern IOL design. Functionalization strategies, including surface modifications and drug-eluting designs, highlight advancements in preventing inflammation, infection, and other complications. The incorporation of UV-blocking and blue-light-filtering agents is also examined for their potential in reducing retinal damage. Furthermore, emerging technologies like nanotechnology and smart polymer-based biomaterials offer promising avenues for personalized, biocompatible IOLs with enhanced performance. Clinical outcomes, including visual acuity, contrast sensitivity, and patient satisfaction, are evaluated to provide an understanding of the current advancements and limitations in IOL development. We also discuss the current challenges and future directions, underscoring the need for cost-effective, innovative polymer-based solutions to optimize surgical outcomes and improve patients' quality of life.
Collapse
Affiliation(s)
- Kevin Y Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Rebecca Khammar
- Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Hafsah Sheikh
- Faculty of Medicine, Queens University, Kingston, ON K7M 1G2, Canada
| | - Michael Marchand
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| |
Collapse
|
5
|
Fang Q, Qin C, Duo L, Fei F, Jia Q, Chen H, Lin Q. Polydopamine based photothermal/photodynamic synchronous coating modified intraocular lens for efficient and safer posterior capsule opacification prevention. BIOMATERIALS ADVANCES 2024; 158:213792. [PMID: 38281322 DOI: 10.1016/j.bioadv.2024.213792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/26/2023] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Posterior capsule opacification (PCO), as one of the most common late complications after intraocular lens (IOL) implantation in cataract surgery, seriously affects patients' postoperative vision and surgical satisfaction, and can only be treated by laser incision of the posterior capsule. Although drug eluting coating modification have been proved to inhibit PCO effectively, the complicated coating methods and the potential toxicity of the antiproliferative drugs hinders its actual application. In this study, an indocyanine green (ICG) loaded polydopamine (PDA) coating modified IOL (IP-IOL) was designed to prevented PCO. In vitro and in vivo studies have shown that IP-IOL can effectively eliminate lens epithelial cells and significantly reduce the degree of PCO. At the same time, it still has good imaging quality and optical properties. Furthermore, both the near-infrared irradiation and ICG loaded PDA coating modified IOLs have proved to possess high biological safety to eyes. Thus, with easy preparation and safer near-infrared irradiated photothermal/photodynamic synchronous properties, such ICG loaded PDA coating provides an effective yet easier and safer PCO prevention after IOL implantation.
Collapse
Affiliation(s)
- Qiuna Fang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Chen Qin
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Lan Duo
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Fan Fei
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Qingqing Jia
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Hao Chen
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Quankui Lin
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
6
|
Lin L, Xu L, Sun W, Liang L, Qi X, Zhao YE. Mild Photothermal Therapy Prevents Posterior Capsule Opacification through Cytoskeletal Remodeling. Adv Healthc Mater 2023; 12:e2300470. [PMID: 37728173 DOI: 10.1002/adhm.202300470] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/11/2023] [Indexed: 09/21/2023]
Abstract
Cataract is the first leading cause of blindness in the world and posterior capsule opacification (PCO) is the most common long-term complication after surgery. The primary pathogenic processes contributing to PCO are the proliferation and migration of residual lens epithelial cells (LECs). This study aimed to explore the mild photothermal effect on LECs. Interestingly, this work finds that the mild photothermal effect significantly inhibited the proliferation and migration of LECs. The live cell fluorescence imaging reveals that the remodeling of the actin cytoskeleton and cell morphology attributed to the inhibition effect. Further mechanistic studies at molecular level suggest that the mild photothermal effect can regulate the phosphorylation of ERM, YAP, and Cofilin and thereby affect the proliferation and migration of LECs. In order to explore the potential clinical application of mild photothermal therapy for PCO prevention, PDA/PVA gel rings with photothermal effect is prepared by the repeated freeze-thaw method and conducted experiments in vivo, which achieved favorable PCO prevention effect. Overall, this study shows that the mild photothermal effect can regulate the proliferation and migration of LECs through cytoskeletal remodeling and the results of experiments in vivo demonstrate that mild photothermal effect is a promising approach for PCO prevention.
Collapse
Affiliation(s)
- Lei Lin
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Liming Xu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Weijie Sun
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Lili Liang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoliang Qi
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yun-E Zhao
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
7
|
Qin C, Wen S, Fei F, Han Y, Wang H, Chen H, Lin Q. NIR-triggered thermosensitive polymer brush coating modified intraocular lens for smart prevention of posterior capsular opacification. J Nanobiotechnology 2023; 21:323. [PMID: 37679734 PMCID: PMC10483730 DOI: 10.1186/s12951-023-02055-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
Posterior capsule opacification (PCO) is the most common complication after cataract surgery. Drug-eluting intraocular lens (IOLs) is a promising concept of PCO treatment in modern cataract surgery. However, the large dose of drugs in IOL leads to uncontrollable and unpredictable drug release, which inevitably brings risks of overtreatment and ocular toxicity. Herein, a low-power NIR-triggered thermosensitive IOL named IDG@P(NIPAM-co-AA)-IOL is proposed to improve security and prevent PCO by synergetic controlled drug therapy and simultaneous photo-therapy. Thermosensitive polymer brushes Poly(N-isopropylacrylamide-co-Acrylic acid) (P(NIPAM-co-AA)) is prepared on IOL via surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) polymerization. Then, Doxorubicin (DOX) and Indocyanine green (ICG) co-loaded Gelatin NPs (IDG NPs) are loaded in P(NIPAM-co-AA) by temperature control. The IDG NPs perform in suit photodynamic & photothermal therapy (PTT&PDT), and the produced heat also provides a trigger for controllable drug therapy with a cascade effect. Such functional IOL shows excellent synergistic drug-phototherapy effect and NIR-triggered drug release behavior. And there is no obvious PCO occurrence in IDG@P(NIPAM-co-AA) IOL under NIR irradiation compared with control group. This proposed IDG@P(NIPAM-co-AA)-IOL serves as a promising platform that combines phototherapy and drug-therapy to enhance the therapeutic potential and medication safety for future clinical application of PCO treatment.
Collapse
Affiliation(s)
- Chen Qin
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shimin Wen
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Fan Fei
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuemei Han
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Haiting Wang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Hao Chen
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Quankui Lin
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
8
|
Zhang X, Wang J, Xu J, Xu W, Zhang Y, Luo C, Ni S, Han H, Shentu X, Ye J, Ji J, Yao K. Prophylaxis of posterior capsule opacification through autophagy activation with indomethacin-eluting intraocular lens. Bioact Mater 2023; 23:539-550. [PMID: 36514385 PMCID: PMC9729928 DOI: 10.1016/j.bioactmat.2022.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/31/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Posterior capsule opacification (PCO) is the most common long-term postoperative complication of cataract surgery, leading to secondary vision loss. Optimized intraocular lens (IOL) structure and appropriate pharmacological intervention, which provides physical barriers and biological inhibition, respectively, can block the migration, proliferation, and epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) for PCO prophylaxis. Herein, a novel indomethacin-eluting IOL (INDOM-IOL) with an optimized sharper edge and a sustained drug release behavior was developed for PCO prevention. Indomethacin (INDOM), an ophthalmic non-steroidal anti-inflammatory drug (NSAID) used for postoperative ocular inflammation, was demonstrated to not only be able to suppress cell migration and down-regulate the expression of cyclooxygenase-2 (COX-2) and EMT markers, including alpha-smooth muscle actin (α-SMA) and cyclin D1, but also promote the autophagy activation in LECs. Additionally, autophagy was also verified to be a potential therapeutic target for the down-regulation of EMT in LECs. The novel IOL, serving as a drug delivery platform, could carry an adjustable dose of hydrophobic indomethacin with sustained drug release ability for more than 28 days. In the rabbit PCO model, the indomethacin-eluting IOL showed excellent anti-inflammatory and anti-PCO effects. In summary, indomethacin is an effective pharmacological intervention in PCO prophylaxis, and the novel IOL we developed prevented PCO in vivo under its sustained indomethacin release property, which provided a promising approach for PCO prophylaxis in clinical application.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
- Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Jing Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Jingwei Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Wen Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
- Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Yin Zhang
- Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Chenqi Luo
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
- Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Shuang Ni
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
- Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Xingchao Shentu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
- Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
- Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
- Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| |
Collapse
|
9
|
Han H, Li S, Xu M, Zhong Y, Fan W, Xu J, Zhou T, Ji J, Ye J, Yao K. Polymer- and lipid-based nanocarriers for ocular drug delivery: Current status and future perspectives. Adv Drug Deliv Rev 2023; 196:114770. [PMID: 36894134 DOI: 10.1016/j.addr.2023.114770] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Ocular diseases seriously affect patients' vision and life quality, with a global morbidity of over 43 million blindness. However, efficient drug delivery to treat ocular diseases, particularly intraocular disorders, remains a huge challenge due to multiple ocular barriers that significantly affect the ultimate therapeutic efficacy of drugs. Recent advances in nanocarrier technology offer a promising opportunity to overcome these barriers by providing enhanced penetration, increased retention, improved solubility, reduced toxicity, prolonged release, and targeted delivery of the loaded drug to the eyes. This review primarily provides an overview of the progress and contemporary applications of nanocarriers, mainly polymer- and lipid-based nanocarriers, in treating various eye diseases, highlighting their value in achieving efficient ocular drug delivery. Additionally, the review covers the ocular barriers and administration routes, as well as the prospective future developments and challenges in the field of nanocarriers for treating ocular diseases.
Collapse
Affiliation(s)
- Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Su Li
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Mingyu Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Yueyang Zhong
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Wenjie Fan
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Jingwei Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Tinglian Zhou
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China.
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China.
| |
Collapse
|
10
|
Li M, Xu JW, Li J, Wang W, Luo C, Han H, Xu ZK, Yao K. A novel gatifloxacin-loaded intraocular lens for prophylaxis of postoperative endophthalmitis. Bioact Mater 2023; 20:271-285. [PMID: 35702608 PMCID: PMC9168518 DOI: 10.1016/j.bioactmat.2022.05.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 10/25/2022] Open
|
11
|
Li K, Yu L, Ma L, Xia J, Peng J, Hu P, Liu G, Ye J. Surface modification of commercial intraocular lens by zwitterionic and antibiotic-loaded coating for preventing postoperative endophthalmitis. Colloids Surf B Biointerfaces 2023; 222:113093. [PMID: 36542949 DOI: 10.1016/j.colsurfb.2022.113093] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/01/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
After cataract surgery, to prevent possible postoperative endophthalmitis (POE) caused by attached pathogenic bacteria onto the surface of implanted intraocular lens (IOL), various antibiotic-loaded IOLs have been proposed and widely studied to inhibit bacterial infection. However, most of these developed antibiotic-loaded IOLs still suffer from shortcomings such as insufficient drug loading, short release time, poor biocompatibility, and risk of secondary infection. Herein, we propose a zwitterionic and high-drug loading coating for surface modification of commercial hydrophobic IOL with both antifouling and antibacterial properties to effectively prevent POE. In this strategy, zwitterionic poly(carboxylbetaine-co-dopamine methacrylamide) copolymers (pCBDA) and dopamine (DA) were first robustly co-deposited onto IOL surface via facile mussel-inspired chemistry, resulting in a hydrophilic coating (defined as PCB) without sacrificing the high light transmittance of the native IOL. Subsequently, amikacin (AMK), an amine-rich antibiotic was reversibly conjugated onto the coating through the acid-sensitive Schiff base bonds formed by the reaction between amino and catechol groups, with high-drug payload over ∼35.5 μg per IOL and 30 days of sustained drug release under weak acid environment. Benefiting from the antifouling property of zwitterionic pCBDA copolymers, the intraocularly implanted PCB/AMK-coated IOL could effectively resist the adhesion and proliferation of residual LECs to inhibit the development of posterior capsule opacification (PCO) without affecting the normal ocular tissues, demonstrating excellent in vivo biocompatibility. Moreover, the synergy of zwitterionic pCBDA and conjugated AMK with acidic-dependent release behavior endowed this PCB/AMK-coated IOL strong antibacterial activity against both in vitro biofilm formation and in vivo postoperative Staphylococcus aureus infection, suggesting its promising application in preventing POE.
Collapse
Affiliation(s)
- Kaijun Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Ling Yu
- Department of Ophthalmology, Daping Hospital, Army Medical Center, Army Medical University, Chongqing, 400042, China
| | - Li Ma
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiali Xia
- Department of Ophthalmology, Daping Hospital, Army Medical Center, Army Medical University, Chongqing, 400042, China
| | - Jinyu Peng
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Pan Hu
- Department of Ophthalmology, Daping Hospital, Army Medical Center, Army Medical University, Chongqing, 400042, China
| | - Gongyan Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | - Jian Ye
- Department of Ophthalmology, Daping Hospital, Army Medical Center, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
12
|
Zenze M, Daniels A, Singh M. Dendrimers as Modifiers of Inorganic Nanoparticles for Therapeutic Delivery in Cancer. Pharmaceutics 2023; 15:398. [PMID: 36839720 PMCID: PMC9961584 DOI: 10.3390/pharmaceutics15020398] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
The formulation of nanoscale systems with well-defined sizes and shapes is of great interest in applications such as drug and gene delivery, diagnostics and imaging. Dendrimers are polymers that have attracted interest due to their size, shape, branching length, amine density, and surface functionalities. These unique characteristics of dendrimers set them apart from other polymers, their ability to modify nanoparticles (NPs) for biomedical applications. Dendrimers are spherical with multiple layers over their central core, each representing a generation. Their amphiphilic nature and hollow structure allow for the incorporation of multiple drugs or genes, in addition to enabling easy surface modification with cellular receptor-targeting moieties to ensure site-specific delivery of therapeutics. Dendrimers are employed in chemotherapeutic applications for the delivery of anticancer drugs. There are many inorganic NPs currently being investigated for cancer therapy, each with their own unique biological, chemical, and physical properties. To favor biomedical applications, inorganic NPs require suitable polymers to ensure stability, biodegradability and target specificity. The success of dendrimers is dependent on their unique structure, good bioavailability and stability. In this review, we describe the properties of dendrimers and their use as modifiers of inorganic NPs for enhanced therapeutic delivery. Herein, we review the significant developments in this area from 2015 to 2022. Databases including Web of Science, Scopus, Google Scholar, Science Direct, BioMed Central (BMC), and PubMed were searched for articles using dendrimers, inorganic nanoparticles and cancer as keywords.
Collapse
Affiliation(s)
| | | | - Moganavelli Singh
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
13
|
Zhang D, Zhu H, Yu X, Wang L, Wen Y, Zhang L, Tong J, Shen Y. Blue light attenuates TGF-β2-induced epithelial-mesenchymal transition in human lens epithelial cells via autophagy impairment. BMC Ophthalmol 2022; 22:456. [PMID: 36443719 DOI: 10.1186/s12886-022-02691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
Abstract
Background
Pathogenesis of posterior capsular opacification (PCO) was related to pathological epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs). It has been reported that blue light could have an effect on EMT. This study aims to elucidate the role and potential mechanism of autophagy in EMT after blue light exposure in LECs.
Methods
HLE-B3 cells were treated with TGF-β2 with different concentration and time to induce EMT as a model of PCO in vitro. Cells were exposed to blue light with or without TGF-β2. The expression levels of EMT-associated markers were analyzed by qRT-PCR, western blotting and cell migration ability was determined by transwell migration assay and wound healing assay. The expressions of autophagy-related proteins were analyzed by western blotting, immunofluorescence and transmission electron microscopy. Rapamycin and chloroquine were utilized in cells for autophagy activation and inhibition.
Results
TGF-β2 induced autophagy activation during EMT progression in HLE-B3 cells in a dose- and time-dependent manner. Blue light exposure inhibited TGF-β2-induced EMT characterized by inhibited expression of EMT related markers and reduced migration capacity. Meanwhile, blue light exposure impaired autophagy activated by TGF-β2. Furthermore, Autophagy activation with rapamycin rescued EMT attenuated by blue light. Autophagy inhibition with chloroquine reduced TGF-β2-induced EMT in HLE-B3 cells.
Conclusion
Blue light exposure had inhibited effects on TGF-β2-induced EMT in LECs through autophagy impairment, which provides a new insight on prevention and treatment of PCO.
Collapse
|
14
|
Lu D, Wang H, Feng C, Bai T, Xu B, Wei Y, Shen L, Lin Q. Spin-Coating-Based Facile Annular Photodynamic Intraocular Lens Fabrication for Efficient and Safer Posterior Capsular Opacification Prevention. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48341-48355. [PMID: 36255103 DOI: 10.1021/acsami.2c09612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Posterior capsular opacification (PCO) is the most common complication after cataract surgery, which is primarily caused by the proliferation of the residual lens epithelial cells (LECs) in the lens capsule. Previous studies have demonstrated that a drug-eluting intraocular lens (IOL), aimed to in situ eliminate LECs, are an effective and promising way to prevent PCO. However, because of the potential toxicities of the antiproliferative drugs to the adjacent tissues, the safety of such drug-eluting IOLs is still a highly important issue to be solved. In this investigation, a facile photodynamic coating-modified IOL was developed for effective and safer PCO prevention. An annular poly(lactide-co-glycolic acid) (PLGA) coating loaded with photosensitizer chlorin e6 (Ce6) was prepared by a spin-coating technique. The optical property investigations showed that the Ce6@PLGA coating was particularly suitable for the IOL surface modification. The in vitro cell culture investigation showed that Ce6@PLGA coating-modified IOLs effectively eliminated LECs when treated with light illumination, whereas it appeared to have good cytocompatibility without irradiation. The investigation of the cell elimination mechanism showed that the apoptosis of HLECs may be associated with the cytomembrane disruption induced by ROS, which is generated by the photodynamic coating during light illumination. The in vivo implantation experiments confirmed the desired PCO prevention effect, as well as the safety to and biocompatibility with the surrounding tissues. Thus, the facile Ce6@PLGA coating will provide an effective yet safe alternative of IOL surface modification for PCO prevention.
Collapse
Affiliation(s)
- Duoduo Lu
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Hui Wang
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Chulei Feng
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Ting Bai
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Baoqi Xu
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Youfei Wei
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Liangliang Shen
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Quankui Lin
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| |
Collapse
|
15
|
Wang C, Li Y, Tian Y, Ma W, Sun Y. Effects of polymer carriers on the occurrence and development of autophagy in drug delivery. NANOSCALE ADVANCES 2022; 4:3676-3688. [PMID: 36133340 PMCID: PMC9470016 DOI: 10.1039/d2na00355d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/18/2022] [Indexed: 06/16/2023]
Abstract
Autophagy is an evolutionarily conserved catabolic process that can degrade cytoplasmic materials and recycle energy to maintain metabolite homeostasis in cells. Autophagy is closely related to various physiological or pathological processes. Macromolecular materials are widely used in drug delivery systems and disease treatments due to their intrinsic effects, such as altered pharmacokinetics and biodistribution. Interaction of autophagic flux or the signal pathway with macromolecules may cause autophagy inhibition or autophagy cell death. This review covers autophagy regulation pathways and macromolecular materials (including functional micelles, biodegradable and pH-sensitive polymers, biomacromolecules, dendrimers, coordination polymers, and hybrid nanoparticles) mediated autophagy modulation.
Collapse
Affiliation(s)
- Changduo Wang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University Qingdao 266000 China +86-532-82991203
| | - Yang Li
- Department of Pharmacy, Qingdao Municipal Hospital Qingdao 266000 China
| | - Yu Tian
- Department of Pharmaceutics, School of Pharmacy, Qingdao University Qingdao 266000 China +86-532-82991203
| | - Wenyuan Ma
- Department of Pharmaceutics, School of Pharmacy, Qingdao University Qingdao 266000 China +86-532-82991203
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University Qingdao 266000 China +86-532-82991203
| |
Collapse
|
16
|
Augmented cellular uptake and homologous targeting of exosome-based drug loaded IOL for posterior capsular opacification prevention and biosafety improvement. Bioact Mater 2022; 15:469-481. [PMID: 35386342 PMCID: PMC8958386 DOI: 10.1016/j.bioactmat.2022.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 12/19/2022] Open
Abstract
Posterior capsular opacification (PCO), the most common complication after cataract surgery, is caused by the proliferation, migration and differentiation of residual lens epithelial cells (LECs) on the surface of the intraocular lens (IOL). Although drug-loaded IOLs have been successfully developed, the PCO prevention efficacy is still limited due to the lack of targeting and low bioavailability. In this investigation, an exosome-functionalized drug-loaded IOL was successfully developed for effective PCO prevention utilizing the homologous targeting and high biocompatibility of exosome. The exosomes derived from LECs were collected to load the anti-proliferative drug doxorubicin (Dox) through electroporation and then immobilized on the aminated IOLs surface through electrostatic interaction. In vitro experiments showed that significantly improved cellular uptake of Dox@Exos by LECs was achieved due to the targeting ability of exosome, compared with free Dox, thus resulting in superior anti-proliferation effect. In vivo animal investigations indicated that Dox@Exos-IOLs effectively inhibited the development of PCO and showed excellent intraocular biocompatibility. We believe that this work will provide a targeting strategy for PCO prevention through exosome-functionalized IOL.
Collapse
|
17
|
Chen S, Qin C, Fang Q, Duo L, Wang M, Deng Z, Chen H, Lin Q. Rapid and Economical Drug-Eluting IOL Preparation via Thermoresponsive Agarose Coating for Effective Posterior Capsular Opacification Prevention. Front Bioeng Biotechnol 2022; 10:930540. [PMID: 35992334 PMCID: PMC9388942 DOI: 10.3389/fbioe.2022.930540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Posterior capsular opacification (PCO), the highest incidence complication after cataract surgery, is mainly due to the attachment, proliferation, and migration of the residual lens epithelial cells (LECs). Although the drug-eluting IOLs have been proved to be an effective way to prevent PCO incidence, its preparations are time consuming and require tedious preparation steps. Herein, the thermoreversible agarose is adopted to prepare drug-eluting IOL. Such functional coating can be obtained easily by simple immersion in the antiproliferative drug containing hot agarose and taken out for cooling, which not only does not affect the optical property but also can effectively decrease the PCO incidence after intraocular implantation. As a result, the proposed agarose coating provides a rapid and economical alternative of drug-eluting IOL fabrication for PCO prevention.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hao Chen
- *Correspondence: Hao Chen, ; Quankui Lin,
| | | |
Collapse
|
18
|
Tan Y, Zhang J, Li W, Jin G, Luo L, Liu Z. Refraction Shift After Nd:YAG Posterior Capsulotomy in Pseudophakic Eyes: A Systematic Review and Meta-analysis. J Refract Surg 2022; 38:465-473. [PMID: 35858199 DOI: 10.3928/1081597x-20220516-01] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE To explore ocular refraction shift after Neodymium: yttrium aluminum garnet (Nd:YAG) posterior capsulotomy in pseudophakic eyes. METHODS A systematic literature search was performed in the PubMed, Embase, and Cochrane Library databases until November 10, 2021. Studies on the evaluation of changes in spherical equivalent (SE), cylindrical error (CE), or anterior chamber depth (ACD) after Nd:YAG laser capsulotomy were included in the meta-analysis. The review was registered in the international platform of registered systematic review and meta-analysis protocols (INPLASY202120059). RESULTS A total of 805 eyes from 18 studies were included in the final analysis. The pooled mean differences in SE from baseline to postoperative follow-up points were not significant (1 hour: 0.04 diopters [D], 95% CI: -0.13 to 0.21, P = .644; 1 week: 0.04 D, 95% CI: -0.12 to 0.20, P = .640; 1 month: 0.05 D, 95% CI: -0.06 to 0.16, P = .349). There was no significant difference between baseline CE and any subsequent visit (1 week: 0.14 D, 95% CI: -0.06 to 0.33, P = .172; 1 month: 0.17 D, 95% CI: -0.04 to 0.38, P = .108). No statistical difference in ACD from baseline was observed either (1 hour: 0.01 mm, 95% CI: -0.07 to 0.09, P = .846; 1 week: -0.12 mm, 95% CI: -0.24 to 0.01, P = .079; 1 month: -0.06, 95% CI: -0.14 to 0.01, P = .110). CONCLUSIONS Neither ocular refraction nor ACD changed within 1 month after laser capsulotomy, suggesting laser capsulotomy did not affect ocular refraction in short-term observation. [J Refract Surg. 2022;38(7):465-473.].
Collapse
|
19
|
Luo C, Wang H, Chen X, Xu J, Yin H, Yao K. Recent Advances of Intraocular Lens Materials and Surface Modification in Cataract Surgery. Front Bioeng Biotechnol 2022; 10:913383. [PMID: 35757812 PMCID: PMC9213654 DOI: 10.3389/fbioe.2022.913383] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in cataract surgery have increased the demand for intraocular lens (IOL) materials. At present, the progress of IOL materials mainly contains further improving biocompatibility, providing better visual quality and adjustable ability, reducing surgical incision, as well as dealing with complications such as posterior capsular opacification (PCO) and ophthalmitis. The purpose of this review is to describe the research progress of relevant IOL materials classified according to different clinical purposes. The innovation of IOL materials is often based on the common IOL materials on the market, such as silicon and acrylate. Special properties and functions are obtained by adding extra polymers or surface modification. Most of these studies have not yet been commercialized, which requires a large number of clinical trials. But they provide valuable thoughts for the optimization of the IOL function.
Collapse
Affiliation(s)
| | | | | | | | | | - Ke Yao
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Zhu Y, Li S, Li J, Falcone N, Cui Q, Shah S, Hartel MC, Yu N, Young P, de Barros NR, Wu Z, Haghniaz R, Ermis M, Wang C, Kang H, Lee J, Karamikamkar S, Ahadian S, Jucaud V, Dokmeci MR, Kim HJ, Khademhosseini A. Lab-on-a-Contact Lens: Recent Advances and Future Opportunities in Diagnostics and Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108389. [PMID: 35130584 PMCID: PMC9233032 DOI: 10.1002/adma.202108389] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/27/2022] [Indexed: 05/09/2023]
Abstract
The eye is one of the most complex organs in the human body, containing rich and critical physiological information (e.g., intraocular pressure, corneal temperature, and pH) as well as a library of metabolite biomarkers (e.g., glucose, proteins, and specific ions). Smart contact lenses (SCLs) can serve as a wearable intelligent ocular prosthetic device capable of noninvasive and continuous monitoring of various essential physical/biochemical parameters and drug loading/delivery for the treatment of ocular diseases. Advances in SCL technologies and the growing public interest in personalized health are accelerating SCL research more than ever before. Here, the current status and potential of SCL development through a comprehensive review from fabrication to applications to commercialization are discussed. First, the material, fabrication, and platform designs of the SCLs for the diagnostic and therapeutic applications are discussed. Then, the latest advances in diagnostic and therapeutic SCLs for clinical translation are reviewed. Later, the established techniques for wearable power transfer and wireless data transmission applied to current SCL devices are summarized. An outlook, future opportunities, and challenges for developing next-generation SCL devices are also provided. With the rise in interest of SCL development, this comprehensive and essential review can serve as a new paradigm for the SCL devices.
Collapse
Affiliation(s)
- Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Shaopei Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Jinghang Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, 310024, China
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei Province, 430205, China
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Qingyu Cui
- Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Shilp Shah
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Martin C Hartel
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Ning Yu
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Patric Young
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | | | - Zhuohong Wu
- Department of Nanoengineering, University of California-San Diego, San Diego, CA, 92093, USA
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Canran Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Junmin Lee
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | | | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Mehmet R Dokmeci
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| |
Collapse
|
21
|
Liu D, Tang J, Shen L, Liu S, Zhu S, Wen S, Lin Q. Foldable Bulk Anti-adhesive Polyacrylic Intraocular Lens Material Design and Fabrication for Posterior Capsule Opacification Prevention. Biomacromolecules 2022; 23:1581-1591. [PMID: 35271252 DOI: 10.1021/acs.biomac.1c01388] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Posterior capsular opacification (PCO) is a primary complication after phacoemulsification combined with intraocular lens (IOL) implantation, which is attributed to adhesion, proliferation, and migration of residual lens epithelial cells on IOL. Although surface hydrophilic coating is considered to be a powerful way to inhibit PCO incidence after surgery, it requires complex post-production processes, thus limiting their applicability. In comparison, bulk modification is a stable, effective, and facile IOL synthesis method for PCO prevention. Herein, a new anti-adhesive IOL material was designed and successfully synthesized by radical copolymerization of ethylene glycol phenyl ether methacrylate (EGPEMA) and 2-(2-ethoxyethoxy) ethyl acrylate (EA). The physicochemical properties of P(EGPEMA-co-EA) copolymer materials, including chemical structure, mechanical, thermal, surface, and optical properties, were analyzed by using 1H NMR spectroscopy, FT-IR spectroscopy, tensile test, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), water contact angle measurement, and UV-vis spectroscopy. The elongation at break and the modulus of elasticity of the copolymer were tunable through the change of the composition of monomers. Compared to other components, the tensile results showed that P(EGPEMA-co-EA) materials (70% EGPEMA in mass ratio, F7) are suitable for the preparation of foldable intraocular lens with lower elastic modulus and higher elongation at break. TGA and DSC showed that the material has high thermal stability, and the glass transition temperature of F7 material is 16.1 °C. The water contact angle measurement results showed that the introduction of EA improved the hydrophilicity of the material. The percentage of transmittance of all copolymers at 400-800 nm is above 85%. Then, the biocompatibility of the materials was evaluated by in vitro assay and subcutaneous implantation. Both in vitro results and subcutaneous implantation experiments showed that the designed IOL materials exhibited a good anti-adhesion effect and no cytotoxicity. Finally, phacoemulsification and IOL intraocular implantation were performed, and the in vivo results confirmed the good PCO prevention ability as well as the biocompatibility of the new IOL materials.
Collapse
Affiliation(s)
- Dong Liu
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Junmei Tang
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Liangliang Shen
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Sihao Liu
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Siqing Zhu
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Shimin Wen
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Quankui Lin
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| |
Collapse
|
22
|
Qie J, Wen S, Han Y, Liu S, Shen L, Chen H, Lin Q. Polydopamine based photodynamic coating on intraocular lens surface for safer posterior capsule opacification conquering. Biomater Sci 2022; 10:2188-2197. [PMID: 35244650 DOI: 10.1039/d2bm00038e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intraocular lens (IOL) is the indispensable implant for cataract surgery. However, posterior capsular opacification (PCO) happens in high incidence after IOL implantation. PCO is caused by adhesion, proliferation, trans-differentiation of...
Collapse
Affiliation(s)
- Jiqiao Qie
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China.
| | - Shimin Wen
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China.
| | - Yuemei Han
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China.
| | - Sihao Liu
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China.
| | - Liangliang Shen
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China.
| | - Hao Chen
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China.
| | - Quankui Lin
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China.
| |
Collapse
|
23
|
Zhang X, Lai K, Li S, Wang J, Li J, Wang W, Ni S, Lu B, Grzybowski A, Ji J, Han H, Yao K. Drug-eluting intraocular lens with sustained bromfenac release for conquering posterior capsular opacification. Bioact Mater 2021; 9:343-357. [PMID: 34820575 PMCID: PMC8586266 DOI: 10.1016/j.bioactmat.2021.07.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 02/06/2023] Open
Abstract
Cataract is the leading cause of visual impairment, and posterior capsular opacification (PCO) is the most common long-term complication of modern cataract surgery, which can cause severe visual impairment after surgery. The proliferation, migration, and epithelial-mesenchymal transition (EMT) of residual lens epithelial cells (LECs) stimulated by growth factors and cytokines, are the key pathological mechanisms involved in the development of PCO. This study demonstrated that non-steroidal anti-inflammatory drug (NSAID), bromfenac, was capable of effectively inhibiting cell migration, overexpression of EMT markers, such as fibronectin (FN), matrix metalloproteinase 2 (MMP2), α-smooth muscle actin (α-SMA), and transcription factor Snail, and extracellular signal-regulated kinase (ERK)/glycogen synthase kinase-3β (GSK-3β) signaling induced by transforming growth factor-β2 (TGF-β2) in vitro. The inhibitory effect of bromfenac on TGF-β2-induced EMT was also verified on a primary lens epithelial cell model using human anterior capsules. Furthermore, based on ultrasonic spray technology, we developed a drug-eluting intraocular lens (IOL) using poly (lactic-co-glycolic acid) (PLGA) with sustained bromfenac release ability for the prevention of PCO development. In the rabbit models of cataract surgery, bromfenac-eluting IOL exhibited remarkable PCO prevention and inflammation suppression effects with excellent biocompatibility. In conclusion, bromfenac can inhibit TGF-β2-induced cell migration and the EMT of LECs via ERK/GSK-3β/Snail signaling. The present study offers a novel approach for preventing PCO through PLGA-based drug sustained-release IOLs. Bromfenac inhibited TGF-β2-induced migration and EMT of LECs through ERK/GSK-3β/Snail signaling. Drug-eluting IOLs with sustained bromfenac release were developed based on ultrasonic spray technology. Bromfenac-eluting IOLs exhibited remarkable PCO prevention and inflammation suppression effects in vivo. Bromfenac-eluting IOLs hold great potential for clinical application of PCO prevention.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.,Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, PR China
| | - Kairan Lai
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.,Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, PR China
| | - Su Li
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.,Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, PR China
| | - Jing Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, PR China
| | - Jiayong Li
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.,Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, PR China
| | - Wei Wang
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Shuang Ni
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Bing Lu
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.,Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, PR China
| | - Andrzej Grzybowski
- Department of Ophthalmology, University of Warmia and Mazury, 60-554 Olsztyn, Poland.,Institute for Research in Ophthalmology, Gorczyczewskiego 2/3, 61-553 Poznan, Poland
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, PR China
| | - Haijie Han
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.,Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, PR China
| | - Ke Yao
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.,Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, PR China
| |
Collapse
|
24
|
NIR-triggered drug delivery system for chemo-photothermal therapy of posterior capsule opacification. J Control Release 2021; 339:391-402. [PMID: 34563593 DOI: 10.1016/j.jconrel.2021.09.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 11/22/2022]
Abstract
Posterior capsule opacification (PCO) is the most common complication after cataract surgery and is likely to cause the second loss of vision. Pharmacological PCO prophylaxis has been proved to be effective, yet no clinical option is available due to the lack of a suitable mode of administration. In this work, we propose a unique concept of NIR dual-triggered drug release from black phosphorus (BP)-based implantable intraocular lens (IOL) for controlled drug release and chemo-photothermal combination therapy of PCO. Here, IOL is used as a "reservoir" of doxorubicin-loaded black phosphorus (BP-DOX), and BP is used as NIR activation agent for controlled drug release and photothermal therapy. This BP-DOX integrated IOL, namely BP-DOX@IOL, shows the characteristics of good transmittance, good mechanical property, NIR dual-triggered drug release behaviors, and excellent photothermal efficacy. In vivo studies reveal that there is no PCO occurrence in rabbits' model by using BP-DOX@IOL combined NIR irradiation, which exhibits distinct superiority on inhibiting PCO than the control group (100% PCO occurrence) 28 days post-surgery. This novel IOL drug delivery system would be a promising strategy for the future clinical application for PCO prophylaxis and treatment.
Collapse
|
25
|
Liu S, Zhao X, Tang J, Han Y, Lin Q. Drug-Eluting Hydrophilic Coating Modification of Intraocular Lens via Facile Dopamine Self-Polymerization for Posterior Capsular Opacification Prevention. ACS Biomater Sci Eng 2021; 7:1065-1073. [PMID: 33492923 DOI: 10.1021/acsbiomaterials.0c01705] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Posterior capsular opacification (PCO) is the most important complication in cataract phacoemulsification and intraocular lens (IOL) implantation surgery, mainly stemming from the adhesion, proliferation, and transdifferentiation of the postsurgically residual lens epithelial cells (LECs). Previous investigations mainly focused on the hydrophilic surface modification of the IOLs for PCO prevention, such as heparinization. However, the long-term clinical investigations show that there is no significant difference between pristine and heparinized IOLs. In the present study, a synergetic coating with properties of drug-eluting and hydrophilicity was designed and modified onto the IOL surface via facile dopamine self-polymerization. The antiproliferative drug doxorubicin (DOX) was loaded when a polydopamine (PDA) coating was formed on the IOL surface. The hydrophilic 2-methacryloyloxyethyl phosphorylcholine (MPC) could be subsequently grafted onto the drug-loaded PDA coating surface easily. The hydrophilic outer layer could slow down drug-eluting from underneath the drug-incorporated coating. In vitro and in vivo investigations demonstrated that such multifunctionalized coating-modified IOLs could not only thoroughly and effectively prevent PCO development by induced cell apoptosis but also render safety and biocompatibility to the surrounding tissues.
Collapse
Affiliation(s)
- Sihao Liu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Xia Zhao
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Junmei Tang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Yuemei Han
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Quankui Lin
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| |
Collapse
|