1
|
Sheng W, Wang Z, Wu G, Guo L, Guo X, Hao E, Jiao L. Synthesis, Photophysical, and Redox Properties of Naphtho[2,1- b]-Fused AzaBODIPYs with Ultradeep Lowest Unoccupied Molecular Orbital Levels. Org Lett 2025. [PMID: 40448672 DOI: 10.1021/acs.orglett.5c01411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2025]
Abstract
A streamlined chromatography-free synthesis of conformationally restricted six-membered-ring-fused azaBODIPYs via a classical Michael addition-cyclization sequence has been developed. Subsequent stepwise 2,3-dichloro-5,6-dicyano-1,4-benzoquinone-mediated dehydrogenative aromatization yields the first naphtho[2,1-b]-fused azaBODIPYs, demonstrating progressively lowered lowest unoccupied molecular orbital (LUMO) levels (up to -4.39 eV) upon oxidation, which aligns with enhanced electron-accepting behavior. These novel fused azaBODIPYs show intense near-infrared absorption and form radical anions in the presence of cobaltocene, exhibiting a red-shifted absorption maxima at 877 nm.
Collapse
Affiliation(s)
- Wanle Sheng
- School of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu 233000, China
| | - Zhangcui Wang
- School of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu 233000, China
| | - Guoao Wu
- School of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu 233000, China
| | - Luying Guo
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids of Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Xing Guo
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids of Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Erhong Hao
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids of Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Lijuan Jiao
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids of Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| |
Collapse
|
2
|
Gong Q, Shao J, Li W, Guo X, Ling S, Wu Y, Wei Y, Xu X, Jiang X, Jiao L, Hao E. Fully Conjugated Thiophene-Fused Oligo-BODIPYs: A Class of Intensely Near-Infrared Absorbing, Arc-Shaped Materials with up to 31 Linearly-Fused Rings. J Am Chem Soc 2025. [PMID: 40434802 DOI: 10.1021/jacs.5c05873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Structurally well-defined large π-conjugated systems attract significant interest in molecular materials both for their unique electronic/photophysical properties and unexplored structure-property relationships arising from synthetic challenges. Herein, we address this challenge by leveraging a series of polycondensed π-system doping with B, N and S heteroatoms. In our approach, a series of fully conjugated thiophene-fused oligo-BODIPYs with atomic precision have been efficiently synthesized through the combination of intermolecular SNAr reactions followed by intramolecular aromatic oxidative couplings from halogenated BODIPY precursors. The largest architecture is a fully fused BODIPY octamer, featuring a coplanar backbone of 31 linearly fused rings. The extended π-conjugation causes a dramatic shift of the absorption event from about 500 nm (monomer) to 822 nm (octamer) with extremely high molar absorptivities reaching 800,000 M-1 cm-1, as well as maintaining intense fluorescence intensity (ΦFL up to 0.32), long triplet lifetime (τT = 0.61-15.4 μs), efficient triplet quantum yields (ΦT = 0.24-0.81) and good singlet oxygen generation abilities. More interestingly, due to the weak aromaticity of thiophene, oligo-BODIPYs exhibit triplet state localization as their conjugation length increases, where the triplet energy remains constant while the singlet energy decreases significantly. Notably, intense near-infrared thermally activated delayed fluorescence (TADF) is observed even in tetramers, hexamers, and octamers. Our findings not only present a new series of heteroatom-doped condensed π-systems but also establish a precise regulation mechanism for singlet-triplet energy levels in molecules with large rigid π-conjugated structures. Furthermore, this work provides a novel strategy for designing next-generation TADF molecules with narrowband emission.
Collapse
Affiliation(s)
- Qingbao Gong
- Laboratory of Functionalized Molecular Solids of Ministry of Education, College of Chemistry and Materials Science, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, China
| | - Jinsong Shao
- Laboratory of Functionalized Molecular Solids of Ministry of Education, College of Chemistry and Materials Science, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China
| | - Wanwan Li
- Laboratory of Functionalized Molecular Solids of Ministry of Education, College of Chemistry and Materials Science, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China
| | - Xing Guo
- Laboratory of Functionalized Molecular Solids of Ministry of Education, College of Chemistry and Materials Science, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China
| | - Shizhang Ling
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, China
| | - Yun Wu
- Laboratory of Functionalized Molecular Solids of Ministry of Education, College of Chemistry and Materials Science, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China
| | - Yaxiong Wei
- Laboratory of Functionalized Molecular Solids of Ministry of Education, College of Chemistry and Materials Science, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China
| | - Xinsheng Xu
- Laboratory of Functionalized Molecular Solids of Ministry of Education, College of Chemistry and Materials Science, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China
| | - Xiaochun Jiang
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, China
| | - Lijuan Jiao
- Laboratory of Functionalized Molecular Solids of Ministry of Education, College of Chemistry and Materials Science, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- Laboratory of Functionalized Molecular Solids of Ministry of Education, College of Chemistry and Materials Science, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
3
|
Maity A, Das S, Islam SN, Patra SK. Design and Synthesis of Highly Luminescent BODIPY-Fluorene Based A-alt-B Type π-Conjugated Polymers for the Selective and Trace Detection of Nitroaromatics. Chem Asian J 2025:e202401528. [PMID: 40305100 DOI: 10.1002/asia.202401528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025]
Abstract
π-Electron rich highly luminescent borondipyrromethene (BODIPY) and fluorene-based A-alt-B type copolymers with (P1) or without (P2) triazolyl moiety in the polymeric chain were designed and synthesized. The copolymers were characterized by NMR spectra and tetradetector GPC exhibiting molecular weight (Mn) of 22.4 kDa for P1 and 23.1 kDa for P2 with polydispersity indices of 1.31 and 1.48, respectively. The emissive π-conjugated copolymers were investigated as fluorescent chemosensors for detecting nitroaromatic compounds (NACs) in solution, vapor, and contact modes. The polymer probe (P1) bearing polar 1,2,3-triazolyl unit in the backbone showed superior sensing property towards NACs over the polymer P2 due to the favorable supramolecular interaction between electron rich polymeric unit and electron deficient NACs, facilitated by the polar 1,2,3-triazolyl unit. Detailed photophysical and sensing studies were conducted to elucidate the fluorescence quenching mechanism via the photoinduced electron transfer (PET) mechanism. The presence of long alkyl chains on the BODIPY and fluorene units enabled solid-state emission by preventing aggregation induced quenching. This allowed trace detection of nanomolar picric acid sample by the bare eye, providing a quick, simple, and cost-effective way for detecting NACs.
Collapse
Affiliation(s)
- Apurba Maity
- Department of Chemistry, IIT Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Supriya Das
- Department of Chemistry, IIT Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Sk Najmul Islam
- Department of Chemistry, IIT Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Sanjib K Patra
- Department of Chemistry, IIT Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
4
|
Wei N, Guo Y, Song H, Liu Y, Lu H, Bo Z. Reducing Non-Radiative Energy Losses in Non-Fullerene Organic Solar Cells. CHEMSUSCHEM 2025; 18:e202402169. [PMID: 39483107 DOI: 10.1002/cssc.202402169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/03/2024]
Abstract
With the rapid advancement of non-fullerene acceptors (NFAs), the power conversion efficiency (PCE) of organic solar cells (OSCs) has surpassed the 20 % threshold, highlighting their considerable potential as next-generation energy conversion devices. In comparison to inorganic or perovskite solar cells, the open-circuit voltage (Voc) of OSCs is constrained by substantial non-radiative energy losses (ΔEnr), leading to values notably below those anticipated by the Shockley-Queisser limit. In OSCs, non-radiative energy losses are intimately associated with the electroluminescent quantum efficiency (EQEEL) of charge transfer states, which is in turn directly affected by the photoluminescence quantum yield (PLQY) of acceptor materials. Consequently, enhancing the PLQY of low-bandgap acceptor materials has emerged as a pivotal strategy to effectively mitigate ΔEnr. This review article delves into the intrinsic correlation between molecular structure and PLQY from the vantage point of acceptor material design. It further explores methodologies for designing acceptor materials exhibiting high PLQY, with the ultimate goal of realizing OSCs that combine high efficiency with minimal ΔEnr.
Collapse
Affiliation(s)
- Nan Wei
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yawen Guo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Haoming Song
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yahui Liu
- College of Textiles & Clothing, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Hao Lu
- College of Textiles & Clothing, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zhishan Bo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
- College of Textiles & Clothing, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
5
|
Chorbacher J, Klopf J, Friedrich A, Fest M, Schneider JS, Engels B, Helten H. Regioregular Poly(p-phenylene iminoborane): A Strictly Alternating BN-Isostere of Poly(p-phenylene vinylene) with Stimuli-Responsive Behavior. Angew Chem Int Ed Engl 2025; 64:e202416088. [PMID: 39614780 DOI: 10.1002/anie.202416088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Indexed: 12/12/2024]
Abstract
Incorporation of BN units into π-conjugated organic compounds, as substitutes for specific CC couples, often leads to new hybrid materials with modified physical and chemical properties. Poly(p-phenylene iminoborane)s are derived from well-known poly(p-phenylene vinylene) (PPV) by replacement of the vinylene groups by B=N linking units. Herein, an unprecedented poly(p-phenylene iminoborane) is presented that features a strictly alternating sequence of BN units along the main chain. The synthesis thereof was achieved by AB-type polymerization of a monomer featuring an N and a B terminus. Monodisperse oligomers with up to three BN units in the chain were additionally prepared and structurally characterized. Associated with the introduction of a dipole in the regioregular backbone structure, they display notable fluorescence already in solution and large Stokes shifts, distinct from their previously reported BBNN-sequenced congeners. All compounds show aggregation-induced emission enhancement (AIEE) properties. Computational studies provided evidence for emission from either locally excited (LE) or twisted intramolecular charge transfer (TICT) states. These processes can be optionally addressed by various stimuli, giving rise to dual emission, solvatochromic, thermochromic, and reversible mechanochromic behavior.
Collapse
Affiliation(s)
- Johannes Chorbacher
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074, Würzburg, Germany
| | - Jonas Klopf
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074, Würzburg, Germany
| | - Alexandra Friedrich
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074, Würzburg, Germany
| | - Maximilian Fest
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074, Würzburg, Germany
| | - Johannes S Schneider
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074, Würzburg, Germany
| | - Bernd Engels
- Julius-Maximilians-Universität Würzburg, Institute for Physical and Theoretical Chemistry, Emil-Fischer-Strasse 42, 97074, Würzburg, Germany
| | - Holger Helten
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
6
|
Buckel M, Klopf J, Schneider JS, Lik A, Riensch NA, Krummenacher I, Braunschweig H, Engels B, Helten H. A fully conjugated meso-boron-substituted porphyrinoid combining Lewis acidity with redox-switchable aromaticity. Nat Commun 2025; 16:1775. [PMID: 39971952 PMCID: PMC11840099 DOI: 10.1038/s41467-025-56892-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 02/04/2025] [Indexed: 02/21/2025] Open
Abstract
The structural motif of porphyrin is relevant for many essential biological processes and has emerged as a versatile component of functional materials. Here, we introduce a thiophene-based porphyrinogen having electron-deficient boron atoms in all four meso-positions. Its fully π-conjugated backbone exhibits effectively concealed antiaromaticity, with locally confined aromaticity to the thiophene units. The macrocycle readily binds fluoride ions, signaled by changes in its photophysical characteristics. Global aromaticity is switched on via facile consecutive (electro)chemical one-electron reductions to give the radical anion and the dianion, the potassium salts both of which were isolated and characterized by single-crystal X-ray diffraction. The bowl-shaped dianion constitutes a tetrathiophene-based porphyrinoid with a metal cation in its coordination sphere. This 18-π-electron macrocycle shows absorption features typical of porphyrins, while its low-energy Q bands are unusually intense in relation to the Soret bands. In addition, it displays fluorescence emission in the near-infrared (NIR) spectral region.
Collapse
Affiliation(s)
- Manuel Buckel
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Jonas Klopf
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Johannes S Schneider
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Artur Lik
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Nicolas A Riensch
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Bernd Engels
- Institute for Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| | - Holger Helten
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| |
Collapse
|
7
|
Hu D, Huang R, Fang Y. Recent Advances in Tetra-Coordinate Boron-Based Photoactive Molecules for Luminescent Sensing, Imaging, and Anticounterfeiting. PRECISION CHEMISTRY 2025; 3:10-26. [PMID: 39886375 PMCID: PMC11775856 DOI: 10.1021/prechem.4c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 02/01/2025]
Abstract
Tetra-coordinate boron-based fluorescent materials hold considerable promise across chemistry, biology and materials science due to their unique and precisely tunable optoelectronic properties. The incorporation of the heteroatom boron (B) enables these materials to exhibit high luminescence quantum yields, adjustable absorption and emission wavelengths, and exceptional photostability. This review examines the molecular design and applications of tetra-coordinate boron-based photoactive molecules, highlighting their roles in fluorescence sensing, anticounterfeiting, and imaging. We outline how structural features impact their properties and discuss strategies for enhancing their performance, including ligand modification and the extension of conjugation length, among others. Additionally, future research focus in this field is also addressed including strategies for diversifying molecular structures and enhancing molecular stability, which is believed to pave the way for innovative solutions to the challenges in areas such as sensing, imaging and information security.
Collapse
Affiliation(s)
- Dingfang Hu
- Key Laboratory of Applied Surface and
Colloid Chemistry of Ministry of Education, School of Chemistry and
Chemical Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Rongrong Huang
- Key Laboratory of Applied Surface and
Colloid Chemistry of Ministry of Education, School of Chemistry and
Chemical Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and
Colloid Chemistry of Ministry of Education, School of Chemistry and
Chemical Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
| |
Collapse
|
8
|
Dong J, Chen L, Feng Q, Yang DT. Near-Infrared-Emitting Helically Twisted Conjugated Frameworks Consisting of Alternant Donor-π-Acceptor Units and Multiple Boron Atoms. Angew Chem Int Ed Engl 2025; 64:e202417200. [PMID: 39363682 DOI: 10.1002/anie.202417200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024]
Abstract
A novel design strategy to construct bright and narrow near-infrared (NIR) emission materials with suppressed shoulder peaks can significantly enhance their performance in various applications. Herein, we have successfully synthesized a series of helically twisted D-π-A conjugated systems bridged by boron atoms, achieving bright red to near-infrared (NIR) emissions with notably narrow full-width at half-maximum (FWHM) values of 35 nm (0.08 eV) and photoluminescence quantum yields (PLQY) up to 80 %. These compounds display red-shifted emissions up to 753 nm in higher concentrations. Cis/trans configurational isomers of multi-boron-bridged molecule BN3 exhibit similar photophysical properties. The unique combination of boron-induced coordination-enhanced charge transfer (CE-CT) and the helically twisted conjugated framework is pivotal in achieving the red-shifted, narrowband emission. X-ray crystallographic analysis of BN2 and BN3-a reveals that the extension of boron-bridged D-π-A skeletons significantly increases the distortion of the skeleton. Systematic theoretical calculations show how the boron CE-CT mechanism, in conjunction with the helical twist, leads to the narrowing of emission bands while simultaneously red-shifting them into the NIR region. This work could open new avenues for the development of advanced materials with tailored optical properties, particularly in the challenging and highly sought-after NIR spectrum.
Collapse
Affiliation(s)
- Jiaqi Dong
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Lingjuan Chen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Qingliang Feng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Deng-Tao Yang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| |
Collapse
|
9
|
Ru C, Nie X, Lan ZA, Pan Z, Xing W, Wang S, Yu JC, Hou Y, Wang X. Regulation of Exciton Effects in Functionalized Conjugated Polymers by B-N Lewis Pairs for Visible-Light Photocatalysis. Angew Chem Int Ed Engl 2025; 64:e202417712. [PMID: 39465596 DOI: 10.1002/anie.202417712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/12/2024] [Accepted: 10/27/2024] [Indexed: 10/29/2024]
Abstract
Strong excitonic effects are common in organic conjugated polymer semiconductors, severely hindering the generation of free charge carriers for conducting photocatalysis. Therefore, exploring new channels to modulate exciton dissociation in polymers is far-reaching in facilitating photocatalysis. A series of B-N Lewis pair functionalized conjugated polymers have been developed to minimize exciton effects by modulating charge transfer pathways. Theoretical studies have shown that introducing B-N Lewis pairs can dramatically increase the distance of charge transfer (D index) and the amount of electron transfer and reduce the Coulomb attraction energy (EC), which contributes to breaking the equilibrium of the coexistence of excitons and charge carriers. Further experimental results show that the singlet excitons are efficiently dissociated into more free-charge carriers under photoexcitation to participate in surface reactions. The optimized polymer PyPBM shows an exponential increase in photocatalytic hydrogen and hydrogen peroxide production performance by visible light illumination.
Collapse
Affiliation(s)
- Chenglong Ru
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Xiaoyu Nie
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Zhi-An Lan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Zhiming Pan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Wandong Xing
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Jimmy C Yu
- Department of Chemistry, The Chinese University of Hong Kong Shatin, New Territories, Hong Kong, P. R. China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| |
Collapse
|
10
|
Wang C, Xin Y, Gu H, Ye L, Liu Y, Zhou Y, Deng Y, Geng Y. An n-Doping Cross-Linkable Quinoidal Compound as an Electron Transport Material for Fully Stretchable Inverted Organic Solar Cells. Angew Chem Int Ed Engl 2025; 64:e202415440. [PMID: 39257370 DOI: 10.1002/anie.202415440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/12/2024]
Abstract
The photocatalytic activity and inherent brittleness of ZnO, which is commonly used as an electron transport layer (ETL) in inverted organic solar cells (OSCs), have impeded advancements in device stability and the development of fully stretchable OSCs. In this study, an intrinsically stretchable ETL for inverted OSCs through a side-chain cross-linking strategy has been developed. Specifically, cross-linking between bromine atoms on the side chains of a quinoidal compound and the amino groups in polyethylenimine resulted in a film, designated QBr-PEI-50, with high electrical conductivity (0.049 S/m) and excellent stretchability (crack-onset strain>45 %). When used as the ETL in inverted OSCs, QBr-PEI-50 was markedly superior to ZnO in terms of device performance and stability, yielding a power conversion efficiency (PCE) of 18.27 % and a T80 lifetime exceeding 10000 h. Moreover, incorporation of QBr-PEI-50 in fully stretchable inverted OSCs yielded a PCE of 14.01 %, and 80 % of the initial PCE was maintained after 21 % strain, showcasing its potential for wearable electronics.
Collapse
Affiliation(s)
- Cheng Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Yufei Xin
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P.R. China
| | - Haoran Gu
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Long Ye
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Yongsheng Liu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P.R. China
| | - Yinhua Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
11
|
Kumar Yadav R, Parveen D, Mondal B, Kumar Roy D. The Role of Spacers as a Probe in Variation of Photoluminescence Properties of Mono- and Bi-Nuclear Boron Compounds. Chem Asian J 2025; 20:e202401113. [PMID: 39439399 DOI: 10.1002/asia.202401113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
A series of N,O donor-based mono- and binuclear four-coordinated boron complexes were synthesized. Depending on the substitution and spacer, these complexes exhibit intense blue, green and yellow emission in solution states. Notably, the fluorescence quantum yields (ΦF) and fluorescence decay (lifetime, τ) of mononuclear boron complexes (2 a-2 e) were higher than the binuclear boron complexes (2 f-2 k). The lowest lifetime and quantum yield in binuclear boron complexes were due to intramolecular rotation induced non radiative processes. The disulphide spacer-based boron complexes 2 i-2 k showed aggregation-caused quenching in the THF/H2O mixture whereas no other complexes were ACQ responsive. These complexes show large Stokes shift, one of them i. e. 2 e has the highest Stokes shift of 130 nm. Further, the electrochemical study suggests the presence of two redox incidences. Theoretical studies show close corroboration between the TD-DFT computed and experimentally measured absorption maxima as well as DFT (GIAO) calculated and experimentally measured 11B NMR values. This complements the appropriate selection of the theoretical methods to shed light on the electronic transitions in the mono- and binuclear BF2 complexes.
Collapse
Affiliation(s)
- Rahul Kumar Yadav
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India
| | - Darakshan Parveen
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India
| | - Bijan Mondal
- Institute of Inorganic Chemistry, Universität Regensburg, Universität Strasse 31, 93040, Regensburg, Germany
| | - Dipak Kumar Roy
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India
| |
Collapse
|
12
|
Meng B, Liu J. n-Type Conjugated Polymers Based on Double B←N Bridged Bipyridine Unit. Acc Chem Res 2024; 57:3478-3487. [PMID: 39579123 DOI: 10.1021/acs.accounts.4c00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
ConspectusBoth p-type conjugated polymers and n-type conjugated polymers are required for organic optoelectronic devices, such as organic solar cells (OSCs), organic field-effect transistors (OFETs), organic thermoelectrics (OTEs), etc. The development of n-type conjugated polymers lags far behind that of the p-type counterparts in view of material diversity and optoelectronic device performance. This is mainly due to the lack of strong electron-withdrawing building blocks, which are always based on the imide unit. Double boron-nitrogen coordination bond (B←N) bridged bipyridine (BNBP), which was first developed in 2016, is an alternative kind of electron-withdrawing building block based on a B←N unit. BNBP itself possesses a planar and fixed configuration, low-lying electronic energy levels, strong fluorescence, and facile functionalization. A family of BNBP-based conjugated polymers has been developed. They show excellent and tunable optoelectronic properties, such as high electron mobility, low-lying and tunable lowest unoccupied molecular orbital (LUMO) energy level (ELUMO), medium bandgap, narrow absorption spectra in the visible range, high fluorescence quantum efficiency, etc. With rational molecular design of BNBP-based conjugated polymers, they have been widely used in organic optoelectronic devices with high performance, including OSCs, OFETs, and OTEs, indoor photovoltaics (IPVs), organic light-emitting diodes (OLEDs), organic photodetectors (OPDs), etc. Therefore, BNBP-based conjugated polymers have become an important class of optoelectronic materials. In this Account, we summarize the research progress on BNBP-based conjugated polymers.At first, we discuss BNBP itself, including its molecular design, synthesis, chemistry, and optoelectronic properties. Then we introduce the optoelectronic properties of BNBP-based conjugated polymers, including their light absorption property, fluorescence, electron mobility, and frontier electronic energy levels. We have systematically elucidated the relationship between the chemical structures, optoelectronic properties, and optoelectronic device performance of BNBP-based n-type conjugated polymers. The unique property of BNBP-based conjugated polymers is the high electron mobility in the amorphous state. Other noteworthy properties of these polymers are the medium bandgap and absorption spectra in the visible range. Next, we discuss the applications of BNBP-based conjugated polymers in OSCs, IPVs, OFETs, OTEs, OPDs, and OLEDs. The excellent optoelectronic device performance is noteworthy, such as power conversion efficiency (PCE) of 10% in OSCs, PCE of 26% in IPVs, electron mobility of 0.3 cm2 V-1 s-1 in OFETs, power factor of 25 μW m-1 K-2 in OTEs, specific detectivity of 1.79 × 1013 cm Hz1/2 W-1 in OPDs. Finally, we propose that great attention should be paid to the deep understanding of the electronic structures of BNBP itself and BNBP-based conjugated polymers as well as the new applications of BNBP-based conjugated polymers.
Collapse
Affiliation(s)
- Bin Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
13
|
Wang X, Wei N, Cheng Y, Zhang A, Bian Z, Lu H, Zhu X, Liu Y, Wei Y, Bo Z. Boosting organic solar cell efficiency via tailored end-group modifications of novel non-fused ring electron acceptors. MATERIALS HORIZONS 2024; 11:6019-6027. [PMID: 39355922 DOI: 10.1039/d4mh01113a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
In this study, we designed and synthesized two NFREAs, 2BTh-3F and 2BTh-CN, incorporating distinct substituents to modulate their electron-withdrawing properties. We meticulously explore the distinct impacts of these substituents on NFREA performance. Our investigation revealed that the introduction of 3,5-difluoro-4-cyanophenyl in 2BTh-CN significantly enhanced electron withdrawal and intramolecular charge transfer, leading to a red-shifted absorption spectrum and optimized energy levels. Consequently, organic solar cells (OSCs) utilizing 2BTh-CN demonstrate a notable power conversion efficiency (PCE) of 15.07%, outperforming those employing 2BTh-3F (PCE of 9.34%). Moreover, by incorporating 2BTh-CN into the D18:2BTh-C2 system as a third component, we achieve a PCE exceeding 17% in a high-performing ternary OSC, ranking among the most efficient NFREA-based OSCs reported to date. Overall, our study underscores the potential of deliberate design and optimization of non-fused ring acceptor molecular structures to attain outstanding photovoltaic performance.
Collapse
Affiliation(s)
- Xiaodong Wang
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
- College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Nan Wei
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Yetai Cheng
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
| | - Andong Zhang
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
| | - Ziqing Bian
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Hao Lu
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
- College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Xiangwei Zhu
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
| | - Yahui Liu
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
| | - Yaoyao Wei
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276000, P. R. China.
| | - Zhishan Bo
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
14
|
Zhao T, A S, Ma Y, Wang N, Liu F, Su Z. Organoboron Polymorphs with Different Molecular Packing Modes for Optical Waveguides. Chemistry 2024; 30:e202402290. [PMID: 39092488 DOI: 10.1002/chem.202402290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Organoboron compounds offer a new strategy to design optoelectronic materials with high fluorescence efficiency. In this paper, the organoboron compound B-BNBP with double B←N bridged bipyridine bearing four fluorine atoms as core unit is facilely synthesized and exhibits a narrowband emission spectrum and a high photoluminescence quantum yield (PLQY) of 86.53 % in solution. Its polymorphic crystals were controllable prepared by different solution self-assembly methods. Two microcrystals possess different molecular packing modes, one-dimensional microstrips (1D-MSs) for H-aggregation and two-dimensional microdisks (2D-MDs) for J-aggregation, owing to abundant intermolecular interactions of four fluorine atoms sticking out conjugated plane. Their structure-property relationships were investigated by crystallographic analysis and theoretical calculation. Strong emission spectra with the full width at half maximum (FWHM) of less than 30 nm can also be observed in thin film and 2D-MDs. 1D-MSs possess thermally activated delayed fluorescence (TADF) property and exhibit superior optical waveguide performance with an optical loss of 0.061 dB/μm. This work enriches the diversity of polymorphic microcrystals and further reveals the structure-property relationship in organoboron micro/nano-crystals.
Collapse
Affiliation(s)
- Tingting Zhao
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, Jilin, 130022, China
| | - Suru A
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun, Jilin, 130022, China
| | - Yurong Ma
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun, Jilin, 130022, China
| | - Nan Wang
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun, Jilin, 130022, China
| | - Fangbin Liu
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun, Jilin, 130022, China
| | - Zhongmin Su
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun, Jilin, 130022, China
| |
Collapse
|
15
|
Wei N, Chen J, Cheng Y, Bian Z, Liu W, Song H, Guo Y, Zhang W, Liu Y, Lu H, Zhou J, Bo Z. Constructing Multiscale Fibrous Morphology to Achieve 20% Efficiency Organic Solar Cells by Mixing High and Low Molecular Weight D18. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408934. [PMID: 39219211 DOI: 10.1002/adma.202408934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/19/2024] [Indexed: 09/04/2024]
Abstract
This study underscores the significance of precisely manipulating the morphology of the active layer in organic solar cells (OSCs). By blending polymer donors of D18 with varying molecular weights, a multiscale interpenetrating fiber network structure within the active layer is successfully created. The introduction of 10% low molecular weight D18 (LW-D18) into high molecular weight D18 (HW-D18) produces MIX-D18, which exhibits an extended exciton diffusion distance and orderly molecular stacking. Devices utilizing MIX-D18 demonstrate superior electron and hole transport, improves exciton dissociation, enhances charge collection efficiency, and reduces trap-assisted recombination compared to the other two materials. Through the use of the nonfullerene acceptor L8-BO, a remarkable power conversion efficiency (PCE) of 20.0% is achieved. This methodology, which integrates the favorable attributes of high and low molecular weight polymers, opens a new avenue for enhancing the performance of OSCs.
Collapse
Affiliation(s)
- Nan Wei
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
- College of Textiles & Clothing, College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Jieni Chen
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Yetai Cheng
- College of Textiles & Clothing, College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Ziqing Bian
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wenlong Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Haoming Song
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yawen Guo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Yahui Liu
- College of Textiles & Clothing, College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Hao Lu
- College of Textiles & Clothing, College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Jianjun Zhou
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Zhishan Bo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
16
|
Cao X, Tian H, Zhang L, Liu J, Wang L. An n-type organoboron polymer for red-light-selective organic photodetectors. Sci Bull (Beijing) 2024; 69:2501-2504. [PMID: 38906735 DOI: 10.1016/j.scib.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/13/2024] [Accepted: 06/05/2024] [Indexed: 06/23/2024]
Affiliation(s)
- Xu Cao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hongkun Tian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Lu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
17
|
Humanes M, Sans-Panadés E, Virumbrales C, Milián A, Sanz R, García-García P, Fernández-Rodríguez MA. Selective Synthesis of Boron-Functionalized Indenes and Benzofulvenes by BCl 3-Promoted Cyclizations of ortho-Alkynylstyrenes. Org Lett 2024; 26:6568-6573. [PMID: 39069746 PMCID: PMC11320658 DOI: 10.1021/acs.orglett.4c02092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
A selective, metal-free synthesis of boron-functionalized indenes and benzofulvenes via BCl3-mediated cyclization of o-alkynylstyrenes is described. The method allows precise control over product formation by adjusting reaction conditions. These borylated products were utilized in diverse C-B bond derivatizations and in the total synthesis of Sulindac, a nonsteroidal anti-inflammatory drug, demonstrating the versatility and practicality of the developed methodology for synthetic applications.
Collapse
Affiliation(s)
- Marcos Humanes
- Departamento
de Química Orgánica y Química Inorgánica,
Instituto de Investigación Química “Andrés
M. del Río” (IQAR), Universidad
de Alcalá (IRYCIS), 28805 Alcalá de Henares, Madrid, Spain
| | - Ester Sans-Panadés
- Departamento
de Química Orgánica y Química Inorgánica,
Instituto de Investigación Química “Andrés
M. del Río” (IQAR), Universidad
de Alcalá (IRYCIS), 28805 Alcalá de Henares, Madrid, Spain
| | - Cintia Virumbrales
- Área
de Química Orgánica, Departamento de Química,
Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Ana Milián
- Departamento
de Química Orgánica y Química Inorgánica,
Instituto de Investigación Química “Andrés
M. del Río” (IQAR), Universidad
de Alcalá (IRYCIS), 28805 Alcalá de Henares, Madrid, Spain
| | - Roberto Sanz
- Área
de Química Orgánica, Departamento de Química,
Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Patricia García-García
- Departamento
de Química Orgánica y Química Inorgánica,
Instituto de Investigación Química “Andrés
M. del Río” (IQAR), Universidad
de Alcalá (IRYCIS), 28805 Alcalá de Henares, Madrid, Spain
| | - Manuel A. Fernández-Rodríguez
- Departamento
de Química Orgánica y Química Inorgánica,
Instituto de Investigación Química “Andrés
M. del Río” (IQAR), Universidad
de Alcalá (IRYCIS), 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
18
|
Jin C, Yang X, Zhao W, Zhao Y, Wang Z, Tan J. Synthesis, properties and emerging applications of multi-boron coordinated chromophores. Coord Chem Rev 2024; 513:215892. [DOI: 10.1016/j.ccr.2024.215892] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Zhang T, Chen Z, Zhang W, Wang L, Yu G. Recent Progress of Fluorinated Conjugated Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403961. [PMID: 38830614 DOI: 10.1002/adma.202403961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Indexed: 06/05/2024]
Abstract
In recent years, conjugated polymers have received widespread attention due to their characteristic advantages of light weight, favorable solution processability, and structural modifiability. Among various conjugated polymers, fluorinated ones have developed rapidly to achieve high-performance n-type or ambipolar polymeric semiconductors. The uniqueness of fluorinated conjugated polymers contains the high coplanarity of their structures, lower frontier molecular orbital energy levels, and strong nonbonding interactions. In this review, first the fluorinated building blocks, including fluorinated benzene and thiophene rings, fluorinated B←N bridged units, and fluoroalkyl side chains are summarized. Subsequently, different synthetic methods of fluorinated conjugated polymers are described, with a special focus on their respective advantages and disadvantages. Then, with these numerous fluorinated structures and appropriate synthetic methods bear in mind, the properties and applications of the fluorinated conjugated polymers, such as cyclopentadithiophene-, amide-, and imide-based polymers, and B←N embedded polymers, are systematically discussed. The introduction of fluorine atoms can further enhance the electron-deficiency of the backbone, influencing the charge carrier transport performance. The promising fluorinated conjugated polymers are applied widely in organic field-effect transistors, organic solar cells, organic thermoelectric devices, and other organic opto-electric devices. Finally, the outlook on the challenges and future development of fluorinated conjugated polymers is systematically discussed.
Collapse
Affiliation(s)
- Tianhao Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhihui Chen
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
20
|
Schepper J, Orthaber A, Pammer F. Tetrazole-Functionalized Organoboranes Exhibiting Dynamic Intramolecular N→B-Coordination and Cyanide-Selective Anion Binding. Chemistry 2024; 30:e202401466. [PMID: 38708576 DOI: 10.1002/chem.202401466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Starting from two different cyano-functionalized organoboranes, we demonstrate that 1,3-dipolar [3+2] azide-nitrile cycloaddition can serve to generate libraries of alkyl-tetrazole-functionalized compounds capable of intramolecular N→B-Lewis adduct formation. Due to the relatively low basicity of tetrazoles, structures can be generated that exhibit weak and labile N→B-coordination. The reaction furnishes 1- and 2-alkylated regio-isomers that exhibit different effective Lewis-acidities at the boron centers, and vary in their optical absorption and fluorescence properties. Indeed, we identified derivatives capable of selectively binding cyanide over fluoride, as confirmed by 11B NMR. This finding demonstrates the potentialities of this synthetic strategy to systematically fine-tune the properties of lead structures that are of interest as chemical sensors.
Collapse
Affiliation(s)
- Jonas Schepper
- Institute of Organic Chemistry II and Advanced Materials, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Andreas Orthaber
- Department of Chemistry - Ångström laboratories, Uppsala University, BOX 523, 75120, Uppsala, Sweden
| | - Frank Pammer
- Helmholtz Institute Ulm, Karlsruhe Institute for Technology, Helmholtzstrasse 11, 89081, Ulm, Germany
| |
Collapse
|
21
|
Wang L, Cheng C, Yu C, Wu Q, Kang Z, Wang H, Jiao L, Hao E. NIR-absorbing and emitting α,α-nitrogen-bridged BODIPY dimers with strong excitonic coupling. Chem Commun (Camb) 2024; 60:5054-5057. [PMID: 38634482 DOI: 10.1039/d4cc00878b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Three new distinct NIR α,α-NH-bridged BODIPY dimers were prepared by a direct nucleophilic substitution reaction. The synergistic effects of the nitrogen bridges and strong excitonic coupling between each BODIPY unit play major roles in enhancing the delocalization of an electron spin over the entire BODIPY dimers. The in situ formed aminyl radical dimer showed an absorption maximum at 1040 nm.
Collapse
Affiliation(s)
- Long Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Cheng Cheng
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Changjiang Yu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zhengxin Kang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Hua Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
22
|
Daskeviciute-Geguziene S, Daskeviciene M, Kantminienė K, Jankauskas V, Kamarauskas E, Gruodis A, Karazhanov S, Getautis V. Design, synthesis and theoretical simulations of novel spiroindane-based enamines as p-type semiconductors. ROYAL SOCIETY OPEN SCIENCE 2024; 11:232019. [PMID: 38721131 PMCID: PMC11076122 DOI: 10.1098/rsos.232019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 07/31/2024]
Abstract
The search for novel classes of hole-transporting materials (HTMs) is a very important task in advancing the commercialization of various photovoltaic devices. Meeting specific requirements, such as charge-carrier mobility, appropriate energy levels and thermal stability, is essential for determining the suitability of an HTM for a given application. In this work, two spirobisindane-based compounds, bearing terminating hole transporting enamine units, were strategically designed and synthesized using commercially available starting materials. The target compounds exhibit adequate thermal stability; they are amorphous and their glass-transition temperatures (>150°C) are high, which minimizes the probability of direct layer crystallization. V1476 stands out with the highest zero-field hole-drift mobility, approaching 1 × 10-5 cm2 V s-1. To assess the compatibility of the highest occupied molecular orbital energy levels of the spirobisindane-based HTMs in solar cells, the solid-state ionization potential (Ip) was measured by the electron photoemission in air of the thin-film method. The favourable morphological properties, energy levels and hole mobility in combination with a simple synthesis make V1476 and related compounds promising materials for HTM applications in antimony-based solar cells and triple-cation-based perovskite solar cells.
Collapse
Affiliation(s)
| | - Maryte Daskeviciene
- Department of Organic Chemistry, Kaunas University of Technology, Kaunas50254, Lithuania
| | - Kristina Kantminienė
- Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Kaunas, 50254, Lithuania
| | - Vygintas Jankauskas
- Institute of Chemical Physics, Vilnius University, Vilnius, 10257, Lithuania
| | | | - Alytis Gruodis
- Institute of Chemical Physics, Vilnius University, Vilnius, 10257, Lithuania
| | | | - Vytautas Getautis
- Department of Organic Chemistry, Kaunas University of Technology, Kaunas50254, Lithuania
| |
Collapse
|
23
|
Wang L, Cheng C, Li ZY, Guo X, Wu Q, Hao E, Jiao L. Nucleophilic Aromatic Substitution (S NAr) as an Approach to Challenging Nitrogen-Bridged BODIPY Oligomers. Org Lett 2024; 26:3026-3031. [PMID: 38602395 DOI: 10.1021/acs.orglett.4c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
A series of nitrogen-bridged BODIPY oligomers were synthesized via nucleophilic aromatic substitution (SNAr) as a convenient approach. Further transformations achieved novel α,α-aryl BODIPY dimers as well as a BODIPY hexamer efficiently. These BODIPY oligomers showed good photophysical properties, such as apparent absorption and emission both in visible and near-infrared regions. Interestingly, the high air and photothermal stability, strong NIR absorption, and high photothermal conversion rates of hexamer B6 suggest potential applications in photothermal therapy.
Collapse
Affiliation(s)
- Long Wang
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Cheng Cheng
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Zhong-Yuan Li
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Xing Guo
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Erhong Hao
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Lijuan Jiao
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| |
Collapse
|
24
|
Jia Y, Yang L, Wang X, Yang W, Zhao W. Cobalt-Catalyzed Selective Hydroboration of 1,3-Enynes with HBpin toward 1,3-Dienylboronate Esters. Org Lett 2024; 26:3258-3262. [PMID: 38568149 DOI: 10.1021/acs.orglett.4c00899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
An efficient cobalt-catalyzed selective hydroboration of 1,3-enynes with HBpin toward 1,3-dienylboronate esters is disclosed. With a commercially available catalytic system of Co(acac)2 and dppf, the hydroboration reactions proceeded well to afford a wide range of 1,3-dienylborates in moderate to high yields. This protocol features a cheap base-metal catalytic system, broad substrate scope, excellent selectivity, easy gram-scale preparation, and good functional group tolerance and provides access to synthetically valuable 1,3-dienylborates.
Collapse
Affiliation(s)
- Yining Jia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Liu Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Xueqiang Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Wen Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
25
|
Zhang YY, Yang GW, Lu C, Zhu XF, Wang Y, Wu GP. Organoboron-mediated polymerizations. Chem Soc Rev 2024; 53:3384-3456. [PMID: 38411207 DOI: 10.1039/d3cs00115f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The scientific community has witnessed extensive developments and applications of organoboron compounds as synthetic elements and metal-free catalysts for the construction of small molecules, macromolecules, and functional materials over the last two decades. This review highlights the achievements of organoboron-mediated polymerizations in the past several decades alongside the mechanisms underlying these transformations from the standpoint of the polymerization mode. Emphasis is placed on free radical polymerization, Lewis pair polymerization, ionic (cationic and anionic) polymerization, and polyhomologation. Herein, alkylborane/O2 initiating systems mediate the radical polymerization under ambient conditions in a controlled/living manner by careful optimization of the alkylborane structure or additives; when combined with Lewis bases, the selected organoboron compounds can mediate the Lewis pair polymerization of polar monomers; the bicomponent organoboron-based Lewis pairs and bifunctional organoboron-onium catalysts catalyze ring opening (co)polymerization of cyclic monomers (with heteroallenes, such as epoxides, CO2, CO, COS, CS2, episulfides, anhydrides, and isocyanates) with well-defined structures and high reactivities; and organoboranes initiate the polyhomologation of sulfur ylides and arsonium ylides providing functional polyethylene with different topologies. The topological structures of the produced polymers via these organoboron-mediated polymerizations are also presented in this review mainly including linear polymers, block copolymers, cyclic polymers, and graft polymers. We hope the summary and understanding of how organoboron compounds mediate polymerizations can inspire chemists to apply these principles in the design of more advanced organoboron compounds, which may be beneficial for the polymer chemistry community and organometallics/organocatalysis community.
Collapse
Affiliation(s)
- Yao-Yao Zhang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Guan-Wen Yang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Chenjie Lu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiao-Feng Zhu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Yuhui Wang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Guang-Peng Wu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
26
|
Lee KW, Wan Y, Huang Z, Zhao Q, Li S, Lee CS. Organic Optoelectronic Materials: A Rising Star of Bioimaging and Phototherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306492. [PMID: 37595570 DOI: 10.1002/adma.202306492] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/07/2023] [Indexed: 08/20/2023]
Abstract
Recently, many organic optoelectronic materials (OOMs), especially those used in organic light-emitting diodes (OLEDs), organic solar cells (OSCs), and organic field-effect transistors (OFETs), are explored for biomedical applications including imaging and photoexcited therapies. In this review, recently developed OOMs for fluorescence imaging, photoacoustic imaging, photothermal therapy, and photodynamic therapy, are summarized. Relationships between their molecular structures, nanoaggregation structures, photophysical mechanisms, and properties for various biomedical applications are discussed. Mainly four kinds of OOMs are covered: thermally activated delayed fluorescence materials in OLEDs, conjugated small molecules and polymers in OSCs, and charge-transfer complexes in OFETs. Based on the OOMs unique optical properties, including excitation light wavelength and exciton dynamics, they are respectively exploited for suitable biomedical applications. This review is intended to serve as a bridge between researchers in the area of organic optoelectronic devices and those in the area of biomedical applications. Moreover, it provides guidance for selecting or modifying OOMs for high-performance biomedical uses. Current challenges and future perspectives of OOMs are also discussed with the hope of inspiring further development of OOMs for efficient biomedical applications.
Collapse
Affiliation(s)
- Ka-Wai Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Yingpeng Wan
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Zhongming Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Qi Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
27
|
Ding P, Yang D, Yang S, Ge Z. Stability of organic solar cells: toward commercial applications. Chem Soc Rev 2024; 53:2350-2387. [PMID: 38268469 DOI: 10.1039/d3cs00492a] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Organic solar cells (OSCs) have attracted a great deal of attention in the field of clean solar energy due to their advantages of transparency, flexibility, low cost and light weight. Introducing them to the market enables seamless integration into buildings and windows, while also supporting wearable, portable electronics and internet-of-things (IoT) devices. With the development of photovoltaic materials and the optimization of fabrication technology, the power conversion efficiencies (PCEs) of OSCs have rapidly improved and now exceed 20%. However, there is a significant lack of focus on material stability and device lifetime, causing a severe hindrance to commercial applications. In this review, we carefully review important strategies employed to improve the stability of OSCs over the past three years from the perspectives of material design and device engineering. Furthermore, we analyze and discuss the current important progress in terms of air, light, thermal and mechanical stability. Finally, we propose the future research directions to overcome the challenges in achieving highly stable OSCs. We expect that this review will contribute to solving the stability problem of OSCs, eventually paving the way for commercial applications in the near future.
Collapse
Affiliation(s)
- Pengfei Ding
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daobin Yang
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuncheng Yang
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Ziyi Ge
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Broda M, Yelle DJ, Serwańska-Leja K. Biodegradable Polymers in Veterinary Medicine-A Review. Molecules 2024; 29:883. [PMID: 38398635 PMCID: PMC10892962 DOI: 10.3390/molecules29040883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
During the past two decades, tremendous progress has been made in the development of biodegradable polymeric materials for various industrial applications, including human and veterinary medicine. They are promising alternatives to commonly used non-degradable polymers to combat the global plastic waste crisis. Among biodegradable polymers used, or potentially applicable to, veterinary medicine are natural polysaccharides, such as chitin, chitosan, and cellulose as well as various polyesters, including poly(ε-caprolactone), polylactic acid, poly(lactic-co-glycolic acid), and polyhydroxyalkanoates produced by bacteria. They can be used as implants, drug carriers, or biomaterials in tissue engineering and wound management. Their use in veterinary practice depends on their biocompatibility, inertness to living tissue, mechanical resistance, and sorption characteristics. They must be designed specifically to fit their purpose, whether it be: (1) facilitating new tissue growth and allowing for controlled interactions with living cells or cell-growth factors, (2) having mechanical properties that address functionality when applied as implants, or (3) having controlled degradability to deliver drugs to their targeted location when applied as drug-delivery vehicles. This paper aims to present recent developments in the research on biodegradable polymers in veterinary medicine and highlight the challenges and future perspectives in this area.
Collapse
Affiliation(s)
- Magdalena Broda
- Department of Wood Science and Thermal Techniques, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
| | - Daniel J. Yelle
- Forest Biopolymers Science and Engineering, Forest Products Laboratory, USDA Forest Service, One Gifford Pinchot Drive, Madison, WI 53726, USA;
| | - Katarzyna Serwańska-Leja
- Department of Animal Anatomy, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznan, Poland;
- Department of Sports Dietetics, Poznan University of Physical Education, 61-871 Poznan, Poland
| |
Collapse
|
29
|
Zhang KN, Du XY, Yan L, Pu YJ, Tajima K, Wang X, Hao XT. Organic Photovoltaic Stability: Understanding the Role of Engineering Exciton and Charge Carrier Dynamics from Recent Progress. SMALL METHODS 2024; 8:e2300397. [PMID: 37204077 DOI: 10.1002/smtd.202300397] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/25/2023] [Indexed: 05/20/2023]
Abstract
Benefiting from the synergistic development of material design, device engineering, and the mechanistic understanding of device physics, the certified power conversion efficiencies (PCEs) of single-junction non-fullerene organic solar cells (OSCs) have already reached a very high value of exceeding 19%. However, in addition to PCEs, the poor stability is now a challenging obstacle for commercial applications of organic photovoltaics (OPVs). Herein, recent progress made in exploring operational mechanisms, anomalous photoelectric behaviors, and improving long-term stability in non-fullerene OSCs are highlighted from a novel and previously largely undiscussed perspective of engineering exciton and charge carrier pathways. Considering the intrinsic connection among multiple temporal-scale photocarrier dynamics, multi-length scale morphologies, and photovoltaic performance in OPVs, this review delineates and establishes a comprehensive and in-depth property-function relationship for evaluating the actual device stability. Moreover, this review has also provided some valuable photophysical insights into employing the advanced characterization techniques such as transient absorption spectroscopy and time-resolved fluorescence imagings. Finally, some of the remaining major challenges related to this topic are proposed toward the further advances of enhancing long-term operational stability in non-fullerene OSCs.
Collapse
Affiliation(s)
- Kang-Ning Zhang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xiao-Yan Du
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Lei Yan
- Academy for Advanced Interdisciplinary Studies and Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Yong-Jin Pu
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Keisuke Tajima
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Xingzhu Wang
- Academy for Advanced Interdisciplinary Studies and Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
- School of Electrical Engineering, University of South China, Hengyang, 421001, P. R. China
| | - Xiao-Tao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
30
|
Buguis FL, Hsu NSY, Sirohey SA, Adam MC, Goncharova LV, Gilroy JB. Dyads and Triads of Boron Difluoride Formazanate and Boron Difluoride Dipyrromethene Dyes. Chemistry 2023; 29:e202302548. [PMID: 37725661 DOI: 10.1002/chem.202302548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
Dye-dye conjugates have attracted significant interest for their utility in applications such as bioimaging, theranostics, and light-harvesting. Many classes of organic dyes have been employed in this regard; however, building blocks don't typically extend beyond small chromophores. This can lead to minor changes to the optoelectronic properties of the original dye. The exploration of dye-dye structures is impeded by long synthetic routes, incompatible synthetic conditions, or a mismatch of the desired properties. Here, we present the first-of-their-kind dye-dye conjugates of boron difluoride complexes of formazanate and dipyrromethene ligands. These conjugates exhibit dual photoluminescence bands that reach the near-infrared spectral region and implicate anti-Kasha processes. Cyclic voltammetry experiments revealed the generation of polyanionic species that can reversibly tolerate the uptake of up to 6 electrons. Ultimately, we demonstrate that BF2 formazanates can serve as a synthetically accessible platform to build upon new classes of dye-dye conjugates.
Collapse
Affiliation(s)
- Francis L Buguis
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street North, London., Ontario, N6A 5B7, Canada
| | - Nathan Sung Y Hsu
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street North, London., Ontario, N6A 5B7, Canada
| | - Sofia A Sirohey
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street North, London., Ontario, N6A 5B7, Canada
| | - Matheus C Adam
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street North, London., Ontario, N6A 3K7, Canada
| | - Lyudmila V Goncharova
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street North, London., Ontario, N6A 3K7, Canada
| | - Joe B Gilroy
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street North, London., Ontario, N6A 5B7, Canada
| |
Collapse
|
31
|
Chen W, Liu J, Sun W, Yu S, Li Y, Li Z. Metalloborospherenes with a Stabilized Classical Fullerene-like Borospherene B 40 Act as Nonlinear Optical Switches, Electron Reservoirs, Molecular Capacitors, and Molecular Reactors. J Phys Chem A 2023; 127:10054-10067. [PMID: 37988329 DOI: 10.1021/acs.jpca.3c04270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Using a new method of η5-Li and η6-Mg atoms capping the faces of the classical fullerene-like borospherene Td B40, we theoretically predict an exohedral metalloborospherene Td Mg10Li12&B40 molecule. Remarkably, a newfangled endoexo cage isomerism is proposed. Further, embedding Mg atoms in the Td B40 cage forms endohedral derivatives. Due to the intramolecular pull-push electron transfer relay, these obtained molecules possess unequal multilayered and alternant spherical charge distribution. The outer is an excess electron layer, bringing a molecular nonlinear switch character and an electron reservoir behavior with strong electron-donating and -accepting abilities. The middle (Mg2+)10(Li+)12 and the outer layers together constitute an electric double layer, presenting the behavior of a molecular capacitor where the electronic charge-discharge process occurs in the outer excess electron layer. The inner part is an empty cage B4026- with a strong negative electric field. The valence electrons of the embedded Mg atoms are transformed into new excess electrons and added in the outer excess electron layer, also exhibiting the charging behavior of the molecular capacitor. Considering the chemical reaction in the inner cage, the embedded Mg atom is ionized, forming an Mg2+ cation and 2e under the strong negative electric field; meanwhile, 2e is powerfully pushed into the outer excess electron layer. This chemical process shows a generalized Coulomb explosion, and thus the exohedral metalloborospherene molecules with cage B4026- may act as molecular reactors. The new species mark the genesis of classical fullerene-like borospherene chemistry and stimulate their applications in molecular nonlinear optical and nanoelectronics.
Collapse
Affiliation(s)
- Weihong Chen
- Key Laboratory of Automobile Materials of MOE and Department of Materials Science, Jilin University, Changchun 130012, China
| | - Jiayuan Liu
- Institute of Applied Chemistry, Hebei North University, Zhangjiakou 075000, China
| | - Weiming Sun
- Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou 350108, China
| | - Shansheng Yu
- Key Laboratory of Automobile Materials of MOE and Department of Materials Science, Jilin University, Changchun 130012, China
| | - Ying Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Zhiru Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| |
Collapse
|
32
|
Ma T, Dong J, Yang DT. Heteroatom-boron-heteroatom-doped π-conjugated systems: structures, synthesis and photofunctional properties. Chem Commun (Camb) 2023; 59:13679-13689. [PMID: 37901914 DOI: 10.1039/d3cc04302a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The potency of heteroatom-doping in reshaping optoelectronic properties arises from the distinct electronegativity variations between heteroatoms and carbon atoms. By incorporating two heteroatoms with differing electronegativities (e.g., B = N), not only is the architectural coherence of π-conjugated systems retained, but also dipolar traits are introduced, accompanied by unique intermolecular interactions absent in their all-carbon analogs. Another burgeoning doping strategy, featuring the heteroatom-boron-heteroatom motif (X-B-X, where X = N, O), has captured growing attention. This configuration's coexistence of the boron-heteroatom unit and an isolated heteroatom stimulates mutual modulation in the dipole of the boron-heteroatom unit and the heteroatom's electronegativity. In this Feature article, we present an encompassing survey of XBX-doped π-conjugated systems, elucidating how the integration of the X-B-X unit induces transformative structural and property changes within π-conjugated systems.
Collapse
Affiliation(s)
- Tinghao Ma
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072 Xi'an, Shaanxi, China.
| | - Jiaqi Dong
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072 Xi'an, Shaanxi, China.
| | - Deng-Tao Yang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072 Xi'an, Shaanxi, China.
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, 430056 Wuhan, China
| |
Collapse
|
33
|
Li G, Xu K, Zheng J, Fang X, Yang YF, Lou W, Chu Q, Dai J, Chen Q, Yang Y, She YB. Double boron-oxygen-fused polycyclic aromatic hydrocarbons: skeletal editing and applications as organic optoelectronic materials. Nat Commun 2023; 14:7089. [PMID: 37925472 PMCID: PMC10625603 DOI: 10.1038/s41467-023-42973-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
An efficient one-pot strategy for the facile synthesis of double boron-oxygen-fused polycyclic aromatic hydrocarbons (dBO-PAHs) with high regioselectivity and efficient skeletal editing is developed. The boron-oxygen-fused rings exhibit low aromaticity, endowing the polycyclic aromatic hydrocarbons with high chemical and thermal stabilities. The incorporation of the boron-oxygen units enables the polycyclic aromatic hydrocarbons to show single-component, low-temperature ultralong afterglow of up to 20 s. Moreover, the boron-oxygen-fused polycyclic aromatic hydrocarbons can also serve as ideal n-type host materials for high-brightness and high-efficiency deep-blue OLEDs; compared to single host, devices using boron-oxygen-fused polycyclic aromatic hydrocarbons-based co-hosts exhibit dramatically brightness and efficiency enhancements with significantly reduced efficiency roll-offs; device 9 demonstrates a high color-purity (Commission International de l'Eclairage CIEy = 0.104), and also achieves a record-high external quantum efficiency (28.0%) among Pt(II)-based deep-blue OLEDs with Commission International de l'Eclairage CIEy < 0.20; device 10 achieves a maximum brightnessof 27219 cd/m2 with a peak external quantum efficiency of 27.8%, which representes the record-high maximum brightness among Pt(II)-based deep-blue OLEDs. This work demonstrates the great potential of the double boron-oxygen-fused polycyclic aromatic hydrocarbons as ultralong afterglow and n-type host materials in optoelectronic applications.
Collapse
Affiliation(s)
- Guijie Li
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, 310014, Hangzhou, Zhejiang, P. R. China.
| | - Kewei Xu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, 310014, Hangzhou, Zhejiang, P. R. China
| | - Jianbing Zheng
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, 310014, Hangzhou, Zhejiang, P. R. China
| | - Xiaoli Fang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, 310014, Hangzhou, Zhejiang, P. R. China
| | - Yun-Fang Yang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, 310014, Hangzhou, Zhejiang, P. R. China
| | - Weiwei Lou
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, 310014, Hangzhou, Zhejiang, P. R. China
| | - Qingshan Chu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, 310014, Hangzhou, Zhejiang, P. R. China
| | - Jianxin Dai
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, 310014, Hangzhou, Zhejiang, P. R. China
| | - Qidong Chen
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, 310014, Hangzhou, Zhejiang, P. R. China
| | - Yuning Yang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, 310014, Hangzhou, Zhejiang, P. R. China
| | - Yuan-Bin She
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, 310014, Hangzhou, Zhejiang, P. R. China.
| |
Collapse
|
34
|
An Y, Li X, Xia S, Jian Y, Wen F, Liu Z, He J, Shen Y, Wang Y. Visible-Light-Promoted Regioselective Hydroborylation of Ketene Dithioacetals with NHC-Boranes. J Org Chem 2023; 88:15151-15158. [PMID: 37851408 DOI: 10.1021/acs.joc.3c01642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
NHC-boranes have been treated as a reliable source of boryl radicals. In this study, regioselective hydroborylation of ketene dithioacetals with NHC-borane was achieved under mild conditions via a visible-light-promoted radical chain process using thiophenol as a proton donor and hydrogen atom transfer. This protocol features a low-cost catalyst, good functional group tolerance, a relatively broad range of substrate scope, and good to excellent yields. Moreover, mechanism of this hydroborylation reaction was preliminarily studied.
Collapse
Affiliation(s)
- Yuanyuan An
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xiaolong Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Shuangshuang Xia
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yongchan Jian
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Fei Wen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Zhenyu Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jiaying He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yali Shen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yubin Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
35
|
Szyling J, Szymańska A, Walkowiak J. Selective synthesis of boron-substituted enynes via a one-pot diboration/protodeboration sequence. Chem Commun (Camb) 2023; 59:9541-9544. [PMID: 37458472 DOI: 10.1039/d3cc02695g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
An efficient and facile one-pot protocol to access enynylboronates via a Pt-catalyzed diboration/protodeboration strategy has been developed. The reaction is suitable for various silylsubstituted symmetrical and unsymmetrical 1,3-diynes, leading to π-conjugated organoboron compounds with excellent regio- and stereoselectivity.
Collapse
Affiliation(s)
- Jakub Szyling
- Centre for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland.
| | - Aleksandra Szymańska
- Centre for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland.
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
| | - Jędrzej Walkowiak
- Centre for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland.
| |
Collapse
|
36
|
Wang L, Wu Q, Kang Z, Guo X, Miao W, Li Z, Zuo H, Wang H, Si H, Jiao L, Hao E. Regioselective Synthesis of Directly Connected BODIPY Dimers through Oxidative Coupling of α-Amino-Substituted BODIPYs. Org Lett 2023. [PMID: 37393595 DOI: 10.1021/acs.orglett.3c01755] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
A family of directly β,β-linked BODIPY dimers with amino groups at α-positions were regioselectively prepared by the oxidative coupling reaction of α-amino-substituted BODIPYs. The structure of one representative dimer was elucidated by X-ray diffraction analysis, showing its twisted orientation of two BODIPY units with a dihedral angle of 49°. Comparing with the corresponding monomers, these dimers showed red-shifted absorptions and emissions along with efficient intersystem crossing, giving ΦΔ of 43% for dimer 4b in toluene, indicating potential use as heavy-atom-free photosensitizers.
Collapse
Affiliation(s)
- Long Wang
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Zhengxin Kang
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Xing Guo
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Wei Miao
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
- Department of Nuclear Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhongxin Li
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Huiquan Zuo
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Hua Wang
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Hongwei Si
- Department of Nuclear Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Lijuan Jiao
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Erhong Hao
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
37
|
Steponaitis M, Jankauskas V, Kamarauskas E, Malinauskienė V, Karazhanov S, Malinauskas T, Getautis V. Investigation of biphenyl enamines for applications as p-type semiconductors. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230260. [PMID: 37501661 PMCID: PMC10369019 DOI: 10.1098/rsos.230260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023]
Abstract
Due to the ease of synthesis and the ability to easily tune properties, organic semiconductors are widely researched and used in many optoelectronic applications. Requirements such as thermal stability, appropriate energy levels and charge-carrier mobility have to be met in order to consider the suitability of an organic semiconductor for a specific application. Balancing of said properties is not a trivial task; often one characteristic is sacrificed to improve the other and therefore a search for well-balanced materials is necessary. Herein, seven new charge-transporting biphenyl-based enamine molecules are reported. The new materials were synthesized using a simple one-step reaction without the use of expensive transition metal catalysts. It was observed that subtle variations in the structure lead to notable changes in the properties. Materials exhibited high thermal stability and relatively high carrier drift mobility, reaching 2 × 10-2 cm2V-1 s-1 (for BE3) at strong electric fields. Based on the results, three materials show the potential to be applied in organic light emitting diodes and solar cells.
Collapse
Affiliation(s)
- Matas Steponaitis
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenu pl. 19, 50254 Kaunas, Lithuania
| | - Vygintas Jankauskas
- Institute of Chemical Physics, Vilnius University, Sauletekio av. 9, 10222 Vilnius, Lithuania
| | - Egidijus Kamarauskas
- Institute of Chemical Physics, Vilnius University, Sauletekio av. 9, 10222 Vilnius, Lithuania
| | - Vida Malinauskienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenu pl. 19, 50254 Kaunas, Lithuania
| | - Smagul Karazhanov
- Institute for Energy Technology (IFE), P.O Box 40, NO 2027, Kjeller, Norway
| | - Tadas Malinauskas
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenu pl. 19, 50254 Kaunas, Lithuania
| | - Vytautas Getautis
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenu pl. 19, 50254 Kaunas, Lithuania
| |
Collapse
|
38
|
Han X, Xue C, Zhao Z, Peng M, Wang Q, Liu H, Yu N, Pu C, Ren Y. Synthesis and Characterizations of Polythiophene Networks with Nonplanar BN Lewis Pair Building Blocks. ACS Macro Lett 2023:961-967. [PMID: 37384854 DOI: 10.1021/acsmacrolett.3c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Doping the boron (B) element endowed organic π-conjugated polymers (OCPs) with intriguing optoelectronic properties. Herein, we introduce a new series of thienylborane-pyridine (BN) Lewis pairs via the facile reactions between thienylborane and various pyridine derivatives. Particularly, we developed a "one-pot" synthetic protocol to access BN2 with an unstable 4-bromopyridine moiety. Polycondensations between the BN Lewis pairs and distannylated thiophene afforded a new series of BN-cross-linked polythiophenes (BN-PTs). Experiments revealed that BN-PTs exhibited highly uniform chemical structures, particularly the uniform chemical environment of B-centers. BN-PTs showed good stability in the solid state. PBN2 even maintained the uniform B-center under high temperature or moisture conditions. The studies further suggested that the presence of topological BN structures endowed the polymers with strong intramolecular charge separation character. As a proof of concept, a representative BN-PT was tested as the catalyst for photocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Xue Han
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Cece Xue
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhuo Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Min Peng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qing Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Haiming Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Na Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chaodan Pu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yi Ren
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
39
|
Vidal F, Smith S, Williams CK. Ring Opening Copolymerization of Boron-Containing Anhydride with Epoxides as a Controlled Platform to Functional Polyesters. J Am Chem Soc 2023. [PMID: 37311063 DOI: 10.1021/jacs.3c03261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Boron-functionalized polymers are used in opto-electronics, biology, and medicine. Methods to produce boron-functionalized and degradable polyesters remain exceedingly rare but relevant where (bio)dissipation is required, for example, in self-assembled nanostructures, dynamic polymer networks, and bio-imaging. Here, a boronic ester-phthalic anhydride and various epoxides (cyclohexene oxide, vinyl-cyclohexene oxide, propene oxide, allyl glycidyl ether) undergo controlled ring-opening copolymerization (ROCOP), catalyzed by organometallic complexes [Zn(II)Mg(II) or Al(III)K(I)] or a phosphazene organobase. The polymerizations are well controlled allowing for the modulation of the polyester structures (e.g., by epoxide selection, AB, or ABA blocks), molar masses (9.4 < Mn < 40 kg/mol), and uptake of boron functionalities (esters, acids, "ates", boroxines, and fluorescent groups) in the polymer. The boronic ester-functionalized polymers are amorphous, with high glass transition temperatures (81 < Tg < 224 °C) and good thermal stability (285 < Td < 322 °C). The boronic ester-polyesters are deprotected to yield boronic acid- and borate-polyesters; the ionic polymers are water soluble and degradable under alkaline conditions. Using a hydrophilic macro-initiator in alternating epoxide/anhydride ROCOP, and lactone ring opening polymerization, produces amphiphilic AB and ABC copolyesters. Alternatively, the boron-functionalities are subjected to Pd(II)-catalyzed cross-couplings to install fluorescent groups (BODIPY). The utility of this new monomer as a platform to construct specialized polyesters materials is exemplified here in the synthesis of fluorescent spherical nanoparticles that self-assemble in water (Dh = 40 nm). The selective copolymerization, variable structural composition, and adjustable boron loading represent a versatile technology for future explorations of degradable, well-defined, and functional polymers.
Collapse
Affiliation(s)
- Fernando Vidal
- Department of Chemistry, Chemical Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Sevven Smith
- Department of Chemistry, Chemical Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Charlotte K Williams
- Department of Chemistry, Chemical Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
40
|
Berionni G. A focus on anionic boron anthracenes and triptycenes as entry point toward B-doped polyaromatic materials and Lewis acids. Chem Sci 2023; 14:5241-5242. [PMID: 37234905 PMCID: PMC10207887 DOI: 10.1039/d3sc90074f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023] Open
Abstract
This article highlights the recent work of M. Wagner and collaborators on the synthesis, bridgehead functionalization, and photoisomerization of boron-doped triptycene derivatives (https://doi.org/10.1039/D3SC00555K).
Collapse
Affiliation(s)
- Guillaume Berionni
- Université de Namur, Department of Chemistry, Namur Institute of Structured Matter Rue de Bruxelles 61 5000 Namur Belgium
| |
Collapse
|
41
|
Wang D, Wang X, Zhou S, Gu P, Zhu X, Wang C, Zhang Q. Evolution of BODIPY as triplet photosensitizers from homogeneous to heterogeneous: The strategies of functionalization to various forms and their recent applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
42
|
A Cyano-Substituted Organoboron Electron-deficient Building Block for D-A Type Conjugated Polymers. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
43
|
Qiu CS, Qiu NP, Flinn C, Zhao Y. DFT mechanistic studies of boron-silicon exchange reactions between silyl-substituted arenes and boron bromides. Phys Chem Chem Phys 2023; 25:6714-6725. [PMID: 36805579 DOI: 10.1039/d2cp05615a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
C-B bond forming reactions are important methodologies in modern synthetic chemistry, since many borylated organic substrates, ranging from alkanes and alkenes to arenes and heteroarenes, are useful intermediates for the synthesis of natural products, pharmaceuticals, and organic π-conjugated materials. Among numerous borylation methods, C-Si/B-Br exchange reactions have attracted increasing attention in recent years. While experimental exploration has been continually carried out for more than two decades, mechanistic insights into this type of reaction have not yet been clearly established. To address this deficiency of knowledge, we performed density functional theory (DFT) calculations to map out the reaction pathways for a range of boron-silicon exchange reactions between boron tribromide (BBr3) and trimethylsilyl-substituted arenes (TMSAr). Our computational analyses have disclosed the energetic, structural, and electronic properties for key stationary points on the potential energy surfaces (PES) in both the gas and solution (CH2Cl2) phases.
Collapse
Affiliation(s)
- Christopher S Qiu
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| | - Nicholas P Qiu
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| | - Christopher Flinn
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| | - Yuming Zhao
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
44
|
Regioregular Asymmetric Diketopyrrolopyrrole Copolymers with Good Molecular Ordered Assembly Ability for High-performance Polymer Transistors. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2918-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Incorporation of a Boron-Nitrogen Covalent Bond Improves the Charge-Transport and Charge-Transfer Characteristics of Organoboron Small-Molecule Acceptors for Organic Solar Cells. Molecules 2023; 28:molecules28020811. [PMID: 36677871 PMCID: PMC9861936 DOI: 10.3390/molecules28020811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
An organoboron small-molecular acceptor (OSMA) MB←N containing a boron-nitrogen coordination bond (B←N) exhibits good light absorption in organic solar cells (OSCs). In this work, based on MB←N, OSMA MB-N, with the incorporation of a boron-nitrogen covalent bond (B-N), was designed. We have systematically investigated the charge-transport properties and interfacial charge-transfer characteristics of MB-N, along with MB←N, using the density functional theory (DFT) and the time-dependent density functional theory (TD-DFT). Theoretical calculations show that MB-N can simultaneously boost the open-circuit voltage (from 0.78 V to 0.85 V) and the short-circuit current due to its high-lying lowest unoccupied molecular orbital and the reduced energy gap. Moreover, its large dipole shortens stacking and greatly enhances electron mobility by up to 5.91 × 10-3 cm2·V-1·s-1. Notably, the excellent interfacial properties of PTB7-Th/MB-N, owing to more charge transfer states generated through the direct excitation process and the intermolecular electric field mechanism, are expected to improve OSCs performance. Together with the excellent properties of MB-N, we demonstrate a new OSMA and develop a new organoboron building block with B-N units. The computations also shed light on the structure-property relationships and provide in-depth theoretical guidance for the application of organoboron photovoltaic materials.
Collapse
|
46
|
Chen S, Wen W, Zhao X, Zhang Z, Li W, Zhang Y, Li B, Zhu L. Preparation of Chitosan-Composite-Film-Supported Copper Nanoparticles and Their Application in 1,6-Hydroboration Reactions of p-Quinone Methides. Molecules 2022; 27:molecules27227962. [PMID: 36432064 PMCID: PMC9695593 DOI: 10.3390/molecules27227962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Here, we describe the preparation of copper nanoparticles that are stabilized on a chitosan composite film (CP@Cu). This material could catalyze the 1,6-hydroboration reactions of p-quinone methides with B2pin2 as a boron source under mild conditions. This reaction exhibited very good functional group compatibility, and the organoboron compounds that were formed could easily be converted into corresponding hydroxyl products with good to excellent yields. This newly developed methodology provides an efficient and sequential pathway for the synthesis of gem-disubstituted methanols.
Collapse
Affiliation(s)
- Shuhan Chen
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Wei Wen
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xue Zhao
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zelang Zhang
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Weishuang Li
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
- Correspondence: (W.L.); (B.L.); (L.Z.)
| | - Yaoyao Zhang
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
| | - Bojie Li
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
- Correspondence: (W.L.); (B.L.); (L.Z.)
| | - Lei Zhu
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
- Correspondence: (W.L.); (B.L.); (L.Z.)
| |
Collapse
|
47
|
He C, Dong J, Xu C, Pan X. N-Coordinated Organoboron in Polymer Synthesis and Material Science. ACS POLYMERS AU 2022. [DOI: 10.1021/acspolymersau.2c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Congze He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jin Dong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Chaoran Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
48
|
Li HJ, Feng R, Shi X, Wei J, Xi Z. Synthesis and isolation of dinuclear N,C-chelate organoboron compounds bridged by neutral, anionic, and dianionic 4,4'-bipyridine via reductive coupling of pyridines. Dalton Trans 2022; 51:15696-15702. [PMID: 36173201 DOI: 10.1039/d2dt02650c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of Bppy(Mes)2 (BN1; ppy = 2-phenylpyridine) and BCH2ppy(Mes)2 (BN3) with the reducing reagent KC8 resulted in C-C bond formation via intermolecular radical coupling to generate the 4,4'-bipyridyl ligand compounds BN2 and BN4. Adding 1 equivalent of KC8 to a THF solution of BN2 and BN4 generated the 4,4'-bipyridyl radical anions BN2K and BN4K. The dianion species BN2K2 and BN4K2 could be obtained by adding 2 equivalents of KC8 to the THF solution of BN2 and BN4. In the presence of 2,2,2-cryptand or 18-crown-6, the radical anion salt BN2K(crypt) and the dianion salt BN2K2(18c6)2 were isolated for single-crystal X-ray diffraction analysis. Structural, spectroscopic, and computational studies were performed on the three species of BN2 derivatives (neutral, radical anion, and dianion species). BN2 and BN4 were stable and did not undergo photoisomerization or photoelimination under UV light irradiation.
Collapse
Affiliation(s)
- Hai-Jun Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China.
| | - Rui Feng
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China.
| | - Xianghui Shi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China.
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China.
| | - Zhenfeng Xi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China.
| |
Collapse
|
49
|
Tian G, Chen JF, Zhang K, Shi Y, Li C, Yin X, Liu K, Chen P. Applying the B/N Lewis Pair Approach to Access Fusion-Expanded Binaphthyl-Based Chiral Analogues. Inorg Chem 2022; 61:15315-15319. [PMID: 36135458 DOI: 10.1021/acs.inorgchem.2c02875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We herein describe the synthesis of two axially chiral systems (HBN and BBN) by the incorporation of B centers into binaphthyl derivatives (HPy and BPy). Heteroatom-doped chiral polycyclic aromatic hydrocarbons were thus formed by fusion of the azaboroles to binaphthyls with the formation of B-N dative bonds. The resulting B-N Lewis pairs that serve as attractive fluorophores enabled modulation of the chiroptical properties both in solution and in the solid state.
Collapse
Affiliation(s)
- Guoqing Tian
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Jin-Fa Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Kai Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Yafei Shi
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Chenglong Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Kanglei Liu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| |
Collapse
|
50
|
Cappello D, Buguis FL, Gilroy JB. Tuning the Properties of Donor-Acceptor and Acceptor-Donor-Acceptor Boron Difluoride Hydrazones via Extended π-Conjugation. ACS OMEGA 2022; 7:32727-32739. [PMID: 36120012 PMCID: PMC9476501 DOI: 10.1021/acsomega.2c04401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Molecular materials with π-conjugated donor-acceptor (D-A) and acceptor-donor-acceptor (A-D-A) electronic structures have received significant attention due to their usage in organic photovoltaic materials, in organic light-emitting diodes, and as biological imaging agents. Boron-containing molecular materials have been explored as electron-accepting units in compounds with D-A and A-D-A properties as they often exhibit unique and tunable optoelectronic and redox properties. Here, we utilize Stille cross-coupling chemistry to prepare a series of compounds with boron difluoride hydrazones (BODIHYs) as acceptors and benzene, thiophene, or 9,9-dihexylfluorene as donors. BODIHYs with D-A and A-D-A properties exhibited multiple reversible redox waves, solid-state emission with photoluminescence quantum yields up to 10%, and aggregation-induced emission (AIE). Optical band gaps (or highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gaps) determined for these compounds (2.02-2.25 eV) agree well with those determined from cyclic voltammetry experiments (2.05-2.42 eV). The optoelectronic properties described herein are rationalized with density functional theory calculations that support the interpretation of the experimental findings. This work provides a foundation of understanding that will allow for the consideration of D-A and A-D-A BODIHYs to be incorporated into applications (e.g., organic electronics) where fine-tuning of band gaps is required.
Collapse
|