1
|
Ecklu-Mensah G, Miller R, Maseng MG, Hawes V, Hinz D, Kim C, Gilbert JA. Modulating the human gut microbiome and health markers through kombucha consumption: a controlled clinical study. Sci Rep 2024; 14:31647. [PMID: 39738315 PMCID: PMC11686376 DOI: 10.1038/s41598-024-80281-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/18/2024] [Indexed: 01/02/2025] Open
Abstract
Fermented foods are becoming more popular due to their purported links to metabolic health and the gut microbiome. However, direct clinical evidence for the health claims is lacking. Here, we describe an eight-week clinical trial that explored the effects of a four-week kombucha supplement in healthy individuals consuming a Western diet, randomized into the kombucha (n = 16) or control (n = 8) group. We collected longitudinal stool and blood samples to profile the human microbiome and inflammation markers. We did not observe significant changes in either biochemical parameters or levels of circulating markers of inflammation across the entire cohort. However, paired analysis between baseline and end of intervention time points within kombucha or control groups revealed increases in fasting insulin and in HOMA-IR in the kombucha group whereas reductions in HDL cholesterol were associated with the control group. Shotgun metagenomic analysis revealed the relative abundance of Weizmannia, a kombucha-enriched probiotic and several SCFA producing taxa to be overrepresented in consumers at the end of the intervention. Collectively, in our healthy cohort consuming a Western diet, a short-term kombucha intervention induced modest impacts on human gut microbiome composition and biochemical parameters, which may be attributed to relatively small number of participants and the extensive inter-participant variability.
Collapse
Affiliation(s)
- Gertrude Ecklu-Mensah
- Department of Pediatrics and Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Rachel Miller
- Department of Pediatrics, University of California San Diego, Rady's Children Hospital, La Jolla, CA, USA
| | - Maria Gjerstad Maseng
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Dep. of Gastroenterology, Oslo University Hospital, Oslo, Norway
- Bio-Me, Oslo, Norway
| | - Vienna Hawes
- Department of Pediatrics and Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Denise Hinz
- La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Cheryl Kim
- La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Jack A Gilbert
- Department of Pediatrics and Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
2
|
Su J, Deng X, Hu S, Lin X, Xie L, Ye H, Lin C, Zhou F, Wu S, Zheng L. Aloe-emodin plus TIENAM ameliorate cecal ligation and puncture-induced sepsis in mice by attenuating inflammation and modulating microbiota. Front Microbiol 2024; 15:1491169. [PMID: 39726955 PMCID: PMC11669710 DOI: 10.3389/fmicb.2024.1491169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Despite the high sepsis-associated mortality, effective and specific treatments remain limited. Using conventional antibiotics as TIENAM (imipenem and cilastatin sodium for injection, TIE) is challenging due to increasing bacterial resistance, diminishing their efficacy and leading to adverse effects. We previously found that aloe-emodin (AE) exerts therapeutic effects on sepsis by reducing systemic inflammation and regulating the gut microbiota. Here, we investigated whether administering AE and TIE post-sepsis onset, using a cecal ligation and puncture (CLP)-induced sepsis model, extends survival and improves physiological functions. Survival rates, inflammatory cytokines, tissue damage, immune cell populations, ascitic fluid microbiota, and key signaling pathways were assessed. Combining AE and TIE significantly enhanced survival rates, and reduced inflammation and bacterial load in septic mice, indicating potent antimicrobial properties. Moreover, substantial improvements in survival rates of AE + TIE-treated mice (10% to 60%) within 168 h were observed relative to the CLP group. This combination therapy also effectively modulated inflammatory marker (interleukin [IL]-6, IL-1β, and tumor necrosis factor [TNF]-α) levels and immune cell counts by decreasing those of B, NK, and TNFR2+ Treg cells, while increasing that of CD8+ T cells; alleviated tissue damage; reduced bacterial load in the peritoneal cavity; and suppressed the NF-κB signaling pathway. We also observed a significantly altered peritoneal cavity microbiota composition post-treatment, characterized by reduced pathogenic bacteria (Bacteroides) abundance. Our findings underscore the potential of AE + TIE in treating sepsis, and encourage further research and possible clinical implementations to surmount the limitations of TIE and amplify the therapeutic potential of AE.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Xiaohui Deng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Shan Hu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Xinrui Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Lian Xie
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Hui Ye
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Congfan Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Fen Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Shun Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Liling Zheng
- First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
3
|
Su J, Xiao J, Deng X, Lin X, Xie L, Ye H, Lin C, Zhou F, Wu S. Combining Aloin with TIENAM ameliorates cecal ligation and puncture-induced sepsis in mice by attenuating inflammation and modulating abdominal cavity microbiota. Int Immunopharmacol 2024; 141:112925. [PMID: 39154534 DOI: 10.1016/j.intimp.2024.112925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
Despite the high mortality rate, sepsis lacks specific and effective treatment options. Conventional antibiotics, such as TIENAM (TIE; imipenem and cilastatin sodium for injection), face challenges owing to the emergence of bacterial resistance, which reduces their effectiveness and causes adverse effects. Addressing resistance and judicious drug use is crucial. Our research revealed that aloin (Alo) significantly boosts survival rates and reduces inflammation and bacterial load in mice with sepsis, demonstrating strong antimicrobial activity. Using a synergistic Alo + TIE regimen in a cecal ligation and puncture (CLP)-induced sepsis model, we observed a remarkable increase in survival rates from 10 % to 75 % within 72 h compared with the CLP group alone. This combination therapy also modulated inflammatory markers interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α, mitigated tissue damage, regulated immune cells by lowering NK, activated CD8+ and CD4+ T cells while increasing peritoneal macrophages, and decreased the bacterial load in the peritoneal cavity. We noted a significant shift in the abdominal cavity microbiota composition post-treatment, with a decrease in harmful bacteria, such as Lachnospiraceae_NK4A136_group, Klebsiella, Bacillus, and Escherichia, and an increase in beneficial bacteria, such as Lactobacillus and Mucispirillum. Our study emphasizes the efficacy of combining Alo with TIE to combat sepsis, and paves the way for further investigations and potential clinical applications aiming to overcome the limitations of TIE and enhance the therapeutic prospects of Alo.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| | - Jianbin Xiao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Xiaohui Deng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Xinrui Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Lian Xie
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Hui Ye
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Congfan Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Fen Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Shun Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| |
Collapse
|
4
|
Su J, Lin C, Lin X, Hu S, Deng X, Xie L, Ye H, Zhou F, Wu S. Combining ulinastatin with TIENAM improves the outcome of sepsis induced by cecal ligation and puncture in mice by reducing inflammation and regulating immune responses. Int Immunopharmacol 2024; 141:112927. [PMID: 39163689 DOI: 10.1016/j.intimp.2024.112927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Despite the high mortality associated with sepsis, effective and targeted treatments remain scarce. The use of conventional antibiotics such as TIENAM (imipenem and cilastatin sodium for injection, TIE) is challenging because of the increasing bacterial resistance, which diminishes their efficacy and leads to adverse effects. Our previous studies demonstrated that ulinastatin (UTI) exerts a therapeutic impact on sepsis by reducing systemic inflammation and modulating immune responses. In this study, we examined the possibility of administering UTI and TIE after inducing sepsis in a mouse model using cecal ligation and puncture (CLP). We assessed the rates of survival, levels of inflammatory cytokines, the extent of tissue damage, populations of immune cells, microbiota in ascites, and important signaling pathways. The combination of UTI and TIE significantly improved survival rates and reduced inflammation and bacterial load in septic mice, indicating potent antimicrobial properties. Notably, the survival rates of UTI+TIE-treated mice increased from 10 % to 75 % within 168 h compared to those of mice that were subjected to CLP. The dual treatment successfully regulated the levels of inflammatory indicators (interleukin [IL]-6, IL-1β, and tumor necrosis factor [TNF]-α) and immune cell numbers by reducing B cells, natural killer cells, and TNFR2+ Treg cells and increasing CD8+ T cells. Additionally, the combination of UTI and TIE alleviated tissue damage, reduced bacterial load in the peritoneal cavity, and suppressed the NF-κB signaling pathway. Our findings indicate that UTI and TIE combination therapy can significantly enhance sepsis outcomes by reducing inflammation and boosting the immune system. The results offer a promising therapeutic approach for future sepsis treatment.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| | - Congfan Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Xinrui Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Shan Hu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Xiaohui Deng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Lian Xie
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Hui Ye
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Fen Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Shun Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| |
Collapse
|
5
|
Su J, Chen K, Sang X, Feng Z, Zhou F, Zhao H, Wu S, Deng X, Lin C, Lin X, Xie L, Ye H, Chen Q. Huperzine a ameliorates sepsis-induced acute lung injury by suppressing inflammation and oxidative stress via α7 nicotinic acetylcholine receptor. Int Immunopharmacol 2024; 141:112907. [PMID: 39159557 DOI: 10.1016/j.intimp.2024.112907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
Sepsis, characterized by high mortality rates, causes over 50 % of acute lung injury (ALI) cases, primarily due to the heightened susceptibility of the lungs during this condition. Suppression of the excessive inflammatory response is critical for improving the survival of patients with sepsis; nevertheless, no specific anti-sepsis drugs exist. Huperzine A (HupA) exhibits neuroprotective and anti-inflammatory properties; however, its underlying mechanisms and effects on sepsis-induced ALI have yet to be elucidated. In this study, we demonstrated the potential of HupA for treating sepsis and explored its mechanism of action. To investigate the in vivo impacts of HupA, a murine model of sepsis was induced through cecal ligation and puncture (CLP) in both wild-type (WT) and α7 nicotinic acetylcholine receptor (α7nAChR) knockout mice. Our results showed that HupA ameliorates sepsis-induced acute lung injury by activating the α7nAChR. We used the CLP sepsis model in wild-type and α7nAChR -/- mice and found that HupA significantly increased the survival rate through α7nAChR, reduced the pro-inflammatory cytokine levels and oxidative stress, ameliorated histopathological lung injury, altered the circulating immune cell composition, regulated gut microbiota, and promoted short-chain fatty acid production through α7nAChR in vivo. Additionally, HupA inhibited Toll-like receptor NF-κB signaling by upregulating the α7nAChR/protein kinase B/glycogen synthase kinase-3 pathways. Our data elucidate HupA's mechanism of action and support a "new use for an old drug" in treating sepsis. Our findings serve as a basis for further in vivo studies of this drug, followed by application to humans. Therefore, the findings have the potential to benefit patients with sepsis.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| | - Kunsen Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Xiao Sang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Zhihua Feng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Fen Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Heng Zhao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Shun Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Xiaohui Deng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Congfan Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Xinrui Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Lian Xie
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Hui Ye
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| |
Collapse
|
6
|
Fraiz GM, Bonifácio DB, Lacerda UV, Cardoso RR, Corich V, Giacomini A, Martino HSD, Esteban-Echeverría S, Romo-Hualde A, Muñoz-Prieto D, de Barros FAR, Milagro FI, Bressan J. The Impact of Green Tea Kombucha on the Intestinal Health, Gut Microbiota, and Serum Metabolome of Individuals with Excess Body Weight in a Weight Loss Intervention: A Randomized Controlled Trial. Foods 2024; 13:3635. [PMID: 39594049 PMCID: PMC11594279 DOI: 10.3390/foods13223635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Green tea kombucha (GTK) has emerged as a promising probiotic fermented beverage. Few studies have investigated its effect on human health, mainly focusing on intestinal health, microbiota composition, and metabolomics. The present study is a pioneer in investigating the effect of GTK consumption in individuals with excess body weight. This is a randomized controlled trial, lasting ten weeks, with two groups placed under an energy-restricted diet: control (CG, n = 29), kombucha (KG, n = 30; 200 mL/d). Biological samples and questionnaires were collected before and after the intervention. Microbiota analysis used an amplification of the V4 region of 16S rRNA. Serum untargeted metabolomics used HPLC-TOF mass spectrometry. Intestinal permeability considered the urine excretion of lactulose and mannitol, plasma zonulin, and LPS-binding protein. After the intervention, no differences related to intestinal permeability and microbiota were found between groups, but only the CG had increased fecal pH, lactulose/mannitol ratio, and zonulin. In addition to this, the KG reported lower gastrointestinal symptoms related to motility compared to the CG, and discriminant metabolites (e.g., diethyl malonate) were found strictly in the KG. GTK did not significantly improve gut microbiota and intestinal permeability. However, GTK ameliorated gastrointestinal symptoms and positively influenced the serum metabolome, which may contribute to enhancing the metabolic health of individuals with excess body weight.
Collapse
Affiliation(s)
- Gabriela Macedo Fraiz
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (G.M.F.); (D.B.B.); (H.S.D.M.); (J.B.)
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, Universidad de Navarra, 31008 Pamplona, Spain; (S.E.-E.); (A.R.-H.); (D.M.-P.)
| | - Dandara Baia Bonifácio
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (G.M.F.); (D.B.B.); (H.S.D.M.); (J.B.)
| | - Udielle Vermelho Lacerda
- Department of Food and Technology, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (U.V.L.); (R.R.C.); (F.A.R.d.B.)
| | - Rodrigo Rezende Cardoso
- Department of Food and Technology, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (U.V.L.); (R.R.C.); (F.A.R.d.B.)
| | - Viviana Corich
- Department of Agronomy, Food Natural Resources, and Environment (DAFNAE), Università degli Studi di Padova, 35020 Padova, Italy; (V.C.); (A.G.)
| | - Alessio Giacomini
- Department of Agronomy, Food Natural Resources, and Environment (DAFNAE), Università degli Studi di Padova, 35020 Padova, Italy; (V.C.); (A.G.)
| | - Hércia Stampini Duarte Martino
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (G.M.F.); (D.B.B.); (H.S.D.M.); (J.B.)
| | - Sergio Esteban-Echeverría
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, Universidad de Navarra, 31008 Pamplona, Spain; (S.E.-E.); (A.R.-H.); (D.M.-P.)
| | - Ana Romo-Hualde
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, Universidad de Navarra, 31008 Pamplona, Spain; (S.E.-E.); (A.R.-H.); (D.M.-P.)
| | - David Muñoz-Prieto
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, Universidad de Navarra, 31008 Pamplona, Spain; (S.E.-E.); (A.R.-H.); (D.M.-P.)
| | | | - Fermín I. Milagro
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, Universidad de Navarra, 31008 Pamplona, Spain; (S.E.-E.); (A.R.-H.); (D.M.-P.)
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Institute of Health Carlos III, 28029 Madrid, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Josefina Bressan
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (G.M.F.); (D.B.B.); (H.S.D.M.); (J.B.)
| |
Collapse
|
7
|
Fraiz GM, Bonifácio DB, Lacerda UV, Cardoso RR, Corich V, Giacomini A, Martino HSD, Echeverría SE, de Barros FAR, Milagro FI, Bressan J. Green Tea Kombucha Impacts Inflammation and Salivary Microbiota in Individuals with Excess Body Weight: A Randomized Controlled Trial. Nutrients 2024; 16:3186. [PMID: 39339787 PMCID: PMC11435194 DOI: 10.3390/nu16183186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Green tea kombucha (GTK) is a fermented beverage with promising health benefits, but few studies proved its impact on human health. Thus, we aimed to investigate the impact of GTK on weight loss, inflammation, and salivary microbiota in individuals with excess body weight. METHODS This is a randomized controlled clinical trial that lasted 10 weeks with two groups of individuals with excess body weight: control (CG; n = 29; caloric restriction) and kombucha (KG; n = 30; caloric restriction + 200 mL GTK). Body composition, anthropometry, saliva, and blood collection were performed in the beginning and end of the intervention. Plasma interleukins were determined by flow cytometry. Salivary microbiota was analyzed by 16S rRNA sequencing. RESULTS Both groups decreased weight, BMI, and body fat (p < 0.001) after the intervention, but there were no differences between groups. The KG reduced lipid accumulation product (LAP) (p = 0.029). Both groups decreased IL-1β and IL-8, but IL-6 increased in the CG (p = 0.023) compared to the kombucha group. Alpha and beta diversity of salivary microbiota increased in the KG. Moreover, the KG presented lower Bacillota/Bacteroidota ratio (p = 0.028), and BMI was positively associated with the Bacillota phylum. CONCLUSIONS GTK did not enhance weight loss, but it decreased the LAP. GTK helped in the inflammatory profile and induced positive changes in oral microbiota composition.
Collapse
Affiliation(s)
- Gabriela Macedo Fraiz
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (G.M.F.); (D.B.B.); (H.S.D.M.)
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain (F.I.M.)
| | - Dandara Baia Bonifácio
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (G.M.F.); (D.B.B.); (H.S.D.M.)
| | - Udielle Vermelho Lacerda
- Department of Food and Technology, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (U.V.L.); (R.R.C.); (F.A.R.d.B.)
| | - Rodrigo Rezende Cardoso
- Department of Food and Technology, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (U.V.L.); (R.R.C.); (F.A.R.d.B.)
| | - Viviana Corich
- Department of Agronomy, Food Natural Resources, and Environment (DAFNAE), Università degli Studi di Padova, 35020 Legnaro, Italy; (V.C.); (A.G.)
| | - Alessio Giacomini
- Department of Agronomy, Food Natural Resources, and Environment (DAFNAE), Università degli Studi di Padova, 35020 Legnaro, Italy; (V.C.); (A.G.)
| | - Hércia Stampini Duarte Martino
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (G.M.F.); (D.B.B.); (H.S.D.M.)
| | - Sergio Esteban Echeverría
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain (F.I.M.)
| | | | - Fermín I. Milagro
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain (F.I.M.)
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Institute of Health Carlos III, 28029 Madrid, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Josefina Bressan
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (G.M.F.); (D.B.B.); (H.S.D.M.)
| |
Collapse
|
8
|
Su J, Tan Q, Wu S, Zhou F, Xu C, Zhao H, Lin C, Deng X, Xie L, Lin X, Ye H, Yang M. Administration of turmeric kombucha ameliorates lipopolysaccharide-induced sepsis by attenuating inflammation and modulating gut microbiota. Front Microbiol 2024; 15:1452190. [PMID: 39282561 PMCID: PMC11392888 DOI: 10.3389/fmicb.2024.1452190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Our research team previously reported the immunomodulatory effects of kombucha fermentation liquid. This study investigated the protective effects of turmeric kombucha (TK) against lipopolysaccharide (LPS)-induced sepsis and its impact on the intestinal microbiota of mice. A turmeric culture medium without kombucha served as the control (TW). Non-targeted metabolomics analysis was employed to analyze the compositional differences between TK and TW. Qualitative analysis identified 590 unique metabolites that distinguished TK from TW. TK improved survival from 40 to 90%, enhanced thermoregulation, and reduced pro-inflammatory factor expression and inflammatory cell infiltration in the lung tissue, suppressing the NF-κB signaling pathway. TK also altered the microbiome, promoting Allobaculum growth. Our findings shed light on the protective effects and underlying mechanisms of TK in mitigating LPS-induced sepsis, highlighting TK as a promising anti-inflammatory agent and revealing new functions of kombucha prepared through traditional fermentation methods.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Qingqing Tan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Shun Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Fen Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Chen Xu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Heng Zhao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Congfan Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Xiaohui Deng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Lian Xie
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Xinrui Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Hui Ye
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Minhe Yang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
9
|
Su J, Tong Z, Feng Z, Wu S, Zhou F, Li R, Chen W, Ye Z, Guo Y, Yao S, Yu X, Chen Q, Chen L. Protective effects of DcR3-SUMO on lipopolysaccharide-induced inflammatory cells and septic mice. Int J Biol Macromol 2024; 275:133703. [PMID: 38986982 DOI: 10.1016/j.ijbiomac.2024.133703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Despite the high mortality rate associated with sepsis, no specific drugs are available. Decoy receptor 3 (DcR3) is now considered a valuable biomarker and therapeutic target for managing inflammatory conditions. DcR3-SUMO, an analog of DcR3, has a simple production process and high yield. However, its precise underlying mechanisms in sepsis remain unclear. This study investigated the protective effects of DcR3-SUMO on lipopolysaccharide (LPS)-induced inflammatory cells and septic mice. We evaluated the effects of DcR3 intervention and overexpression on intracellular inflammatory cytokine levels in vitro. DcR3-SUMO significantly reduced cytokine levels within inflammatory cells, and notably increased DcR3 protein and mRNA levels in LPS-induced septic mice, confirming its anti-inflammatory efficacy. Our in vitro and in vivo results demonstrated comparable anti-inflammatory effects between DcR3-SUMO and native DcR3. DcR3-SUMO protein administration in septic mice notably enhanced tissue morphology, decreased sepsis scores, and elevated survival rates. Furthermore, DcR3-SUMO treatment effectively lowered inflammatory cytokine levels in the serum, liver, and lung tissues, and mitigated the extent of tissue damage. AlphaFold3 structural predictions indicated that DcR3-SUMO, similar to DcR3, effectively interacts with the three pro-apoptotic ligands, namely TL1A, LIGHT, and FasL. Collectively, DcR3-SUMO and DcR3 exhibit comparable anti-inflammatory effects, making DcR3-SUMO a promising therapeutic agent for sepsis.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China.
| | - Zhiyong Tong
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Zhihua Feng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Shun Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Fen Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Rui Li
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wenzhi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Zhen Ye
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yu Guo
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shun Yao
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xing Yu
- Department of Gastroenterology, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China.
| | - Long Chen
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
10
|
Su J, Chen W, Zhou F, Li R, Tong Z, Wu S, Ye Z, Zhang Y, Lin B, Yu X, Guan B, Feng Z, Chen K, Chen Q, Chen L. Inhibitory mechanisms of decoy receptor 3 in cecal ligation and puncture-induced sepsis. mBio 2024; 15:e0052124. [PMID: 38700314 PMCID: PMC11237498 DOI: 10.1128/mbio.00521-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
Despite its high mortality, specific and effective drugs for sepsis are lacking. Decoy receptor 3 (DcR3) is a potential biomarker for the progression of inflammatory diseases. The recombinant human DcR3-Fc chimera protein (DcR3.Fc) suppresses inflammatory responses in mice with sepsis, which is critical for improving survival. The Fc region can exert detrimental effects on the patient, and endogenous peptides are highly conducive to clinical application. However, the mechanisms underlying the effects of DcR3 on sepsis are unknown. Herein, we aimed to demonstrate that DcR3 may be beneficial in treating sepsis and investigated its mechanism of action. Recombinant DcR3 was obtained in vitro. Postoperative DcR3 treatment was performed in mouse models of lipopolysaccharide- and cecal ligation and puncture (CLP)-induced sepsis, and their underlying molecular mechanisms were explored. DcR3 inhibited sustained excessive inflammation in vitro, increased the survival rate, reduced the proinflammatory cytokine levels, changed the circulating immune cell composition, regulated the gut microbiota, and induced short-chain fatty acid synthesis in vivo. Thus, DcR3 protects against CLP-induced sepsis by inhibiting the inflammatory response and apoptosis. Our study provides valuable insights into the molecular mechanisms associated with the protective effects of DcR3 against sepsis, paving the way for future clinical studies. IMPORTANCE Sepsis affects millions of hospitalized patients worldwide each year, but there are no sepsis-specific drugs, which makes sepsis therapies urgently needed. Suppression of excessive inflammatory responses is important for improving the survival of patients with sepsis. Our results demonstrate that DcR3 ameliorates sepsis in mice by attenuating systematic inflammation and modulating gut microbiota, and unveil the molecular mechanism underlying its anti-inflammatory effect.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Wenzhi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
- Institute of Edible Fungi, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Fen Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Rui Li
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiyong Tong
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Shun Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Zhen Ye
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Yichao Zhang
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Ben Lin
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Xing Yu
- Department of Gastroenterology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Biyun Guan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Zhihua Feng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Kunsen Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Long Chen
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Massoud R, Jafari R, Khosravi-Darani K. Kombucha as a Health-Beneficial Drink for Human Health. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:251-259. [PMID: 38602651 DOI: 10.1007/s11130-024-01169-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/12/2024]
Abstract
Kombucha is a unique fermented beverage made from a symbiotic culture of yeast and bacteria. Kombucha is normally based on black tea added to water, then sugar is added as a substrate for fermentation in this beverage. This unique beverage is composed of amino acids, flavonoids, vitamins, and some active enzymes. Several beneficial health effects such as antioxidant, antimicrobial effects have been reported as a result of probiotics and prebiotics presence. These health effects of kombucha are attributed to its bioactive chemical and biological agents of probiotics bacteria e.g., Gluconobacter, Acetobacter and yeasts like Saccharomyces sps., along with glucuronic acid as the main sources of the health protection. This review focuses on the beneficial effects of Kombucha including antimicrobial, antioxidant, anti-cancer antidiabetic properties, as well as liver protection, treat of gastrointestinal problems, AIDS, gastric ulcers, obesity (and energy production), detoxification, and skin health.
Collapse
Affiliation(s)
- Ramona Massoud
- Department of Food Science and Technology, Iran National Standards Organization, Tehran, Iran
| | - Reyhaneh Jafari
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Falavarjan, Isfahan, Iran
| | - Kianoush Khosravi-Darani
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, P.O. Box: 19395-4741, Shahrake-gharb, Farahzadi Blv., Hafezi ave., NNFTRI, Tehran, Iran.
| |
Collapse
|
12
|
O’Sullivan EN, O’Sullivan DJ. Viability and Diversity of the Microbial Cultures Available in Retail Kombucha Beverages in the USA. Foods 2024; 13:1707. [PMID: 38890935 PMCID: PMC11172315 DOI: 10.3390/foods13111707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Kombucha is a two-stage fermented sweetened tea beverage that uses yeast and lactic acid bacteria (LAB) to convert sugars into ethanol and lactate and acetic acid bacteria (AAB) to oxidize ethanol to acetate. Its popularity as a beverage grew from claims of health benefits derived from this vibrant microbial bioconversion. While recent studies have shed light on the diversity of cultures in Kombucha fermentation, there is limited information on the diversity, and especially viability, of cultures in retail beverages that advertise the presence of Kombucha and probiotic cultures. In this study, 12 Kombucha beverages produced by different manufacturers throughout the US were purchased and microbially characterized. Eight of the beverages contained viable Kombucha cultures, while 3 of the remaining 4 had viable Bacillus cultures as added probiotics. Amplicon profiling revealed that all contained Kombucha yeast and bacteria cells. The dominant yeasts detected were Lachancea cidri (10/12), Brettanomyces (9/12), Malassezia (6/12), and Saccharomyces (5/12). Dominant LAB included Liquorilactobacillus and Oenococcus oeni, and AAB were Komagataeibacter, Gluconobacter, and Acetobacter. One beverage had a significant amount of Zymomonas mobilis, an ethanol-producing bacterium from Agave cactus. While Kombucha beverages differ in the types and viability of cultures, all except one beverage contained detectable viable cells.
Collapse
Affiliation(s)
| | - Daniel J. O’Sullivan
- Department of Food Science and Nutrition, Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN 55108, USA;
| |
Collapse
|
13
|
Chang B, Wang Y, Tu W, Zhang Z, Pu Y, Xie L, Yuan F, Gao Y, Xu N, Yao Q. Regulatory effects of mangiferin on LPS-induced inflammatory responses and intestinal flora imbalance during sepsis. Food Sci Nutr 2024; 12:2068-2080. [PMID: 38455195 PMCID: PMC10916552 DOI: 10.1002/fsn3.3907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/19/2023] [Accepted: 12/08/2023] [Indexed: 03/09/2024] Open
Abstract
Studies suggest that mangiferin (MAF) has good therapeutic effects on chronic bronchitis and hepatitis. Also, it is one of the antiviral ingredients in Anemarrhena asphodeloides Bunge. However, its effect on the LPS-induced inflammation and intestinal flora during sepsis remains unclear yet. In the present study, LPS-stimulated inflammation RAW264.7 cells and LPS-induced sepsis mice were used to evaluate the efficacy of MAF in vitro and in vivo. 16S rDNA sequencing was performed to analyze the characteristics of intestinal flora of the sepsis mice. It has been demonstrated that MAF (12.5 and 25 μg/mL) significantly inhibited protein expressions of TLR4, MyD88, NF-κB, and TNF-α in the LPS-treated cells and reduced the supernatant TNF-α and IL-6 levels. In vivo, MAF (20 mg/kg) markedly protected the sepsis mice and reduced the serum TNF-α and IL-6 levels. Also, MAF significantly downregulated the protein expressions of TLR4, NF-κB, and MyD88 in the livers. Importantly, MAF significantly attenuated the pathological injuries of the livers and small intestines. Further, MAF significantly increased proportion of Bacteroidota and decreased the proportions of Firmicutes, Desulfobacterota, Actinobacteriota, and Proteobacteria at phylum level, and it markedly reduced the proportions of Escherichia-Shigella, Pseudoalteromonas, Staphylococcus at genus level. Moreover, MAF affects some metabolism-related pathways such as citrate cycle (TCA cycle), lipoic acid metabolism, oxidative phosphorylation, bacterial chemotaxis, fatty acid biosynthesis, and peptidoglycan biosynthesis of the intestinal flora. Thus, it can be concluded that MAF as a treatment reduces the inflammatory responses in vitro and in vivo by inhibiting the TLR4/ MyD88/NF-κB pathway, and corrects intestinal flora imbalance during sepsis to some degree.
Collapse
Affiliation(s)
- Bo‐tao Chang
- Department of PostgraduateGuizhou University of Traditional Chinese MedicineGuiyangChina
| | - Yang Wang
- Department of General SurgeryThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Wen‐lian Tu
- Department of PharmacyThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Zhi‐qing Zhang
- Department of PharmacyThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Yan‐fang Pu
- Department of PharmacyThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Li Xie
- Department of PharmacyThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Fang Yuan
- Department of PharmacyThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Ying Gao
- Department of PharmacyThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
- The First Affiliated Hospital, Guizhou University of Traditional Chinese MedicineGuiyangChina
| | - Ning Xu
- Department of Clinical LaboratoryThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Qi Yao
- Department of PharmacyThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
- The First Affiliated Hospital, Guizhou University of Traditional Chinese MedicineGuiyangChina
| |
Collapse
|
14
|
Ge J, Ye L, Cheng M, Xu W, Chen Z, Guan F. Preparation of microgels loaded with lycopene/NMN and their protective mechanism against acute liver injury. Food Funct 2024; 15:809-822. [PMID: 38131354 DOI: 10.1039/d3fo03293k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
This study aimed to enhance the stability and bioavailability of lycopene (LYC) and nicotinamide mononucleotide (NMN) by incorporating them into porous microgels after loading LYC into liposomes. The particle size, zeta potential, encapsulation rate (%), scanning electron microscopy images, and stability and release kinetics characteristics in simulating digestion confirmed that the microgels had high LYC and NMN encapsulation rates (99.11% ± 0.12% and 68.98% ± 0.26%, respectively) and good stability and release characteristics. The protective effect and potential mechanism of microgels loaded with LYC and NMN on lipopolysaccharide (LPS)-induced acute liver injury in C57BL/6 mice were investigated by intragastric administration for 28 days prior to LPS exposure. The results showed that the microgels loaded with LYC and NMN significantly ameliorated LPS-induced liver injury and reduced the inflammatory response and oxidative stress. In addition, LYC and NMN can not only act on the Toll-like receptor 4 (TLR4)/MD2 complex but also regulate TLR4-related miRNAs (miR-145a-5p and miR-217-5p) in serum extracellular vesicles, thereby synergistically inhibiting the TLR4/NF-κB signaling pathway. In addition, the microgels loaded with LYC and NMN were able to enrich beneficial bacteria that produced short-chain fatty acids and reduce harmful bacteria. In conclusion, LYC and NMN protected against LPS-induced acute liver injury via inhibition of oxidative stress and inflammation, as well as regulating the gut microbiota.
Collapse
Affiliation(s)
- Jian Ge
- College of Life Sciences, China Jiliang University, 258 XueYuan Street, XiaSha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, People's Republic of China.
| | - Luting Ye
- College of Life Sciences, China Jiliang University, 258 XueYuan Street, XiaSha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, People's Republic of China.
| | - Min Cheng
- College of Life Sciences, China Jiliang University, 258 XueYuan Street, XiaSha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, People's Republic of China.
| | - Weijia Xu
- College of Life Sciences, China Jiliang University, 258 XueYuan Street, XiaSha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, People's Republic of China.
| | - Zhaowen Chen
- College of Life Sciences, China Jiliang University, 258 XueYuan Street, XiaSha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, People's Republic of China.
| | - Feng Guan
- College of Life Sciences, China Jiliang University, 258 XueYuan Street, XiaSha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, People's Republic of China.
| |
Collapse
|
15
|
Candra A, Darge HF, Ahmed YW, Saragi IR, Kitaw SL, Tsai HC. Eco-benign synthesis of nano‑gold chitosan-bacterial cellulose in spent ground coffee kombucha consortium: Characterization, microbiome community, and biological performance. Int J Biol Macromol 2023; 253:126869. [PMID: 37703976 DOI: 10.1016/j.ijbiomac.2023.126869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
Biomaterials that are mediocre for cell adhesion have been a concern for medical purposes. In this study, we fabricated nano‑gold chitosan-bacterial cellulose (CBC-Au) via a facile in-situ method using spent ground coffee (SGC) in a kombucha consortium. The eco-benign synthesis of monodispersed gold nanoparticles (Au NPs) in modified bacterial cellulose (BC) was successfully achieved in the presence of chitosan (CHI) and a symbiotic culture of bacteria and yeast (SCOBY). The dominant microbiome community in SGC kombucha were Lactobacillaceae and Saccharomycetes. Chitosan-bacterial cellulose (CBC) and CBC-Au affected the microfibril networks in the nano cellulose structures and decreased the porosity. The modified BC maintained its crystallinity up to 80 % after incorporating CHI and Au NPs. Depth profiling using X-ray photoelectron spectroscopy (XPS) indicated that the Au NPs were distributed in the deeper layers of the scaffolds and a limited amount on the surface of the scaffold. Aspergillus niger fungal strains validated the biodegradability of each scaffold as a decomposer. Bacteriostatically CBC-Au showed better antimicrobial activity than BC, in line with the adhesion of NIH-3T3 fibroblast cells and red blood cells (RBCs), which displayed good biocompatibility performance, indicating its potential use as a medical scaffold.
Collapse
Affiliation(s)
- Andy Candra
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Haile Fentahun Darge
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada; College of Medicine and Health Science, Bahir Dar University, Bahir Dar 79, Ethiopia
| | - Yohannis Wondwosen Ahmed
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Indah Revita Saragi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Sintayehu Leshe Kitaw
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, ROC.
| |
Collapse
|
16
|
Su J, Tan Q, Tang Q, Tong Z, Yang M. Research progress on alternative kombucha substrate transformation and the resulting active components. Front Microbiol 2023; 14:1254014. [PMID: 37779696 PMCID: PMC10537971 DOI: 10.3389/fmicb.2023.1254014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Kombucha is a customary tea-based beverage that is produced through the process of fermenting a mixture of tea and sugar water with symbiotic culture of bacteria and yeast (SCOBY). Traditional kombucha has various beneficial effects and can improve immunity. The significant market share of Kombucha can be attributed to the growing consumer inclination towards healthy foods within the functional beverage industry. The research focus has recently expanded from the probiotics of traditional black tea kombucha to encompass other teas, Chinese herbs, plant materials, and alternative substrates. There is a lack of comprehensive literature reviews focusing on substance transformation, functional, active substances, and efficacy mechanisms of alternative kombucha substrates. This article aimed to bridge this gap by providing an in-depth review of the biological transformation pathways of kombucha metabolites and alternative substrates. The review offers valuable insights into kombucha research, including substance metabolism and transformation, efficacy, pharmacological mechanism, and the purification of active components, offering direction and focus for further studies in this field.
Collapse
Affiliation(s)
| | | | | | | | - Minhe Yang
- Fujian Key Laboratory of Innate Immune Biology, College of Life Science, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| |
Collapse
|
17
|
Su J, Tan Q, Wu S, Abbas B, Yang M. Application of Kombucha Fermentation Broth for Antibacterial, Antioxidant, and Anti-Inflammatory Processes. Int J Mol Sci 2023; 24:13984. [PMID: 37762292 PMCID: PMC10530541 DOI: 10.3390/ijms241813984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Treatment for sepsis and its complications in the clinic is primarily in the forms of antibiotics, anti-inflammatory agents, and antioxidant drugs. Kombucha, a traditional fermented beverage rich in tea polyphenols and organic acids, offers several benefits including bacteriostasis, anti-inflammation ability, and boosting the immune system. Currently, research on kombucha is primarily focused on its antibacterial and antioxidant properties; however, in-depth exploration of the involved mechanisms is lacking. Herein, turmeric, Paeoniae alba, and black tea were used as fermentation substrates to detect the bacteriostatic and antioxidant activities of the fermentation broth and evaluate its anti-inflammatory effects on RAW264.7 cells stimulated by lipopolysaccharides (LPSs). The results showed that fermentation enhanced the antibacterial activity of turmeric against E. coli and S. aureus and that of Paeoniae alba against S. aureus. Turmeric black tea exhibited the highest antioxidant activity. The fermentation broth of turmeric and turmeric black tea significantly reduced the expression of inflammatory cytokines induced by LPSs. Our results showed that using turmeric and Paeoniae alba culture media as substrates can enhance the anti-inflammatory effects of fermentation broth and provide a new strategy for developing anti-inflammatory substances.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China; (Q.T.); (S.W.); (B.A.)
- Fujian Key Laboratory of Microbial Pathogenesis and Interventions-Fujian Province University, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Qingqing Tan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China; (Q.T.); (S.W.); (B.A.)
- Fujian Key Laboratory of Microbial Pathogenesis and Interventions-Fujian Province University, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Shun Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China; (Q.T.); (S.W.); (B.A.)
- Fujian Key Laboratory of Microbial Pathogenesis and Interventions-Fujian Province University, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Bilal Abbas
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China; (Q.T.); (S.W.); (B.A.)
- Fujian Key Laboratory of Microbial Pathogenesis and Interventions-Fujian Province University, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Minhe Yang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China; (Q.T.); (S.W.); (B.A.)
- Fujian Key Laboratory of Microbial Pathogenesis and Interventions-Fujian Province University, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
18
|
Su J, Guan B, Su Q, Hu S, Wu S, Tong Z, Zhou F. Fucoxanthin Ameliorates Sepsis via Modulating Microbiota by Targeting IRF3 Activation. Int J Mol Sci 2023; 24:13803. [PMID: 37762104 PMCID: PMC10530764 DOI: 10.3390/ijms241813803] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
To improve patient survival in sepsis, it is necessary to curtail exaggerated inflammatory responses. Fucoxanthin (FX), a carotenoid derived from brown algae, efficiently suppresses pro-inflammatory cytokine expression via IRF3 activation, thereby reducing mortality in a mouse model of sepsis. However, the effects of FX-targeted IRF3 on the bacterial flora (which is disrupted in sepsis) and the mechanisms by which it impacts sepsis development remain unclear. This study aims to elucidate how FX-targeted IRF3 modulates intestinal microbiota compositions, influencing sepsis development. FX significantly reduced the bacterial load in the abdominal cavity of mice with cecal ligation and puncture (CLP)-induced sepsis via IRF3 activation and increased short-chain fatty acids, like acetic and propionic acids, with respect to their intestines. FX also altered the structure of the intestinal flora, notably elevating beneficial Verrucomicrobiota and Akkermansia spp. while reducing harmful Morganella spp. Investigating the inflammation-flora link, we found positive correlations between the abundances of Morganella spp., Proteus spp., Escherichia spp., and Klebsiella spp. and pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α) induced by CLP. These bacteria were negatively correlated with acetic and propionic acid production. FX alters microbial diversity and promotes short-chain fatty acid production in mice with CLP-induced sepsis, reshaping gut homeostasis. These findings support the value of FX for the treatment of sepsis.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (B.G.); (Q.S.); (S.H.); (S.W.); (Z.T.); (F.Z.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Biyun Guan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (B.G.); (Q.S.); (S.H.); (S.W.); (Z.T.); (F.Z.)
| | - Qiaofen Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (B.G.); (Q.S.); (S.H.); (S.W.); (Z.T.); (F.Z.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Shan Hu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (B.G.); (Q.S.); (S.H.); (S.W.); (Z.T.); (F.Z.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Shun Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (B.G.); (Q.S.); (S.H.); (S.W.); (Z.T.); (F.Z.)
| | - Zhiyong Tong
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (B.G.); (Q.S.); (S.H.); (S.W.); (Z.T.); (F.Z.)
| | - Fen Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (B.G.); (Q.S.); (S.H.); (S.W.); (Z.T.); (F.Z.)
| |
Collapse
|
19
|
Su J, Guan B, Chen K, Feng Z, Guo K, Wang X, Xiao J, Chen S, Chen W, Chen L, Chen Q. Fucoxanthin Attenuates Inflammation via Interferon Regulatory Factor 3 (IRF3) to Improve Sepsis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12497-12510. [PMID: 37560933 DOI: 10.1021/acs.jafc.3c03247] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Suppression of excessive inflammatory responses improves the survival of patients with sepsis. We previously illustrated the anti-inflammatory effects of fucoxanthin (FX), a natural carotenoid isolated from brown algae; nevertheless, the underlying mechanism remains unknown. In this study, we examine the mechanism of the action of FX by targeting interferon regulatory factor 3 (IRF3) to inhibit inflammatory response. We observed that FX regulated innate immunity by inhibiting IRF3 phosphorylation in vitro. The in silico approach demonstrated a good binding mode between FX and IRF3. To examine the in vivo effects of FX, a mouse model of sepsis induced by cecal ligation and puncture (CLP) was created using both wild-type (WT) and Irf3-/- mice. FX significantly reduced pro-inflammatory cytokine levels and reactive oxygen species production, changed the circulating immune cell composition, and increased the survival rate of the CLP-induced sepsis model. Overall, FX ameliorated sepsis by targeting IRF3 activation, providing novel insights into the therapeutic potential and molecular mechanism of action of FX in the treatment of sepsis and suggesting that it may be used clinically to improve the survival rate in mice undergoing sepsis.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Biyun Guan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Kunsen Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Zhihua Feng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Kai Guo
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Xue Wang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Jianbin Xiao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Siyuan Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Wenzhi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Long Chen
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
20
|
Su J, Wu S, Zhou F, Tong Z. Research Progress of Macromolecules in the Prevention and Treatment of Sepsis. Int J Mol Sci 2023; 24:13017. [PMID: 37629199 PMCID: PMC10455590 DOI: 10.3390/ijms241613017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Sepsis is associated with high rates of mortality in the intensive care unit and accompanied by systemic inflammatory reactions, secondary infections, and multiple organ failure. Biological macromolecules are drugs produced using modern biotechnology to prevent or treat diseases. Indeed, antithrombin, antimicrobial peptides, interleukins, antibodies, nucleic acids, and lentinan have been used to prevent and treat sepsis. In vitro, biological macromolecules can significantly ameliorate the inflammatory response, apoptosis, and multiple organ failure caused by sepsis. Several biological macromolecules have entered clinical trials. This review summarizes the sources, efficacy, mechanism of action, and research progress of macromolecular drugs used in the prevention and treatment of sepsis.
Collapse
|
21
|
Su J, Tong Z, Wu S, Zhou F, Chen Q. Research Progress of DcR3 in the Diagnosis and Treatment of Sepsis. Int J Mol Sci 2023; 24:12916. [PMID: 37629097 PMCID: PMC10454171 DOI: 10.3390/ijms241612916] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Decoy receptor 3 (DcR3), a soluble glycosylated protein in the tumor necrosis factor receptor superfamily, plays a role in tumor and inflammatory diseases. Sepsis is a life-threatening organ dysfunction caused by the dysregulation of the response to infection. Currently, no specific drug that can alleviate or even cure sepsis in a comprehensive and multi-level manner has been found. DcR3 is closely related to sepsis and considerably upregulated in the serum of those patients, and its upregulation is positively correlated with the severity of sepsis and can be a potential biomarker for diagnosis. DcR3 alone or in combination with other markers has shown promising results in the early diagnosis of sepsis. Furthermore, DcR3 is a multipotent immunomodulator that can bind FasL, LIGHT, and TL1A through decoy action, and block downstream apoptosis and inflammatory signaling. It also regulates T-cell and macrophage differentiation and modulates immune status through non-decoy action; therefore, DcR3 could be a potential drug for the treatment of sepsis. The application of DcR3 in the treatment of a mouse model of sepsis also achieved good efficacy. Here, we introduce and discuss the progress in, and suggest novel ideas for, research regarding DcR3 in the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
| | | | | | | | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China; (Z.T.); (S.W.); (F.Z.)
| |
Collapse
|
22
|
Su J, Zhou F, Wu S, Tong Z. Research Progress on Natural Small-Molecule Compounds for the Prevention and Treatment of Sepsis. Int J Mol Sci 2023; 24:12732. [PMID: 37628912 PMCID: PMC10454676 DOI: 10.3390/ijms241612732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Sepsis is a serious disease with high mortality and has been a hot research topic in medical research in recent years. With the continuous reporting of in-depth research on the pathological mechanisms of sepsis, various compounds have been developed to prevent and treat sepsis. Natural small-molecule compounds play vital roles in the prevention and treatment of sepsis; for example, compounds such as resveratrol, emodin, salidroside, ginsenoside, and others can modulate signaling through the NF-κB, STAT3, STAT1, PI3K, and other pathways to relieve the inflammatory response, immunosuppression, and organ failure caused by sepsis. Here, we discuss the functions and mechanisms of natural small-molecule compounds in preventing and treating sepsis. This review will lay the theoretical foundation for discovering new natural small-molecule compounds that can potentially prevent and treat sepsis.
Collapse
|
23
|
Mendelson C, Sparkes S, Merenstein DJ, Christensen C, Sharma V, Desale S, Auchtung JM, Kok CR, Hallen-Adams HE, Hutkins R. Kombucha tea as an anti-hyperglycemic agent in humans with diabetes - a randomized controlled pilot investigation. Front Nutr 2023; 10:1190248. [PMID: 37588049 PMCID: PMC10426908 DOI: 10.3389/fnut.2023.1190248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/07/2023] [Indexed: 08/18/2023] Open
Abstract
Introduction Kombucha is a popular fermented tea that has attracted considerable attention due, in part, to its suggested health benefits. Previous results from animal models led us to hypothesize kombucha may reduce blood sugar levels in humans with diabetes. The objective of this pilot clinical study was to evaluate kombucha for its anti-hyperglycemic activities in adults with diabetes mellitus type II. Methods The study was organized as a prospective randomized double-blinded crossover study at a single-center urban hospital system. Participants (n = 12) were instructed to consume either a kombucha product or a placebo control (each 240 mL) for 4 weeks. After an 8-week washout period, participants consumed the alternate product. Fasting blood glucose levels were self-determined at baseline and at 1 and 4 weeks during each treatment period. Secondary health outcomes, including overall health, insulin requirement, gut health, skin health, mental health, and vulvovaginal health were measured by questionnaire at the same time points. The kombucha microbiota was assessed by selective culturing and 16S rRNA gene (bacteria) and ITS (fungi) sequencing. Fermentation end products were assessed by HPLC. Statistical significance of changes in fasting blood glucose was determined using paired, two-tailed student's t-tests. Results Kombucha lowered average fasting blood glucose levels at 4 weeks compared to baseline (164 vs. 116 mg/dL, p = 0.035), whereas the placebo did not (162 vs. 141 mg/dL, p = 0.078). The kombucha microbiota, as assessed by cultural enumeration, was mainly comprised of lactic acid bacteria, acetic acid bacteria, and yeast, with each group present at about 106 colony forming units (CFU)/mL. Likewise, 16S rRNA gene sequencing confirmed that lactic acid and acetic acid bacteria were the most abundant bacteria, and ITS sequencing showed Dekkera was the most abundant yeast. The primary fermentation end products were lactic and acetic acids, both less than 1%. Ethanol was present at 1.5%. Discussion Although this pilot study was limited by a small sample size, kombucha was associated with reduced blood glucose levels in humans with diabetes. Larger follow-up studies are warranted. Clinical trial registration ClinicalTrials.gov, identifier NCT04107207.
Collapse
Affiliation(s)
- Chagai Mendelson
- Department of Medicine, MedStar Georgetown University Hospital, Washington, DC, United States
| | - Sabrina Sparkes
- Department of Human Science, Georgetown University School of Health, Washington, DC, United States
| | - Daniel J. Merenstein
- Department of Human Science, Georgetown University School of Health, Washington, DC, United States
- Department of Family Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Chloe Christensen
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, United States
| | - Varun Sharma
- Division of General Internal Medicine, MedStar Georgetown University Hospital, Washington, DC, United States
| | | | - Jennifer M. Auchtung
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, United States
| | - Car Reen Kok
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, United States
| | - Heather E. Hallen-Adams
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, United States
| | - Robert Hutkins
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
24
|
Su J, Chen S, Xiao J, Feng Z, Hu S, Su Q, Chen Q, Chen D. Aloe-Emodin Ameliorates Cecal Ligation and Puncture-Induced Sepsis. Int J Mol Sci 2023; 24:11972. [PMID: 37569344 PMCID: PMC10418438 DOI: 10.3390/ijms241511972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Sepsis remains a major challenge owing to its severe adverse effects and high mortality, against which specific pharmacological interventions with high efficacy are limited. Mitigation of hyperactive inflammatory responses is a key factor in enhancing the likelihood of survival in patients with sepsis. The Aloe genus has several health benefits, including anti-inflammatory properties. The toxicological implications of aloe-emodin (AE), extracted from various Aloe species, remain uncertain in clinical contexts. However, AE has been shown to inhibit inflammatory responses in lipopolysaccharide-induced mice, indicating its potential as a therapeutic approach for sepsis treatment. Nonetheless, there is a paucity of data regarding the therapeutic benefits of AE in the widely recognized cecal ligation and puncture (CLP)-induced sepsis model, which is commonly used as the gold standard model for sepsis research. This study demonstrates the potential benefits of AE in the treatment of CLP-induced sepsis and investigates its underlying mechanism, along with the efficacy of postoperative AE treatment in mice with CLP-induced sepsis. The results of this study suggest that AE can mitigate sepsis in mice by diminishing systemic inflammation and regulating the gut microbiota. The study provides novel insights into the molecular mechanisms underlying the anti-inflammatory effects of AE.
Collapse
Affiliation(s)
- Jingqian Su
- Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China; (J.S.); (Z.F.); (S.H.); (Q.S.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Siyuan Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Science, Fujian Normal University, Fuzhou 350117, China; (S.C.); (J.X.)
| | - Jianbin Xiao
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Science, Fujian Normal University, Fuzhou 350117, China; (S.C.); (J.X.)
| | - Zhihua Feng
- Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China; (J.S.); (Z.F.); (S.H.); (Q.S.)
| | - Shan Hu
- Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China; (J.S.); (Z.F.); (S.H.); (Q.S.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Qiaofen Su
- Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China; (J.S.); (Z.F.); (S.H.); (Q.S.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Qi Chen
- Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China; (J.S.); (Z.F.); (S.H.); (Q.S.)
| | - Duo Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Science, Fujian Normal University, Fuzhou 350117, China; (S.C.); (J.X.)
| |
Collapse
|
25
|
Yu J, Hu G, Guo X, Cao H, Zhang C. Quercetin Alleviates Inflammation and Energy Deficiency Induced by Lipopolysaccharide in Chicken Embryos. Animals (Basel) 2023; 13:2051. [PMID: 37443849 DOI: 10.3390/ani13132051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Energy deficiency causes multiple organ dysfunctions after LPS induction. Quercetin is a phenolic compound found in herbal medicines. However, the effects of quercetin in alleviating LPS-induced energy deficiency remain unclear. In the present study, an in vivo LPS-induced inflammation model was established in chicken embryos. Specific pathogen-free chicken embryos (n = 120) were allocated to control, PBS with or without ethanol, quercetin (10, 20, or 40 nmol, respectively), and LPS (125 ng/egg) with or without quercetin groups. Fifteen day old embryonated eggs were injected with the abovementioned solutions via the allantoic cavity. On embryonic day 19, the tissues of the embryos were collected for histopathological examination using frozen oil red O staining, RNA extraction, real-time quantitative polymerase chain reaction, and immunohistochemical investigations. The glycogen and lipid contents in the liver increased after LPS stimulation as compared with the PBS group, whereas quercetin decreased the accumulation as compared with the LPS group. The mRNA expressions of AMPKα1 and AMPKα2 in the duodena, ceca, and livers were upregulated after LPS induction as compared with the PBS group, while quercetin could downregulate these expressions as compared with the LPS group. The immunopositivity of AMPKα2 in the villus, crypt, lamina propria, tunica muscularis, and myenteric plexus in the duodena and in the cytoplasms of hepatocytes significantly increased after LPS induction when compared with the PBS group (p < 0.01), whereas the immunopositivity to AMPKα2 in the quercetin treatment group significantly decreased when compared with the LPS group (p < 0.01 or p < 0.05). The LPS-induced high expressions of transcription factor PPARα and glucose transporter (SGLT1) were blocked by quercetin in the duodena, ceca, and livers. Quercetin treatment improved the LPS-induced decrease in APOA4 in the duodena, ceca, and livers. The mRNA expression of PEPT1 in the duodena and ceca increased after LPS challenge, whereas quercetin could downregulate PEPT1 gene expression. These data demonstrate that quercetin improved the energy deficiency induced by LPS in chicken embryos. The LPS-induced inflammation model was established to avoid the effect of LPS exposure from the environment and intestinal flora. The results form the basis the administration of quercetin pretreatment (in ovo infection) to improve the energy state of chicken embryos and improve the inflammation response.
Collapse
Affiliation(s)
- Jinhai Yu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
26
|
Sales AL, Iriondo-DeHond A, DePaula J, Ribeiro M, Ferreira IMPLVO, Miguel MAL, Del Castillo MD, Farah A. Intracellular Antioxidant and Anti-Inflammatory Effects and Bioactive Profiles of Coffee Cascara and Black Tea Kombucha Beverages. Foods 2023; 12:foods12091905. [PMID: 37174444 PMCID: PMC10177953 DOI: 10.3390/foods12091905] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Kombucha is a functional beverage obtained through fermentation of sweetened Camellia sinensis infusion by a symbiotic culture of bacteria and yeasts that exerts many beneficial biological effects, mostly related to its antioxidant and anti-inflammatory effects. Alternative raw materials have been used to create new kombucha or kombucha-like products. Coffee is the most important food commodity worldwide and generates large amounts of by-products during harvest and post-harvest processing. The main coffee by-product is the dried fruit skin and pulp, popularly known as cascara. To date, no studies have evaluated the potential bioactivity of coffee cascara kombucha. In this study, we aimed to measure and compare the effects of infusions and kombuchas made with arabica coffee cascaras (n = 2) and black tea leaves (n = 1), fermented for 0, 3, 6, and 9 days on the intracellular production of Reactive Oxygen Species (ROS) and Nitric Oxide (NO) in model cells. Oxidative stress was induced in HK-2 cells with indoxyl sulfate (IS) and high glucose (G). Inflammation was induced with lipopolysaccharide (LPS) in RAW 264.7 macrophage. The contents of phenolic compounds, caffeine, and other physicochemical parameters were evaluated. To the best of our knowledge, this is the first study providing information on the bioactive profile and on the potential biological effects of coffee cascara kombucha. Fermentation caused the release of bound phenolic compounds from the infusions, especially total chlorogenic acids, with an average increase from 5.4 to 10.7 mg/100 mL (98%) and 2.6-3.4 mg/100 mL (30%) in coffee cascara and black tea kombucha, respectively, up to day 9. All evaluated beverages reduced (p < 0.0001) similarly the intracellular ROS (41% reduction, on average) and uric acid (10-55%) concentrations in HK-2 model cells, reversing the induced oxidative stress. All beverages also reduced (p < 0.0001, 81-90%) NO formation in LPS-induced macrophages, exhibiting an anti-inflammatory effect. These potential health benefits may be mostly attributed to polyphenols and caffeine, whose contents were comparable in all beverages. Coffee cascara showed similar potential to C. sinensis to produce healthy beverages and support sustainable coffee production.
Collapse
Affiliation(s)
- Amanda L Sales
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratório de Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil
- Laboratório de Biociencia de Alimentos, Instituto de Investigación em Ciencias de La Alimentación (CIAL) CSIC-UAM, Calle Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Amaia Iriondo-DeHond
- Laboratório de Biociencia de Alimentos, Instituto de Investigación em Ciencias de La Alimentación (CIAL) CSIC-UAM, Calle Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Departamento de Nutrición y Ciencia de los Alimentos, Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Juliana DePaula
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratório de Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil
| | - Mafalda Ribeiro
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal
| | - Isabel M P L V O Ferreira
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal
| | - Marco Antonio L Miguel
- Laboratório de Microbiologia de Alimentos, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. I, Rio de Janeiro21941-902, Brazil
| | - María Dolores Del Castillo
- Laboratório de Biociencia de Alimentos, Instituto de Investigación em Ciencias de La Alimentación (CIAL) CSIC-UAM, Calle Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Adriana Farah
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratório de Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
27
|
Anantachoke N, Duangrat R, Sutthiphatkul T, Ochaikul D, Mangmool S. Kombucha Beverages Produced from Fruits, Vegetables, and Plants: A Review on Their Pharmacological Activities and Health Benefits. Foods 2023; 12:foods12091818. [PMID: 37174355 PMCID: PMC10178031 DOI: 10.3390/foods12091818] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Kombucha is a traditional health beverage produced by fermenting sweetened tea with a symbiotic culture of bacteria and yeasts. Consumption of kombucha beverages has been growing and there is kombucha commercially available worldwide as one of the most famous low-alcohol beverages. Kombucha beverages have been claimed to have beneficial effects on human health because they contain a variety of bioactive compounds that possess various functional properties. At present, several kinds of raw material (e.g., milk, fruit, vegetables, and herbs) have been fermented with kombucha consortium and consumed as kombucha beverages. Although several studies have been written regarding the biological activities of kombucha and raw materials, there is however little information available on the characterization of their components as well as the biological activities of fermented kombucha from many raw material mixtures. Several pharmacological activities were reviewed in the scientific literature, describing their potential implications for human health. In addition, the adverse effects and toxicity of kombucha consumption were also reviewed. In this study, we focused on the main and latest studies of the pharmacological effects of kombucha beverages produced from various kinds of raw materials, including antioxidant, anti-inflammatory, immunomodulatory, antimicrobial, anticancer, antidiabetic, antihypertensive, and antihyperlipidemic effects in in vitro and in vivo studies.
Collapse
Affiliation(s)
- Natthinee Anantachoke
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Ratchanee Duangrat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Tanyarat Sutthiphatkul
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Duangjai Ochaikul
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Supachoke Mangmool
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
28
|
Wu S, Chen X, Cai R, Chen X, Zhang J, Xie J, Shen M. Sulfated Chinese Yam Polysaccharides Alleviate LPS-Induced Acute Inflammation in Mice through Modulating Intestinal Microbiota. Foods 2023; 12:foods12091772. [PMID: 37174310 PMCID: PMC10178587 DOI: 10.3390/foods12091772] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
This study aimed to test the preventive anti-inflammatory properties of Chinese yam polysaccharides (CYP) and sulfated Chinese yam polysaccharides (SCYP) on LPS-induced systemic acute inflammation in mice and investigate their mechanisms of action. The results showed that SCYP can efficiently reduce plasma TNF-α and IL-6 levels, exhibiting an obvious anti-inflammation ability. Moreover, SCYP reduced hepatic TNF-α, IL-6, and IL-1β secretion more effectively than CYP, and significantly altered intestinal oxidative stress levels. In addition, a 16S rRNA gene sequencing analysis showed that CYP regulated the gut microbiota by decreasing Desulfovibrio and Sutterella and increasing Prevotella. SCYP changed the gut microbiota by decreasing Desulfovibrio and increasing Coprococcus, which reversed the microbiota dysbiosis caused by LPS. Linear discriminant analysis (LDA) effect size (LEfSe) revealed that treatment with CYP and SCYP can produce more biomarkers of the gut microbiome that can promote the proliferation of polysaccharide-degrading bacteria and facilitate the intestinal de-utilization of polysaccharides. These results suggest that SCYP can differentially regulate intestinal flora, and that they exhibit anti-inflammatory effects, thus providing a new reference to rationalize the exploitation of sulfated yam polysaccharides.
Collapse
Affiliation(s)
- Shihua Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ruixin Cai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaodie Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jian Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
29
|
Paul AK, Lim CL, Apu MAI, Dolma KG, Gupta M, de Lourdes Pereira M, Wilairatana P, Rahmatullah M, Wiart C, Nissapatorn V. Are Fermented Foods Effective against Inflammatory Diseases? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2481. [PMID: 36767847 PMCID: PMC9915096 DOI: 10.3390/ijerph20032481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/21/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Fermented foods have been used over the centuries in various parts of the world. These foods are rich in nutrients and are produced naturally using various biological tools like bacteria and fungi. Fermentation of edible foods has been rooted in ancient cultures to keep food for preservation and storage for a long period of time with desired or enhanced nutritional values. Inflammatory diseases like rheumatoid arthritis, osteoarthritis, and chronic inflammatory pain are chronic disorders that are difficult to treat, and current treatments for these disorders fail due to various adverse effects of prescribed medications over a long period of time. Fermented foods containing probiotic bacteria and fungi can enhance the immune system, improve gastrointestinal health, and lower the risk of developing various inflammatory diseases. Foods prepared from vegetables by fermentation, like kimchi, sauerkraut, soy-based foods, or turmeric, lack proper clinical and translational experimental studies. The current review has focused on the effectiveness of various fermented foods or drinks used over centuries against inflammation, arthritis, and oxidative stress. We also described potential limitations on the efficacies or usages of these fermented products to provide an overarching picture of the research field.
Collapse
Affiliation(s)
- Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Chooi Ling Lim
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Md. Aminul Islam Apu
- Department of Nutrition and Hospitality Management, The University of Mississippi, Oxford, MS 38677, USA
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Re-search University, New Delhi 110017, India
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh
| | - Christophe Wiart
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
30
|
PLD2 deletion alleviates disruption of tight junctions in sepsis-induced ALI by regulating PA/STAT3 phosphorylation pathway. Int Immunopharmacol 2023; 114:109561. [PMID: 36700766 DOI: 10.1016/j.intimp.2022.109561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Increased inflammatory exudation caused by endothelium and endothelial junction damage is a typical pathological feature of acute respiratory distress syndrome/acute lung injury (ARDS/ALI). Previous studies have shown that phospholipase D2 (PLD2) can increase the inflammatory response and has a close relationship with the severity of sepsis-induced ALI and the mortality of sepsis, but its mechanism is unknown. This study explored the effect and mechanism of PLD2 deletion on the structure and function of endothelial tight junction (TJ) in lipopolysaccharide (LPS)-induced ALI. METHODS We used C57BL/6 mice (wild-type and PLD2 knockout (PLD2-/-)) and human umbilical vein endothelial cell (HUVEC) models of sepsis-ALI. The pathological changes were evaluated by hematoxylin-eosin staining. Pulmonary vascular permeability was detected using wet-dry ratio, fluorescein isothiocyanate (FITC)-dextran, FITC-albumin, and immunoglobulin M concentration of bronchoalveolar lavage fluid. FITC-dextran and trans-endothelial electrical resistance assay were used to evaluate endothelial permeability on LPS-stimulated HUVECs. The mRNA expressions of TJ proteins were detected by real-time quantitative polymerase chain reaction. Then, protein levels were detected through Western blot analysis and immunofluorescence. The content of phosphatidic acid (PA), a downstream product of PLD2, was detected using an enzyme-linked immunosorbent assay kit. RESULTS PLD2 deficiency not only alleviated lung histopathological changes and improved pulmonary vascular permeability but also increased the survival rate of ALI mice. Knockout of PLD2 or treatment with the PLD2 inhibitor can reduce the damage of endothelial TJ proteins, namely, claudin5, occludin and zonula occludens protein-1, in sepsis-ALI mice and LPS-stimulated HUVECs. The level of the PLD2 catalytic product PA increased in LPS-stimulated HUVECs, and exogenous PA can reduce the TJ protein expression and increase signal transducer and activator of transcription 3 (STAT3) phosphorylation in vitro. Inhibition of STAT3 phosphorylation attenuated PA-induced degradation of endothelial TJs. CONCLUSION PLD2 knockout or inhibition may protect against LPS-induced lung injury by regulating the PA/STAT3 phosphorylation/endothelial TJ axis.
Collapse
|
31
|
Costa MADC, Dias Moreira LDP, Duarte VDS, Cardoso RR, de São José VPB, da Silva BP, Grancieri M, Corich V, Giacomini A, Bressan J, Martino HSD, de Barros FAR. Kombuchas from Green and Black Tea Modulate the Gut Microbiota and Improve the Intestinal Health of Wistar Rats Fed a High-Fat High-Fructose Diet. Nutrients 2022; 14:5234. [PMID: 36558393 PMCID: PMC9787585 DOI: 10.3390/nu14245234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The Western diet can negatively affect the gut microbiota and is associated with metabolic disorders. Kombucha, a tea fermented by a symbiotic culture of bacteria and yeast (SCOBY), is known for its bioactive properties and has become popular in the last years. In this study, we evaluated the effects of regular kombucha consumption on the gut microbiota and on outcomes related to the intestinal health of Wistar rats fed a high-fat high-fructose diet. After eight weeks receiving a standard diet (AIN-93M) (n = 10) or a high-fat and high-fructose diet (HFHF) (n = 30) to induce metabolic disorders, the animals were subdivided into four groups: AIN-93M (n = 10); HFHF (n = 10); GTK (HFHF + green tea kombucha (n = 10); and BTK (HFHF + black tea kombucha; n = 10) for 10 weeks. Although body composition did not differ among the groups, the HFHF diet was associated with metabolic alterations, and stimulated the growth of gram-negative bacteria such as Proteobacteria and Bacteroides. Kombucha ingestion could somewhat modulate the gut microbiota, attenuating the effects of a Western diet by increasing propionate production and favoring the growth of beneficial bacteria, such as Adlercreutzia in the GTK group. Our results suggest that regular kombucha consumption may be beneficial to intestinal health, which can be mostly attributed to its high content and diversity of phenolic compounds.
Collapse
Affiliation(s)
| | - Luiza de Paula Dias Moreira
- Department of Agronomy, Food Natural Resources, Animals, and Environment (DAFNAE), Università degli Studi di Padova, Via dell’Università 16, 35020 Legnaro, PD, Italy
| | - Vinícius da Silva Duarte
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Rodrigo Rezende Cardoso
- Department of Food Technology, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa 36570-900, MG, Brazil
| | | | - Bárbara Pereira da Silva
- Department of Nutrition and Health, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa 36570-000, MG, Brazil
| | - Mariana Grancieri
- Department of Nutrition and Health, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa 36570-000, MG, Brazil
| | - Viviana Corich
- Department of Agronomy, Food Natural Resources, Animals, and Environment (DAFNAE), Università degli Studi di Padova, Via dell’Università 16, 35020 Legnaro, PD, Italy
| | - Alessio Giacomini
- Department of Agronomy, Food Natural Resources, Animals, and Environment (DAFNAE), Università degli Studi di Padova, Via dell’Università 16, 35020 Legnaro, PD, Italy
| | - Josefina Bressan
- Department of Nutrition and Health, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa 36570-000, MG, Brazil
| | - Hércia Stampini Duarte Martino
- Department of Nutrition and Health, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa 36570-000, MG, Brazil
| | | |
Collapse
|
32
|
Wang X, Wang D, Wang H, Jiao S, Wu J, Hou Y, Sun J, Yuan J. Chemical Profile and Antioxidant Capacity of Kombucha Tea by the Pure Cultured Kombucha. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
33
|
Ortega MA, Fraile-Martínez Ó, García-Montero C, Alvarez-Mon MA, Lahera G, Monserrat J, Llavero-Valero M, Gutiérrez-Rojas L, Molina R, Rodríguez-Jimenez R, Quintero J, De Mon MA. Biological Role of Nutrients, Food and Dietary Patterns in the Prevention and Clinical Management of Major Depressive Disorder. Nutrients 2022; 14:3099. [PMID: 35956276 PMCID: PMC9370795 DOI: 10.3390/nu14153099] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Major Depressive Disorder (MDD) is a growing disabling condition affecting around 280 million people worldwide. This complex entity is the result of the interplay between biological, psychological, and sociocultural factors, and compelling evidence suggests that MDD can be considered a disease that occurs as a consequence of an evolutionary mismatch and unhealthy lifestyle habits. In this context, diet is one of the core pillars of health, influencing multiple biological processes in the brain and the entire body. It seems that there is a bidirectional relationship between MDD and malnutrition, and depressed individuals often lack certain critical nutrients along with an aberrant dietary pattern. Thus, dietary interventions are one of the most promising tools to explore in the field of MDD, as there are a specific group of nutrients (i.e., omega 3, vitamins, polyphenols, and caffeine), foods (fish, nuts, seeds fruits, vegetables, coffee/tea, and fermented products) or dietary supplements (such as S-adenosylmethionine, acetyl carnitine, creatine, amino acids, etc.), which are being currently studied. Likewise, the entire nutritional context and the dietary pattern seem to be another potential area of study, and some strategies such as the Mediterranean diet have demonstrated some relevant benefits in patients with MDD; although, further efforts are still needed. In the present work, we will explore the state-of-the-art diet in the prevention and clinical support of MDD, focusing on the biological properties of its main nutrients, foods, and dietary patterns and their possible implications for these patients.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28805 Alcalá de Henares, Spain
| | - Óscar Fraile-Martínez
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (M.L.-V.); (J.Q.)
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (M.L.-V.); (J.Q.)
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Maria Llavero-Valero
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (M.L.-V.); (J.Q.)
| | - Luis Gutiérrez-Rojas
- Department of Psychiatry and CTS-549 Research Group, Institute of Neuroscience, University of Granada, 18071 Granada, Spain;
- Psychiatry Service, San Cecilio University Hospital, 18016 Granada, Spain
| | - Rosa Molina
- Department of Psychiatry and Mental, Health San Carlos University Hospital (HCSC), 28034 Madrid, Spain;
- Research Biomedical Fundation of HCSC Hospital, 28034 Madrid, Spain
- Department of Psychology, Comillas University, Cantoblanco, 28015 Madrid, Spain
| | - Roberto Rodríguez-Jimenez
- Department of Legal Medicine, Psychiatry, and Pathology, Complutense University (UCM), 28040 Madrid, Spain;
- Institute for Health Research 12 de Octubre Hospital, (imas12)/CIBERSAM-ISCIII (Biomedical Research Networking Centre in Mental Health), 28041 Madrid, Spain
| | - Javier Quintero
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (M.L.-V.); (J.Q.)
- Department of Legal Medicine, Psychiatry, and Pathology, Complutense University (UCM), 28040 Madrid, Spain;
| | - Melchor Alvarez De Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| |
Collapse
|
34
|
Yang Z, Zhu X, Wen A, Ran J, Qin L, Zhu Y. Coix Seed-Based Milk Fermented With Limosilactobacillus reuteri Improves Lipid Metabolism and Gut Microbiota in Mice Fed With a High-Fat Diet. Front Nutr 2022; 9:921255. [PMID: 35903451 PMCID: PMC9320324 DOI: 10.3389/fnut.2022.921255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to investigate the effects of coix seed-based milk (CSM) fermented with Limosilactobacillus reuteri (L. reuteri) on dyslipidemia and the composition of the intestinal microbiota in high fat diet (HFD)-fed mice. Changes in the body weight, serum lipid levels, activities of hepatic oxidative stress factors, expression of lipid-related genes, and composition of the intestinal microbiota of HFD-fed mice after supplementation with CSM were determined. The results showed that intake of CSM reduced the body weight gain as well as serum total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) levels, and increased the high-density lipoprotein cholesterol (HDL-C) levels in the mice. Meanwhile, supplementation with CSM could relieve liver oxidative stress, down-regulate the expression of genes related to lipid synthesis, and prevent liver fat accumulation in mice fed with HFD. The 16S rRNA sequencing of the intestinal microbiota showed that CSM regulated the gut microbiota community structure at different taxonomic levels, and reversed gut dysbiosis induced by HFD. The relative abundance of Muribaculaceae, Lachnospiraceae, Dubosiella and Akkermansia which are negatively correlated with blood lipid levels were significantly increased by the intervention of CSM, while the relative abundance of Desulfovibrionaceae, Ruminococca-ceae_UCG-014, Psychrobacter, and Staphylococcus which have positive correlation with blood lipid levels were significantly decreased. These results indicated that CSM might serve as a novel and promising dietary supplement for ameliorating hyperlipidemia and intestinal microbiota disorders caused by HFDs.
Collapse
Affiliation(s)
- Zhoujie Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Xiaoli Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Anyan Wen
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Jingqi Ran
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Likang Qin
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
- *Correspondence: Likang Qin
| | - Yi Zhu
- Plant Protection and Plant Quarantine Station of Guizhou Province, Guiyang, China
| |
Collapse
|
35
|
Abaci N, Senol Deniz FS, Orhan IE. Kombucha - An ancient fermented beverage with desired bioactivities: A narrowed review. Food Chem X 2022; 14:100302. [PMID: 35434600 PMCID: PMC9011011 DOI: 10.1016/j.fochx.2022.100302] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 12/18/2022] Open
Abstract
Kombucha, originated in China 2000 years ago, is a sour and sweet-tasted drink, prepared traditionally through fermentation of black tea. During the fermentation of kombucha, consisting of mainly acidic compounds, microorganisms, and a tiny amount of alcohol, a biofilm called SCOBY forms. The bacteria in kombucha has been generally identified as Acetobacteraceae. Kombucha is a noteworthy source of B complex vitamins, polyphenols, and organic acids (mainly acetic acid). Nowadays, kombucha is tended to be prepared with some other plant species, which, therefore, lead to variations in its composition. Pre-clinical studies conducted on kombucha revealed that it has desired bioactivities such as antimicrobial, antioxidant, hepatoprotective, anti-hypercholestorelomic, anticancer, anti-inflammatory, etc. Only a few clinical studies have been also reported. In the current review, we aimed to overhaul pre-clinical bioactivities reported on kombucha as well as its brief compositional chemistry. The literature data indicate that kombucha has valuable biological effects on human health.
Collapse
Key Words
- ABTS, 2,2-azinobis-(3-ethylbenzotiazoline-6-sulfonic acid)
- ACE, Angiotensin-converting enzyme
- AHA, Alpha hydroxy acid
- ALP, Alkaline phosphatase
- ALT, Alanine aminotransferase
- AMPK, Adenosine monophosphate-activated protein kinase
- AST, Aspartate aminotransferase
- ATCC, American type culture collection
- BBB, Blood-brain barrier
- Bioactivity
- Biofilm
- CAT, Catalase
- COVID-19, Coronavirus disease of 2019
- DNA, Deoxyribonucleic Acid
- DPPH, 2,2-diphenyl-1-picrylhydrazyl
- DSL, d-Saccharic acid-1,4-lactone
- EGCG, Epigallocatechin gallate
- FRAP, Ferric reducing antioxidant power
- Fermented drink
- GC–MS, Gas chromatography- mass spectrometry
- GGT, Gamma glutamyl transferase
- GPx, Glutathione peroxidase
- GRx, Glutathione reductase
- GST, Glutathione S-transferase
- HDL, High density lipoprotein
- HPLC, High-performance liquid chromatography
- HPLC-MS/MS, High-performance liquid chromatography- mass spectrometry/ mass spectrometry
- HPLC-UV-ESI-MS, High-performance liquid chromatography-ultraviolet- electrospray ionization-mass spectrometry
- HPLC/ESI–MS, High-performance liquid chromatography/electrospray ionization-mass spectrometry
- HbA1c, Glycosylated Hemoglobin, Type A1C
- IC50, Half maximal ınhibitory concentration
- IL, Interleukin
- Kombucha
- LC-MS, Liquid chromatography–mass spectrometry
- LDH, Lactate dehydrogenase
- LDL, Low-density lipoprotein
- LOX, Lipoxygenase
- LPS, Lipopolysaccharide
- MCD, Methionine/choline-deficient diet
- MCDM, Multi-criteria decision-making MDA, Malondialdehyde
- MIC, Minimum inhibitory concentration
- Microorganism
- NAD, Nicotinamide adenine dinucleotide
- NAFLD, Non-alcoholic fatty liver disease
- NO, Nitric oxide
- ORAC, Oxygen radical absorbance capacity
- RNS, Reactive nitrogen species
- ROS, Reactive oxygen species
- SASP, Senescence-associated secretory phenotype
- SCOBY, Symbiotic culture of bacteria and yeast
- SMC, Synthetic microbial community
- SOD, Superoxide dismutase
- SPF, Sun Protection Factor
- TAA, Thioacetamide
- TE, Trolox equivalent
- TEAC, Trolox-equivalent antioxidant capacity
- TG, Triglyceride
- TLC, Thin-layer chromatography
- TNF-α, Tumour necrosis factor alpha
- UVB, Ultraviolet radiation-B
- VLDL, Very low-density lipoprotein
- WGJ, Wheatgrass juice
- WoS, Web of Science
Collapse
Affiliation(s)
- Nurten Abaci
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | | | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Cad., No. 112, 06670 Ankara, Turkey
| |
Collapse
|
36
|
Mafra D, Borges NA, Alvarenga L, Ribeiro M, Fonseca L, Leal VO, Shiels PG, Stenvinkel P. Fermented food: Should patients with cardiometabolic diseases go back to an early neolithic diet? Crit Rev Food Sci Nutr 2022; 63:10173-10196. [PMID: 35593230 DOI: 10.1080/10408398.2022.2077300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fermentation has been used since the Early Neolithic period to preserve foods. It has inherent organoleptic and nutritive properties that bestow health benefits, including reducing inflammation and oxidative stress, supporting the growth of salutogenic microbiota, enhancing intestinal mucosal protection and promoting beneficial immunometabolic health effects. The fermentation of food with specific microbiota increases the production salutogenic bioactive compounds that can activate Nrf2 mediated cytoprotective responses and mitigate the effects of the 'diseasome of aging' and its associated inflammageing, which presents as a prominent feature of obesity, type-2 diabetes, cardiovascular and chronic kidney disease. This review discusses the importance of fermented food in improving health span, with special reference to cardiometabolic diseases.
Collapse
Affiliation(s)
- D Mafra
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - N A Borges
- Institute of Nutrition, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - L Alvarenga
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
| | - M Ribeiro
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - L Fonseca
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
| | - V O Leal
- Division of Nutrition, Pedro Ernesto University Hospital, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P G Shiels
- Wolfson Wohl Translational Research Centre, University of Glasgow, Bearsden, Glasgow, UK
| | - P Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Instituted, Stockholm, Sweden
| |
Collapse
|