1
|
Ma T, Li Y, Yang N, Wang H, Shi X, Liu Y, Jin H, Kwok LY, Sun Z, Zhang H. Efficacy of a postbiotic and its components in promoting colonic transit and alleviating chronic constipation in humans and mice. Cell Rep Med 2025; 6:102093. [PMID: 40286792 DOI: 10.1016/j.xcrm.2025.102093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/06/2024] [Accepted: 04/01/2025] [Indexed: 04/29/2025]
Abstract
This study evaluates the efficacy of the postbiotic Probio-Eco in alleviating constipation in humans and mice. A randomized, double-blind, placebo-controlled crossover trial involving 110 adults with chronic constipation (Rome IV criteria) demonstrates that a 3-week Probio-Eco intervention significantly improves constipation symptoms, stool straining, and worry scores. Gut microbiota and metabolomic analyses reveal modulations in specific gut microbiota, succinate, tryptophan derivatives, deoxycholate, propionate, butyrate, and cortisol, correlating with symptom relief. A loperamide-induced mouse model confirms that Probio-Eco and its bioactive components (succinate, 3-indoleacrylic acid, and 5-hydroxytryptophan) alleviate constipation by stimulating mucin-2 secretion, regulating intestinal transport hormones, and promoting anti-inflammatory responses. Multi-omics integration identifies key pathways, including succinate-short-chain fatty acid, tryptophan-5-hydroxytryptophan-serotonin, and tryptophan-3-indoleacrylic acid, driving intestinal homeostasis and motility. These findings highlight the comprehensive efficacy of Probio-Eco and provide robust evidence for its clinical application in constipation management. This study was registered at Chinese Clinical Trial Registry (ChiCTR2100054376).
Collapse
Affiliation(s)
- Teng Ma
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Yalin Li
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Ni Yang
- State Key Laboratory of Research and Development of Classical Prescription and Modern Chinese Medicine, 1899 Meiling Road, Nanchang 330103, China
| | - Huan Wang
- Inner Mongolia People's Hospital, Hohhot, China
| | - Xuan Shi
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanfang Liu
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Hao Jin
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Lai-Yu Kwok
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhihong Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Heping Zhang
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
2
|
Bui TNY, Paul A, Guleria S, O'Sullivan JM, Toldi G. Short-chain fatty acids-a key link between the gut microbiome and T-lymphocytes in neonates? Pediatr Res 2025:10.1038/s41390-025-04075-0. [PMID: 40307498 DOI: 10.1038/s41390-025-04075-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025]
Abstract
Infancy is a vulnerable and critical phase in the acquisition of the gut microbiome and the establishment of immune function. Short-chain fatty acids (SCFAs), such as acetate, propionate and butyrate, are compounds mostly produced by the microbiome through various metabolic pathways and play an indispensable role in connecting the microbiome and the adaptive immune system. This review aims to summarise recent findings regarding the intricate relationship between SCFAs, the gut microbiome, and T lymphocytes with a focus on early life interactions. The paper discusses factors affecting the establishment of the neonatal microbiome, especially human milk versus formula milk, and how these influence SCFA concentrations in feces, which in turn directly impact T cell development and function. Despite recent advances in understanding the role of gut microbiome derived SCFAs in adults, a significant knowledge gap remains in translating these findings to neonates and exploring the utility of SCFAs as a potential therapeutic intervention in inflammatory complications of preterm and term neonates. IMPACT: This review highlights potential therapeutic applications of short-chain fatty acids (SCFAs) in neonatal care, particularly in preventing and treating inflammatory conditions. This could lead to new treatment strategies for conditions like NEC and other immune-mediated disorders in neonates. By identifying significant knowledge gaps in neonatal SCFA research, this review helps future investigations toward understanding SCFA mechanisms specifically in neonates, potentially leading to age-appropriate therapeutic interventions. Understanding the relationship between early-life factors (such as feeding methods and microbiome development) and immune system development through SCFAs could inform public health policies and recommendations for infant nutrition and care practices.
Collapse
Affiliation(s)
- Tram N Y Bui
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Ayamita Paul
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Shalini Guleria
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | | | - Gergely Toldi
- Liggins Institute, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
3
|
Zhang Z, Li J, Wan Z, Fang S, Zhao Y, Li Q, Zhang M. Bifidobacterium animalis subsp. lactis BLa80 alleviates constipation in mice through modulating the stem cell factor (SCF)/c-Kit pathway and the gut microbiota. Food Funct 2025; 16:2347-2362. [PMID: 39992179 DOI: 10.1039/d4fo06350c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Probiotics, as health ingredients, have attracted widespread attention. However, due to the wide variety of probiotic species, their laxative effects and the underlying mechanisms remain elusive. In this study, we investigated the laxative effect of Bifidobacterium animalis subsp. lactis BLa80 (at concentrations of 1.0 × 108, 2.0 × 108, and 4.0 × 108 CFU per mL, with a dosage of 0.2 mL each) in mice, utilizing a functional constipation mouse model induced with loperamide hydrochloride (0.2 mL, 10 mg per kg BW) for 7 consecutive days. Meanwhile, a blank group (treated with 0.2 mL of 0.9% saline) and a positive control group (treated with mosapride at a dose of 5 mg per kg BW) were also set up. The body weight, fecal water content, intestinal propulsion rate, colon tissue histology, fecal microbial composition, serum indices, and colon mRNA levels of the mice were measured, employing histological and biochemical assays, GC-MS, RT-qPCR and 16S rRNA gene sequencing etc. Results showed BLa80 could accelerate intestinal peristalsis, maintain fecal moisture, prevent intestinal barrier disruption, increase short-chain fatty acid production, prevent gut microbe dysbiosis and constipation in mice. It also helped to keep the levels of 5-hydroxytryptamine (5-HT), motilin (MTL), and substance P (SP) normal, up-regulated the mRNAs of intestinal mucin 2 (MUC2), stem cell factor (SCF), and the tyrosine kinase receptor c-Kit, and down-regulated the mRNA of aquaporins (AQPs), especially at a high-dose. This study indicated that BLa80 held the potential to emerge as a novel ingredient in functional foods designed for constipation relief and as a treatment alternative.
Collapse
Affiliation(s)
- Zhaochun Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jie Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Ziyi Wan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shuguang Fang
- Wecare Probiotics Co., Ltd, Suzhou, Jiangsu Province 215200, China
| | - Yunjiao Zhao
- Wecare Probiotics Co., Ltd, Suzhou, Jiangsu Province 215200, China
| | - Qian Li
- Nutritious and Healthy Food Sino-Thailand Joint Research Center, Tianjin Agricultural University, Tianjin 300392, China.
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
- Nutritious and Healthy Food Sino-Thailand Joint Research Center, Tianjin Agricultural University, Tianjin 300392, China.
| |
Collapse
|
4
|
Zhu S, Yu Q, Xue Y, Li J, Huang Y, Liu W, Wang G, Wang L, Zhai Q, Zhao J, Zhang H, Chen W. Bifidobacterium bifidum CCFM1163 alleviates cathartic colon by activating the BDNF-TrkB-PLC/IP 3 pathway to reconstruct the intestinal nerve and barrier. Food Funct 2025; 16:2057-2072. [PMID: 39963068 DOI: 10.1039/d4fo05835f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Introduction: Cathartic colon (CC) is a type of slow-transit constipation caused by a patient's long-term use of irritating laxatives. Probiotics play a crucial role in managing constipation. Objectives: This study aims to identify probiotics that can alleviate CC and explore their specific mechanisms of action. Methods: The CC-model was constructed using senna leaf extract. Bifidobacterium bifidum was applied to the mice for intervention. Relevant marker changes were then examined using ELISA and RT-qPCR. Furthermore, 16S rDNA sequencing was utilized for functional prediction of intestinal microorganisms, while GC-MS analysis was performed to determine the content of short-chain fatty acids (SCFAs) in feces. Results: Senna damages the intestinal nerve and the intestinal barrier while inducing CC. In contrast, Bifidobacterium bifidum CCFM1163 may enhance the brain-derived neurotrophic factor (BDNF) expression in the colon by altering the intestinal microbiota composition (e.g., increasing Lactobacillus and Bacteroides, and decreasing Faecalibaculum) and by elevating SCFA levels (e.g., acetic and isobutyric acid). Subsequently, elevated BDNF expression activates the BDNF-tyrosine kinase receptor B-phospholipase C/inositol trisphosphate (BDNF-TrkB-PLC/IP3) pathway, which upregulates the gene expression of Uchl1, S100β, and Acta2; repairs the enteric nervous system-interstitial cells of Cajal-smooth muscle cells (ENS-ICC-SMC) network; upregulates the gene expression of Ocln and Tjp1; improves intestinal permeability in CC mice; and modulates the immune response by upregulating Tlr4, downregulating Il1b, and upregulating Il10, ultimately alleviating CC. Conclusion: Bifidobacterium bifidum CCFM1163 was identified as a probiotic that can promote BDNF expression in the colon, activate the BDNF-TrkB-PLC/IP3 signaling pathway, and effectively alleviate CC.
Collapse
Affiliation(s)
- Shengnan Zhu
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiangqing Yu
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yifan Xue
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiazhen Li
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yin Huang
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenxu Liu
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
5
|
Huang YP, Shi JY, Luo XT, Luo SC, Cheung PCK, Corke H, Yang QQ, Zhang BB. How do probiotics alleviate constipation? A narrative review of mechanisms. Crit Rev Biotechnol 2025; 45:80-96. [PMID: 38710624 DOI: 10.1080/07388551.2024.2336531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/06/2023] [Accepted: 11/25/2023] [Indexed: 05/08/2024]
Abstract
Constipation is a common gastrointestinal condition, which may occur at any age and affects countless people. The search for new treatments for constipation is ongoing as current drug treatments fail to provide fully satisfactory results. In recent years, probiotics have attracted much attention because of their demonstrated therapeutic efficacy and fewer side effects than pharmaceutical products. Many studies attempted to answer the question of how probiotics can alleviate constipation. It has been shown that different probiotic strains can alleviate constipation by different mechanisms. The mechanisms on probiotics in relieving constipation were associated with various aspects, including regulation of the gut microbiota composition, the level of short-chain fatty acids, aquaporin expression levels, neurotransmitters and hormone levels, inflammation, the intestinal environmental metabolic status, neurotrophic factor levels and the body's antioxidant levels. This paper summarizes the perception of the mechanisms on probiotics in relieving constipation and provides some suggestions on new research directions.
Collapse
Affiliation(s)
- Yu-Ping Huang
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Jie-Yan Shi
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Xin-Tao Luo
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Si-Chen Luo
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Peter C K Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, P.R. China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, P.R. China
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Qiong-Qiong Yang
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Bo-Bo Zhang
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| |
Collapse
|
6
|
He P, He H, Su C, Liu Y, Wang J, Wu Y, Wang B, Wang S, Zhao J. Amomum villosum Lour. alleviates pre-eclampsia by inducing enrichment of Bifidobacterium bifidum through vanillic acid to inhibit placental ferroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119217. [PMID: 39672393 DOI: 10.1016/j.jep.2024.119217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Amomum villosum Lour. (AVL), a traditional Chinese medicine, is widely used to pregnancy-related vomiting and prevent miscarriage. Pre-eclampsia (PE) is a severe pregnancy syndrome. Recent studies have demonstrated interactions between PE and the digestive system. However, it is uncertain that AVL against PE was associated with the gut. AIM OF THE STUDY The current research examined the curative impact of AVL on PE and underly mechanisms based on the gut-placenta axis. MATERIALS AND METHODS A water decoction of AVL (WOA) was extracted in boiling water, and then the decoction was converted into dried particles by freeze drying. An NG-nitro-L-arginine methyl ester (L-NAME)-induced PE mouse model was established and the preventative activity of WOA was evaluated. Furthermore, the gut microbial composition and structure were analyzed using 16S rRNA gene sequencing. Fecal microbiota transplantation (FMT) experiment was applied to confirm the efficacy of gut microbiota remodeled by WOA. RESULTS WOA presented protective efficacy against PE. Notably, WOA induced a significant decrease in maternal hypertension and urine protein levels and promoted fetal intrauterine growth in a dose-dependent manner, thereby improving adverse pregnancy outcomes. Moreover, WOA modulated the angiogenic imbalance by decreasing the ratio between sFlt-1 (soluble fms-like tyrosine kinase 1) and PlGF (placental growth factor) to repair placental injury and inhibited placental ferroptosis by increasing the protein levels of FPN1, FTH1, xCT, and GPX4. Tight junction proteins (ZO-1, Occludin, Claudin1) in the placenta and colon were significantly upregulated by WOA, leading to enhanced placental and gut barriers. WOA rescued intestinal dysbiosis by enriching Bifidobacterium and Akkermansia. Fecal microbiota transplantation (FMT) experiments revealed that the protection of WOA on placenta and gut were dependent on the gut microbial composition. Furthermore, supplementation with both Bifidobacterium bifidum (B. bifidum) and vanillic acid (VA, the major component of WOA) ameliorated PE symptoms. Intriguingly, results from both in vivo and in vitro analyses indicated that the B. bifidum population was enriched by VA. CONCLUSIONS This research is the first to demonstrate that WOA prevents PE by enriching Bifidobacterium bifidum, strengthening the gut-placenta barrier, and inhibiting placental ferroptosis. Our findings provide compelling evidence for the vital involvement of the gut-placental axis in the protection of AVL on PE, presenting a novel target for the clinic.
Collapse
Affiliation(s)
- Peishi He
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Haoqing He
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Chang Su
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518103, China.
| | - Yarui Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jiahan Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Yun Wu
- Shenzhen Tsumura Medicine Co. LTD, Shenzhen, Guangdong, 518057, China.
| | - Bing Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518103, China.
| | - Shuhong Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518103, China.
| | - Jie Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; TCM-Integrated Hospital of Southern Medical University, Guangzhou, 510315, China; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
7
|
Zhang C, Wang L, Liu X, Wang G, Zhao J, Chen W. Bifidobacterium longum subsp. longum relieves loperamide hydrochloride-induced constipation in mice by enhancing bile acid dissociation. Food Funct 2025; 16:297-313. [PMID: 39668691 DOI: 10.1039/d4fo04660a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Bifidobacterium species are known for their efficacy in alleviating constipation. This study aimed to compare the constipation-relieving effects of different Bifidobacterium species (Bifidobacterium longum subsp. longum, Bifidobacterium bifidum, Bifidobacterium animalis, Bifidobacterium breve, Bifidobacterium longum subsp. infantis, and Bifidobacterium adolescentis) and to explore the underlying mechanisms from both the bacterial and host perspectives. We evaluated six Bifidobacterium species for their physiological properties, including growth rate, oligosaccharide utilization, osmotic pressure resistance, cell adhesion, and bile acid dissociation capability. Mice with severe constipation induced by loperamide hydrochloride were treated with these bacteria at a density of 109 CFU per mL for 17 days. Gastrointestinal indices such as fecal water content, time to first black stool defecation, and small intestine propulsion rate were measured to assess constipation relief. Microbiome and metabolome (bile acid and tryptophan) analyses were conducted to elucidate the differences in constipation relief among the species. Our results demonstrated that Bifidobacterium longum subsp. longum exhibited superior physiological traits, including rapid growth, extensive oligosaccharide utilization, and high bile salt dissociation capacity. Notably, only Bifidobacterium longum subsp. longum significantly ameliorated constipation symptoms in the mouse model. Furthermore, this strain markedly restored bile acid and short-chain fatty acid levels in the intestines of constipated mice and altered the composition of the intestinal microbiota. These findings suggest that the enhanced efficacy of Bifidobacterium longum subsp. longum in relieving constipation is associated with its ability to modulate intestinal physiology and microbiota structure and metabolism.
Collapse
Affiliation(s)
- Chenyue Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Liu Y, Xu Z, Zhang D, Zhang Y, Li W, Liu W, Li X. Effect of fucoidan supplementation on glycolipid metabolism, systemic inflammation and gut microbiota in prediabetes: A randomized controlled trial. Int J Biol Macromol 2025; 287:138415. [PMID: 39645105 DOI: 10.1016/j.ijbiomac.2024.138415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Prediabetes is characterized as a transitional phase between normal blood glucose and diabetes, and the potential role of fucoidan in the progression of diabetes is still debated. The randomized, double-blind, placebo-controlled trial was designed to assess the effect of fucoidan supplementation on glycolipid metabolism, systemic inflammation and gut microbiota in individuals with prediabetes. A total of 70 Chinese participants with prediabetes were randomized to either fucoidan or placebo group, receiving daily doses of 1000 mg fucoidan or placebo capsules for 12 weeks. Glycolipid metabolism and systemic inflammation levels were assessed using standard laboratory techniques, while gut microbiota was analyzed by 16S rRNA sequencing. Following the 12-week intervention period, subjects consuming fucoidan exhibited a lower increase in GSP and a notable reduction in TNF-α, IL-6 and LPS compared to those receiving placebo (P < 0.05). Furthermore, fucoidan supplementation led to an increased abundance of Megamonas and Blautia while decreasing Klebsiella (P < 0.05). These findings suggested that the daily administration of 1000 mg fucoidan may partially modulate glucose metabolism and improve systemic inflammation, potentially linked to its modulation of gut microbiota in Chinese individuals with prediabetes. Thus, fucoidan could be considered as a potential dietary supplement for diabetes prevention.
Collapse
Affiliation(s)
- Yaping Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, 136 Science Road, Zhengzhou 450001, Henan, China
| | - Ze Xu
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, Henan, China
| | - Dongdong Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, Henan, China
| | - Yujing Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, Henan, China
| | - Wenjie Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, Henan, China
| | - Wenyi Liu
- President's Office, The Third Affiliated Hospital of Zhengzhou University, 7 Kangfuqian Street, Zhengzhou 450015, Henan, China
| | - Xing Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, Henan, China; Department of Hematology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou 450099, Henan, China.
| |
Collapse
|
9
|
Li J, Zheng H, Liu J, Ding J, Guo Q, Zhang N. Effects of Functional Red Pine Seed Direct-Drinking Oil on Constipation and Intestinal Barrier Function in Mice. Antioxidants (Basel) 2024; 14:14. [PMID: 39857348 PMCID: PMC11760897 DOI: 10.3390/antiox14010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Constipation is a prevalent global health issue that greatly affects human well-being. However, many existing treatments are associated with side effects, necessitating the development of alternative approaches. In this study, a balanced fatty acid red pine seed direct-drinking oil (SFA:MUFA:PUFA = 1.14:1.08:1, n - 6:n - 3 = 4.17:1) was formulated using red pine seed oil as the base oil, blended with coconut oil, rice bran oil, and camellia oil. The study investigated the effects and mechanisms of this red pine seed direct-drinking oil in alleviating constipation in mice. Results showed that, compared to normal mice, constipated mice exhibited symptoms of dry stools, difficulty defecating, abnormal neurotransmitter levels, oxidative stress, and colonic tissue damage. Additionally, the protein expression levels of occludin and claudin-1 were reduced by 86.11% and 25.00%, respectively (p < 0.05), while mRNA expression levels decreased by 70.80% and 59.00% (p < 0.05). Red pine seed direct-drinking oil intake improved defecation, reduced serum levels of vasoactive intestinal peptide (VIP), endothelin-1 (ET-1), and nitric oxide (NO), and increased substance P (SP) levels. Furthermore, it also significantly elevated serum levels of superoxide dismutase (SOD) and catalase (CAT) (p < 0.05), alleviated colonic tissue damage, and upregulated the protein and mRNA expression levels of occludin and claudin-1 (p < 0.05). These findings suggest that red pine seed direct-drinking oil alleviates constipation in mice by enhancing intestinal motility, regulating serum neurotransmitters, mitigating oxidative stress, repairing intestinal barrier damage, and increasing tight junction protein expression. This study represents the first use of red pine seed direct-drinking oil to alleviate constipation in mice, providing a novel approach to improving symptoms in individuals with constipation.
Collapse
Affiliation(s)
- Jie Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (J.L.); (H.Z.); (J.L.); (J.D.)
| | - Haonan Zheng
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (J.L.); (H.Z.); (J.L.); (J.D.)
| | - Jiahui Liu
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (J.L.); (H.Z.); (J.L.); (J.D.)
| | - Jie Ding
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (J.L.); (H.Z.); (J.L.); (J.D.)
| | - Qingqi Guo
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (J.L.); (H.Z.); (J.L.); (J.D.)
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| |
Collapse
|
10
|
Ong SS, Xu L, Ang CW, Deng X, Lu H, Xu T. Global research trajectories in gut microbiota and functional constipation: a bibliometric and visualization study. Front Microbiol 2024; 15:1513723. [PMID: 39712900 PMCID: PMC11659297 DOI: 10.3389/fmicb.2024.1513723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
Background Functional constipation (FC) negatively impacts quality of life and is associated with gut microbiota (GM) imbalances. Despite the growing interest in this area, a thorough analysis of research trends is missing. This study uses bibliometric methods to assess the global research on GM's role in FC, pinpointing key topics, impactful studies, and prominent researchers to guide future research and identify gaps. Methods In our study, we conducted a performance analysis and science mapping using bibliometric indicators such as publication trends, author and institutional contributions, productivity, impact, keyword analysis, and collaboration networks. We employed software tools like VOSviewer, Biblioshiny, CiteSpace, and SCImago Graphica to automate the assessment of metrics including country, institutional, and journal distribution, authorship, keyword frequency, and citation patterns. Results From 2013 to 2024, annual publications on GM and FC rose from 29 to 252, with a slight decrease to 192 in 2024. Average citations per publication peaked at 11.12 in 2021, declining to 6.43 by 2024. China led in research output (37.8%), followed by the United States (14.4%) and Japan (7.5%). Bibliometric analysis identified key authors like CHEN W and ZHANG H, with 30 and 27 articles, respectively. Jiangnan University and Harvard University were top contributors, with 131 and 81 articles. Keywords analysis revealed "constipation," "gut microbiota," and "probiotic" as central themes, with a shift toward "gut microbiota" and "intestinal flora" in recent years. This study provides a comprehensive overview of the research landscape, highlighting leading authors, institutions, and evolving research priorities in the field. Conclusion Our review synthesizes current GM and FC research, guiding future studies. It suggests exploring GM in various GI disorders, the impact of lifestyle and drugs on GM, advanced research techniques, and probiotics/prebiotics for FC. There's also a focus on therapies targeting GM's effect on the gut-brain axis, paving the way for improved FC management.
Collapse
Affiliation(s)
- Shun Seng Ong
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lianjie Xu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ching Wei Ang
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoyue Deng
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hai Lu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tianshu Xu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
11
|
La Monica MB, Raub B, Hartshorn S, Gustat AL, Grdic J, Kirby TO, Townsend JR, Sandrock J, Ziegenfuss TN. The effects of AG1® supplementation on the gut microbiome of healthy adults: a randomized, double-blind, placebo-controlled clinical trial. J Int Soc Sports Nutr 2024; 21:2409682. [PMID: 39352252 PMCID: PMC11445888 DOI: 10.1080/15502783.2024.2409682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/21/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND This study aimed to examine the effect of a commercially available multi-ingredient powder (AG1Ⓡ) on the gut microbiome and assess the impact of AG1Ⓡ on GI tolerability and other clinical safety markers in healthy men and women. METHODS Using a double-blind, randomized, two-arm, placebo-controlled, parallel design, we examined a 4-week daily supplementation regimen of AG1Ⓡ vs. placebo (PL). Fifteen men and 15 women provided stool samples for microbiome analysis, questionnaires for digestive quality of life (DQLQ), and completed visual analog scales (VAS) and Bristol stool charts to assess stool consistency and bowel frequency before and after the 4-week intervention. Participant's blood work (CBC, CMP, and lipid panel) was also assessed before and after the 4-week intervention. Alpha diversity was determined by Shannon and Chao1 index scores and evaluated by a two-way ANOVA, beta diversity in taxonomic abundances and functional pathways was visualized using partial least squares-discriminant analyses and statistically evaluated by PERMANOVA. To identify key biomarkers, specific feature differences in taxonomic relative abundance and normalized functional pathway counts were analyzed by linear discriminant analysis (LDA) effect size (LEfSe). Questionnaires, clinical safety markers, and hemodynamics were evaluated by mixed factorial ANOVAs with repeated measures. This study was registered on clinicaltrials.gov (NCT06181214). RESULTS AG1Ⓡ supplementation enriched two probiotic taxa (Lactobacillus acidophilus and Bifidobacterium bifidum) that likely stem from the probiotics species that exist in the product, as well as L. lactis CH_LC01 and Acetatifactor sp900066565 ASM1486575v1 while reducing Clostridium sp000435835. Regarding community function, AG1Ⓡ showed an enrichment of two functional pathways while diminishing none. Alternatively, the PL enriched six, but diminished five functional pathways. Neither treatment negatively impacted the digestive quality of life via DQLQ, bowel frequency via VAS, or stool consistency via VAS and Bristol. However, there may have been a greater improvement in the DQLQ score (+62.5%, p = 0.058, d = 0.73) after four weeks of AG1Ⓡ supplementation compared to a reduction (-50%) in PL. Furthermore, AG1Ⓡ did not significantly alter clinical safety markers following supplementation providing evidence for its safety profile. CONCLUSIONS AG1Ⓡ can be consumed safely by healthy adults over four weeks with a potential beneficial impact in their digestive symptom quality of life.
Collapse
Affiliation(s)
| | - Betsy Raub
- The Center for Applied Health Sciences, Canfield, OH, USA
| | | | | | - Jodi Grdic
- The Center for Applied Health Sciences, Canfield, OH, USA
| | - Trevor O. Kirby
- AG1, Research, Nutrition, and Innovation, Carson City, NV, USA
| | - Jeremy R. Townsend
- AG1, Research, Nutrition, and Innovation, Carson City, NV, USA
- Concordia University Chicago, Health & Human Performance, River Forest, IL, USA
| | - Jen Sandrock
- The Center for Applied Health Sciences, Canfield, OH, USA
| | | |
Collapse
|
12
|
Lou Y, Wen X, Song S, Zeng Y, Huang L, Xie Z, Shao T, Wen C. Dietary pectin and inulin: A promising adjuvant supplement for collagen-induced arthritis through gut microbiome restoration and CD4 + T cell reconstitution. J Nutr Biochem 2024; 133:109699. [PMID: 38972609 DOI: 10.1016/j.jnutbio.2024.109699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/17/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Dietary strategies rich in fiber have been demonstrated to offer benefits to individuals afflicted with rheumatoid arthritis (RA). However, the specific mechanisms through which a high-fiber diet (HFD) mitigates RA's autoimmunity remain elusive. Herein, we investigate the influence of pectin- and inulin-rich HFD on collagen-induced arthritis (CIA). We establish that HFD significantly alleviates arthritis in CIA mice by regulating the Th17/Treg balance. The rectification of aberrant T cell differentiation by the HFD is linked to the modulation of gut microbiota, augmenting the abundance of butyrate in feces. Concurrently, adding butyrate to the drinking water mirrors the HFD's impact on ameliorating CIA, encompassing arthritis mitigation, regulating intestinal barrier integrity, and restoring the Th17/Treg equilibrium. Butyrate reshapes the metabolic profile of CD4+ T cells in an AMPK-dependent manner. Our research underscores the importance of dietary interventions in rectifying gut microbiota for RA management and offers an explanation of how diet-derived microbial metabolites influence RA's immune-inflammatory-reaction.
Collapse
Affiliation(s)
- Yu Lou
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianghui Wen
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Department of Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Siyue Song
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yufeng Zeng
- Department of Clinical Medicine, The 2ND Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lin Huang
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhijun Xie
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tiejuan Shao
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Chengping Wen
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
13
|
Li J, Zhao J, Ze X, Li L, Li Y, Zhou Z, Wu S, Jia W, Liu M, Li Y, Shen X, He F, Cheng R. Lacticaseibacillus paracasei 207-27 alters the microbiota-gut-brain axis to improve wearable device-measured sleep duration in healthy adults: a randomized, double-blind, placebo-controlled trial. Food Funct 2024; 15:10732-10745. [PMID: 39385735 DOI: 10.1039/d4fo01684j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Objective: Probiotics have been reported to exert beneficial effects on sleep through the gut-brain axis. Therefore, this randomized, double-blind, placebo-controlled trial assessed the effects of Lacticaseibacillus paracasei 207-27 supplementation on sleep quality and its safety and potential mechanisms. Method and study design: Healthy adults under mild stress aged 18-35 years consumed low or high doses of L. paracasei 207-27 or a placebo for 28 days. Fecal samples, blood samples, and questionnaires were collected at the baseline and the end of the intervention. Sleep quality was measured using wearable devices and Pittsburgh sleep quality index (PSQI) questionnaire. Serum inflammatory markers, corticotropin-releasing hormone, adrenocorticotropic hormone (ACTH), cortisol (COR), γ-aminobutyric acid, and 5-hydroxytryptamine levels were detected using enzyme-linked immunosorbent assay. The gut microbiota was analyzed using 16S rRNA sequencing and bioinformatics. Short-chain fatty acids levels were detected using gas chromatography-mass spectrometry. Results: Both the low-dose and high-dose groups exhibited significant improvements in wearable device- measured sleep duration compared to the placebo group. The global scores of PSQI in three groups significantly decreased after intervention without statistical difference between groups. At the phylum level, the low-dose group exhibited a higher relative abundance of Bacteroidota and a lower Firmicutes-to-Bacteroidetes (F/B) ratio. At the genus level, two treatment groups had higher relative abundance of Bacteroides and Megamonas, alongside lower levels of Escherichia-Shigella. Furthermore, the low-dose group exhibited significant increases in acetic acid, propionic acid, butyric acid, and valeric acid levels, while two treatment groups exhibited a significant decrease in COR levels. Correlation analysis revealed that the increased levels of acetic acid and butyric acid in the low-dose group may be associated with decreased ACTH. Conclusion: L. paracasei 207-27 administration in healthy adults resulted in improvements in gut microbiota community and sleep duration. The mechanisms might involve modulation of the gut microbiota structure to regulate the function of the gut-brain axis, including increases in SCFA levels and decreases in hypothalamic-pituitary-adrenal axis activity. The Chinese clinical trial registry number is ChiCTR2300069453 (https://www.chictr.org.cn/showproj.html?proj=191193, registered 16 May 2023 - retrospectively registered).
Collapse
Affiliation(s)
- Jinxing Li
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan, University, Chengdu 610041, China.
| | - Jincheng Zhao
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan, University, Chengdu 610041, China.
| | - Xiaolei Ze
- BYHEALTH Institute of Nutrition & Health, Guangzhou 510663, China
| | - Liang Li
- BYHEALTH Institute of Nutrition & Health, Guangzhou 510663, China
| | - Yapeng Li
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan, University, Chengdu 610041, China.
| | - Zhimo Zhou
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan, University, Chengdu 610041, China.
| | - Simou Wu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan, University, Chengdu 610041, China.
| | - Wen Jia
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan, University, Chengdu 610041, China.
| | - Meixun Liu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan, University, Chengdu 610041, China.
| | - Yun Li
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan, University, Chengdu 610041, China.
| | - Xi Shen
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan, University, Chengdu 610041, China.
| | - Fang He
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan, University, Chengdu 610041, China.
| | - Ruyue Cheng
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan, University, Chengdu 610041, China.
| |
Collapse
|
14
|
Bocchio F, Mancabelli L, Milani C, Lugli GA, Tarracchini C, Longhi G, Conto FD, Turroni F, Ventura M. Compendium of Bifidobacterium-based probiotics: characteristics and therapeutic impact on human diseases. MICROBIOME RESEARCH REPORTS 2024; 4:2. [PMID: 40207278 PMCID: PMC11977362 DOI: 10.20517/mrr.2024.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 04/11/2025]
Abstract
The human microbiota, a complex community of microorganisms residing in and on the human body, plays a crucial role in maintaining health and preventing disease. Bifidobacterium species have shown remarkable therapeutic potential across a range of health conditions, thus being considered optimal probiotic bacteria. This review provides insights into the concept of probiotics and explores the impact of bifidobacteria on human health, focusing on the gastrointestinal, respiratory, skeletal, muscular, and nervous systems. It also integrates information on the available genetic bases underlying the beneficial effects of each bifidobacterial probiotic species on different aspects of human physiology. Notably, Bifidobacterium-based probiotics have proven effective in managing gastrointestinal conditions such as constipation, antibiotic-associated diarrhea, irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and Helicobacter pylori infections. These benefits are achieved by modulating the intestinal microbiota, boosting immune responses, and strengthening the gut barrier. Moreover, Bifidobacterium species have been reported to reduce respiratory infections and asthma severity. Additionally, these probiotic bacteria offer benefits for skeletal and muscular health, as evidenced by Bifidobacterium adolescentis and Bifidobacterium breve, which have shown anti-inflammatory effects and symptom relief in arthritis models, suggesting potential in treating conditions like rheumatoid arthritis. Furthermore, probiotic therapies based on bifidobacterial species have shown promising effects in alleviating anxiety and depression, reducing stress, and enhancing cognitive function. Overall, this review integrates the extensive scientific literature now available that supports the health-promoting applications of probiotic Bifidobacterium species and underscores the need for further research to confirm their clinical efficacy across different body systems.
Collapse
Affiliation(s)
- Fabiana Bocchio
- Department of Medicine and Surgery, University of Parma, Parma 43124, Italy
- Authors contributed equally
| | - Leonardo Mancabelli
- Department of Medicine and Surgery, University of Parma, Parma 43124, Italy
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Authors contributed equally
| | - Christian Milani
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Gabriele Andrea Lugli
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Flora De Conto
- Department of Medicine and Surgery, University of Parma, Parma 43124, Italy
| | - Francesca Turroni
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Marco Ventura
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| |
Collapse
|
15
|
Wu Y, Bai Z, Jin Y, Zhu H, Dong Y, Gu S, Jin Y. A randomized, double-blind, placebo-controlled clinical study to evaluate the efficacy and safety of Weizmannia coagulans BC99 in the treatment of chronic constipation in adults. Front Nutr 2024; 11:1395083. [PMID: 39119466 PMCID: PMC11306189 DOI: 10.3389/fnut.2024.1395083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Weizmannia coagulans has emerged as a promising candidate for the management of gastrointestinal ailments. The novel strain of Weizmannia coagulans, Weizmannia coagulans BC99 (BC99), displays robust pathogen-inhibiting capabilities, susceptibility to various antibiotics, and a high level of biosafety. Nevertheless, additional research is necessary to fully understand its effectiveness in managing chronic constipation. Methods This study investigates the role of BC99 in alleviating chronic constipation in a double-blind, placebo-controlled, randomized trial, and participants were divided into BC99 (2 billion CFU/d) or placebo (maltodextrin) groups for a 4-week period. Results and discussion Results showed that significant improvements were noted in the BC99 group, with an increase in complete spontaneous bowel movements (CSBM) after 4-week treatment compared to the placebo (p = 0.002). The BC99 group also showed significantly lower Quality of Life (PAC-QOL) scores and reduced Constipation Symptoms (PAC-SYM) scores after 4 weeks of treatment (p < 0.001), indicating symptomatic relief. Notably, BC99 effectively modulated key gut microbiota such as Bifidobacterium and Ruminococcus, linked to crucial metabolic pathways like glutathione metabolism. In all, BC99 is confirmed to be an effective and safe therapeutic option for the relief of adult chronic constipation, enhancing gut microbiota balance and influencing critical metabolic pathways. Clinical trial registration ChiCTR2200065493.
Collapse
Affiliation(s)
- Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Food Microbiology, Luoyang, China
| | - Zhouya Bai
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Yuehong Jin
- Department of Gastroenterology, Ninth People’s Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Hong Zhu
- Department of Gastroenterology, Ninth People’s Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Yao Dong
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Food Microbiology, Luoyang, China
| | - Ying Jin
- Department of Gastroenterology, Ninth People’s Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| |
Collapse
|
16
|
Feng C, Gao G, Wu K, Weng X. Causal relationship between gut microbiota and constipation: a bidirectional Mendelian randomization study. Front Microbiol 2024; 15:1438778. [PMID: 39086647 PMCID: PMC11288903 DOI: 10.3389/fmicb.2024.1438778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Background Constipation is a prevalent gastrointestinal disorder affecting approximately 15% of the global population, leading to significant healthcare burdens. Emerging evidence suggests that gut microbiota plays a pivotal role in the pathogenesis of constipation, although causality remains uncertain due to potential confounding factors in observational studies. This study aims to clarify the causal relationships between gut microbiota and constipation using a bidirectional Mendelian Randomization (MR) approach, which helps to overcome confounding issues and reverse causality. Methods Utilizing data from genome-wide association studies (GWAS) from the MiBioGen consortium and other sources, we identified genetic variants as instrumental variables (IVs) for 196 bacterial traits and constipation. These IVs were rigorously selected based on their association with the traits and absence of linkage with confounding factors. We applied several MR methods, including Inverse Variance Weighted (IVW), MR Egger, and MR-PRESSO, to examine the causal effects in both directions. Results Our analysis revealed a significant causal relationship where specific bacterial taxa such as Coprococcus1 (OR = 0.798, 95%CI: 0.711-0.896, p < 0.001), Coprococcus3 (OR = 0.851, 95%CI: 0.740-0.979, p = 0.024), Desulfovibrio (OR = 0.902, 95%CI: 0.817-0.996, p = 0.041), Flavonifractor (OR = 0.823, 95%CI: 0.708-0.957, p < 0.001), and Lachnospiraceae UCG004, whereas others including Ruminococcaceae UCG005 (OR = 1.127, 95%CI: 1.008-1.261, p = 0.036), Eubacterium nodatum group (OR = 1.080, 95%CI: 1.018-1.145, p = 0.025), Butyricimonas (OR = 1.118, 95%CI: 1.014-1.233, p = 0.002), and Bacteroidetes (OR = 1.274, 95%CI: 1.014-1.233, p < 0.001) increase constipation risk. In the reverse MR analysis, constipation was found to influence the abundance of certain taxa, including Family XIII, Porphyromonadaceae, Proteobacteria, Lentisphaeria, Veillonellaceae, Victivallaceae, Catenibacterium, Sellimonas, and Victivallales, indicating a bidirectional relationship. Sensitivity analyses confirmed the robustness of these findings, with no evidence of heterogeneity or horizontal pleiotropy. Conclusion The relationship between our study gut microbiota and constipation interacts at the genetic level, which gut microbiota can influence the onset of constipation, and constipation can alter the gut microbiota. Coprococcus1, Coprococcus3, Desulfovibrio, Flavonifractor and Lachnospiraceae UCG004 play a protective role against constipation, while Ruminococcaceae UCG005, Eubacterium nodatum group, Butyricimonas, and Bacteroidetes are associated with an increased risk. In addition, constipation correlates positively with the abundance of Family XIII, Porphyromonadaceae and Proteobacteria, while negatively with Lentisphaeria, Veillonellaceae, Victivallaceae, Catenibacterium, Sellimonas, and Victivallales.
Collapse
Affiliation(s)
- Cuncheng Feng
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Guanzhuang Gao
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Kai Wu
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xiaoqi Weng
- Department of Gastrointestinal Surgery, Tongxiang First People's Hospital, Tongxiang, China
| |
Collapse
|
17
|
Lan W, Yang H, Zhong Z, Luo C, Huang Q, Liu W, Yang J, Xiang H, Tang Y, Chen T. Bifidobacterium animalis subsp. lactis LPL-RH improves postoperative gastrointestinal symptoms and nutrition indexes by regulating the gut microbiota in patients with valvular heart disease: a randomized controlled trial. Food Funct 2024; 15:7605-7618. [PMID: 38938120 DOI: 10.1039/d4fo01471e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Gastrointestinal symptoms constitute a frequent complication in postoperative patients with valvular heart disease (VHD), impacting their postoperative recovery. Probiotics contribute to regulating human gut microbiota balance and alleviating postoperative gastrointestinal symptoms. Our objective involved assessing the potential of Bifidobacterium animalis subsp. lactis LPL-RH to alleviate postoperative gastrointestinal symptoms and expedite patient recovery. Adult patients diagnosed with VHD scheduled for valve surgery were enrolled. 110 patients were randomly divided into two groups and received LPL-RH or a placebo for 14 days. Gastrointestinal symptoms were evaluated using the Gastrointestinal Symptoms Questionnaire. An analysis of the time to recovery of bowel function and various postoperative variables was conducted in both study groups. Variations in the intestinal microbiota were detected via 16S rRNA sequencing. The study was completed by 105 participants, with 53 in the probiotic group and 52 in the placebo group. Compared to the placebo group, LPL-RH significantly reduced the total gastrointestinal symptom score after surgery (p = 0.004). Additionally, LPL-RH was found to significantly reduce abdominal pain (p = 0.001), bloating (p = 0.018), and constipation (p = 0.022) symptom scores. Furthermore, LPL-RH dramatically shortened the time to recovery of bowel function (p = 0.017). Moreover, LPL-RH administration significantly enhanced patients' postoperative nutrition indexes (red blood cell counts, hemoglobin level, p < 0.05). Microbiome analysis showed that the composition and diversity of the postoperative intestinal microbiota differed between the probiotic and placebo groups. No adverse incidents associated with probiotics were documented, emphasizing their safety. This study initially discovered that oral B. animalis subsp. lactis LPL-RH can assist in regulating intestinal microbiota balance, alleviating gastrointestinal symptoms, promoting intestinal function recovery, and enhancing nutrition indexes in patients with VHD after surgery. Regulating the intestinal microbiota may represent a potential mechanism for LPL-RH to exert clinical benefits.
Collapse
Affiliation(s)
- Wanqi Lan
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Heng Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhiwang Zhong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chao Luo
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qin Huang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wu Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Juesheng Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Haiyan Xiang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Yanhua Tang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Tingtao Chen
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- The Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
18
|
Tan S, Zhang W, Zeng P, Yang Y, Chen S, Li Y, Bian Y, Xu C. Clinical effects of chemical drugs, fecal microbiota transplantation, probiotics, dietary fiber, and acupuncture in the treatment of chronic functional constipation: a systematic review and network meta-analysis. Eur J Gastroenterol Hepatol 2024; 36:815-830. [PMID: 38829940 DOI: 10.1097/meg.0000000000002786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Currently, there are increasingly diverse treatment modalities for chronic functional constipation (CFC). This study aims to compare the relative efficacy and safety of chemical drugs, fecal microbiota transplantation (FMT), probiotics, dietary fiber, and acupuncture in the treatment of patients with CFC. We searched relevant randomized controlled trials (RCTs) published in five databases up to November 2023. Network meta-analysis (NMA) was carried out using R Studio 4.2.1. Cumulative ranking probability plots, assessed through the surface under the cumulative ranking (SUCRA), were employed to rank the included drugs for various outcome measures. We included a total of 45 RCT studies with 17 118 patients with CFC. From the SUCRA values and NMA results FMT showed the best utility in terms of clinical efficacy, Bristol stool form scale scores, patient assessment of constipation quality of life scores, and the treatment modality with the lowest ranked incidence of adverse effects was electroacupuncture. Subgroup analysis of the chemotherapy group showed that sodium A subgroup analysis of the chemical group showed that sodium picosulfate 10 mg had the highest clinical efficacy. FMT is more promising in the treatment of CFC and may be more effective in combination with the relatively safe treatment of acupuncture.
Collapse
Affiliation(s)
- Shufa Tan
- Shaanxi University of Traditional Chinese Medicine, Xianyang
| | - Wei Zhang
- Shaanxi University of Traditional Chinese Medicine, Xianyang
| | - Pengfei Zeng
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu
| | - Yunyi Yang
- Shanghai University of Traditional Chinese Medicine, Shanghai
| | - Shikai Chen
- Shanghai University of Traditional Chinese Medicine, Shanghai
| | - Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chen Xu
- Department of Colorectal Surgery, Tianjin Union Medical Center
| |
Collapse
|
19
|
Sapp PA, Townsend JR, Kirby TO, Govaert M, Duysburgh C, Verstrepen L, Marzorati M, Marshall TM, Esposito R. AG1 ®, a Novel Synbiotic, Maintains Gut Barrier Function following Inflammatory Challenge in a Caco-2/THP1-Blue™ Co-Culture Model. Microorganisms 2024; 12:1263. [PMID: 39065031 PMCID: PMC11278950 DOI: 10.3390/microorganisms12071263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Nutritional interventions to reduce gastrointestinal (GI) permeability are of significant interest to physically active adults and those experiencing chronic health conditions. This in vitro study was designed to assess the impact of AG1, a novel synbiotic, on GI permeability following an inflammatory challenge. Interventions [AG1 (vitamins/minerals, pre-/probiotics, and phytonutrients) and control (control medium)] were fed separately into a human GI tract model (stomach, small intestine, and colon). In the colonic phase, the GI contents were combined with fecal inocula from three healthy human donors. GI permeability was evaluated with transepithelial electrical resistance (TEER) in a Caco-2 (apical)/THP1-Blue™ (basolateral) co-culture model. The apical side received sodium butyrate (positive control) or Caco-2 complete medium (negative control) during baseline testing. In the 24 h experiment, the apical side received colonic simulation isolates from the GI model, and the basolateral side was treated with Caco-2 complete medium, then 6 h treatment with lipopolysaccharide. TEER was assessed at 0 h and 24 h, and inflammatory markers were measured at 30 h in triplicate. Paired samples t-tests were used to evaluate endpoint mean difference (MD) for AG1 vs. control. TEER was higher for AG1 (mean ± SD: 99.89 ± 1.32%) vs. control (mean ± SD: 92.87 ± 1.22%) following activated THP1-induced damage [MD: 7.0% (p < 0.05)]. AG1 maintained TEER similar to the level of the negative control [-0.1% (p = 0.02)]. No differences in inflammatory markers were observed. These in vitro data suggest that acute supplementation with AG1 might stimulate protective effects on GI permeability. These changes may be driven by SCFA production due to the pre-/probiotic properties of AG1, but more research is needed.
Collapse
Affiliation(s)
- Philip A. Sapp
- Research, Nutrition, and Innovation, AG1, Carson City, NV 89701, USA
| | - Jeremy R. Townsend
- Research, Nutrition, and Innovation, AG1, Carson City, NV 89701, USA
- Health & Human Performance, Concordia University Chicago, River Forest, IL 60305, USA
| | - Trevor O. Kirby
- Research, Nutrition, and Innovation, AG1, Carson City, NV 89701, USA
| | | | | | | | - Massimo Marzorati
- ProDigest BVBA, B-9052 Ghent, Belgium
- Center of Microbial Ecology and Technology (CMET), Ghent University, B-9000 Ghent, Belgium
| | - Tess M. Marshall
- Research, Nutrition, and Innovation, AG1, Carson City, NV 89701, USA
| | - Ralph Esposito
- Research, Nutrition, and Innovation, AG1, Carson City, NV 89701, USA
- Department of Nutrition, Food Studies, and Public Health, New York University-Steinhardt, New York, NY 10003, USA
| |
Collapse
|
20
|
Bellomo AR, Rotondi G, Rago P, Bloise S, Di Ruzza L, Zingoni A, Di Valerio S, Valzano E, Di Pierro F, Cazzaniga M, Bertuccioli A, Guasti L, Zerbinati N, Lubrano R. Effect of Bifidobacterium bifidum Supplementation in Newborns Born from Cesarean Section on Atopy, Respiratory Tract Infections, and Dyspeptic Syndromes: A Multicenter, Randomized, and Controlled Clinical Trial. Microorganisms 2024; 12:1093. [PMID: 38930475 PMCID: PMC11205812 DOI: 10.3390/microorganisms12061093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/28/2024] Open
Abstract
Cesarean section is considered a possible trigger of atopy and gut dysbiosis in newborns. Bifidobacteria, and specifically B. bifidum, are thought to play a central role in reducing the risk of atopy and in favoring gut eubiosis in children. Nonetheless, no trial has ever prospectively investigated the role played by this single bacterial species in preventing atopic manifestations in children born by cesarean section, and all the results published so far refer to mixtures of probiotics. We have therefore evaluated the impact of 6 months of supplementation with B. bifidum PRL2010 on the incidence, in the first year of life, of atopy, respiratory tract infections, and dyspeptic syndromes in 164 children born by cesarean (versus 249 untreated controls). The results of our multicenter, randomized, and controlled trial have shown that the probiotic supplementation significantly reduced the incidence of atopic dermatitis, upper and lower respiratory tract infections, and signs and symptoms of dyspeptic syndromes. Concerning the gut microbiota, B. bifidum supplementation significantly increased α-biodiversity and the relative values of the phyla Bacteroidota and Actinomycetota, of the genus Bacteroides, Bifidobacterium and of the species B. bifidum and reduced the relative content of Escherichia/Shigella and Haemophilus. A 6-month supplementation with B. bifidum in children born by cesarean section reduces the risk of gut dysbiosis and has a positive clinical impact that remains observable in the following 6 months of follow-up.
Collapse
Affiliation(s)
- Anna Rita Bellomo
- Dipartimento Materno Infantile e di Scienze Urologiche, Sapienza Università di Roma, UOC di Pediatria e Neonatologia-Polo Pontino, 04100 Latina, Italy; (A.R.B.); (P.R.)
| | - Giulia Rotondi
- Pediatric Surgery Unit, Gaslini Children Hospital and Research Institute, 16147 Genoa, Italy
| | - Prudenza Rago
- Dipartimento Materno Infantile e di Scienze Urologiche, Sapienza Università di Roma, UOC di Pediatria e Neonatologia-Polo Pontino, 04100 Latina, Italy; (A.R.B.); (P.R.)
| | - Silvia Bloise
- Dipartimento Materno Infantile e di Scienze Urologiche, Sapienza Università di Roma, UOC di Pediatria e Neonatologia-Polo Pontino, 04100 Latina, Italy; (A.R.B.); (P.R.)
| | - Luigi Di Ruzza
- UOC Pediatria e Nido, Ospedale S.S. Trinità, 03039 Sora, Italy
| | - Annamaria Zingoni
- UOC Pediatria e Neonatologia, Ospedale G.B. Grassi, 00122 Ostia, Italy
| | - Susanna Di Valerio
- UOC Neonatologia e Terapia Intensiva Neonatale, Ospedale S. Spirito, 65124 Pescara, Italy
| | - Eliana Valzano
- UOC Neonatologia e Terapia Intensiva Neonatale, Ospedale S. Spirito, 65124 Pescara, Italy
| | - Francesco Di Pierro
- Scientific & Research Department, Velleja Research, 20125 Milan, Italy
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | | | - Alexander Bertuccioli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy;
| | - Luigina Guasti
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Nicola Zerbinati
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Riccardo Lubrano
- Dipartimento Materno Infantile e di Scienze Urologiche, Sapienza Università di Roma, UOC di Pediatria e Neonatologia-Polo Pontino, 04100 Latina, Italy; (A.R.B.); (P.R.)
| |
Collapse
|
21
|
Li Y, Zhang XH, Wang ZK. Microbiota treatment of functional constipation: Current status and future prospects. World J Hepatol 2024; 16:776-783. [PMID: 38818289 PMCID: PMC11135260 DOI: 10.4254/wjh.v16.i5.776] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/05/2024] [Accepted: 04/03/2024] [Indexed: 05/22/2024] Open
Abstract
Functional constipation (FC) is a common disorder that is characterized by difficult stool passage, infrequent bowel movement, or both. FC is highly prevalent, recurs often, accompanies severe diseases, and affects quality of life; therefore, safe and effective therapy with long-term benefits is urgently needed. Microbiota treatment has potential value for FC treatment. Microbiota treatments include modulators such as probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation (FMT). Some probiotics and prebiotics have been adopted, and the efficacy of other microbiota modulators is being explored. FMT is considered an emerging field because of its curative effects; nevertheless, substantial work must be performed before clinical implementation.
Collapse
Affiliation(s)
- Yan Li
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiao-Han Zhang
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- Medical School, Nankai University, Tianjin 300071, China
| | - Zi-Kai Wang
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
22
|
Xin H, Zhang X, Li P, Li H, Feng G, Wang G. Bifidobacterium bifidum supplementation improves ischemic stroke outcomes in elderly patients: A retrospective study. Medicine (Baltimore) 2024; 103:e37682. [PMID: 38579074 PMCID: PMC10994462 DOI: 10.1097/md.0000000000037682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/01/2024] [Indexed: 04/07/2024] Open
Abstract
This retrospective study aimed to explore the therapeutic potential of Bifidobacterium bifidum supplementation on elderly ischemic stroke patients. We retrospectively analyzed electronic medical records from 153 elderly ischemic stroke patients. Patients were stratified into 2 groups: those receiving B bifidum supplementation (Intervention group, n = 73) and those receiving standard treatment without any additional supplementation (Control group, n = 80). Outcomes were assessed using the National Institutes of Health Stroke Scale (NIHSS), Montreal Cognitive Assessment (MoCA), Self-Rating Depression Scale (SDS), and Self-Rating Anxiety Scale (SAS). Inflammatory markers, immunological indicators, neurotrophic factor, and gut-brain axis (GBA)-related markers were also evaluated at baseline and during 4-week follow-up. Compared to the control group, the intervention group exhibited significant improvements in the NIHSS, MoCA, SDS and SAS scores (P < .001). Enhanced levels of brain-derived neurotrophic factor (BDNF) and reduced levels of NPY were observed in the intervention group. Additionally, inflammatory markers, including IL-6, IL-8, IL-1β, and TNF-α, were significantly reduced in the intervention group, as well as significant increases in immunoglobulin levels (Ig A, Ig G, and Ig M) (P < .001). Besides, lower incidences of diarrhea and constipation were observed in the intervention group (P < .001), while the incidence of abdominal pain was no significant changed. B bifidum supplementation offers promising therapeutic benefits in improving neurological, cognitive, and psychological outcomes in elderly ischemic stroke patients, which may be achieved by regulating the GBA, reducing inflammation and promoting immune function. These findings highlight the importance of integrating gut health strategies in stroke management.
Collapse
Affiliation(s)
- Hui Xin
- Department of Rehabilitation Medicine, Xingtai Central Hospital, Xingtai, China
| | - Xinjie Zhang
- Department of Rehabilitation Medicine, Xingtai Central Hospital, Xingtai, China
| | - Peng Li
- Department of Rehabilitation Medicine, Xingtai Central Hospital, Xingtai, China
| | - Hui Li
- Department of Neurology, Xingtai Central Hospital, Xingtai, China
| | - Gang Feng
- Department of Rehabilitation Medicine, Xingtai Central Hospital, Xingtai, China
| | - Guiling Wang
- Department of Neurology, Xingtai Central Hospital, Xingtai, China
| |
Collapse
|
23
|
Lu Y, Zhou X, Wu Y, Cui Q, Tian X, Yi H, Gong P, Zhang L. Metabolites 13,14-Dihydro-15-keto-PGE2 Participates in Bifidobacterium animalis F1-7 to Alleviate Opioid-Induced Constipation by 5-HT Pathway. Mol Nutr Food Res 2024; 68:e2200846. [PMID: 38054625 DOI: 10.1002/mnfr.202200846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 07/13/2023] [Indexed: 12/07/2023]
Abstract
SCOPE People suffer from constipation caused by many factors, including constipation (Opioid-Induced Constipation, OIC) during analgesic treatment. Microorganisms may be a potent solution to this problem, but the mechanism is still unclear. METHODS AND RESULTS Based on models in vivo and in vitro, the potential mechanism involving Bifidobacterium animalis F1-7 (B. animalis F1-7), screened in the previous studies, is explored through non-targeted metabonomics, electrophysiological experiment and molecular level docking. The results showed that B. animalis F1-7 effectively alleviates OIC and promotes the expression of chromogranin A (CGA) and 5-hydroxytryptamine (5-HT). The metabolite 13,14-dihydro-15-keto-PGE2 related to B. animalis F1-7 is found, which has a potential improvement effect on OIC at 20 mg kg BW-1 in vivo. At 30 ng mL-1 it effectively stimulates secretion of CGA/5-HT (408.95 ± 1.18 ng mL-1 ) by PC-12 cells and changes the membrane potential potassium ion current without affecting the sodium ion current in vitro. It upregulates the target of free fatty acid receptor-4 protein(FFAR4/β-actin, 0.81 ± 0.02). CONCLUSION The results demonstrate that metabolite 13,14-dihydro-15-keto-PGE2 participated in B. animalis F1-7 to alleviate OIC via the 5-HT pathway.
Collapse
Affiliation(s)
- Youyou Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education (Huazhong Agricultural University), China
| | | | - Yeting Wu
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingyu Cui
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China
| | - Xiaoying Tian
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China
| | - Pimin Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China
| |
Collapse
|
24
|
Ding F, Hu M, Ding Y, Meng Y, Zhao Y. Efficacy in bowel movement and change of gut microbiota on adult functional constipation patients treated with probiotics-containing products: a systematic review and meta-analysis. BMJ Open 2024; 14:e074557. [PMID: 38238054 PMCID: PMC10806726 DOI: 10.1136/bmjopen-2023-074557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/31/2023] [Indexed: 01/23/2024] Open
Abstract
OBJECTIVES This study aimed to pool the efficacy in bowel movement and explore the change of gut microbiota on adult functional constipated patients after probiotics-containing products treatment. DESIGN Systematic review and meta-analysis. DATA SOURCES PubMed, Cochrane Library for published studies and ClinicalTrials.gov for 'grey' researches were independently investigated for randomised controlled trials up to November 2022. ELIGIBILITY CRITERIA, DATA EXTRACTION AND SYNTHESIS The intervention was probiotics-containing product, either probiotics or synbiotics, while the control was placebo. The risk of bias was conducted. The efficacy in bowel movement was indicated by stool frequency, stool consistency and Patient Assessment of Constipation Symptom (PAC-SYM), while the change of gut microbiota was reviewed through α diversity, β diversity, change/difference in relative abundance and so on. The subgroup analysis, sensitivity analysis and random-effect meta-regression were conducted to explore the heterogeneity. The Grading of Recommendations Assessment Development and Evaluation was conducted to grade the quality of evidence. RESULTS 17 studies, comprising 1256 participants, were included with perfect agreements between two researchers (kappa statistic=0.797). Compared with placebo, probiotics-containing products significantly increased the stool frequency (weighted mean difference, WMD 0.93, 95% CI 0.47 to 1.40, p=0.000, I²=84.5%, 'low'), improved the stool consistency (WMD 0.38, 95% CI 0.05 to 0.70, p=0.023, I²=81.6%, 'very low') and reduced the PAC-SYM (WMD -0.28, 95% CI: -0.45 to -0.11, p=0.001, I²=55.7%, 'very low'). In subgroup analysis, synbiotics was superior to probiotics to increase stool frequency. Probiotics-containing products might not affect α or β diversity, but would increase the relative abundance of specific strain. CONCLUSIONS Probiotics-containing products, significantly increased stool frequency, improved stool consistency, and alleviated functional constipation symptoms. They increased the relative abundance of specific strain. More high-quality head-to-head randomised controlled trials are needed.
Collapse
Affiliation(s)
- Fei Ding
- Department of Gastroenterology, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
| | - Mengyang Hu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yifei Ding
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yingying Meng
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yanchao Zhao
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
25
|
Cheng S, Cui H, Zhang J, Wang Q, Duan Z. Probiotic potential of Lacticaseibacillus rhamnosus VHProbi M15 on sucralfate-induced constipation in mice. Sci Rep 2024; 14:1131. [PMID: 38212429 PMCID: PMC10784533 DOI: 10.1038/s41598-024-51497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024] Open
Abstract
The main objective of this study was to investigate the potential probiotic properties of Lacticaseibacillus rhamnosus VHProbi®M15 (M15). This study examined the effects of M15 on sucralfate-induced constipation in a mouse model. The BALB/c mice were randomly divided into four groups: the normal group (NOR) was without any treatment, while the constipation (CON), phenolphthalein (PHE), and probiotic (PRO) treatment groups were fed with sucralfate until the appearance of constipation symptoms. Afterward, the NOR and CON groups were given 1 ml saline orally every day until the end of the experiment; the PHE and PRO groups were given phenolphthalein or M15 suspension in 1 ml orally, respectively. Compared with the CON group, the fecal water content and intestinal peristalsis improved in the PRO group. Here, intake of M15 effectively attenuated sucralfate-induced constipation, recuperated colonic epithelial integrity, and increased serum levels of gastrointestinal excitatory neurotransmitters (motilin, gastrin, substance P). Analysis of the intestinal microbiota of mice by 16S rRNA metagenomic revealed an increase in the relative abundance of Bacteroides and a decrease in Sclerotinia, Verrucosa and Proteus in the PRO group. Compared with the CON group, the constipation-induced intestinal microecological changes were partially recovered in the PHE and PRO groups. These results demonstrate that M15 enhanced gastrointestinal transit and alleviated in mice with sucralfate-induced constipation.
Collapse
Affiliation(s)
- Shumin Cheng
- Qingdao Vland Biotech Group Co., Ltd., Qingdao, China
| | - Hongchang Cui
- Qingdao Vland Biotech Group Co., Ltd., Qingdao, China
| | - Jingyan Zhang
- Qingdao Vland Biotech Group Co., Ltd., Qingdao, China
| | - Qian Wang
- Qingdao Vland Biotech Group Co., Ltd., Qingdao, China
| | - Zhi Duan
- Qingdao Vland Biotech Group Co., Ltd., Qingdao, China.
| |
Collapse
|
26
|
Zhang T, Liu W, Lu H, Cheng T, Wang L, Wang G, Zhang H, Chen W. Lactic acid bacteria in relieving constipation: mechanism, clinical application, challenge, and opportunity. Crit Rev Food Sci Nutr 2023; 65:551-574. [PMID: 37971876 DOI: 10.1080/10408398.2023.2278155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Constipation is a prevalent gastrointestinal symptom that can considerably affect a patients' quality of life. Although several drugs have been used to treat constipation, they are associated with high costs, side effects, and low universality. Therefore, alternative intervention strategies are urgently needed. Traditional lactic acid bacteria (LAB), such as Bifidobacterium and Lactobacillus, play a vital role in regulating intestinal microecology and have demonstrated favorable effects in constipation; however, a comprehensive review of their constipation relief mechanisms is limited. This review summarizes the pathogenesis of constipation and the relationship between intestinal motility and gut microbiota, elucidates the possible mechanism by which LAB alleviates of constipation through a systematic summary of animal and clinical research, and highlights the challenges and applications of LAB in the treatment of constipation. Our review can improve our understanding of constipation, and advance targeted microecological therapeutic agents, such as LAB.
Collapse
Affiliation(s)
- Tong Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenxu Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Huimin Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ting Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
27
|
Song H, Guo R, Sun X, Kou Y, Ma X, Chen Y, Song L, Yuan C, Wu Y. Xylooligosaccharides from corn cobs alleviate loperamide-induced constipation in mice via modulation of gut microbiota and SCFA metabolism. Food Funct 2023; 14:8734-8746. [PMID: 37694718 DOI: 10.1039/d3fo02688d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
This study aimed to optimize the structure and efficacy of xylooligosaccharides (XOSs) from corn cobs in constipated mice. Structural analysis revealed that XOSs from corn cobs were composed of β-Xyl-(1 →4)-[β-Xyl-(1→4)]n-α/β-Xyl (n = 0-5) without any other substituents. XOS administration significantly reduced the defecation time, increased the gastrointestinal transit rate, restored the gastrointestinal neurotransmitter imbalance, protected against oxidative stress, and reversed constipation-induced colonic inflammation. Fecal metabolite and microbiota analysis showed that XOS supplementation significantly increased short chain fatty acid (SCFA) levels and improved the gut microbial environment. These findings highlighted the potential of XOSs from corn cobs as an active ingredient for functional foods or as a therapeutic agent in constipation therapy.
Collapse
Affiliation(s)
- Hong Song
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Rui Guo
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xianbao Sun
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yuxing Kou
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xuan Ma
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yinan Chen
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lihua Song
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chunmei Yuan
- Yunnan Maoduoli Group Food Co., Ltd., Yuxi 653100, China
| | - Yan Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
28
|
Teng T, Sun G, Ding H, Song X, Bai G, Shi B, Shang T. Characteristics of glucose and lipid metabolism and the interaction between gut microbiota and colonic mucosal immunity in pigs during cold exposure. J Anim Sci Biotechnol 2023; 14:84. [PMID: 37400906 DOI: 10.1186/s40104-023-00886-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/03/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Cold regions have long autumn and winter seasons and low ambient temperatures. When pigs are unable to adjust to the cold, oxidative damage and inflammation may develop. However, the differences between cold and non-cold adaptation regarding glucose and lipid metabolism, gut microbiota and colonic mucosal immunological features in pigs are unknown. This study revealed the glucose and lipid metabolic responses and the dual role of gut microbiota in pigs during cold and non-cold adaptation. Moreover, the regulatory effects of dietary glucose supplements on glucose and lipid metabolism and the colonic mucosal barrier were evaluated in cold-exposed pigs. RESULTS Cold and non-cold-adapted models were established by Min and Yorkshire pigs. Our results exhibited that cold exposure induced glucose overconsumption in non-cold-adapted pig models (Yorkshire pigs), decreasing plasma glucose concentrations. In this case, cold exposure enhanced the ATGL and CPT-1α expression to promote liver lipolysis and fatty acid oxidation. Meanwhile, the two probiotics (Collinsella and Bifidobacterium) depletion and the enrichment of two pathogens (Sutterella and Escherichia-Shigella) in colonic microbiota are not conducive to colonic mucosal immunity. However, glucagon-mediated hepatic glycogenolysis in cold-adapted pig models (Min pigs) maintained the stability of glucose homeostasis during cold exposure. It contributed to the gut microbiota (including the enrichment of the Rikenellaceae RC9 gut group, [Eubacterium] coprostanoligenes group and WCHB1-41) that favored cold-adapted metabolism. CONCLUSIONS The results of both models indicate that the gut microbiota during cold adaptation contributes to the protection of the colonic mucosa. During non-cold adaptation, cold-induced glucose overconsumption promotes thermogenesis through lipolysis, but interferes with the gut microbiome and colonic mucosal immunity. Furthermore, glucagon-mediated hepatic glycogenolysis contributes to glucose homeostasis during cold exposure.
Collapse
Affiliation(s)
- Teng Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Guodong Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Hongwei Ding
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Xin Song
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Guangdong Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - Tingting Shang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
29
|
Yi X, Zhou K, Jiang P, Deng N, Peng X, Tan Z. Brain-bacteria-gut axis and oxidative stress mediated by intestinal mucosal microbiota might be an important mechanism for constipation in mice. 3 Biotech 2023; 13:192. [PMID: 37205176 PMCID: PMC10185723 DOI: 10.1007/s13205-023-03580-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/21/2023] [Indexed: 05/21/2023] Open
Abstract
Intestinal microbiota disorder was associated with constipation. This study investigated the microbiota-gut-brain axis and oxidative stress mediated by intestinal mucosal microbiota in mice with spleen deficiency constipation. The Kunming mice were randomly divided into the control (MC) group and the constipation (MM) group. The spleen deficiency constipation model was established by gavage with Folium sennae decoction and controlled diet and water intake. The body weight, spleen and thymus index, 5-Hydroxytryptamine (5-HT) and Superoxide Dismutase (SOD) content were significantly lower in the MM group than the MC group, the content of vasoactive intestinal peptide (VIP) and malondialdehyde (MDA) content were significantly higher than the MC group. The Alpha diversity of intestinal mucosal bacteria was not changed but beta diversity was changed in mice with spleen deficiency constipation. Compared to the MC group, the relative abundance of Proteobacteria was an upward trend and the Firmicutes/Bacteroidota (F/B) value was a downward trend in the MM group. There was a significant difference in the characteristic microbiota between the two groups. In the MM group, Brevinema, Akkermansia, Parasutterella, Faecalibaculum, Aeromonas, Sphingobium, Actinobacillus, and other pathogenic bacteria were enriched. Meanwhile, there was a certain relationship between the microbiota and gastrointestinal neuropeptide and oxidative stress indicators. The community structure of intestinal mucosal bacteria in mice with spleen deficiency constipation was changed, which was characterized by the reduction of F/B value and enrichment of Proteobacteria. Microbiota-gut-brain axis may be important for spleen deficiency constipation.
Collapse
Affiliation(s)
- Xin Yi
- The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 China
| | - Kang Zhou
- The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 China
| | - Ping Jiang
- The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 China
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007 China
| | - Na Deng
- The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 China
| | - Xinxin Peng
- The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 China
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007 China
| | - Zhoujin Tan
- The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 China
| |
Collapse
|
30
|
Ma T, Yang N, Xie Y, Li Y, Xiao Q, Li Q, Jin H, Zheng L, Sun Z, Zuo K, Kwok LY, Zhang H, Lu N, Liu W. Effect of the probiotic strain, Lactiplantibacillus plantarum P9, on chronic constipation: a randomized, double-blind, placebo-controlled study. Pharmacol Res 2023; 191:106755. [PMID: 37019193 DOI: 10.1016/j.phrs.2023.106755] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/20/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023]
Abstract
Chronic constipation (CC) is a common gastrointestinal condition associated with intestinal inflammation, and the condition considerably impairs patients' quality of life. We conducted a large-scale 42-day randomized, double-blind, placebo-controlled trial to investigate the effect of probiotics in alleviating CC. 163 patients diagnosed with CC (following Rome IV criteria) were randomly divided into probiotic (n = 78; received Lactiplantibacillus plantarum P9 [P9]; 1×1011 CFU/day) and placebo (n = 85; received placebo material) groups. Ingesting P9 significantly improved the weekly mean frequency of complete spontaneous bowel movements (CSBMs) and spontaneous bowel movements (SBMs), while significantly reducing the level of worries and concerns (WO; P < 0.05). Comparing with the placebo group, P9 group was significantly enriched in potentially beneficial bacteria (Lactiplantibacillus plantarum and Ruminococcus_B gnavus), while depriving of several bacterial and phage taxa (Oscillospiraceae sp., Lachnospiraceae sp., and Herelleviridae; P < 0.05). Interesting significant correlations were also observed between some clinical parameters and subjects' gut microbiome, including: negative correlation between Oscillospiraceae sp. and SBMs; positive correlation between WO and Oscillospiraceae sp., Lachnospiraceae sp. Additionally, P9 group had significantly (P < 0.05) more predicted gut microbial bioactive potential involved in the metabolism of amino acids (L-asparagine, L-pipecolinic), short-/medium-chain fatty acids (valeric acid and caprylic acid). Furthermore, several metabolites (p-cresol, methylamine, trimethylamine) related to the intestinal barrier and transit decreased significantly after P9 administration (P < 0.05). In short, the constipation relief effect of P9 intervention was accompanied by desirable changes in the fecal metagenome and metabolome. Our findings support the notion of applying probiotics in managing CC.
Collapse
|
31
|
Tang N, Yu Q, Mei C, Wang J, Wang L, Wang G, Zhao J, Chen W. Bifidobacterium bifidum CCFM1163 Alleviated Cathartic Colon by Regulating the Intestinal Barrier and Restoring Enteric Nerves. Nutrients 2023; 15:nu15051146. [PMID: 36904145 PMCID: PMC10005791 DOI: 10.3390/nu15051146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Cathartic colon (CC), a type of slow-transit constipation caused by the long-term use of stimulant laxatives, does not have a precise and effective treatment. This study aimed to evaluate the ability of Bifidobacterium bifidum CCFM1163 to relieve CC and to investigate its underlying mechanism. Male C57BL/6J mice were treated with senna extract for 8 weeks, followed by a 2-week treatment with B. bifidum CCFM1163. The results revealed that B. bifidum CCFM1163 effectively alleviated CC symptoms. The possible mechanism of B. bifidum CCFM1163 in relieving CC was analyzed by measuring the intestinal barrier and enteric nervous system (ENS)-related indices and establishing a correlation between each index and gut microbiota. The results indicated that B. bifidum CCFM1163 changed the gut microbiota by significantly increasing the relative abundance of Bifidobacterium, Faecalibaculum, Romboutsia, and Turicibacter as well as the content of short-chain fatty acids, especially propionic acid, in the feces. This increased the expression of tight junction proteins and aquaporin 8, decreased intestinal transit time, increased fecal water content, and relieved CC. In addition, B. bifidum CCFM1163 also increased the relative abundance of Faecalibaculum in feces and the expression of enteric nerve marker proteins to repair the ENS, promote intestinal motility, and relieve constipation.
Collapse
Affiliation(s)
- Nan Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiangqing Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chunxia Mei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jialiang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- Correspondence: ; Tel.: +86-510-8591-2155
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
32
|
Wang Q, Shen F, Zhang J, Zhuang J, Feng F. Wheat peptides with different hydrolysis degree have similar relief effect in constipated mice. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
33
|
Qu D, Yu L, Tian F, Zhang H, Chen W, Gu Z, Zhai Q. Bifidobacterium bifidum FJSWX19M5 alleviated 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced chronic colitis by mitigating gut barrier injury and increasing regulatory T cells. Food Funct 2023; 14:181-194. [PMID: 36477762 DOI: 10.1039/d2fo02659g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Probiotics have been evaluated as alternative approaches for preventing the relapse of Crohn's disease (CD). Previously, we observed strain-specific anti-inflammatory properties of Bifidobacterium bifidum in 2,4,6-trinitrobenzene sulfonic acid (TNBS) acute colitis models. In this study, we further assessed the effects of several B. bifidum strains on colonic damage, fibrosis, inflammatory factors, intestinal microbial and metabolic profiles, and peripheral regulatory T cells (Tregs) in the context of TNBS chronic colitis in mice. These results indicated that B. bifidum FJSWX19M5, but not FXJWS17M4, ameliorated body weight loss, reduced colonic shortening and injury, decreased markers of gut inflammation, and rebalanced colonic metabolism in TNBS-treated mice. FJSWX19M5 supplementation also promoted Treg cell differentiation and intestinal barrier restoration compared to other strains. All living B. bifidum strains (FJSWX19M5, FXJWS17M4 and FHENJZ3M6) seemed to restore the disruption of the gut microbiota caused by TNBS. The co-culture of B. bifidum strains and mesenteric lymph node cells from TNBS-treated mice showed that those strains with anti-colitis could induce higher IL-10 levels and a lower ratio of IL-22/IL-10 and IL-17/IL-10 when compared to those strains that were not protective. Furthermore, heat-killed FJSWX19M5 exhibited a relief effect on colitis-related symptoms (including body weight loss, colonic shortening and injury). These data imply that specific B. bifidum strains or their lysates may be the current therapeutic alternatives for CD.
Collapse
Affiliation(s)
- Dingwu Qu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China.,Wuxi Translational Medicine Research Center and Jiangsu Translational, Medicine Research Institute, Wuxi Branch, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
34
|
Cui H, Wang Q, Feng C, Guo C, Zhang J, Bu X, Duan Z. Positive effect of Bifidobacterium animalis subsp . lactis VHProbi YB11 in improving gastrointestinal movement of mice having constipation. Front Microbiol 2022; 13:1040371. [PMID: 36532450 PMCID: PMC9755254 DOI: 10.3389/fmicb.2022.1040371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/17/2022] [Indexed: 03/13/2024] Open
Abstract
INTRODUCTION The aim of this study was to investigate the effects of Bifidobacterium animalis subsp. lactis VHProbi® YB11 (YB11) on attenuating sucralfate-induced constipation in BALB/c mice. The strain of YB11 exhibited favorable tolerance of simulated gastrointestinal (GI) juice. Only 0.42 Log value declined when the live cells of YB11 were co-incubated with simulated GI juice. Meanwhile, this strain also displayed perfect ability to adhere the intestinal epithelium Caco-2 cells with adhesion index of 18.5. 24 of female mice were randomized into four groups. METHODS The normal group (NOR) was fed with a normal diet, whereas the placebo group (PLA), positive group (POS), and probiotic group (PRO) were fed with sucralfate to induce constipation. After first successfully establishing the constipation model, groups NOR and PLA received the oral administration of saline solutions. Meanwhile, the POS and PRO groups were orally administered phenolphthalein and YB11 suspensions, respectively. Several indices, including fecal water content, GI transit time, short-chain fatty acids (SCFAs), intestinal neuropeptides level, and histopathology of colonic tissues, were investigated. RESULTS AND DISCUSSION Compared with PLA, YB11 had a positive effect in increasing the fecal water content and intestinal peristalsis. Some positive trends, including the acetic and total acids level of fecal samples, and the colonic tissue histopathology, were also observed. Furthermore, YB11 had an ability to upregulate the levels of gut excitatory neuropeptides including motilin, gastrin, and substance P, whereas it downregulated the levels of inhibitory neuropeptides including endothelin-1, somatostatin, and vasoactive intestinal peptide. We conclude that the strain YB11 has a positive impact on improving gastrointestinal mobility and reducing the severity of constipation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhi Duan
- Qingdao Vland Biotech Group Co., Ltd., Qingdao, China
| |
Collapse
|
35
|
van der Schoot A, Helander C, Whelan K, Dimidi E. Probiotics and synbiotics in chronic constipation in adults: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr 2022; 41:2759-2777. [PMID: 36372047 DOI: 10.1016/j.clnu.2022.10.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND & AIMS Probiotics and synbiotics have been increasingly investigated for the management of chronic constipation. We aimed to investigate the effect of probiotics and synbiotics on stool output, gut transit time, symptoms and quality of life in adults with chronic constipation via a systematic review and meta-analysis of randomized controlled trials (RCTs). METHODS Studies were identified using electronic databases, backward citation and hand-searching abstracts. The search date was 10 July 2022. RCTs reporting administration of probiotics or synbiotics in adults with chronic constipation were included. Risk of bias (RoB) was assessed with the Cochrane RoB 2.0 tool. Meta-analysis was conducted separately for probiotics and synbiotics. Results were synthesized using risk ratios (RRs), mean differences or standardized mean differences (SMDs) and 95% confidence intervals (CIs) using a random-effects model. RESULTS Thirty RCTs investigating probiotics and four RCTs investigating synbiotics were included. Overall, 369/647 (57%) responded to probiotic treatment and 252/567 (44%) to control (RR 1.28, 95% CI 1.07, 1.52, p = 0.007). Probiotics increased stool frequency (SMD 0.71, 95% CI 0.37, 1.04, p < 0.00001), with Bifidobacterium lactis having a significant effect, but not mixtures of probiotics, Bacillus coagulans Unique IS2 or Lactobacillus casei Shirota. Probiotics did not impact stool consistency (SMD 0.26, 95% CI -0.03, 0.54, p = 0.08). Probiotics improved integrative symptom scores compared to control (SMD -0.46, 95% CI -0.89, -0.04). Synbiotics did not impact stool output or integrative symptom scores compared to control. CONCLUSIONS Certain probiotics may improve response to treatment, stool frequency and integrative constipation symptoms, providing cautious optimism for their use as a dietary management option. There is currently insufficient evidence to recommend synbiotics in the management of chronic constipation. Caution is needed when interpreting these results due to high heterogeneity and risk of bias amongst the studies.
Collapse
Affiliation(s)
- Alice van der Schoot
- Department of Nutritional Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom.
| | - Carina Helander
- Department of Nutritional Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom.
| | - Kevin Whelan
- Department of Nutritional Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom.
| | - Eirini Dimidi
- Department of Nutritional Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom.
| |
Collapse
|
36
|
Cui S, Gu Z, Wang W, Tang X, Zhang Q, Mao B, Zhang H, Zhao J. Characterization of peptides available to different bifidobacteria. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Pan R, Wang L, Xu X, Chen Y, Wang H, Wang G, Zhao J, Chen W. Crosstalk between the Gut Microbiome and Colonic Motility in Chronic Constipation: Potential Mechanisms and Microbiota Modulation. Nutrients 2022; 14:nu14183704. [PMID: 36145079 PMCID: PMC9505360 DOI: 10.3390/nu14183704] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic constipation (CC) is a highly prevalent and burdensome gastrointestinal disorder. Accumulating evidence highlights the link between imbalances in the gut microbiome and constipation. However, the mechanisms by which the microbiome and microbial metabolites affect gut movement remain poorly understood. In this review, we discuss recent studies on the alteration in the gut microbiota in patients with CC and the effectiveness of probiotics in treating gut motility disorder. We highlight the mechanisms that explain how the gut microbiome and its metabolism are linked to gut movement and how intestinal microecological interventions may counteract these changes based on the enteric nervous system, the central nervous system, the immune function, and the ability to modify intestinal secretion and the hormonal milieu. In particular, microbiota-based approaches that modulate the levels of short-chain fatty acids and tryptophan catabolites or that target the 5-hydroxytryptamine and Toll-like receptor pathways may hold therapeutic promise. Finally, we discuss the existing limitations of microecological management in treating constipation and suggest feasible directions for future research.
Collapse
Affiliation(s)
- Ruili Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaopeng Xu
- The Department of Clinical Laboratory, Wuxi Xishan People’s Hospital, Wuxi 214105, China
| | - Ying Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haojue Wang
- The Department of of Obstetrics and Gynecology, Wuxi Xishan People’s Hospital, Wuxi 214105, China
- Correspondence: (H.W.); (J.Z.); Tel.: +86-510-8240-2084 (H.W.); +86-510-8591-2155 (J.Z.)
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- Correspondence: (H.W.); (J.Z.); Tel.: +86-510-8240-2084 (H.W.); +86-510-8591-2155 (J.Z.)
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| |
Collapse
|
38
|
Wang L, Chai M, Wang J, Yu Q, Wang G, Zhang H, Zhao J, Chen W. Bifidobacterium longum relieves constipation by regulating the intestinal barrier of mice. Food Funct 2022; 13:5037-5049. [PMID: 35394000 DOI: 10.1039/d1fo04151g] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Constipation is a major health concern worldwide, requiring effective and safe treatment options. This study mainly focused on three species and nine strains of bifidobacteria from different sources to study their abilities to relieve constipation induced by loperamide in BALB/C mice. By monitoring constipation-related indicators, it was found that only Bifidobacterium longum (B. longum) relieved constipation, which indicated that bifidobacteria had inter-species differences in relieving constipation. Furthermore, through the detection of biological, chemical, mechanical, and immune barriers in mice, it was discovered that B. longum upregulates the relative abundance of 22 genera that were positively related to faecal water content, small intestinal propulsion rate, acetate, propionate, and intestinal mechanical barrier and negatively correlated with inflammatory factors, AQP8 and the time of first black stool and downregulates the relative abundance of Akkermansia. Furthermore, it increased the level of acetate in faeces and reduced the expression of AQP8 in the colon. This enhances intestinal motility and improves water and electrolyte metabolism. Meanwhile, it inhibited inflammation and prevented loperamide-induced intestinal barrier damage in constipated mice by upregulating occludin and downregulating IL-1β and TNF-α. In summary, B. longum relieved constipation by regulating the intestinal barrier in constipated mice.
Collapse
Affiliation(s)
- Linlin Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Mao Chai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jialiang Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Qiangqing Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
39
|
Lactobacillus fermentum Stimulates Intestinal Secretion of Immunoglobulin A in an Individual-Specific Manner. Foods 2022; 11:foods11091229. [PMID: 35563952 PMCID: PMC9099657 DOI: 10.3390/foods11091229] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 02/04/2023] Open
Abstract
Immunoglobulin A (IgA), as the most secreted immunoglobulin in the intestine, plays an irreplaceable role in mucosal immunity regulation. Previous studies have indicated that Lactobacillus showed strain specificity in stimulating the secretion of IgA through intestinal mucosal lymphocytes. The reason for this phenomenon is not clear. The current studies have been aimed at exploring the effect of a strain on the secretion of IgA in the host’s intestine, but the mechanism behind it has not been seriously studied. Based on this, we selected five strains of Lactobacillus fermentum isolated from different individuals to determine whether there are intraspecific differences in stimulating the secretion of IgA from the intestinal mucosa. It was found that IgA concentrations in different intestinal segments and faeces induced by L. fermentum were different. 12-1 and X6L1 strains increased the secretion of IgA by the intestine significantly. In addition, different strains of L. fermentum were also proven to have different effects on the host gut microbiota but no significant effects on IgA-coated microbiota. Besides, it was speculated that different strains of L. fermentum may act on different pathways to stimulate IgA in a non-inflammatory manner. By explaining the differences of IgA secretion in the host’s intestine tract stimulated by different strains of L. fermentum, it is expected to provide a theoretical basis for the stimulation of intestinal secretion of IgA by Lactobacillus and a new direction for exploring the relationship between Lactobacillus and human immunity.
Collapse
|