1
|
Li Q, Wei C, Xu L, Zhang J, Li Y, Lu X, Xu R, Guo H, Cao P, Ouyang C, Xu J, Chen W, Wang Z, Wang L. A Smart Semi-Implantable Device Integrating Microchannel-Enhanced Sampling and Multiplex Biochemical Testing for Deep Wound Monitoring and Pathogen Identification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407868. [PMID: 39741227 PMCID: PMC11848630 DOI: 10.1002/advs.202407868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/19/2024] [Indexed: 01/02/2025]
Abstract
Monitoring deep wounds is challenging but necessary for high-quality medical treatment. Current methodologies for deep wound monitoring are typically limited to indirect clinical symptoms or costly non-real-time imaging diagnosis. Herein, a smart system is proposed that enables in situ monitoring of deep wounds' status through a semi-implantable device composed of 2 seamlessly connected functional components: 1) the well-designed, microchannel-structured sampling needles that efficiently and conveniently collect samples from deep wound anatomical locations, and 2) the multiplex biochemical testing compartment that facilitates the immediate and persistent detection of multiple biochemical indicators based on a color image processing software accessible to a conventional smartphone. With the 3 representative preclinical deep wound models, the study demonstrates the device's potential to monitor wound infection, inflammation, healing progress, and reduce inflammation when applied to deep skin injury, surgical implantation, and postoperative intestinal leakage. The device's capability to rapidly and accurately identify pathogenic bacteria is also demonstrated both in vitro and in vivo, potentially facilitating precise intervention in infected wounds. Coupled with the device's favorable biocompatibility and cost-effectiveness, this intelligent system emerges as a promising tool for safe and effective management of complicated deep wounds.
Collapse
Affiliation(s)
- Qilin Li
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchHubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Chunyu Wei
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchHubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Luming Xu
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchHubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Jiao Zhang
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yuyu Li
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchHubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xiaohuan Lu
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchHubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Rengui Xu
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchHubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Honglian Guo
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchHubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Peng Cao
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchHubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Chenke Ouyang
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchHubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Jiarong Xu
- Department of PharmacologySchool of Basic MedicineState Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesTongji‐Rongcheng Center for BiomedicineTongji Medical CollegeHuazhong University of Science and TechnologyHubei Key Laboratory for Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and TechnologyWuhan430030China
| | - Wei Chen
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of PharmacologySchool of Basic MedicineState Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesTongji‐Rongcheng Center for BiomedicineTongji Medical CollegeHuazhong University of Science and TechnologyHubei Key Laboratory for Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and TechnologyWuhan430030China
| | - Zheng Wang
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchHubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Lin Wang
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchHubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
2
|
Fan Y, Shi D, Chen Y, Huang Q, Huang S, Zhao Q, Mohamad S, Yuan J. A Voltage-Assist 16-Channel Electrochemical Biosensor With Linearity Compensation. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2025; 19:153-164. [PMID: 38748527 DOI: 10.1109/tbcas.2024.3401784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Large capacitive loading of electrodes induces massive error current and imperfect settling in the electrochemical signal acquisition process, leading to inaccurate acquisition results. To efficiently mitigate this inaccuracy, this paper presents a current-and-voltage dual-mode acquisition technique in which a voltage front-end (VFE) is employed to acquire the electrode voltage error and compensate the nonlinearity induced by the electrode capacitive loading. Therefore, the gain and bandwidth requirements of the current front end (CFE) can be relaxed to reduce the complexity and power consumption. With a relieved gain requirement, an inverter-based capacitive trans-impedance amplifier (IB-CTIA) is adopted to boost the input transconductance for low-noise design. By reusing the supply current, the IB-CTIA effectively achieves a low input-referred current noise of 3.9 pArms and a dynamic range (DR) of 126 dB with only 18-μW static power. The prototype chip is fabricated in a 180-nm CMOS process. Interleukin-6 immunoassays (IL-6) are implemented to verify the chip's performance. With the proposed nonlinear error compensation, the correlation coefficient of the detection result is improved from 0.951 to 0.980 and the limit of detection (LoD) is reduced from 8.31 pg/mL to 6.90 pg/mL.
Collapse
|
3
|
Zhang H, Rafat N, Rudge J, Peddireddy SP, Kim YN, Khan T, Sarkar A. High throughput electronic detection of biomarkers using enzymatically amplified metallization on nanostructured surfaces. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7854-7863. [PMID: 39530206 PMCID: PMC11563207 DOI: 10.1039/d4ay01657b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Enzyme-linked immunosorbent assays are commonly used for clinical biomarker detection. However, they remain resource-intensive and difficult to scale globally. Here we present a miniaturized direct electronic biosensing modality which generates a simple and sensitive, quantitative, resistive readout of analyte binding in immunoassays. It utilizes the enhanced metallization generated by synergistic catalytic activity of nanostructured surfaces, created using gold nanoparticles, with enzymatic metallization, catalyzed by analyte-bound enzyme-labeled antibodies, to create a connected metal layer between microelectrodes. Based on this scheme, we develop a portable, high-throughput electronic biomarker detection device and platform which allows testing 96 different low volume (3 μL) clinical samples in a handheld device. We find an analyte concentration-dependent tunable digital switch-like behavior in the measured resistance of this device. We use this system to further explore the mechanism of enhanced metallization and find optimal parameters. Finally, we use this platform to perform quantitative measurement of viral antigen-specific antibody titers from convalescent COVID-19 patient serum.
Collapse
Affiliation(s)
- Hanhao Zhang
- Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA.
| | - Neda Rafat
- Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA.
| | - Josiah Rudge
- Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA.
| | | | - Yoo Na Kim
- Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA.
| | - Taaseen Khan
- Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA.
| | - Aniruddh Sarkar
- Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA.
| |
Collapse
|
4
|
Maddocks GM, Eisenstein M, Soh HT. Biosensors for Parkinson's Disease: Where Are We Now, and Where Do We Need to Go? ACS Sens 2024; 9:4307-4327. [PMID: 39189973 DOI: 10.1021/acssensors.4c00790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Parkinson's Disease is the second most common neurological disease in the United States, yet there is no cure, no pinpointed cause, and no definitive diagnostic procedure. Parkinson's is typically diagnosed when patients present with motor symptoms such as slowness of movement and tremors. However, none of these are specific to Parkinson's, and a confident diagnosis of Parkinson's is typically only achieved when 60-80% of dopaminergic neurons are no longer functioning, at which point much of the damage to the brain is irreversible. This Perspective details ongoing efforts and accomplishments in biosensor research with the goal of overcoming these issues for Parkinson's diagnosis and care, with a focus on the potential impact of early diagnosis and associated opportunities to pinpoint a cause and a cure. We critically analyze the strengths and shortcomings of current technologies and discuss the ideal characteristics of a diagnostic technology toolbox to guide future research decisions in this space. Finally, we assess what role biosensors can play in facilitating precision medicine for Parkinson's patients.
Collapse
Affiliation(s)
- Grace M Maddocks
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - M Eisenstein
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - H Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
5
|
Hari Gupta G, Mohan K, Ghosh S, Sarath Babu S, Velyutham R, Kapusetti G. Label-Free detection of Poly-Cystic Ovarian Syndrome using a highly conductive 2-D rGO/MoS 2/PANI nanocomposite based immunosensor. Bioelectrochemistry 2024; 158:108681. [PMID: 38493574 DOI: 10.1016/j.bioelechem.2024.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
Polycystic ovarian syndrome (PCOS) is an endocrinal disorder characterized by multiple tiny cysts, amenorrhea, dysmenorrhea, hirsutism, and infertility. The current diagnostic tools comprise of expensive, time-consuming ultrasonography to serological test, which have low patient compliance. To address these limitations, we have developed a highly sensitive, cost effective and ultrafast immunosensor for the diagnosis of PCOS. Herein, we have fabricated a 2-D electro conductive composites of reduced Graphene oxide (rGO), Molybdenum disulfide (MoS2), and Polyaniline (PANI) as electrode material. Furthermore, for detecting an early and non-cyclic biomarker of PCOS, i.e. anti-Mullerian hormone (AMH). We utilize the specific antigen-antibody mechanism, in which monoclonal Anti-AMH antibodies were covalently immobilized using EDC-NHS chemistry on electrode. The developed biosensor was physicochemical and electrochemically characterized to demonstrate its efficiency. Further we have investigated the biosensor's performance with Cyclic Voltammetry, Differential Pulse Voltammetry, and Electrochemical Impedance Spectroscopy. We have validated that under the optimized condition the immunosensor exhibits higher sensitivity with a LOD of ∼ 2.0 ng/mL with a linear range up to 100 ng/mL. Furthermore, this immunosensor works efficiently with a lower sample volume (>5 μL), which provides a sensitive, reproducible, low-cost, rapid analysis to detect AMH level in PCOS diagnosis.
Collapse
Affiliation(s)
- Gourang Hari Gupta
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER)- Ahmedabad, India
| | - Keerthana Mohan
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER)- Ahmedabad, India
| | - Sumanta Ghosh
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER)- Ahmedabad, India
| | | | | | - Govinda Kapusetti
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India; Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER)- Ahmedabad, India.
| |
Collapse
|
6
|
Bocu R. Extended Review Concerning the Integration of Electrochemical Biosensors into Modern IoT and Wearable Devices. BIOSENSORS 2024; 14:214. [PMID: 38785688 PMCID: PMC11117989 DOI: 10.3390/bios14050214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Electrochemical biosensors include a recognition component and an electronic transducer, which detect the body fluids with a high degree of accuracy. More importantly, they generate timely readings of the related physiological parameters, and they are suitable for integration into portable, wearable and implantable devices that are significant relative to point-of-care diagnostics scenarios. As an example, the personal glucose meter fundamentally improves the management of diabetes in the comfort of the patients' homes. This review paper analyzes the principles of electrochemical biosensing and the structural features of electrochemical biosensors relative to the implementation of health monitoring and disease diagnostics strategies. The analysis particularly considers the integration of the biosensors into wearable, portable, and implantable systems. The fundamental aim of this paper is to present and critically evaluate the identified significant developments in the scope of electrochemical biosensing for preventive and customized point-of-care diagnostic devices. The paper also approaches the most important engineering challenges that should be addressed in order to improve the sensing accuracy, and enable multiplexing and one-step processes, which mediate the integration of electrochemical biosensing devices into digital healthcare scenarios.
Collapse
Affiliation(s)
- Razvan Bocu
- Department of Mathematics and Computer Science, Transilvania University of Brasov, 500036 Brasov, Romania
| |
Collapse
|
7
|
Shen H, Dong L, Gao Y, Wang X, Dai X. Integrated Microwell Array-Based Microfluidic Chip with a Hand-Held Smartphone-Controlled Device for Nucleic Acid Detection. Anal Chem 2023; 95:15394-15399. [PMID: 37787984 DOI: 10.1021/acs.analchem.3c03525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
In this study, we designed a highly integrated microfluidic chip for nucleic acid extraction, amplification, and detection. Magnetic beads, which are used to capture nucleic acids on the chip, are trapped in the microwell arrays in a one-well-one-bead manner after local surface modification of the inner faces of the microwells. On-chip liquid introduction, delivery, and mixing are all carried out manually with one syringe and no other equipment. A hand-held device with precise temperature control and high-quality imaging is developed, which is only 2.3 cubic decimeters in volume and 1.2 kg in weight. Via the use of the Internet for wireless communication, the experiment and data analysis after inserting the chip into the device can be conducted by a smartphone anywhere there is an Internet connection. We carried out reverse transcription loop-mediated isothermal amplification (RT-LAMP) on the chip with the hand-held device. SARS-CoV-2 pseudoviruses are extracted, reverse transcribed, amplified, and detected on the chip with the hand-held device with satisfactory results. Thus, a highly integrated, easy-to-operate, and rapid nucleic acid detection microfluidic chip with a hand-held smartphone-controlled device is proposed, and this new platform for nucleic acid detection shows great potential for mobile point-of-care testing (POCT).
Collapse
Affiliation(s)
- Haiying Shen
- National Institute of Metrology, Beijing 100029, People's Republic of China
| | - Lianhua Dong
- National Institute of Metrology, Beijing 100029, People's Republic of China
| | - Yunhua Gao
- National Institute of Metrology, Beijing 100029, People's Republic of China
| | - Xia Wang
- National Institute of Metrology, Beijing 100029, People's Republic of China
| | - Xinhua Dai
- National Institute of Metrology, Beijing 100029, People's Republic of China
| |
Collapse
|
8
|
Kikkeri K, Naba FM, Voldman J. Rapid, low-cost fabrication of electronic microfluidics via inkjet-printing and xurography (MINX). Biosens Bioelectron 2023; 237:115499. [PMID: 37473550 DOI: 10.1016/j.bios.2023.115499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/22/2023]
Abstract
Microfluidics has shown great promise for point-of-care assays due to unique chemical and physical advantages that occur at the micron scale. Furthermore, integration of electrodes into microfluidic systems provides additional capabilities for assay operation and electronic readout. However, while these systems are abundant in biological and biomedical research settings, translation of microfluidic devices with embedded electrodes are limited. In part, this is due to the reliance on expensive, inaccessible, and laborious microfabrication techniques. Although innovative prior work has simplified microfluidic fabrication or inexpensively patterned electrodes, low-cost, accessible, and robust methods to incorporate all these elements are lacking. Here, we present MINX, a low-cost <1 USD and rapid (∼minutes) fabrication technique to manufacture microfluidic device with embedded electrodes. We characterize the structures created using MINX, and then demonstrate the utility of the approach by using MINX to implement an electrochemical bead-based biomarker detection assay. We show that the MINX technique enables the scalable, inexpensive fabrication of microfluidic devices with electronic sensors using widely accessible desktop machines and low-cost materials.
Collapse
Affiliation(s)
- Kruthika Kikkeri
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Feven Moges Naba
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Joel Voldman
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
9
|
Rotondi SMC, Canepa P, Angeli E, Canepa M, Cavalleri O. DNA Sensing Platforms: Novel Insights into Molecular Grafting Using Low Perturbative AFM Imaging. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094557. [PMID: 37177760 PMCID: PMC10181596 DOI: 10.3390/s23094557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/01/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
By using AFM as a nanografting tool, we grafted micrometer-sized DNA platforms into inert alkanethiol SAMs. Tuning the grafting conditions (surface density of grafting lines and scan rate) allowed us to tailor the molecular density of the DNA platforms. Following the nanografting process, AFM was operated in the low perturbative Quantitative Imaging (QI) mode. The analysis of QI AFM images showed the coexistence of molecular domains of different heights, and thus different densities, within the grafted areas, which were not previously reported using contact AFM imaging. Thinner domains corresponded to low-density DNA regions characterized by loosely packed, randomly oriented DNA strands, while thicker domains corresponded to regions with more densely grafted DNA. Grafting with densely spaced and slow scans increased the size of the high-density domains, resulting in an overall increase in patch height. The structure of the grafted DNA was compared to self-assembled DNA, which was assessed through nanoshaving experiments. Exposing the DNA patches to the target sequence produced an increase in the patch height, indicating that hybridization was accomplished. The relative height increase of the DNA patches upon hybridization was higher in the case of lower density patches due to hybridization leading to a larger molecular reorganization. Low density DNA patches were therefore the most suitable for targeting oligonucleotide sequences.
Collapse
Affiliation(s)
| | - Paolo Canepa
- Dipartimento di Fisica and Optmatlab, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Elena Angeli
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Maurizio Canepa
- Dipartimento di Fisica and Optmatlab, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
- INFN, Sezione di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Ornella Cavalleri
- Dipartimento di Fisica and Optmatlab, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| |
Collapse
|
10
|
Wilkirson EC, Singampalli KL, Li J, Dixit DD, Jiang X, Gonzalez DH, Lillehoj PB. Affinity-based electrochemical sensors for biomolecular detection in whole blood. Anal Bioanal Chem 2023:10.1007/s00216-023-04627-5. [PMID: 36917265 PMCID: PMC10011785 DOI: 10.1007/s00216-023-04627-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/15/2023]
Abstract
The detection and/or quantification of biomarkers in blood is important for the early detection, diagnosis, and treatment of a variety of diseases and medical conditions. Among the different types of sensors for detecting molecular biomarkers, such as proteins, nucleic acids, and small-molecule drugs, affinity-based electrochemical sensors offer the advantages of high analytical sensitivity and specificity, fast detection times, simple operation, and portability. However, biomolecular detection in whole blood is challenging due to its highly complex matrix, necessitating sample purification (i.e., centrifugation), which involves the use of bulky, expensive equipment and tedious sample-handling procedures. To address these challenges, various strategies have been employed, such as purifying the blood sample directly on the sensor, employing micro-/nanoparticles to enhance the detection signal, and coating the electrode surface with blocking agents to reduce nonspecific binding, to improve the analytical performance of affinity-based electrochemical sensors without requiring sample pre-processing steps or laboratory equipment. In this article, we present an overview of affinity-based electrochemical sensor technologies that employ these strategies for biomolecular detection in whole blood.
Collapse
Affiliation(s)
- Elizabeth C Wilkirson
- Department of Mechanical Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Kavya L Singampalli
- Department of Bioengineering, Rice University, 6500 Main St., Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Jiran Li
- Department of Mechanical Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Desh Deepak Dixit
- Department of Mechanical Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Xue Jiang
- Department of Mechanical Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Diego H Gonzalez
- Department of Bioengineering, Rice University, 6500 Main St., Houston, TX, 77030, USA
| | - Peter B Lillehoj
- Department of Mechanical Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA.
- Department of Bioengineering, Rice University, 6500 Main St., Houston, TX, 77030, USA.
| |
Collapse
|
11
|
Wu J, Liu H, Chen W, Ma B, Ju H. Device integration of electrochemical biosensors. NATURE REVIEWS BIOENGINEERING 2023; 1:346-360. [PMID: 37168735 PMCID: PMC9951169 DOI: 10.1038/s44222-023-00032-w] [Citation(s) in RCA: 209] [Impact Index Per Article: 104.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 05/13/2023]
Abstract
Electrochemical biosensors incorporate a recognition element and an electronic transducer for the highly sensitive detection of analytes in body fluids. Importantly, they can provide rapid readouts and they can be integrated into portable, wearable and implantable devices for point-of-care diagnostics; for example, the personal glucose meter enables at-home assessment of blood glucose levels, greatly improving the management of diabetes. In this Review, we discuss the principles of electrochemical biosensing and the design of electrochemical biosensor devices for health monitoring and disease diagnostics, with a particular focus on device integration into wearable, portable and implantable systems. Finally, we outline the key engineering challenges that need to be addressed to improve sensing accuracy, enable multiplexing and one-step processes, and integrate electrochemical biosensing devices in digital health-care pathways.
Collapse
Affiliation(s)
- Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Hong Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Weiwei Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Biao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
12
|
Koyappayil A, Yagati AK, Lee MH. Recent Trends in Metal Nanoparticles Decorated 2D Materials for Electrochemical Biomarker Detection. BIOSENSORS 2023; 13:91. [PMID: 36671926 PMCID: PMC9855691 DOI: 10.3390/bios13010091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/27/2022] [Accepted: 01/01/2023] [Indexed: 05/29/2023]
Abstract
Technological advancements in the healthcare sector have pushed for improved sensors and devices for disease diagnosis and treatment. Recently, with the discovery of numerous biomarkers for various specific physiological conditions, early disease screening has become a possibility. Biomarkers are the body's early warning systems, which are indicators of a biological state that provides a standardized and precise way of evaluating the progression of disease or infection. Owing to the extremely low concentrations of various biomarkers in bodily fluids, signal amplification strategies have become crucial for the detection of biomarkers. Metal nanoparticles are commonly applied on 2D platforms to anchor antibodies and enhance the signals for electrochemical biomarker detection. In this context, this review will discuss the recent trends and advances in metal nanoparticle decorated 2D materials for electrochemical biomarker detection. The prospects, advantages, and limitations of this strategy also will be discussed in the concluding section of this review.
Collapse
Affiliation(s)
| | | | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, Republic of Korea
| |
Collapse
|