1
|
Wang X, Song B, Wu M, Qin L, Liang W. Immune cell targeting-mediated cytomimetic drug delivery system for BBB-penetrating and precise therapy of in situ glioma. Mater Today Bio 2025; 32:101694. [PMID: 40225137 PMCID: PMC11986483 DOI: 10.1016/j.mtbio.2025.101694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/07/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
Gliomas are a group of highly malignant tumors that are prone to recurrence after surgery. Due to the limitation of the blood-brain barrier (BBB), most antitumor drugs cannot cross it. Therefore, improving the delivery efficiency of antitumor drugs in their treatment remains a significant challenge. Herein, we report a unique cellular biomimetic drug delivery system (CTP@RAW) that benefits from the exceptional immune homing and long-term tracking ability of RAW 264.7 cells to specifically penetrate BBB and target tumor sites. The drug (TMZ) is encapsulated in RAW264.7 to avoid being cleared or degraded by the blood, improve bioavailability and reduce systemic toxicity. And that, owning to polydopamine (PDA) coating on the quantum dots-drug nanoparticles, which can endogenously and controllably release TMZ in response to certain tumor microenvironment (high GSH and low pH). This delivery system can also achieve precise localization and real-time visualization of tumors via fluorescence imaging. The released drugs effectively inhibit tumor growth by regulating cytokine expression levels, including GFAP, Ki67, Caspase-3, and TNF-α. Our study demonstrates that this drug delivery system can cross BBB, improve drug delivery efficiency, and has excellent potential for visualization and precision treatment of in situ gliomas.
Collapse
Affiliation(s)
- Xiu Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, China
- State Laboratory of Advanced Drug Delivery and Control Release System, Shandong First Medical University, China
| | - Baoqin Song
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, China
| | - Mengru Wu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, China
| | - Lijing Qin
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, China
| | - Wanjun Liang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, China
- State Laboratory of Advanced Drug Delivery and Control Release System, Shandong First Medical University, China
- Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong Academy of Medical Sciences, China
| |
Collapse
|
2
|
Ding Y, Yang Q, Liu X, Wang Y, Wang J, Wang X. An ultrasensitive fluorescence nano-biosensor based on RBP 41-quantum dot microspheres for rapid detection of Salmonella in the food matrices. Food Chem 2025; 468:142504. [PMID: 39700811 DOI: 10.1016/j.foodchem.2024.142504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Swift screening of Salmonella-contaminated food is crucial for timely prevention and control of foodborne illness outbreaks. A novel phage receptor binding protein (RBP 41) was previously identified and characterized from phage T102. This study functionalized RBP 41 onto magnetic beads (MBs) and quantum dot microspheres (QDMs) to form magnetic separation and fluorescent probes, respectively. The bacteria were captured by RBP 41-MBs and labelled with RBP 41-QDMs to form MBs-RBP 41-bacteria-RBP 41-QDMs complexes, then the fluorescence intensity of complexes was detected for determination of Salmonella. This proposed biosensor was demonstrated to detect Salmonella as low as 0.1245 Log10 CFU/mL (∼2 CFU/mL) within ∼1.5 h. The recovery yield of Salmonella in the spiked food samples ranged from 87 % to 119 %, indicating that it could detect Salmonella in real samples. This novel magnetic fluorescence nano-biosensor has potential to detect the bacteria in the different sample to reduce the detection time and increase sensitivity.
Collapse
Affiliation(s)
- Yifeng Ding
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China.
| | - Qiyue Yang
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xi Liu
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yulin Wang
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jia Wang
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaohong Wang
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Zhang J, Jiang S, Jiang J, Liu Y. Global research landscape on nanotechnology in acute lung injury: a bibliometric analysis. Front Digit Health 2025; 7:1472753. [PMID: 40103738 PMCID: PMC11913875 DOI: 10.3389/fdgth.2025.1472753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/14/2025] [Indexed: 03/20/2025] Open
Abstract
Background Acute lung injury is a common respiratory emergency that seriously affects the life, health and quality of life of patients, especially after the global COVID-19 pneumonia. The application of nanotechnology in acute lung injury is promising. In response to the knowledge explosion resulting from rapid publication growth, we applied bibliometric analysis to explore the research profile and thematic trends in the field. Methods Articles and reviews related to nanotechnology in acute lung injury from 2004 to 2023 were searched. Java-based Citespace, VOSviewer, and R software-based Bibiometrix were used to systematically evaluate publications by spatiotemporal distribution, author distribution, subject categories, topic distribution, references, and keywords. Results A total of 1,347 publications were included. The number of papers related to nanotechnology in acute lung injury has grown exponentially over the past 20 years. China was the most productive country out of all 53 countries, followed by the United States. The Chinese Academy of Sciences was the most productive institution with 76 papers. PARTICLE AND FIBRE TOXICOLOGY was the most productive journal. The top five high-frequency keywords were inflammation, oxidative stress, toxicity, in vitro, respiratory-distress-syndrome. And the top five emerging keywords were delivery, covid-19, extracellular vesicles, therapy, sars-cov-2. Drug delivery are the focus of current research. Two emerging research areas represented the development trends: novel nanocarriers with higher efficiency and lower biotoxicity, and the other is research related to impact of nanomaterials in the progression of acute lung injury. Conclusion The field of nanotechnology in acute lung injury has been in a period of rapid development in the last three years. Delivery,targeted delivery and exosm have been the focus of current research in this field. Two emerging research areas represented the development trends:novel nanocarriers with higher efficiency and lower biotoxicity such as extracellular vesicles, exosomes and solid lipid nanoparticles, and the other is research related to impact of nanomaterials in the progression of acute lung injury.
Collapse
Affiliation(s)
- Jian Zhang
- School of Medicine, Nankai University, Tianjin, China
- Department of Thoracic Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shasha Jiang
- Department of Thoracic Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Postgraduate School, Medical School of Chinese PLA, Beijing, China
| | - Jipeng Jiang
- Department of Thoracic Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yang Liu
- School of Medicine, Nankai University, Tianjin, China
- Department of Thoracic Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Shi L, Huanood G, Miura S, Kuragano M, Tokuraku K. Real-Time 3D Imaging and Inhibition Analysis of Human Serum Amyloid A Aggregations Using Quantum Dots. Int J Mol Sci 2024; 25:11128. [PMID: 39456910 PMCID: PMC11508868 DOI: 10.3390/ijms252011128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Serum amyloid A (SAA) is one of the most important precursor amyloid proteins discovered during the study of amyloidosis, but its underlying aggregation mechanism has not yet been well elucidated. Since SAA aggregation is a key step in the pathogenesis of AA amyloidosis, amyloid inhibitors can be used as a tool to study its pathogenesis. Previously, we reported a novel microliter-scale high-throughput screening (MSHTS) system for screening amyloid β (Aβ) aggregation inhibitors based on quantum dot (QD) fluorescence imaging technology. In this study, we report the aggregation of human SAA (hSAA) in phosphate-buffered saline, in which we successfully visualized hSAA aggregation by QD using fluorescence microscopy and confocal microscopy. Two-dimensional and three-dimensional image analyses showed that most aggregations were observed at 40 μM hSAA, which was the optimal aggregation concentration in vitro. The accuracy of this finding was verified by a Thioflavin T assay. The transmission electron microscopy results showed that QD uniformly bound to hSAA aggregation. hSAA aggregation inhibitory activity was also evaluated by rosmarinic acid (RA). The results showed that RA, which is a compound with high inhibitory activity against Aβ aggregation, also exhibited high inhibitory activity against 40 μM hSAA. These results indicate that the MSHTS system is an effective tool for visualizing hSAA aggregation and for screening highly active inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Kiyotaka Tokuraku
- Graduate School of Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan; (L.S.); (G.H.); (S.M.); (M.K.)
| |
Collapse
|
5
|
Li MM, Zhang Y, Sun F, Huai MX, Zhang FY, Pan JX, Qu CY, Shen F, Li ZH, Xu LM. Photodynamic Therapy Using RGD-Functionalized Quantum Dots Elicit a Potent Immune Response in a Syngeneic Mouse Model of Pancreatic Cancer. Int J Nanomedicine 2024; 19:9487-9502. [PMID: 39290860 PMCID: PMC11406538 DOI: 10.2147/ijn.s479123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Purpose Photodynamic therapy (PDT) induces anti-tumor immune responses by triggering immunogenic cell death in tumor cells. Previously, we demonstrated that novel QDs-RGD nanoparticles exhibited high efficiency as photosensitizers in the treatment of pancreatic cancer. However, the underlying mechanism of the anti-tumor immune effects induced by the photosensitizer remains unknown. This study assessed the anticancer immune effect of QDs-RGD, as well as the conventional photosensitizer chlorine derivative, YLG-1, for comparison, against pancreatic cancer in support of superior therapeutic efficacy. Methods The pancreatic cancer cell line, Panc02, was used for in vitro studies. C57BL/6 mice bearing pancreatic cancer cell-derived xenografts were generated for in vivo studies to assess the anti-tumor effects of QDs-RGD-PDT and YLG-1-PDT. The immunostimulatory ability of both photosensitizers was examined by measuring the expression of damage-associated molecular patterns (DAMP), such as calreticulin (CRT), assessing dendritic cell (DC) maturation, and analyzing cytokine expression. The specific immunity of QDs-RGD and YLG-1-PDT on distant tumor were determined by combining PDT with anti-CTLA-4 antibody. Results QDs-RGD-PDT and YLG-1-PDT significantly inhibited pancreatic cancer cell growth in a dose- and time-dependent manner. While both photosensitizers significantly promoted CRT release, DC maturation, and interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α) expression, QDs-RGD exerted a stronger immunostimulatory effect than YLG-1. Combination treatment with QDs-RGD and CTLA-4 blockade was able to significantly inhibit the growth of distant tumors. Conclusion QDs-RGD is a novel and effective PDT strategy for treating pancreatic tumors by inducing anti-tumor immune responses.
Collapse
Affiliation(s)
- Ming-Ming Li
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yi Zhang
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Fang Sun
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Man-Xiu Huai
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Fei-Yu Zhang
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Jia-Xing Pan
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Chun-Ying Qu
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Feng Shen
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Zheng-Hong Li
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Lei-Ming Xu
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| |
Collapse
|
6
|
He J, Hu P, Wang M, Qi G, Huang H, Zeng D, Guan J, Lv P, Liu L. Utilization of chitosan nanocomposites loaded with quantum dots enables efficient and traceable DNA delivery. Colloids Surf B Biointerfaces 2024; 245:114221. [PMID: 39260273 DOI: 10.1016/j.colsurfb.2024.114221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/27/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Chitosan is widely employed in gene carriers due to its excellent gene loading capacity, ease of modification, and exceptional biodegradability. However, low gene delivery efficiency, high cytotoxicity, and lack of tracer biomimetic properties limit its clinical use. To address these issues, a novel biomimetic tracking gene delivery carrier, RBCm-C50kQT, was constructed by using the design scheme of cell membrane coated carbon quantum dots/chitosan. This carrier improves stability and tracking performance while embedding the cell membrane enhances biosafety. RBCm-C50kQT effectively carries and protects DNA, improving uptake and transfection efficiency with reduced cytotoxicity. It maintains strong fluorescence tracking and shows high uptake efficiencies of 83.62 % and 77.45 % in 293 T and HeLa cells, respectively, with maximum transfection efficiencies of 68.80 % and 45.47 %. This advancement supports gene therapy improvements and paves the way for future clinical applications.
Collapse
Affiliation(s)
- Jiayu He
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Peng Hu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mingjie Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Guowei Qi
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Haoxiang Huang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dong Zeng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jintao Guan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Peiwen Lv
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Liang Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
7
|
Wang H, Wu X, Ma Q, Li J, Fu B, An J. Modular probe integrating with quantum dots based versatile platform for sensitive and label-free biomarker detection. Talanta 2024; 276:126228. [PMID: 38733934 DOI: 10.1016/j.talanta.2024.126228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/20/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Multiplexed analysis of biomarkers in a single sample tube is essential for accurate diagnosis and therapy of diseases. However, the existing detection platforms suffer from many drawbacks, such as low specificity, limited applicable sceneries, and complicated operation. Hence, it is highly important to develop a versatile biomarker detection platform that can be used for disease diagnosis and pathophysiological research. In this study, we provide a versatile method for detecting biomarkers using dual-loop probes and quantum dots (QDs). This approach utilizes a dual-loop probe that consists of a recognition module for identifying specific targets, a template recognition module for initiating subsequent chain replacement cycles, and a signal module for facilitating the fixation of QDs on the 96-well plate. The lower limit of detection for miRNA-21 is determined to be at the aM level. Furthermore, this design may be easily expanded to simultaneously detect several targets, such as miRNA and C-reactive protein. The experimental results demonstrated the successful construction of the versatile biomarkers detection platform, and indicated that the sensitive and versatile platform has significant potential in the areas of bio-sensing, clinical diagnostics, and environmental sample analysis.
Collapse
Affiliation(s)
- Huajun Wang
- Department of Cardiac Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, China
| | - Xueda Wu
- Department of Cardiac Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, China
| | - Qianli Ma
- Department of Cardiac Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, China
| | - Jiayang Li
- Department of Cardiac Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, China
| | - Bingbing Fu
- Department of Cardiac Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, China
| | - Jinghui An
- Department of Cardiac Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, China.
| |
Collapse
|
8
|
Bhattacharya T, Preetam S, Mukherjee S, Kar S, Roy DS, Singh H, Ghose A, Das T, Mohapatra G. Anticancer activity of quantum size carbon dots: opportunities and challenges. DISCOVER NANO 2024; 19:122. [PMID: 39103694 DOI: 10.1186/s11671-024-04069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
Research into the anticancer activity of quantum-sized carbon dots (CDs) has emerged as a promising avenue in cancer research. This CDs delves into the opportunities and challenges associated with harnessing the potential of these nanostructures for combating cancer. Quantum-sized carbon dots, owing to their unique physicochemical properties, exhibit distinct advantages as potential therapeutic agents. Opportunities lie in their tunable size, surface functionalization capabilities, and biocompatibility, enabling targeted drug delivery and imaging in cancer cells. However, we include challenges, a comprehensive understanding of the underlying mechanisms, potential toxicity concerns, and the optimization of synthesis methods for enhanced therapeutic efficacy. A succinct summary of the state of the research in this area is given in this review, emphasizing the exciting possibilities and ongoing challenges in utilizing quantum-sized carbon dots as a novel strategy for cancer treatment.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- Faculty of Applied Science, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| | - Subham Preetam
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Sohini Mukherjee
- Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Sanjukta Kar
- Dietetics and Applied Nutrition, Amity University Kolkata, Kadampukur, India
| | | | - Harshita Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Arak Ghose
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Tanmoy Das
- Faculty of Engineering, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| | - Gautam Mohapatra
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
9
|
Abid J, Khalil FMA, Saeed S, Khan SU, Iqbal I, Khan SU, Anthony S, Shahzad R, Koerniati S, Naz F. Nano revolution in cardiovascular health: Nanoparticles (NPs) as tiny titans for diagnosis and therapeutics. Curr Probl Cardiol 2024; 49:102466. [PMID: 38369205 DOI: 10.1016/j.cpcardiol.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Cardiovascular diseases (CVDs) are known as life-threatening illnessescaused by severe abnormalities in the cardiovascular system. They are a leading cause of mortality and morbidity worldwide.Nanotechnology integrated substantialinnovations in cardiovascular diagnostic and therapeutic at the nanoscale. This in-depth analysis explores cutting-edge methods for diagnosing CVDs, including nanotechnological interventions and crucial components for identifying risk factors, developing treatment plans, and monitoring patients' progress with chronic CVDs.Intensive research has gone into making nano-carriers that can image and treat patients. To improve the efficiency of treating CVDs, the presentreview sheds light on a decision-tree-based solution by investigating recent and innovative approaches in CVD diagnosis by utilizing nanoparticles (NPs). Treatment choices for chronic diseases like CVD, whose etiology might take decades to manifest, are very condition-specific and disease-stage-based. Moreover, thisreview alsobenchmarks the changing landscape of employing NPs for targeted and better drug administration while examining the limitations of various NPs in CVD diagnosis, including cost, space, time, and complexity. To better understand and treatment of cardiovascular diseases, the conversation moves on to the nano-cardiovascular possibilities for medical research.We also focus on recent developments in nanoparticle applications, the ways they might be helpful, and the medical fields where they may find future use. Finally, this reviewadds to the continuing conversation on improved diagnosis and treatment approaches for cardiovascular disorders by discussing the obstacles and highlighting the revolutionary effects of nanotechnology.
Collapse
Affiliation(s)
- Junaid Abid
- Department of Food Science and Technology, University of Haripur, Pakistan; State Key Laboratory of Food nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fatma Mohamed Ameen Khalil
- King Khalid University, College of Science and Arts, Department of Biology, MohayilAsirAbha, 61421, Saudi Arabia
| | - Sumbul Saeed
- School of Environment and Science, Griffith University, QLD, 4111, Australia
| | - Shahid Ullah Khan
- Women Medical and Dental College, Khyber Medical University, Khyber Pakhtunkhwa, Pakistan; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Imran Iqbal
- Department of PLR, Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
| | - Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Stefan Anthony
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University Liaoning Provence China.
| | - Raheel Shahzad
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), KST-Cibinong, JI Raya Bogor KM46, Cibinong 16911, Indonesia
| | - Sri Koerniati
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), KST-Cibinong, JI Raya Bogor KM46, Cibinong, 16911, Indonesia
| | - Farkhanda Naz
- Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing, 400715, China
| |
Collapse
|
10
|
Zhang G, Zhen C, Yang J, Wang J, Wang S, Fang Y, Shang P. Recent advances of nanoparticles on bone tissue engineering and bone cells. NANOSCALE ADVANCES 2024; 6:1957-1973. [PMID: 38633036 PMCID: PMC11019495 DOI: 10.1039/d3na00851g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/05/2024] [Indexed: 04/19/2024]
Abstract
With the development of biotechnology, biomaterials have been rapidly developed and shown great potential in bone regeneration therapy and bone tissue engineering. Nanoparticles have attracted the attention of researches and have applied in various fields especially in the biomedical field as the special physicochemical properties. Nanoparticles were found to regulate bone remodeling depending on their size, shape, composition, and charge. Therefore, in-depth research was necessary to provide the basic support to select the most suitable nanoparticles for bone relate diseases treatment. This article reviews the current development of nanoparticles in bone tissue engineering, focusing on drug delivery, gene delivery, and cell labeling. In addition, the research progress on the interaction of nanoparticles with bone cells, focusing on osteoblasts, osteoclasts, and bone marrow mesenchymal stem cells, and the underlying mechanism were also reviewed. Finally, the current challenges and future research directions are discussed. Thus, detailed study of nanoparticles may reveal new therapeutic strategies to improve the effectiveness of bone regeneration therapy or other bone diseases.
Collapse
Affiliation(s)
- Gejing Zhang
- School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
- Research & Development Institute of Northwestern Polytechnical University Shenzhen 518057 China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| | - Chenxiao Zhen
- School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
- Research & Development Institute of Northwestern Polytechnical University Shenzhen 518057 China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| | - Jiancheng Yang
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University Xi'an 710054 China
| | - Jianping Wang
- School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
- Research & Development Institute of Northwestern Polytechnical University Shenzhen 518057 China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| | - Shenghang Wang
- School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
- Department of Spine Surgery, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital) Shenzhen 518109 China
| | - Yanwen Fang
- Heye Health Technology Co., Ltd Huzhou 313300 China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University Shenzhen 518057 China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| |
Collapse
|
11
|
Bai Y, Xu H, Wang H, Fan Y, Li X, Li Y, Fan L, Zhang Y, Qi L, Li Y. Highly Efficient Loading of Procaine on Water-Soluble Carbon Dots toward Long-Acting Anesthesia. J Phys Chem B 2024; 128:1700-1710. [PMID: 38334803 DOI: 10.1021/acs.jpcb.3c07411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Safe and efficient local anesthetic delivery carriers are crucial for long-term anesthesia and analgesics in clinical treatment. But currently, most of the local anesthetic carriers still have some disadvantages such as low drug-loading capacity, drug leakage, and potential side effects. Here, we report red-emissive carbon dots (Cys-CDs) synthesized by choosing cysteine and citric acid as precursors, which contain a large and intact sp2-domain with rich hydrophilic groups around the edge. The special structure of Cys-CDs is conducive to the efficient loading of procaine (PrC) via strong π-π stacking interactions. Based on the strong noncovalent interactions between them, the PrC loaded on Cys-CDs achieved slow release in vitro and had a long-lasting nerve blocking effect in vivo, which is 4-fold more than that of free PrC. More importantly, PrC/Cys-CDs do not cause any toxicity and inflammation during treatment owing to slow release of PrC and good water solubility of Cys-CDs, thus demonstrating the potential clinical application of CDs in long-lasting analgesia.
Collapse
Affiliation(s)
- Yiqi Bai
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Huimin Xu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Haoyu Wang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Yixiao Fan
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Xiaohong Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Yunchao Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Louzhen Fan
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Yang Zhang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Ling Qi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yong Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
12
|
Dai Q, Du Z, Jing L, Zhang R, Tang W. Enzyme-Responsive Modular Peptides Enhance Tumor Penetration of Quantum Dots via Charge Reversal Strategy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6208-6220. [PMID: 38279946 DOI: 10.1021/acsami.3c11500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Quantum dots (QDs) are colloidal semiconductor nanoparticles acting as fluorescent probes for detection, disease diagnosis, and photothermal and photodynamic therapy. However, their performance in cancer treatment is limited by inadequate tumor accumulation and penetration due to the larger size of nanoparticles compared to small molecules. To address this challenge, charge reversal nanoparticles offer an effective strategy to prolong blood circulation time and achieve enhanced endocytosis and tumor penetration. In this study, we leveraged the overexpressed γ-glutamyl transpeptidase (GGT) in many human tumors and developed a library of modular peptides to serve as water-soluble surface ligands of QDs. We successfully transferred the QDs from the organic phase to the aqueous phase within 5 min. And through systematic tuning of the peptide sequence, we optimized the fluorescent stability of QDs and their charge reversal behavior in response to GGT. The resulting optimal peptide stabilized QDs in aqueous solution with a high fluorescent retention rate of 93% after three months and realized the surface charge reversal of QDs triggered by GGT in vitro. The binding between the peptide and QD surface was investigated by using saturation transfer differential nuclear magnetic resonance (STD NMR). Thanks to its charge reversal ability, the GGT-responsive QDs exhibited enhanced cellular uptake in GGT-expressing cancer cells and deeper penetration in the 3D multicellular spheroids. This enzyme-responsive modular peptide can lead to specific tumor targeting and deeper tumor penetration, holding great promise to enhance the treatment efficacy of QD-based theranostics.
Collapse
Affiliation(s)
- Qiuju Dai
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zhen Du
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Lihong Jing
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Rongchun Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Wen Tang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
13
|
Skrodenytė-Arbačiauskienė V, Butrimienė R, Kalnaitytė-Vengelienė A, Bagdonas S, Montvydienė D, Stankevičiūtė M, Sauliutė G, Jokšas K, Kazlauskienė N, Karitonas R, Matviienko N, Jurgelėnė Ž. A multiscale study of the effects of a diet containing CdSe/ZnS-COOH quantum dots on Salmo trutta fario L.: Potential feed-related nanotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167696. [PMID: 37827305 DOI: 10.1016/j.scitotenv.2023.167696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/29/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023]
Abstract
Quantum dots (QDs) receive widespread attention in industrial and biomedical fields, but the risks posed by the use of nanoparticles to aquatic organisms and the associated toxicological effects are still not well understood. In this study, effects of the 7-day dietary exposure of Salmo trutta fario L. juveniles to CdSe/ZnS-COOH QDs were evaluated at molecular, cellular, physiological and whole-organism levels. Fish feeding with QDs-contaminated feed resulted in an increased somatic index of the liver, a genotoxic effect on peripheral blood erythrocytes, altered enzyme activity and decreased MDA level. Furthermore, Cd levels in the gills and liver tissues of the exposed fish were found to be significantly higher than in those of the control fish. Alpha diversity indexes of the gut microbiota of the QDs-exposed S. trutta fario L. individuals exhibited a decreasing trend. The principal coordinate analysis (PCoA) showed that the gut microbiota of the control fish was significantly different from that of the fish exposed to QDs (p < 0.05). Additionally, the linear discriminant analysis (LDA) performed using an effect size (LEfSe) algorithm unveiled 19 significant taxonomic differences at different taxonomic levels between the control group and the QDs-exposed group. In the QDs-exposed group, the relative abundance of the genus Citrobacter (Proteobacteria phylum) in the gut microbiota was found to be significantly increased whereas that of the genus Mycoplasma (Tenericutes phylum) significantly decreased compared to the control group. In summary, QDs-contaminated diet affects the gut microbiota of fish by significantly changing the relative abundance of some taxa, potentially leading to dysbiosis. This, together with morphophysiological, cytogenetic and biochemical changes, poses a risk to fish health.
Collapse
Affiliation(s)
| | - Renata Butrimienė
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania
| | - Agnė Kalnaitytė-Vengelienė
- Laser Research Center, Physics Faculty, Vilnius University, Saulėtekio Av. 9, Vilnius LT-10222, Lithuania
| | - Saulius Bagdonas
- Laser Research Center, Physics Faculty, Vilnius University, Saulėtekio Av. 9, Vilnius LT-10222, Lithuania
| | - Danguolė Montvydienė
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania
| | - Milda Stankevičiūtė
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania
| | - Gintarė Sauliutė
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania
| | - Kęstutis Jokšas
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania; Vilnius University, Faculty of Chemistry and Geosciences, Naugarduko St. 24, LT-03225 Vilnius, Lithuania
| | - Nijolė Kazlauskienė
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania
| | - Rolandas Karitonas
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania
| | - Nataliia Matviienko
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania; NAAS Institute of Fisheries, Obukhivska str. 135, Kyiv 03164, Ukraine
| | - Živilė Jurgelėnė
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania.
| |
Collapse
|
14
|
Song Q, Zheng Y, Zhong G, Wang S, He C, Li M. Application of Nanoparticles in the Diagnosis and Treatment of Colorectal Cancer. Anticancer Agents Med Chem 2024; 24:1305-1326. [PMID: 39129164 PMCID: PMC11497148 DOI: 10.2174/0118715206323900240807110122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
Colorectal cancer is a common malignant tumor with high morbidity and mortality rates, imposing a huge burden on both patients and the healthcare system. Traditional treatments such as surgery, chemotherapy and radiotherapy have limitations, so finding more effective diagnostic and therapeutic tools is critical to improving the survival and quality of life of colorectal cancer patients. While current tumor targeting research mainly focuses on exploring the function and mechanism of molecular targets and screening for excellent drug targets, it is crucial to test the efficacy and mechanism of tumor cell therapy that targets these molecular targets. Selecting the appropriate drug carrier is a key step in effectively targeting tumor cells. In recent years, nanoparticles have gained significant interest as gene carriers in the field of colorectal cancer diagnosis and treatment due to their low toxicity and high protective properties. Nanoparticles, synthesized from natural or polymeric materials, are NM-sized particles that offer advantages such as low toxicity, slow release, and protection of target genes during delivery. By modifying nanoparticles, they can be targeted towards specific cells for efficient and safe targeting of tumor cells. Numerous studies have demonstrated the safety, efficiency, and specificity of nanoparticles in targeting tumor cells, making them a promising gene carrier for experimental and clinical studies. This paper aims to review the current application of nanoparticles in colorectal cancer diagnosis and treatment to provide insights for targeted therapy for colorectal cancer while also highlighting future prospects for nanoparticle development.
Collapse
Affiliation(s)
- Qiuyu Song
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yifeng Zheng
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guoqiang Zhong
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shanping Wang
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chengcheng He
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingsong Li
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
15
|
Li F, Shao H, Zhou G, Wang B, Xu Y, Liang W, Chen L. The recent applications of nanotechnology in the diagnosis and treatment of common cardiovascular diseases. Vascul Pharmacol 2023; 152:107200. [PMID: 37500029 DOI: 10.1016/j.vph.2023.107200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Almost a third of all fatalities may be attributed to cardiovascular disease (CVD), making it a primary cause of mortalities worldwide. Better diagnostic tools and secure, non-invasive imaging techniques are needed to offer accurate information on CVD progression. Several elements contribute to the success of CVD personalized therapy, and two of the most crucial are accurate diagnosis and early detection. The therapy options available for conditions with a pathogenesis that unfold over decades, such as CVD, are very condition-specific and disease-stage based. Nanotechnology is increasingly being used as a therapeutic tool in the biomedical area, where they are used in various contexts, including diagnostics, biosensing, and drug administration. This review article provides an overview of the most recent applications of nanotechnology in the detection and management of prevalent CVDs.
Collapse
Affiliation(s)
- Feize Li
- Department of Cardiology, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China.
| | - Haibin Shao
- Department of Cardiology, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Guoer Zhou
- Department of Pharmacy, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Bingzhu Wang
- Internal Medicine of Integrated Traditional Chinese and Western Medicine, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Yan Xu
- Intensive Care Unit, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Wenqing Liang
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Lin Chen
- Department of Cardiology, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China.
| |
Collapse
|
16
|
Warjurkar K, Panda S, Sharma V. Red emissive carbon dots: a promising next-generation material with intracellular applicability. J Mater Chem B 2023; 11:8848-8865. [PMID: 37650569 DOI: 10.1039/d3tb01378b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The accidental discovery of carbon dots (CDs) back in 2004 has led to their widespread use in the biomedical field. CDs have demonstrated their effectiveness in reporting 3D structures of biological specimens, identifying normal and cancer cells, and even detecting analytes within cells. However, the limitations of blue-green emitting CDs, such as their shallow penetration, photodamage, and auto-fluorescence, have hindered their practical applications. To overcome these limitations, red emissive CDs (RCDs) have been developed, which have deep tissue penetration, minimal photo-damage, low auto-fluorescence, and high imaging contrast. In this article, we present a thorough review on the use of RCDs in biomedical applications, including in vivo and in vitro bioimaging, photoacoustic imaging, monitoring temperature and polarity changes in living cells, tumour therapy, and drug delivery. With the rapid progress being made in the development of RCDs for intracellular applications, their clinical application is expected to become a reality in the near future.
Collapse
Affiliation(s)
- Khushboo Warjurkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jagti, Jammu-180012, India.
| | - Satyajit Panda
- Department of Materials Engineering, National Institute of Technology Rourkela, Odisha-769008, India
| | - Vinay Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jagti, Jammu-180012, India.
| |
Collapse
|
17
|
Einafshar E, Einafshar N, Khazaei M. Recent Advances in MXene Quantum Dots: A Platform with Unique Properties for General-Purpose Functional Materials with Novel Biomedical Applications. Top Curr Chem (Cham) 2023; 381:27. [PMID: 37670112 DOI: 10.1007/s41061-023-00439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Abstract
Developing new, high-performance materials is a prerequisite for technological advancement. In comparison to bulk materials, quantum dots have a number of good advantages due to their small size, high surface area, and quantum dimensions. Quantum dots, two-dimensional materials with lateral dimensions less than 100 nm, can be generated by the quantum confinement effect. Mxene quantum dots (MQDs) retain some of their two-dimensional characteristics. They also exhibit novel physicochemical properties, including enhanced dispersibility in aqueous and nonaqueous phases, modification or doping capabilities, and photoluminescence. MQDs, due to their unique and diverse properties, have been receiving a great deal of attention as new members of the Mxene group and wide use for biotechnology, bioimaging, optoelectronics, catalysis, cancer therapy, etc. This review aims to provide an overview of the synthesis of MQDs, their optical properties, and their cancer therapy applications. MQDs exhibit remarkable photothermal and photodynamic features and can be suitable for bioimaging. In addition to obtaining bioimaging, photothermal therapy (PTT) and photodynamic therapy (PDT) effects simultaneously, MQDs have high biocompatibility in vitro and in vivo, providing evidence of their potential clinical utility. Herein, recent developments and future prospects concerning MQDs biomedical applications are discussed.
Collapse
Affiliation(s)
- Elham Einafshar
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Nafiseh Einafshar
- Faculty of Civil Engineering, Quchan University of Technology, Quchan, Iran
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran.
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Cheng Q, Duan Y, Fan W, Li D, Zhu C, Ma T, Liu J, Yu M. Cellular uptake, intracellular behavior, and acute/sub-acute cytotoxicity of a PEG-modified quantum dot with promising in-vivo biomedical applications. Heliyon 2023; 9:e20028. [PMID: 37809902 PMCID: PMC10559774 DOI: 10.1016/j.heliyon.2023.e20028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Quantum Dots (QDs) modified with branched Polyethylene Glycol-amine (6- or 8-arm PEG-amine) coupled with methoxy PEG (mPEG) hold great promise for in vivo biomedical applications due to a long half-life in blood and negligible toxicity. However, the potential risks regarding their concomitant prolonged co-incubation with cardiovascular and blood cells remains inconclusive. In the present study, the feasible, effective and convenient proliferating-restricted cell line models representing the circulatory system were established to investigate the cellular internalization followed by intracellular outcomes and resulting acute/sub-acute cytotoxicity of the 6-arm PEG-amine/mPEG QDs. We found a dose-, time- and cell type-dependent cellular uptake of the 6-arm PEG-amine/mPEG QDs, which was ten-fold lower compared to the traditional linear PEG-modified counterpart. The QDs entered cells via multiple endocytic pathways and were mostly preserved in Golgi apparatus for at least one week instead of degradation in lysosomes, resulting in a minimal acute cytotoxicity, which is much lower than other types of PEG-modified QDs previously reported. However, a sub-acute cytotoxicity of QDs were observed several days post exposure using the concentrations eliciting no-significant acute cytotoxic effects, which was associated with elevated ROS generation caused by QDs remained inside cells. Finally, a non-cytotoxic concentration of the QDs was identified at the sub-acute cytotoxic level. Our study provided important information for clinical translation of branched PEG-amine/mPEG QDs by elucidating the QDs-cell interactions and toxicity mechanism using the proliferation-restricted cell models representing circulatory system. What's more, we emphasized the indispensability of sub-acute cytotoxic effects in the whole biosafety evaluation process of nanomaterials like QDs.
Collapse
Affiliation(s)
- Qingyuan Cheng
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yiping Duan
- Department of Laboratory Medicine, the Third Hospital of Wuhan, Wuhan, Hubei, China
| | - Wei Fan
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dongxu Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Cuiwen Zhu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tiantian Ma
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jie Liu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mingxia Yu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
19
|
Yilmazer A, Alagarsamy KN, Gokce C, Summak GY, Rafieerad A, Bayrakdar F, Ozturk BI, Aktuna S, Delogu LG, Unal MA, Dhingra S. Low Dose of Ti 3 C 2 MXene Quantum Dots Mitigate SARS-CoV-2 Infection. SMALL METHODS 2023; 7:e2300044. [PMID: 37075731 DOI: 10.1002/smtd.202300044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/21/2023] [Indexed: 05/03/2023]
Abstract
MXene QDs (MQDs) have been effectively used in several fields of biomedical research. Considering the role of hyperactivation of immune system in infectious diseases, especially in COVID-19, MQDs stand as a potential candidate as a nanotherapeutic against viral infections. However, the efficacy of MQDs against SARS-CoV-2 infection has not been tested yet. In this study, Ti3 C2 MQDs are synthesized and their potential in mitigating SARS-CoV-2 infection is investigated. Physicochemical characterization suggests that MQDs are enriched with abundance of bioactive functional groups such as oxygen, hydrogen, fluorine, and chlorine groups as well as surface titanium oxides. The efficacy of MQDs is tested in VeroE6 cells infected with SARS-CoV-2. These data demonstrate that the treatment with MQDs is able to mitigate multiplication of virus particles, only at very low doses such as 0,15 µg mL-1 . Furthermore, to understand the mechanisms of MQD-mediated anti-COVID properties, global proteomics analysis are performed and determined differentially expressed proteins between MQD-treated and untreated cells. Data reveal that MQDs interfere with the viral life cycle through different mechanisms including the Ca2 + signaling pathway, IFN-α response, virus internalization, replication, and translation. These findings suggest that MQDs can be employed to develop future immunoengineering-based nanotherapeutics strategies against SARS-CoV-2 and other viral infections.
Collapse
Affiliation(s)
- Açelya Yilmazer
- Department of Biomedical Engineering, Ankara University, Golbasi, Ankara, 06830, Turkey
- Stem Cell Institute, Ankara University, Balgat, Ankara, 06520, Turkey
| | - Keshav Narayan Alagarsamy
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Cemile Gokce
- Department of Biomedical Engineering, Ankara University, Golbasi, Ankara, 06830, Turkey
| | | | - Alireza Rafieerad
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Fatma Bayrakdar
- Microbiology References Laboratory, Ministry of Health General Directorate of Public Health, Ankara, 06100, Turkey
| | - Berfin Ilayda Ozturk
- Department of Biomedical Engineering, Ankara University, Golbasi, Ankara, 06830, Turkey
| | - Suleyman Aktuna
- Department of Medical Genetics, Faculty of Medicine, Yuksek Ihtisas University, Ankara, 06530, Turkey
| | - Lucia Gemma Delogu
- Department of Biomedical Sciences, University of Padua, Padua, 35122, Italy
- New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
| | - Mehmet Altay Unal
- Stem Cell Institute, Ankara University, Balgat, Ankara, 06520, Turkey
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, R3T 2N2, Canada
| |
Collapse
|
20
|
Mo Y, Huang C, Liu C, Duan Z, Liu J, Wu D. Recent Research Progress of 19 F Magnetic Resonance Imaging Probes: Principle, Design, and Their Application. Macromol Rapid Commun 2023; 44:e2200744. [PMID: 36512446 DOI: 10.1002/marc.202200744] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/28/2022] [Indexed: 12/15/2022]
Abstract
Visualization of biomolecules, cells, and tissues, as well as metabolic processes in vivo is significant for studying the associated biological activities. Fluorine magnetic resonance imaging (19 F MRI) holds potential among various imaging technologies thanks to its negligible background signal and deep tissue penetration in vivo. To achieve detection on the targets with high resolution and accuracy, requirements of high-performance 19 F MRI probes are demanding. An ideal 19 F MRI probe is thought to have, first, fluorine tags with magnetically equivalent 19 F nuclei, second, high fluorine content, third, adequate fluorine nuclei mobility, as well as excellent water solubility or dispersity, but not limited to. This review summarizes the research progresses of 19 F MRI probes and mainly discusses the impacts of structures on in vitro and in vivo imaging performances. Additionally, the applications of 19 F MRI probes in ions sensing, molecular structures analysis, cells tracking, and in vivo diagnosis of disease lesions are also covered in this article. From authors' perspectives, this review is able to provide inspirations for relevant researchers on designing and synthesizing advanced 19 F MRI probes.
Collapse
Affiliation(s)
- Yongyi Mo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| | - Chixiang Huang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| | - Changjiang Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| | - Ziwei Duan
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| | - Juan Liu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| | - Dalin Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| |
Collapse
|
21
|
Cheng Y, Sun C, Chang Y, Wu J, Zhang Z, Liu Y, Ge S, Li Z, Li X, Sun L, Zang D. Photoelectrochemical biosensor based on SiW 12@CdS quantum dots for the highly sensitive detection of HPV 16 DNA. Front Bioeng Biotechnol 2023; 11:1193052. [PMID: 37388766 PMCID: PMC10303914 DOI: 10.3389/fbioe.2023.1193052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
A highly sensitive biosensor for detecting HPV 16 DNA was prepared based on Keggin-type polyoxometalate (SiW12)-grafted CdS quantum dots (SiW12@CdS QDs) and colloidal gold nanoparticles (Au NPs), which exhibited remarkable selectivity and sensitivity upon target DNA detection because of its excellent photoelectrochemical (PEC) response. Here, an enhanced photoelectronic response ability was achieved with the strong association of SiW12@CdS QDs by polyoxometalate modification, which was developed through a convenient hydrothermal process. Furthermore, on Au NP-modified indium tin oxide slides, a multiple-site tripodal DNA walker sensing platform coupled with T7 exonuclease was successfully fabricated with SiW12@CdS QDs/NP DNA as a probe for detecting HPV 16 DNA. Due to the remarkable conductivity of Au NPs, the photosensitivity of the as-prepared biosensor was improved in an I3-/I- solution and avoided the use of other regents toxic to living organisms. Finally, under optimized conditions, the as-prepared biosensor protocol demonstrated wide linear ranges (15-130 nM), with a limit of detection of 0.8 nM and high selectivity, stability, and reproducibility. Moreover, the proposed PEC biosensor platform offers a reliable pathway for detecting other biological molecules with nano-functional materials.
Collapse
Affiliation(s)
- Yao Cheng
- National Key Laboratory of Advanced Drug Delivery and Release System, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare and Uncommon Diseases of Shandong Province, School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chaoyue Sun
- National Key Laboratory of Advanced Drug Delivery and Release System, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare and Uncommon Diseases of Shandong Province, School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Yuhua Chang
- Shandong Provincial Maternal and Child Healthcare Hospital, Jinan, China
| | - Jiayin Wu
- National Key Laboratory of Advanced Drug Delivery and Release System, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare and Uncommon Diseases of Shandong Province, School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhihao Zhang
- National Key Laboratory of Advanced Drug Delivery and Release System, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare and Uncommon Diseases of Shandong Province, School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yunqing Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Zhao Li
- Suzhou KunTao Intelligent Manufacturing Technology Co., Ltd., Suzhou, China
| | - Xiao Li
- NMPA Key Laboratory for Quality Evaluation of Medical Materials and Biological Protective Devices, Jinan, China
- Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, Jinan, China
| | - Liang Sun
- National Key Laboratory of Advanced Drug Delivery and Release System, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare and Uncommon Diseases of Shandong Province, School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Dejin Zang
- National Key Laboratory of Advanced Drug Delivery and Release System, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare and Uncommon Diseases of Shandong Province, School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
22
|
Wibowo YG, Ramadan BS, Taher T, Khairurrijal K. Advancements of Nanotechnology and Nanomaterials in Environmental and Human Protection for Combatting the COVID-19 During and Post-pandemic Era: A Comprehensive Scientific Review. BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2023:1-24. [PMID: 37363141 PMCID: PMC10171735 DOI: 10.1007/s44174-023-00086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/27/2023] [Indexed: 06/28/2023]
Abstract
In December 2019, an outbreak of unknown pneumonia emerged in Wuhan City, Hubei Province, China. It was later identified as the SARS-CoV-2 virus and has since infected over 9 million people in more than 213 countries worldwide. Massive papers on the topic of SARS-CoV-2 that have already been published are necessary to be analyzed and discussed. This paper used the combination of systematic literature network analysis and content analysis to develop a comprehensive discussion related to the use of nanotechnology and materials in environmental and human protection. Its is shown that various efforts have been made to control the transmission of this pandemic. Nanotechnology plays a crucial role in modern vaccine design, as nanomaterials are essential tools for antigen delivery, adjuvants, and mimics of viral structures. In addition, nanomaterials and nanotechnology also reported a crucial role in environmental protection for defence and treating the pandemic. To eradicate pandemics now and in the future, successful treatments must enable rapid discovery, scalable manufacturing, and global distribution. In this review, we discuss the current approaches to COVID-19 development and highlight the critical role of nanotechnology and nanomaterials in combating the virus in the human body and the environment.
Collapse
Affiliation(s)
- Yudha Gusti Wibowo
- Department of Mining Engineering, Institut Teknologi Sumatrea, Lampung, 35365 Indonesia
| | | | - Tarmizi Taher
- Department of Environmental Engineering, Institut Teknologi Sumatera, Lampung, 35365 Indonesia
| | - Khairurrijal Khairurrijal
- Department of Physics, Institut Teknologi Sumatera, Lampung, 35365 Indonesia
- Department of Physics, Institut Teknologi Bandung, Bandung, 40132 Indonesia
| |
Collapse
|
23
|
Liu Y, Cheng W, Xin H, Liu R, Wang Q, Cai W, Peng X, Yang F, Xin H. Nanoparticles advanced from preclinical studies to clinical trials for lung cancer therapy. Cancer Nanotechnol 2023; 14:28. [PMID: 37009262 PMCID: PMC10042676 DOI: 10.1186/s12645-023-00174-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Lung cancer is the leading cause of cancer mortality. As a heterogeneous disease, it has different subtypes and various treatment modalities. In addition to conventional surgery, radiotherapy and chemotherapy, targeted therapy and immunotherapy have also been applied in the clinics. However, drug resistance and systemic toxicity still cannot be avoided. Based on the unique properties of nanoparticles, it provides a new idea for lung cancer therapy, especially for targeted immunotherapy. When nanoparticles are used as carriers of drugs with special physical properties, the nanodrug delivery system ensures the accuracy of targeting and the stability of drugs while increasing the permeability and the aggregation of drugs in tumor tissues, showing good anti-tumor effects. This review introduces the properties of various nanoparticles including polymer nanoparticles, liposome nanoparticles, quantum dots, dendrimers, and gold nanoparticles and their applications in tumor tissues. In addition, the specific application of nanoparticle-based drug delivery for lung cancer therapy in preclinical studies and clinical trials is discussed.
Collapse
Affiliation(s)
- Yifan Liu
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
- Jingzhou Hospital Affiliated to Yangtze University, Yangtze University, Jingzhou, 434023 Hubei China
| | - Wenxu Cheng
- Jingzhou Hospital Affiliated to Yangtze University, Yangtze University, Jingzhou, 434023 Hubei China
| | - HongYi Xin
- The Doctoral Scientific Research Center, People’s Hospital of Lianjiang, Guangdong, 524400 China
- The Doctoral Scientific Research Center, People’s Hospital of Lianjiang, Affiliated to Guangdong Medical University, Guangdong, 524400 China
| | - Ran Liu
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023 Hubei China
| | - Qinqi Wang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023 Hubei China
| | - Wenqi Cai
- Xinzhou Traditional Chinese Medicine Hospital, Zhongnan Hospital of Wuhan University (Xinzhou), Hubei, 430000 China
| | - Xiaochun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023 Hubei China
| | - Fuyuan Yang
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
| | - HongWu Xin
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023 Hubei China
- Research Center of Molecular Medicine, Medical College of Chifeng University, Inner Mongolian Autonomous Region, Chifeng, 024000 China
| |
Collapse
|
24
|
Tu L, Li Q, Qiu S, Li M, Shin J, Wu P, Singh N, Li J, Ding Q, Hu C, Xiong X, Sun Y, Kim JS. Recent developments in carbon dots: a biomedical application perspective. J Mater Chem B 2023; 11:3038-3053. [PMID: 36919487 DOI: 10.1039/d2tb02794a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Recently, newly developed carbon-based nanomaterials known as carbon dots (CDs) have generated significant interest in nanomedicine. However, current knowledge regarding CD research in the biomedical field is still lacking. An overview of the most recent development of CDs in biomedical research is given in this review article. Several crucial CD applications, such as biosensing, bioimaging, cancer therapy, and antibacterial applications, are highlighted. Finally, CD-based biomedicine's challenges and future potential are also highlighted to enrich biomedical researchers' knowledge about the potential of CDs and the need for overcoming various technical obstacles.
Collapse
Affiliation(s)
- Le Tu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou 313099, P. R. China.,Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Qian Li
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Sheng Qiu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou 313099, P. R. China
| | - Meiqin Li
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Jinwoo Shin
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Pan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Nem Singh
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Junrong Li
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Qihang Ding
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Cong Hu
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin 541004, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou 313099, P. R. China
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| |
Collapse
|
25
|
Kurilov AD, Chausov DN, Osipova VV, Sagdeev DO, Chekulaev IS, Kucherov RN, Belyaev VV, Galyametdinov YG. Concentration-dependent dielectric and electro-optical properties of composites based on nematic liquid crystals and CdS:Mn quantum dots. SOFT MATTER 2023; 19:2110-2119. [PMID: 36857700 DOI: 10.1039/d2sm01352e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Composites in a wide concentration range of 0-0.6 wt% based on a nematic liquid crystal mixture and CdS quantum dots doped with manganese ions (Mn 6%) are presented. The effect of the CdS:Mn quantum dots on the phase diagram and electronic structure of composites was studied using differential scanning calorimetry and fluorescence analysis. Nonmonotonic concentration-dependent changes in the clearing point, which correlate with the fluorescence quenching behavior of the main CdS:Mn peak, were found. Dielectric spectroscopy and electro-optic studies revealed a corresponding increase in the dielectric permittivity anisotropy and birefringence in the 0.2-0.4 wt% range, where thermodynamic changes occur. The initiating factors behind this effect are supposed to be the self-assembly of quantum dots, and the distortion of the orientation order of liquid crystal molecules at a higher mass concentration of quantum dots.
Collapse
Affiliation(s)
- Alexander D Kurilov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St, Moscow, 119991, Russia.
- Moscow Region State University, 24 Very Voloshinoy St., 141014, Mytishchi, Russia
| | - Denis N Chausov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St, Moscow, 119991, Russia.
- Moscow University for Industry and Finance "Synergy", 2 Izmailovsky Val St., Moscow, 105318, Russia
| | - Valentina V Osipova
- Kazan National Research Technological University, 68 K. Marx St., 420015, Kazan, Russia
| | - Dmitriy O Sagdeev
- Kazan National Research Technological University, 68 K. Marx St., 420015, Kazan, Russia
| | - Igor S Chekulaev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St, Moscow, 119991, Russia.
- Moscow Region State University, 24 Very Voloshinoy St., 141014, Mytishchi, Russia
| | - Roman N Kucherov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St, Moscow, 119991, Russia.
- Moscow Region State University, 24 Very Voloshinoy St., 141014, Mytishchi, Russia
| | - Victor V Belyaev
- Moscow Region State University, 24 Very Voloshinoy St., 141014, Mytishchi, Russia
| | - Yuriy G Galyametdinov
- Kazan National Research Technological University, 68 K. Marx St., 420015, Kazan, Russia
| |
Collapse
|
26
|
Haque M, Konthoujam I, Lyndem S, Koley S, Aguan K, Singha Roy A. Formation of ZnS quantum dots using green tea extract: applications to protein binding, bio-sensing, anti-bacterial and cell cytotoxicity studies. J Mater Chem B 2023; 11:1998-2015. [PMID: 36752685 DOI: 10.1039/d2tb02265f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Biocompatible quantum dots (QDs) have attracted a lot of attention due to their potential biological applications (drug delivery, sensing and diagnosis). Here, we have synthesized 2-4 nm sized biocompatible zinc sulphide (ZnS) QDs using a plant leaf extract as an immobilizing and stabilizing agent via a green route. We have investigated the biological effects of ZnS QDs in a variety of applications, including (1) anti-bacterial activity, (2) cell cytotoxicity, (3) bio-sensing and (4) protein binding. Studies on the anti-bacterial activity of the as-synthesized ZnS QDs against E. coli and E. faecalis inhibited bacterial growth effectively and showed a cytotoxic effect on the HeLa cell line. The biosynthesized ZnS QDs act as a fluorescence probe to detect bilirubin and rifampicin (RFP) with a wide linear range, high sensitivity, good selectivity, and a low limit of detection (LOD), with LOD values of 22.12 ± 0.25 ng mL-1 and 122.37 ± 0.42 ng mL-1, respectively. In a biological matrix, the QDs can form a complex with biomacromolecules; therefore, we studied the interaction between a carrier protein (HSA) and the as-synthesized ZnS QDs. The surface functionalized and nano-sized ZnS-GT QDs were observed to form complexes with the human serum albumin (HSA) protein and quenched the intrinsic fluorescence of HSA through static and dynamic quenching modes. The binding affinity was observed to be of the order of 105 M-1 for the HSA-ZnS-GT QD interactions, which can be considered as a reversible mode of binding. The effect of the ZnS QDs on other ligands and protein interactions was also studied. Enhanced binding affinities for HSA-quercetin ((5.994 ± 0.139) × 105 M-1) and HSA-luteolin ((3.068 ± 0.127) × 105 M-1) interactions were also observed in the presence of ZnS-GT QDs.
Collapse
Affiliation(s)
- Mahabul Haque
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, 793003, India.
| | - Ibemhanbi Konthoujam
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| | - Sona Lyndem
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, 793003, India.
| | - Sudipta Koley
- Department of Physics, Amity University, Kolkata 700135, India
| | - Kripamoy Aguan
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| | - Atanu Singha Roy
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, 793003, India.
| |
Collapse
|
27
|
Green Synthesis of Blue-Emitting Graphene Oxide Quantum Dots for In Vitro CT26 and In Vivo Zebrafish Nano-Imaging as Diagnostic Probes. Pharmaceutics 2023; 15:pharmaceutics15020632. [PMID: 36839953 PMCID: PMC9960939 DOI: 10.3390/pharmaceutics15020632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/02/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Graphene oxide quantum dots (GOQDs) are prepared using black carbon as a feedstock and H2O2 as a green oxidizing agent in a straightforward and environmentally friendly manner. The process adopted microwave energy and only took two minutes. The GOQDs are 20 nm in size and have stable blue fluorescence at 440 nm. The chemical characteristics and QD morphology were confirmed by thorough analysis using scanning electron microscope (SEM), transmission electron microscope (TEM), atomic force microscope (AFM), Fourier transmission infra-red (FT-IR), and X-ray photoelectron spectroscopy (XPS). The biocompatibility test was used to evaluate the toxicity of GOQDs in CT26 cells in vitro and the IC50 was found to be 200 µg/mL with excellent survival rates. Additional in vivo toxicity assessment in the developing zebrafish (Danio rerio) embryo model found no observed abnormalities even at a high concentration of 400 μg/mL after 96 h post fertilization. The GOQDs luminescence was also tested both in vitro and in vivo. They showed excellent internal distribution in the cytoplasm, cell nucleus, and throughout the zebrafish body. As a result, the prepared GOQDs are expected to be simple and inexpensive materials for nano-imaging and diagnostic probes in nanomedicine.
Collapse
|
28
|
Wei M, Yang Z, Li S, Le W. Nanotherapeutic and Stem Cell Therapeutic Strategies in Neurodegenerative Diseases: A Promising Therapeutic Approach. Int J Nanomedicine 2023; 18:611-626. [PMID: 36760756 PMCID: PMC9904216 DOI: 10.2147/ijn.s395010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Neurodegeneration is characterized by progressive, disabling, and incurable neurological disorders with the massive loss of specific neurons. As one of the most promising potential therapeutic strategies for neurodegenerative diseases, stem cell therapy exerts beneficial effects through different mechanisms, such as direct replacement of damaged or lost cells, secretion of neurotrophic and growth factors, decreased neuroinflammation, and activation of endogenous stem cells. However, poor survival and differentiation rates of transplanted stem cells, insufficient homing ability, and difficulty tracking after transplantation limit their further clinical use. The rapid development of nanotechnology provides many promising nanomaterials for biomedical applications, which already have many applications in neurodegenerative disease treatment and seem to be able to compensate for some of the deficiencies in stem cell therapy, such as transport of stem cells/genes/drugs, regulating stem cell differentiation, and real-time tracking in stem cell therapy. Therefore, nanotherapeutic strategies combined with stem cell therapy is a promising therapeutic approach to treating neurodegenerative diseases. The present review systematically summarizes recent advances in stem cell therapeutics and nanotherapeutic strategies and highlights how they can be combined to improve therapeutic efficacy for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Min Wei
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People’s Republic of China
| | - Zhaofei Yang
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People’s Republic of China
| | - Song Li
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People’s Republic of China
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People’s Republic of China,Institute of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, Chengdu, 610072, People’s Republic of China,Correspondence: Weidong Le, Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People’s Republic of China, Email
| |
Collapse
|
29
|
Arul MR, Zhang C, Alahmadi I, Moss IL, Banasavadi-Siddegowda YK, Abdulmalik S, Illien-Junger S, Kumbar SG. Novel Injectable Fluorescent Polymeric Nanocarriers for Intervertebral Disc Application. J Funct Biomater 2023; 14:52. [PMID: 36826851 PMCID: PMC9961171 DOI: 10.3390/jfb14020052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Damage to intervertebral discs (IVD) can lead to chronic pain and disability, and no current treatments can fully restore their function. Some non-surgical treatments have shown promise; however, these approaches are generally limited by burst release and poor localization of diverse molecules. In this proof-of-concept study, we developed a nanoparticle (NP) delivery system to efficiently deliver high- and low-solubility drug molecules. Nanoparticles of cellulose acetate and polycaprolactone-polyethylene glycol conjugated with 1-oxo-1H-pyrido [2,1-b][1,3]benzoxazole-3-carboxylic acid (PBC), a novel fluorescent dye, were prepared by the oil-in-water emulsion. Two drugs, a water insoluble indomethacin (IND) and a water soluble 4-aminopyridine (4-AP), were used to study their release patterns. Electron microscopy confirmed the spherical nature and rough surface of nanoparticles. The particle size analysis revealed a hydrodynamic radius ranging ~150-162 nm based on dynamic light scattering. Zeta potential increased with PBC conjugation implying their enhanced stability. IND encapsulation efficiency was almost 3-fold higher than 4-AP, with release lasting up to 4 days, signifying enhanced solubility, while the release of 4-AP continued for up to 7 days. Nanoparticles and their drug formulations did not show any apparent cytotoxicity and were taken up by human IVD nucleus pulposus cells. When injected into coccygeal mouse IVDs in vivo, the nanoparticles remained within the nucleus pulposus cells and the injection site of the nucleus pulposus and annulus fibrosus of the IVD. These fluorescent nano-formulations may serve as a platform technology to deliver therapeutic agents to IVDs and other tissues that require localized drug injections.
Collapse
Affiliation(s)
- Michael R. Arul
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030, USA
| | - Changli Zhang
- Department of Orthopedic Surgery, Emory University, Atlanta, GA 30308, USA
| | - Ibtihal Alahmadi
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Isaac L. Moss
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030, USA
| | | | - Sama Abdulmalik
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030, USA
| | | | - Sangamesh G. Kumbar
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
30
|
Meng Z, Ju Z, Fan J, Wang Y, Wu X, Lu R, Zhou W, Gao H. A fluorescent turn-off sensor based on polydopamine modified Mg-Al layered double hydroxide for the detection of thiram in apple and pear samples. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
31
|
Tao J, Zou H, Liao X, Lu X, Cao J, Pan J, Li C, Zheng Y. Fabrication of FA/HA-functionalized carbon dots for human breast cancer cell targeted imaging. Photodiagnosis Photodyn Ther 2022; 40:103099. [PMID: 36055626 DOI: 10.1016/j.pdpdt.2022.103099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 12/14/2022]
Abstract
Green fluorescent carbon dots (CDs) were prepared by one-step hydrothermal method and then modified into folic acid functionalized carbon dots (FA-CDs) and hyaluronic acid functionalized carbon dots (HA-CDs) with targeted function to study their application in breast cancer cells imaging. The microstructure of the CDs observed through TEM showed the CDs with a scale of 2.69 nm. FT-IR and XPS showed the changes of bonds and functional groups that confirmed the transformation of COOH and NH2 to amide bonds. FA-CDs and HA-CDs had good water solubility and cytocompatibility, which laid a foundation for their application in human breast cancer cells imaging. At the same time, FA-CDs and HA-CDs had strong fluorescence excitation, and the optimal emission wavelength was about 450 nm. In fluorescence imaging of cells, carbon dots had bright green fluorescence in both breast cancer cells (MCF-7 cells) and normal cells (EC cells). After targeted endocytosis, FA-CDs and HA-CDs could emit bright green fluorescence in cancer cells but could not in normal cells, which proved that the synthesized FA-CDs and HA-CDs had targeting properties. FA-CDs and HA-CDs could be used to accurately identify breast cancer cells and normal cells as cancer diagnosis material, which had the potential application in early cancer diagnosis.
Collapse
Affiliation(s)
- Junting Tao
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Hao Zou
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Xiaokun Liao
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Xinjian Lu
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Jun Cao
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Jiaqi Pan
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Chaorong Li
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Yingying Zheng
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
32
|
Jin R, Fu X, Pu Y, Fu S, Liang H, Yang L, Nie Y, Ai H. Clinical translational barriers against nanoparticle-based imaging agents. Adv Drug Deliv Rev 2022; 191:114587. [PMID: 36309148 DOI: 10.1016/j.addr.2022.114587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/22/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023]
Abstract
Nanoparticle based imaging agents (NIAs) have been intensively explored in bench studies. Unfortunately, only a few cases have made their ways to clinical translation. In this review, clinical trials of NIAs were investigated for understanding possible barriers behind that. First, the complexity of multifunctional NIAs is considered a main barrier because it brings uncertainty to batch-to-batch fabrication, and results in sophisticated in vivo behaviors. Second, inadequate biosafety studies slow down the translational work. Third, NIA uptake at disease sites is highly heterogeneous, and often exhibits poor targeting efficiency. Focusing on the aforementioned problems, key design parameters were analyzed including NIAs' size, composition, surface characteristics, dosage, administration route, toxicity, whole-body distribution and clearance in clinical trials. Possible strategies were suggested to overcome these barriers. Besides, regulatory guidelines as well as scale-up and reproducibility during manufacturing process were covered as they are also key factors to consider during clinical translation of NIAs.
Collapse
Affiliation(s)
- Rongrong Jin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xiaomin Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yiyao Pu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Shengxiang Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Hong Liang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yu Nie
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
33
|
Fluorogenic toolbox for facile detecting of hydroxyl radicals: From designing principles to diagnostics applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Zhao J, Zhang C, Wang W, Li C, Mu X, Hu K. Current progress of nanomedicine for prostate cancer diagnosis and treatment. Biomed Pharmacother 2022; 155:113714. [PMID: 36150309 DOI: 10.1016/j.biopha.2022.113714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/02/2022] Open
Abstract
Prostate cancer (PCa) is the most common new cancer case and the second most fatal malignancy in men. Surgery, endocrine therapy, radiotherapy and chemotherapy are the main clinical treatment options for PCa. However, most prostate cancers can develop into castration-resistant prostate cancer (CRPC), and due to the invasiveness of prostate cancer cells, they become resistant to different treatments and activate tumor-promoting signaling pathways, thereby inducing chemoresistance, radioresistance, ADT resistance, and immune resistance. Nanotechnology, which can combine treatment with diagnostic imaging tools, is emerging as a promising treatment modality in prostate cancer therapy. Nanoparticles can not only promote their accumulation at the pathological site through passive targeting techniques for enhanced permeability and retention (EPR), but also provide additional advantages for active targeting using different ligands. This property results in a reduced drug dose to achieve the desired effect, a longer duration of action within the tumor and fewer side effects on healthy tissues. In addition, nanotechnology can create good synergy with radiotherapy, chemotherapy, thermotherapy, photodynamic therapy and gene therapy to enhance their therapeutic effects with greater scope, and reduce the resistance of prostate cancer. In this article, we intend to review and discuss the latest technologies regarding the use of nanomaterials as therapeutic and diagnostic tools for prostate cancer.
Collapse
Affiliation(s)
- Jiang Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Chi Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Weihao Wang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Chen Li
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, China
| | - Xupeng Mu
- Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun 130033, China.
| | - Kebang Hu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
35
|
Gollavelli G, Ghule AV, Ling YC. Multimodal Imaging and Phototherapy of Cancer and Bacterial Infection by Graphene and Related Nanocomposites. Molecules 2022; 27:5588. [PMID: 36080351 PMCID: PMC9457605 DOI: 10.3390/molecules27175588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/31/2022] Open
Abstract
The advancements in nanotechnology and nanomedicine are projected to solve many glitches in medicine, especially in the fields of cancer and infectious diseases, which are ranked in the top five most dangerous deadly diseases worldwide by the WHO. There is great concern to eradicate these problems with accurate diagnosis and therapies. Among many developed therapeutic models, near infra-red mediated phototherapy is a non-invasive technique used to invade many persistent tumors and bacterial infections with less inflammation compared with traditional therapeutic models such as radiation therapy, chemotherapy, and surgeries. Herein, we firstly summarize the up-to-date research on graphene phototheranostics for a better understanding of this field of research. We discuss the preparation and functionalization of graphene nanomaterials with various biocompatible components, such as metals, metal oxides, polymers, photosensitizers, and drugs, through covalent and noncovalent approaches. The multifunctional nanographene is used to diagnose the disease with confocal laser scanning microscopy, magnetic resonance imaging computed tomography, positron emission tomography, photoacoustic imaging, Raman, and ToF-SMIS to visualize inside the biological system for imaging-guided therapy are discussed. Further, treatment of disease by photothermal and photodynamic therapies against different cancers and bacterial infections are carefully conferred herein along with challenges and future perspectives.
Collapse
Affiliation(s)
- Ganesh Gollavelli
- Department of Humanities and Basic Sciences, Aditya Engineering College, Surampalem, Jawaharlal Nehru Technological University Kakinada, Kakinada 533437, Andhra Pradesh, India
| | - Anil V. Ghule
- Department of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India
| | - Yong-Chien Ling
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
36
|
Liu Y, Zhang W, Zheng W. Quantum Dots Compete at the Acme of MXene Family for the Optimal Catalysis. NANO-MICRO LETTERS 2022; 14:158. [PMID: 35916985 PMCID: PMC9346050 DOI: 10.1007/s40820-022-00908-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/25/2022] [Indexed: 05/05/2023]
Abstract
It is well known that two-dimensional (2D) MXene-derived quantum dots (MQDs) inherit the excellent physicochemical properties of the parental MXenes, as a Chinese proverb says, "Indigo blue is extracted from the indigo plant, but is bluer than the plant it comes from." Therefore, 0D QDs harvest larger surface-to-volume ratio, outstanding optical properties, and vigorous quantum confinement effect. Currently, MQDs trigger enormous research enthusiasm as an emerging star of functional materials applied to physics, chemistry, biology, energy conversion, and storage. Since the surface properties of small-sized MQDs include the type of surface functional groups, the functionalized surface directly determines their performance. As the Nobel Laureate Wolfgang Pauli says, "God made the bulk, but the surface was invented by the devil," and it is just on the basis of the abundant surface functional groups, there is lots of space to be thereof excavated from MQDs. We are witnessing such excellence and even more promising to be expected. Nowadays, MQDs have been widely applied to catalysis, whereas the related reviews are rarely reported. Herein, we provide a state-of-the-art overview of MQDs in catalysis over the past five years, ranging from the origin and development of MQDs, synthetic routes of MQDs, and functionalized MQDs to advanced characterization techniques. To explore the diversity of catalytic application and perspectives of MQDs, our review will stimulate more efforts toward the synthesis of optimal MQDs and thereof designing high-performance MQDs-based catalysts.
Collapse
Affiliation(s)
- Yuhua Liu
- Key Laboratory of Automobile Materials MOE, and School of Materials Science and Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, and Electron Microscopy Center, and International Center of Future Science, Jilin University, Changchun, 130012, People's Republic of China
| | - Wei Zhang
- Key Laboratory of Automobile Materials MOE, and School of Materials Science and Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, and Electron Microscopy Center, and International Center of Future Science, Jilin University, Changchun, 130012, People's Republic of China.
| | - Weitao Zheng
- Key Laboratory of Automobile Materials MOE, and School of Materials Science and Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, and Electron Microscopy Center, and International Center of Future Science, Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
37
|
Silver nanoclusters show advantages in macrophage tracing in vivo and modulation of anti-tumor immuno-microenvironment. J Control Release 2022; 348:470-482. [PMID: 35691499 DOI: 10.1016/j.jconrel.2022.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 12/16/2022]
Abstract
Macrophage-based nanomedicine represents an emerging powerful strategy for cancer therapy. Unfortunately, some obstacles and challenges limit the translational applications of macrophage-mediated nanodrug delivery system. For instance, tracking and effective cell delivery for targeted tumor sites remain to be overcome, and controlling the states of macrophages is still rather difficult due to their plastic nature in response to external stimuli. To address these critical issues, here, we reported a novel type of silver nanoclusters (AgNCs) with excellent fluorescent intensity, especially long-lasting cell labeling stability after endocytosis by macrophages, indicating promising applications in tracking macrophage-based nanomedicine delivery. Our mechanistic investigations uncovered that these merits originate from the escape of AgNCs from lysosomal degradation within macrophages. In addition, the AgNCs would prime the M1-like polarization of macrophages (at least in part) through the toll-like receptor 4 signaling pathway. The engineered macrophages laden with AgNCs could be employed for lung metastasis breast cancer treatment, showing the effective targeting propensity to metastatic tumors, remarkable regulation of tumor immune microenvironment and inhibition of tumor growth. Collectively, AgNC-trained macrophages appear to be a promising strategy for tumor immune-microenvironment regulation, which might be generalized to a wider spectrum of cancer therapeutics.
Collapse
|
38
|
Sergeev AA, Naberezhnykh GA, Khomenko VA, Amosov AV, Nepomnyaschiy AV, Solov'eva TF, Chistyulin DK, Tutov MV, Kulchin YN, Novikova OD. In situ-Synthesized cadmium sulfide quantum dots in pore-forming protein and polysaccharide matrices for optical biosensing applications. Colloids Surf B Biointerfaces 2022; 217:112607. [PMID: 35671573 DOI: 10.1016/j.colsurfb.2022.112607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/12/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
The main limitation for practical implementation of quantum dots-based sensors and biosensors is the possible contamination of sensing media with quantum dots (QDs) moved out from the sensor structure, being critical for living systems measurements. Numerous efforts have addressed the challenge of pre-synthesized QDs incorporation into porous matrix provide, on the one hand, proper fixation of quantum dots in its volume and preserving a free analyte transfer from the sensing media to them - on the other hand. Here, we propose an alternative insight into this problem. Instead of using preliminary synthesized particles for doping a matrix, we have in situ synthesized cadmium sulfide QDs in porous biopolymeric matrices, both in an aqueous solution and on a mica substrate. The proposed technique allows obtaining QDs in a matrix acting simultaneously as a ligand passivating surface defects and preventing QDs aggregation. The conjugates were used as a photoluminescence sensor for the metal ions and glutathione detection in an aqueous media. Different kinds of sensor responses have been found depending on the analyte nature. Zinc ions' presence initiates the intraband QDs emission increases due to the reduction of non-radiative processes. The presence of copper ions, in contrast, leads to a gradual photoluminescence decrease due to the formation of the non-luminescent copper-based alloy in the QDs structure. Finally, the presence of glutathione initiates a ligand exchange process followed by some QDs surface treatment enhancing defect-related photoluminescence. As a result, three different kinds of sensor responses for three analytes allow claiming development of a new selective QD-based sensor suitable for biomedical applications.
Collapse
Affiliation(s)
- A A Sergeev
- Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences, 5, Radio street, Vladivostok 690041, Russia
| | - G A Naberezhnykh
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, prospect 100 Let Vladivostoku, Vladivostok 690022, Russia
| | - V A Khomenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, prospect 100 Let Vladivostoku, Vladivostok 690022, Russia
| | - A V Amosov
- Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences, 5, Radio street, Vladivostok 690041, Russia
| | - A V Nepomnyaschiy
- Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences, 5, Radio street, Vladivostok 690041, Russia
| | - T F Solov'eva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, prospect 100 Let Vladivostoku, Vladivostok 690022, Russia
| | - D K Chistyulin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, prospect 100 Let Vladivostoku, Vladivostok 690022, Russia
| | - M V Tutov
- Far Eastern Federal University, 10, Ajax Bay, Russky Island, Vladivostok 690922, Russia
| | - Yu N Kulchin
- Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences, 5, Radio street, Vladivostok 690041, Russia
| | - O D Novikova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, prospect 100 Let Vladivostoku, Vladivostok 690022, Russia
| |
Collapse
|
39
|
Fluorescent Oxygen-Doped g-C3N4 Quantum Dots for Selective Detection Fe3+ Ions in Cell Imaging. NANOMATERIALS 2022; 12:nano12111826. [PMID: 35683682 PMCID: PMC9182471 DOI: 10.3390/nano12111826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023]
Abstract
Herein, oxygen-doped g-C3N4 quantum dots (OCNQDs) were fabricated through sintering and ultrasonic-assisted liquid-phase exfoliation methods. The obtained OCNQDs with uniform size show high crystalline quality, and the average diameter is 6.7 ± 0.5 nm. Furthermore, the OCNQDs display excellent fluorescence properties, good water solubility, and excellent photo stability. The OCNQDs as fluorescence probe show high sensitivity and selectivity to Fe3+ ions. Furthermore, the fluorescent OCNQDs are applied for live cell imaging and Fe3+ ions detecting in living cells with low cytotoxicity, good biocompatibility, and high permeability. Overall, the fluorescent OCNQDs fabricated in this work can be promising candidates for a range of chemical sensors and bioimaging applications.
Collapse
|
40
|
Zhu P, Wang S, Zhang Y, Li Y, Liu Y, Li W, Wang Y, Yan X, Luo D. Carbon Dots in Biomedicine: A Review. ACS APPLIED BIO MATERIALS 2022; 5:2031-2045. [PMID: 35442016 DOI: 10.1021/acsabm.1c01215] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite the rapid development of science and technology, the effective treatment of cancer still threatens human life and health. However, the success of cancer treatment is closely related to early diagnosis, identification, and effective treatment. In recent years, with the strengthening of the development and research of nanomaterials for cancer diagnosis and treatment, researchers have found that carbon dots (CDs) have the advantages of wide absorption, excellent biocompatibility, diverse imaging characteristics, and photostability and are widely used in various fields, such as sensing, imaging, and drug/gene transportation. Recently, researchers also discovered that CDs could be used as an effective photosensitizer to generate active oxygen or convert light energy into heat under the stimulation of the external lasers, making them have the effects of photothermal and photodynamic therapy for cancer. In this review, we first outline the single-modal and multimodal imaging analysis of CDs in cancer cells. After introducing diversified imaging functions, we focused on the design and the latest research progress of CDs in phototherapy and introduced in detail the strategies of CDs in phototherapy treatment and the challenges faced by clinical applications. We hope that this overview can provide important insights for researchers and accelerate the pace of research on CDs in imaging-guided phototherapy treatment.
Collapse
Affiliation(s)
- Peide Zhu
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen 518000, China.,College of New Energy and Materials, China University of Petroleum-Beijing, Beijing 102249, China
| | - Siyang Wang
- College of New Energy and Materials, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yuqi Zhang
- College of New Energy and Materials, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yifan Li
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen 518000, China
| | - Yinping Liu
- College of New Energy and Materials, China University of Petroleum-Beijing, Beijing 102249, China
| | - Wenjing Li
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen 518000, China
| | - Yuying Wang
- Department of Oncology, the Fifth Medical Center, The Chinese PLA General Hospital, Beijing 100853, China
| | - Xiang Yan
- Department of Oncology, the Fifth Medical Center, The Chinese PLA General Hospital, Beijing 100853, China
| | - Dixian Luo
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen 518000, China
| |
Collapse
|
41
|
Hallaji Z, Bagheri Z, Oroujlo M, Nemati M, Tavassoli Z, Ranjbar B. An insight into the potentials of carbon dots for in vitro live-cell imaging: recent progress, challenges, and prospects. Mikrochim Acta 2022; 189:190. [PMID: 35419708 DOI: 10.1007/s00604-022-05259-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/03/2022] [Indexed: 12/11/2022]
Abstract
Carbon dots (CDs) are a strong alternative to conventional fluorescent probes for cell imaging due to their brightness, photostability, tunable fluorescence emission, low toxicity, inexpensive preparation, and chemical diversity. Improving the targeting efficiency by modulation of the surface functional groups and understanding the mechanisms of targeted imaging are the most challenging issues in cell imaging by CDs. Firstly, we briefly discuss important features of fluorescent CDs for live-cell imaging application in this review. Then, the newest modulated CDs for targeted live-cell imaging of whole-cell, cell organelles, pH, ions, small molecules, and proteins are elaborately discussed, and their challenges in these fields are explained.
Collapse
Affiliation(s)
- Zahra Hallaji
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, 14117-13116, Tehran, Iran
| | - Zeinab Bagheri
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, 1983963113, Tehran, Iran.
| | - Mahdi Oroujlo
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, 1983963113, Tehran, Iran
| | - Mehrnoosh Nemati
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, 1983963113, Tehran, Iran
| | - Zeinab Tavassoli
- Department of Biology, Islamic Azad University Central Tehran Branch, Tehran, Iran
| | - Bijan Ranjbar
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, 14117-13116, Tehran, Iran. .,Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, 14117-13116, Tehran, Iran.
| |
Collapse
|
42
|
Sun T, Tang M, Shi Y, Li B. MXenes Quantum Dots for Biomedical Applications: Recent Advances and Challenges. CHEM REC 2022; 22:e202200019. [PMID: 35352472 DOI: 10.1002/tcr.202200019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/17/2022] [Indexed: 11/07/2022]
Abstract
MXenes have aroused widespread interest in the biomedical field owing to their remarkable photo-thermal conversion capabilities combined with large specific surface areas. MXenes quantum dots (MQDs) have been synthesized either by the physical or chemical methods based on MXenes as precursors, which possess smaller size, higher photoluminescence, coupled with low cytotoxicity and many beneficial properties of MXenes, thereby having potential biomedical applications. Given this, this review summarized the synthesis methods, optical, surface and biological properties of MQDs along with their practical applications in the field of biomedicine. Finally, the authors make an outlook towards the synthesis, properties and applications of MQDs in the future biomedicine field.
Collapse
Affiliation(s)
- Tiedong Sun
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China.,Post-doctoral Mobile Research Station of Forestry Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Minglu Tang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Yangtian Shi
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Bin Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China.,Post-doctoral Mobile Research Station of Forestry Engineering, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
43
|
Microwave-Assisted Green Synthesis of Carbon Quantum Dots Derived from Calotropis Gigantea as a Fluorescent Probe for Bioimaging. J Fluoresc 2022; 32:1039-1049. [PMID: 35262854 DOI: 10.1007/s10895-022-02923-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
An eco-friendly, cost-effective, and convenient approach for synthesizing biocompatible fluorescent carbon quantum dots (CQDs) from the leaf extract of the medicinal plant Calotropis gigantea, commonly known as crown flower, has been demonstrated in this work. Fluorescence quantum yields of up to 4.24 percent were observed in as-synthesized CQDs. The size distribution of the as-synthesized CQDs varied from 2.7 to 10.4 nm, with a significant proportion of sp2 and sp3 carbon groups verified by nuclear magnetic resonance analysis. The zeta potential of as-synthesized CQDs was measured to be -13.8 mV, indicating the existence of a negatively charged surface with incipient instability in aqueous suspension. Furthermore, as an alternative to organic or synthetic dyes, the development of simple, inexpensive, and non-destructive fluorescence-based staining agents are highly desired. In this regard, as-synthesized CQDs have shown remarkable fluorescent staining capabilities in this work and might be utilised as a suitable probe for optical and bio-imaging of bacteria, fungi, and plant cells.
Collapse
|
44
|
Wu J, Chen G, Jia Y, Ji C, Wang Y, Zhou Y, Leblanc RM, Peng Z. Carbon dot composites for bioapplications: a review. J Mater Chem B 2022; 10:843-869. [PMID: 35060567 DOI: 10.1039/d1tb02446a] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Carbon dots (CDs) have received extensive attention in the last decade for their excellent optical, chemical and biological properties. In recent years, CD composites have also received significant attention due to their ability to improve the intrinsic properties and expand the application scope of CDs. In this article, the synthesis processes of four types of CD composites (metal-CD, nonmetallic inorganics-CD, and organics-CD as well as multi-components-CD composites) are systematically summarized first. Then the recent advancements in the bioapplications (bioimaging, drug delivery and biosensing) of these composites are also highlighted and discussed. Last, the current challenges and future trends of CD composites in biomedical fields are discussed.
Collapse
Affiliation(s)
- Jiajia Wu
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China.
| | - Gonglin Chen
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China.
| | - Yinnong Jia
- Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, People's Republic of China
| | - Chunyu Ji
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China.
| | - Yuting Wang
- Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, People's Republic of China
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, USA
| | - Zhili Peng
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China.
| |
Collapse
|
45
|
He Y, An CZ, Hou XL, Zhong ZT, Li CQ, Chen W, Liu B, Zhao YD. CdTe@CdS quantum dots for labeling and imaging of macrophages in liver frozen section below freezing point. J Mater Chem B 2022; 10:2952-2962. [DOI: 10.1039/d1tb02781f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CdTe@CdS core-shell quantum dots with different particle sizes are synthesized by aqueous method, and the coating of CdS shell layer improves the quantum yield (36%→59%) and fluorescence stability (37%→77%) of...
Collapse
|
46
|
Live-cell visualization of cytochrome c: a tool to explore apoptosis. Biochem Soc Trans 2021; 49:2903-2915. [PMID: 34747968 DOI: 10.1042/bst20211028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023]
Abstract
Apoptosis dysfunction is associated with several malignancies, including cancer and autoimmune diseases. Apoptosis restoration could be an attractive therapeutic approach to those diseases. Mitochondrial outer membrane permeabilization is regarded as the point of no return in the 'classical' apoptosis triggering pathway. Cytoplasmic release of cytochrome c (cyt c), a mitochondrial electron transporter, is a prominent indicator of such critical step. Therefore, visualizing cyt c efflux in living cells is a convenient approach to address apoptosis triggering and monitor performance of apoptosis restoration strategies. Recent years have been prolific in the development of biosensors to visualize cyt c mitochondrial efflux in living cells, by fluorescence microscopy. These biosensors specifically detect endogenous, untagged cyt c, while showing efficient cellular uptake and reduced cell toxicity. A common aspect is their fluorescence quenching in the absence or presence of bound cyt c, resulting in two main biosensor types: 'turn ON' and 'turn OFF'. In some of these systems, fluorescence intensity of fluorophore-bound aptamers is enhanced upon cyt c binding. In others, cyt c binding to quantum dots quenches their fluorescence. In the present minireview, I describe these biosensors and briefly introduce some hypotheses that could be addressed using these novel tools.
Collapse
|
47
|
Supianto M, Lee HJ. Recent research trends in fluorescent
reporters‐based
lateral flow immunoassay for protein biomarkers specific to acute myocardial infarction. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mulya Supianto
- Department of Chemistry and Green‐Nano Materials Research Center Kyungpook National University Daegu Republic of Korea
| | - Hye Jin Lee
- Department of Chemistry and Green‐Nano Materials Research Center Kyungpook National University Daegu Republic of Korea
| |
Collapse
|