1
|
Lacerda S, de Kruijff RM, Djanashvili K. The Advancement of Targeted Alpha Therapy and the Role of Click Chemistry Therein. Molecules 2025; 30:1296. [PMID: 40142070 PMCID: PMC11944744 DOI: 10.3390/molecules30061296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Recent years have seen a swift rise in the use of α-emitting radionuclides such as 225Ac and 223Ra as various radiopharmaceuticals to treat (micro)metastasized tumors. They have shown remarkable effectiveness in clinical practice owing to the highly cytotoxic α-particles that are emitted, which have a very short range in tissue, causing mainly double-stranded DNA breaks. However, it is essential that both chelation and targeting strategies are optimized for their successful translation to clinical application, as α-emitting radionuclides have distinctly different features compared to β--emitters, including their much larger atomic radius. Furthermore, upon α-decay, any daughter nuclide irrevocably breaks free from the targeting molecule, known as the recoil effect, dictating the need for faster targeting to prevent healthy tissue toxicity. In this review we provide a brief overview of the current status of targeted α-therapy and highlight innovations in α-emitter-based chelator design, focusing on the role of click chemistry to allow for fast complexation to biomolecules at mild labeling conditions. Finally, an outlook is provided on different targeting strategies and the role that pre-targeting can play in targeted alpha therapy.
Collapse
Affiliation(s)
- Sara Lacerda
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d’Orléans, Rue Charles Sadron, 45071 Orléans, France;
| | - Robin M. de Kruijff
- Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands;
| | - Kristina Djanashvili
- Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands;
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
2
|
Woods JJ, Rigby A, Wacker JN, Arino T, Alvarenga Vasquez JV, Cosby A, Martin KE, Abergel RJ. Synthesis and Evaluation of a Bifunctional Chelator for Thorium-227 Targeted Radiotherapy. J Med Chem 2025; 68:1682-1692. [PMID: 39752149 DOI: 10.1021/acs.jmedchem.4c02423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Thorium-227 (227Th) is an α-emitting radionuclide currently under investigation for targeted alpha therapy. Available chelators used for this isotope suffer from challenging multistep syntheses. Here, we present the synthesis and preclinical evaluation of a novel bifunctional chelator, p-SCN-Bn-DOTHOPO, which contains an isothiocyanate group that is suitable for conjugation to biological molecules. This bifunctional chelator was prepared with a 26% overall yield in four steps and conjugated to the human epidermal growth factor receptor 2 targeting antibody, trastuzumab. The resulting immunoconjugate was labeled with [227Th]ThIV (pH 5.5, room temperature, 60 min) with ≥95% radiochemical yield and purity. The conjugate was also labeled with zirconium-89 (89Zr), which can be used for positron emission tomography imaging. The radiometal complexes were subsequently investigated for their biological stability. The results described here provide insight into ligand design strategies and optimization of chelators for the development of the next generation of 89Zr and 227Th radiopharmaceuticals.
Collapse
Affiliation(s)
- Joshua J Woods
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alex Rigby
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jennifer N Wacker
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Trevor Arino
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Nuclear Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | | | - Alexia Cosby
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kirsten E Martin
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Nuclear Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Yang M, Li J, Han Z, Luan X, Zhang X, Gao J, Qin S, Yu F. Layered Double Hydroxides for Radium-223 Targeted Alpha Therapy with Elicitation of the Immune Response. Adv Healthc Mater 2025; 14:e2403175. [PMID: 39618118 DOI: 10.1002/adhm.202403175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/18/2024] [Indexed: 01/29/2025]
Abstract
Targeted Alpha therapy (TAT) has promising application prospects in tumor therapy. It is very appealing to design alpha-emitting radiopharmaceuticals that can modulate the immune microenvironment to overcome the limitations of immunotherapy. Herein, Mg/Al layered double hydroxide nanomaterials (LDH) are utilized to load the alpha-emitting nuclide Radium-223 (223Ra), achieving precise delivery of 223Ra to the tumor microenvironment. Dual-modal imaging is employed to dynamically monitor the in vivo distribution of 223Ra-LDH, ensuring its prolonged retention at the tumor site. In vitro experimentsshowed that ionizing radiation from alpha-emitting nuclides effectively reduced glutathione (GSH) and produced large amounts of reactive oxygen species (ROS), which damaged mitochondria and released free calcium (Ca2+), thereby aggravating tumor cell death. Additionally, DNA double-strand breaks induced by alpha-emitting radiation triggered the STING signaling pathway, which in turn effectively induced immunogenic cell death (ICD) and promoted immune cell maturation and activation. The synergistic effect with immunotherapy triggered a powerful systemic antitumor immune response. Overall, this study develops a novel TAT therapeutic strategy with sufficient antitumor immunity.
Collapse
Affiliation(s)
- Mengdie Yang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Jianguo Li
- China Institute for Radiation Protection, National Atomic Energy Agency Nuclear Technology (Nonclinical Evaluation of Radiopharmaceuticals) Research and Development Center, CNNC Key Laboratory on Radio-toxicology and Radiopharmaceutical Preclinical Evaluation, Taiyuan, Shanxi, 030006, P. R. China
| | - Zongtai Han
- China Institute for Radiation Protection, National Atomic Energy Agency Nuclear Technology (Nonclinical Evaluation of Radiopharmaceuticals) Research and Development Center, CNNC Key Laboratory on Radio-toxicology and Radiopharmaceutical Preclinical Evaluation, Taiyuan, Shanxi, 030006, P. R. China
| | - Xiaohui Luan
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Xiaoyi Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Jie Gao
- China Institute for Radiation Protection, National Atomic Energy Agency Nuclear Technology (Nonclinical Evaluation of Radiopharmaceuticals) Research and Development Center, CNNC Key Laboratory on Radio-toxicology and Radiopharmaceutical Preclinical Evaluation, Taiyuan, Shanxi, 030006, P. R. China
| | - Shanshan Qin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| |
Collapse
|
4
|
Franchi S, Madabeni A, Tosato M, Gentile S, Asti M, Orian L, Di Marco V. Navigating through the coordination preferences of heavy alkaline earth metals: Laying the foundations for 223Ra- and 131/135mBa-based targeted alpha therapy and theranostics of cancer. J Inorg Biochem 2024; 256:112569. [PMID: 38701687 DOI: 10.1016/j.jinorgbio.2024.112569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/04/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
The clinical success of [223Ra]RaCl2 (Xofigo®) for the palliative treatment of bone metastases in patients with prostate cancer has highlighted the therapeutic potential of α-particle emission. Expanding the applicability of radium-223 in Targeted Alpha Therapy of non-osseous tumors is followed up with significant interest, as it holds the potential to unveil novel treatment options in the comprehensive management of cancer. Moreover, the use of barium radionuclides, like barium-131 and -135m, is still unfamiliar in nuclear medicine applications, although they can be considered as radium-223 surrogates for imaging purposes. Enabling these applications requires the establishment of chelators able to form stable complexes with radium and barium radionuclides. Until now, only a limited number of ligands have been suggested and these molecules have been primarily inspired by existing structures known for their ability to complex large metal cations. However, a systematic inspection of chelators specifically tailored to Ra2+ and Ba2+ has yet to be conducted. This work delves into a comprehensive investigation of a series of small organic ligands, aiming to unveil the coordination preferences of both radium-223 and barium-131/135m. Electronic binding energies of both metal cations to each ligand were theoretically computed via Density Functional Theory calculations (COSMO-ZORA-PBE-D3/TZ2P), while thermodynamic stability constants were experimentally determined for Ba2+-ligand complexes by potentiometry, NMR and UV-Vis spectroscopies. The outcomes revealed malonate, 2-hydroxypyridine 1-oxide and picolinate as the most favorable building blocks to design multidentate chelators. These findings serve as foundation guidelines, propelling the development of cutting-edge radium-223- and barium-131/135m-based radiopharmaceuticals for Targeted Alpha Therapy and theranostics of cancer.
Collapse
Affiliation(s)
- Sara Franchi
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
| | - Andrea Madabeni
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
| | - Marianna Tosato
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, AUSL-IRCCS Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Silvia Gentile
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
| | - Mattia Asti
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, AUSL-IRCCS Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Laura Orian
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; National Institute of Nuclear Physics, National Laboratories of Legnaro (INFN-LNL), 35020 Legnaro, Padova, Italy.
| | - Valerio Di Marco
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
5
|
Woods JJ, Abergel RJ. Doing away with radium's proxies. Nat Chem 2024; 16:147-148. [PMID: 38253672 DOI: 10.1038/s41557-023-01426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Affiliation(s)
- Joshua J Woods
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Departments of Nuclear Engineering and Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Departments of Nuclear Engineering and Chemistry, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
6
|
White FD, Thiele NA, Simms ME, Cary SK. Structure and bonding of a radium coordination compound in the solid state. Nat Chem 2024; 16:168-172. [PMID: 37945833 DOI: 10.1038/s41557-023-01366-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
The structure and bonding of radium (Ra) is poorly understood because of challenges arising from its scarcity and radioactivity. Here we report the synthesis of a molecular Ra2+ complex using 226Ra and the organic ligand dibenzo-30-crown-10, and its characterization in the solid state by single-crystal X-ray diffraction. The crystal structure of the Ra2+ complex shows an 11-coordinate arrangement comprising the 10 donor O atoms of dibenzo-30-crown-10 and that of a bound water molecule. Under identical crystallization conditions, barium (Ba2+) yielded a 10-coordinate 'Pac-Man'-shaped structure lacking water. Furthermore, the bond distance between the Ra centre and the O atom of the coordinated water is substantially longer than would be predicted from the ionic radius of Ra2+ and by analogy with Ba2+, supporting greater water lability in Ra2+ complexes than in their Ba2+ counterparts. Barium often serves as a non-radioactive surrogate for radium, but our findings show that Ra2+ chemistry cannot always be predicted using Ba2+.
Collapse
Affiliation(s)
- Frankie D White
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Nikki A Thiele
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Megan E Simms
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Samantha K Cary
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
7
|
Miederer M, Benešová-Schäfer M, Mamat C, Kästner D, Pretze M, Michler E, Brogsitter C, Kotzerke J, Kopka K, Scheinberg DA, McDevitt MR. Alpha-Emitting Radionuclides: Current Status and Future Perspectives. Pharmaceuticals (Basel) 2024; 17:76. [PMID: 38256909 PMCID: PMC10821197 DOI: 10.3390/ph17010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
The use of radionuclides for targeted endoradiotherapy is a rapidly growing field in oncology. In particular, the focus on the biological effects of different radiation qualities is an important factor in understanding and implementing new therapies. Together with the combined approach of imaging and therapy, therapeutic nuclear medicine has recently made great progress. A particular area of research is the use of alpha-emitting radionuclides, which have unique physical properties associated with outstanding advantages, e.g., for single tumor cell targeting. Here, recent results and open questions regarding the production of alpha-emitting isotopes as well as their chemical combination with carrier molecules and clinical experience from compassionate use reports and clinical trials are discussed.
Collapse
Affiliation(s)
- Matthias Miederer
- Department of Translational Imaging in Oncology, National Center for Tumor Diseases (NCT/UCC), 01307 Dresden, Germany
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany
| | - Martina Benešová-Schäfer
- Research Group Molecular Biology of Systemic Radiotherapy, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Constantin Mamat
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstr, 400, 01328 Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - David Kästner
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Marc Pretze
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Enrico Michler
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Claudia Brogsitter
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Jörg Kotzerke
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstr, 400, 01328 Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - David A. Scheinberg
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA;
| | - Michael R. McDevitt
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
8
|
Gilhula JC, Xu L, White FD, Adelman SL, Aldrich KE, Batista ER, Dan D, Jones ZR, Kozimor SA, Mason HE, Meyer RL, Thiele NA, Yang P, Yuan M. Advances in heavy alkaline earth chemistry provide insight into complexation of weakly polarizing Ra 2+, Ba 2+, and Sr 2+ cations. SCIENCE ADVANCES 2024; 10:eadj8765. [PMID: 38181087 PMCID: PMC10776001 DOI: 10.1126/sciadv.adj8765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024]
Abstract
Numerous technologies-with catalytic, therapeutic, and diagnostic applications-would benefit from improved chelation strategies for heavy alkaline earth elements: Ra2+, Ba2+, and Sr2+. Unfortunately, chelating these metals is challenging because of their large size and weak polarizing power. We found 18-crown-6-tetracarboxylic acid (H4COCO) bound Ra2+, Ba2+, and Sr2+ to form M(HxCOCO)x-2. Upon isolating radioactive 223Ra from its parent radionuclides (227Ac and 227Th), 223Ra2+ reacted with the fully deprotonated COCO4- chelator to generate Ra(COCO)2-(aq) (log KRa(COCO)2- = 5.97 ± 0.01), a rare example of a molecular radium complex. Comparative analyses with Sr2+ and Ba2+ congeners informed on what attributes engendered success in heavy alkaline earth complexation. Chelators with high negative charge [-4 for Ra(COCO)2-(aq)] and many donor atoms [≥11 in Ra(COCO)2-(aq)] provided a framework for stable complex formation. These conditions achieved steric saturation and overcame the weak polarization powers associated with these large dicationic metals.
Collapse
Affiliation(s)
| | - Lei Xu
- Los Alamos National Laboratory, Los Alamos, NM 87545 (USA)
| | | | | | | | | | - David Dan
- Los Alamos National Laboratory, Los Alamos, NM 87545 (USA)
| | | | | | | | - Rachel L. Meyer
- Los Alamos National Laboratory, Los Alamos, NM 87545 (USA)
- Department of Chemistry, University of Rochester, Rochester, NY 14627 (USA)
| | - Nikki A. Thiele
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (USA)
| | - Ping Yang
- Los Alamos National Laboratory, Los Alamos, NM 87545 (USA)
| | - Mingbin Yuan
- Los Alamos National Laboratory, Los Alamos, NM 87545 (USA)
| |
Collapse
|
9
|
Simms ME, Sibley MM, Driscoll DM, Kertesz V, Damron JT, Ivanov AS, White FD, Thiele NA. Reining in Radium for Nuclear Medicine: Extra-Large Chelator Development for an Extra-Large Ion. Inorg Chem 2023; 62:20834-20843. [PMID: 37811965 DOI: 10.1021/acs.inorgchem.3c02985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Targeted α therapy (TAT) of soft-tissue cancers using the α particle-emitting radionuclide 223Ra holds great potential because of its favorable nuclear properties, adequate availability, and established clinical use for treating metastatic prostate cancer of the bone. Despite these advantages, the use of 223Ra has been largely overshadowed by other α emitters due to its challenging chelation chemistry. A key criterion that needs to be met for a radionuclide to be used in TAT is its stable attachment to a targeting vector via a bifunctional chelator. The low charge density of Ra2+ arising from its large ionic radius weakens its electrostatic binding interactions with chelators, leading to insufficient complex stability in vivo. In this study, we synthesized and evaluated macropa-XL as a novel chelator for 223Ra. It bears a large 21-crown-7 macrocyclic core and two picolinate pendent groups, which we hypothesized would effectively saturate the large coordination sphere of the Ra2+ ion. The structural chemistry of macropa-XL was first established with the nonradioactive Ba2+ ion using X-ray diffraction and X-ray absorption spectroscopy, which revealed the formation of an 11-coordinate complex in a rare anti pendent-arm configuration. Subsequently, the stability constant of the [Ra(macropa-XL)] complex was determined via competitive cation exchange with 223Ra and 224Ra radiotracers and compared with that of macropa, the current state-of-the-art chelator for Ra2+. A moderate log KML value of 8.12 was measured for [Ra(macropa-XL)], which is approximately 1.5 log K units lower than the stability constant of [Ra(macropa)]. This relative decrease in Ra2+ complex stability for macropa-XL versus macropa was further probed using density functional theory calculations. Additionally, macropa-XL was radiolabeled with 223Ra, and the kinetic stability of the resulting complex was evaluated in human serum. Although macropa-XL could effectively bind 223Ra under mild conditions, the complex appeared to be unstable to transchelation. Collectively, this study sheds additional light on the chelation chemistry of the exotic Ra2+ ion and contributes to the small, but growing, number of chelator development efforts for 223Ra-based TAT.
Collapse
Affiliation(s)
- Megan E Simms
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Megan M Sibley
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Darren M Driscoll
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vilmos Kertesz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Joshua T Damron
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Alexander S Ivanov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Frankie D White
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Nikki A Thiele
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
10
|
Woods JJ, Cosby AG, Wacker JN, Aguirre Quintana LM, Peterson A, Minasian SG, Abergel RJ. Macrocyclic 1,2-Hydroxypyridinone-Based Chelators as Potential Ligands for Thorium-227 and Zirconium-89 Radiopharmaceuticals. Inorg Chem 2023; 62:20721-20732. [PMID: 37590371 DOI: 10.1021/acs.inorgchem.3c02164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Thorium-227 (227Th) is an α-emitting radionuclide that has shown preclinical and clinical promise for use in targeted α-therapy (TAT), a type of molecular radiopharmaceutical treatment that harnesses high energy α particles to eradicate cancerous lesions. Despite these initial successes, there still exists a need for bifunctional chelators that can stably bind thorium in vivo. Toward this goal, we have prepared two macrocyclic chelators bearing 1,2-hydroxypyridinone groups. Both chelators can be synthesized in less than six steps from readily available starting materials, which is an advantage over currently available platforms. The complex formation constants (log βmlh) of these ligands with Zr4+ and Th4+, measured by spectrophotometric titrations, are greater than 34 for both chelators, indicating the formation of exceedingly stable complexes. Radiolabeling studies were performed to show that these ligands can bind [227Th]Th4+ at concentrations as low as 10-6 M, and serum stability experiments demonstrate the high kinetic stability of the formed complexes under biological conditions. Identical experiments with zirconium-89 (89Zr), a positron-emitting radioisotope used for positron emission tomography (PET) imaging, demonstrate that these chelators can also effectively bind Zr4+ with high thermodynamic and kinetic stability. Collectively, the data reported herein highlight the suitability of these ligands for use in 89Zr/227Th paired radioimmunotheranostics.
Collapse
Affiliation(s)
- Joshua J Woods
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alexia G Cosby
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jennifer N Wacker
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Luis M Aguirre Quintana
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Appie Peterson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Stefan G Minasian
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Nuclear Engineering, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Blei M, Waurick L, Reissig F, Kopka K, Stumpf T, Drobot B, Kretzschmar J, Mamat C. Equilibrium Thermodynamics of Macropa Complexes with Selected Metal Isotopes of Radiopharmaceutical Interest. Inorg Chem 2023; 62:20699-20709. [PMID: 37702665 PMCID: PMC10731647 DOI: 10.1021/acs.inorgchem.3c01983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Indexed: 09/14/2023]
Abstract
To pursue the design of in vivo stable chelating systems for radiometals, a concise and straightforward method toolbox was developed combining NMR, isothermal titration calorimetry (ITC), and europium time-resolved laser-induced fluorescence spectroscopy (Eu-TRLFS). For this purpose, the macropa chelator was chosen, and Lu3+, La3+, Pb2+, Ra2+, and Ba2+ were chosen as radiopharmaceutically relevant metal ions. They differ in charge (2+ and 3+) and coordination properties (main group vs lanthanides). 1H NMR was used to determine four pKa values (±0.15; carboxylate functions, 2.40 and 3.13; amino functions, 6.80 and 7.73). Eu-TRLFS was used to validate the exclusive existence of the 1:1 Mn+/ligand complex in the chosen pH range at tracer level concentrations. ITC measurements were accomplished to determine the resulting stability constants of the desired complexes, with log K values ranging from 18.5 for the Pb-mcp complex to 7.3 for the Lu-mcp complex. Density-functional-theory-calculated structures nicely mirror the complexes' order of stabilities by bonding features. Radiolabeling with macropa using ligand concentrations from 10-3 to 10-6 M was accomplished by pointing out the complex formation and stability (212Pb > 133La > 131Ba ≈ 224Ra > 177Lu) by means of normal-phase thin-layer chromatography analyses.
Collapse
Affiliation(s)
- Magdalena
K. Blei
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany
- TU
Dresden, Faculty of Chemistry and Food Chemistry, D-01062 Dresden, Germany
| | - Lukas Waurick
- TU
Dresden, Faculty of Chemistry and Food Chemistry, D-01062 Dresden, Germany
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, D-01328 Dresden, Germany
| | - Falco Reissig
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany
| | - Klaus Kopka
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany
- TU
Dresden, Faculty of Chemistry and Food Chemistry, D-01062 Dresden, Germany
- National
Center for Tumor Diseases, University Cancer Center, University Hospital Carl Gustav Carus Dresden, Fetscherstraße 74, D-01307 Dresden, Germany
- German
Cancer Consortium, Partner Site Dresden, Fetscherstraße 74, D-01307 Dresden, Germany
| | - Thorsten Stumpf
- TU
Dresden, Faculty of Chemistry and Food Chemistry, D-01062 Dresden, Germany
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, D-01328 Dresden, Germany
| | - Björn Drobot
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, D-01328 Dresden, Germany
| | - Jerome Kretzschmar
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, D-01328 Dresden, Germany
| | - Constantin Mamat
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany
- TU
Dresden, Faculty of Chemistry and Food Chemistry, D-01062 Dresden, Germany
| |
Collapse
|
12
|
Franchi S, Asti M, Di Marco V, Tosato M. The Curies' element: state of the art and perspectives on the use of radium in nuclear medicine. EJNMMI Radiopharm Chem 2023; 8:38. [PMID: 37947909 PMCID: PMC10638329 DOI: 10.1186/s41181-023-00220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The alpha-emitter radium-223 (223Ra) is presently used in nuclear medicine for the palliative treatment of bone metastases from castration-resistant prostate cancer. This application arises from its advantageous decay properties and its intrinsic ability to accumulate in regions of high bone turnover when injected as a simple chloride salt. The commercial availability of [223Ra]RaCl2 as a registered drug (Xofigo®) is a further additional asset. MAIN BODY The prospect of extending the utility of 223Ra to targeted α-therapy of non-osseous cancers has garnered significant interest. Different methods, such as the use of bifunctional chelators and nanoparticles, have been explored to incorporate 223Ra in proper carriers designed to precisely target tumor sites. Nevertheless, the search for a suitable scaffold remains an ongoing challenge, impeding the diffusion of 223Ra-based radiopharmaceuticals. CONCLUSION This review offers a comprehensive overview of the current role of radium radioisotopes in nuclear medicine, with a specific focus on 223Ra. It also critically examines the endeavors conducted so far to develop constructs capable of incorporating 223Ra into cancer-targeting drugs. Particular emphasis is given to the chemical aspects aimed at providing molecular scaffolds for the bifunctional chelator approach.
Collapse
Affiliation(s)
- Sara Franchi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padua, Italy
| | - Mattia Asti
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, AUSL di Reggio Emilia: Azienda Unità Sanitaria Locale - IRCCS Tecnologie Avanzate e Modelli Assistenziali in Oncologia di Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| | - Valerio Di Marco
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padua, Italy
| | - Marianna Tosato
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, AUSL di Reggio Emilia: Azienda Unità Sanitaria Locale - IRCCS Tecnologie Avanzate e Modelli Assistenziali in Oncologia di Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy.
| |
Collapse
|
13
|
Lucio-Martínez F, Esteban-Gómez D, Valencia L, Horváth D, Szücs D, Fekete A, Szikra D, Tircsó G, Platas-Iglesias C. Rigid H 4OCTAPA derivatives as model chelators for the development of Bi(III)-based radiopharmaceuticals. Chem Commun (Camb) 2023; 59:3443-3446. [PMID: 36857648 DOI: 10.1039/d2cc06876a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Octadentate ligands containing ethyl (H4OCTAPA), cyclohexyl (H4CHXOCTAPA) or cyclopentyl (H4CpOCTAPA) spacers were assessed as chelators for Bi(III)-based radiopharmaceuticals. The H4CHXOCTAPA chelator displays excellent properties, including 205/206Bi-nuclide radiolabelling under mild conditions, excellent stability in serum and in the presence of competing cations or H5DTPA. The poor performance of H4CpOCTAPA appears to be related to the stereochemical activity of the Bi(III) lone pair.
Collapse
Affiliation(s)
- Fátima Lucio-Martínez
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | - David Esteban-Gómez
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | - Laura Valencia
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Marcosende, Pontevedra 36310, Spain
| | - Dávid Horváth
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary.
- Doctoral School of Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Dániel Szücs
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary.
- Doctoral School of Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen H-4032, Hungary.
| | - Anikó Fekete
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen H-4032, Hungary.
| | - Dezső Szikra
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen H-4032, Hungary.
| | - Gyula Tircsó
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary.
| | - Carlos Platas-Iglesias
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| |
Collapse
|
14
|
Johnson K, Driscoll DM, Damron JT, Ivanov AS, Jansone-Popova S. Size Selective Ligand Tug of War Strategy to Separate Rare Earth Elements. JACS AU 2023; 3:584-591. [PMID: 36873676 PMCID: PMC9976341 DOI: 10.1021/jacsau.2c00671] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 05/08/2023]
Abstract
Separating rare earth elements is a daunting task due to their similar properties. We report a "tug of war" strategy that employs a lipophilic and hydrophilic ligand with contrasting selectivity, resulting in a magnified separation of target rare earth elements. Specifically, a novel water-soluble bis-lactam-1,10-phenanthroline with an affinity for light lanthanides is coupled with oil-soluble diglycolamide that selectively binds heavy lanthanides. This two-ligand strategy yields a quantitative separation of the lightest (e.g., La-Nd) and heaviest (e.g., Ho-Lu) lanthanides, enabling efficient separation of neighboring lanthanides in-between (e.g., Sm-Dy).
Collapse
Affiliation(s)
- Katherine
R. Johnson
- Nuclear
Energy and Fuel Cycle Division, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Darren M. Driscoll
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Joshua T. Damron
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Alexander S. Ivanov
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Santa Jansone-Popova
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
15
|
Wharton L, Jaraquemada-Peláez MDG, Zhang C, Zeisler J, Rodríguez-Rodríguez C, Osooly M, Radchenko V, Yang H, Lin KS, Bénard F, Schaffer P, Orvig C. H 4picoopa─Robust Chelate for 225Ac/ 111In Theranostics. Bioconjug Chem 2022; 33:1900-1921. [DOI: 10.1021/acs.bioconjchem.2c00364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luke Wharton
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | | | - Chengcheng Zhang
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Jutta Zeisler
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Cristina Rodríguez-Rodríguez
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
- Department of Physics and Astronomy, University of British Columbia, 6224 Agronomy Road, Vancouver, BC V6T 1Z1, Canada
| | - Maryam Osooly
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hua Yang
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Paul Schaffer
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|