1
|
Zhang B, Tian M, Qiu Y, Wu J, Cui C, Liu S, Hou J, Tian C, Wang L, Gao K, Jiang Z, Yang X. Glucuronolactone Restores the Intestinal Barrier and Redox Balance Partly Through the Nrf2/Akt/FOXO1 Pathway to Alleviate Weaning Stress-Induced Intestinal Dysfunction in Piglets. Antioxidants (Basel) 2025; 14:352. [PMID: 40227425 PMCID: PMC11939252 DOI: 10.3390/antiox14030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
(1) Background: Glucuronolactone (GLU) is a glucose metabolite with antioxidant activity. At present, the exact role of it in regulating the intestinal health of piglets under weaning stress is not clear. The purpose of this study is to investigate the effects of GLU on the growth performance and intestinal health of piglets under weaning stress and to explore potential mechanisms. (2) Methods: Twenty-four weaned piglets were randomly assigned into two groups, with one group receiving a basal diet and the other group receiving an experimental diet supplemented with 200 mg/kg of GLU. (3) Results: GLU increased the ADG, ADFI, and final body weight of piglets, while reducing the diarrhea rate. Mechanistically, GLU alleviates weaning stress-induced intestinal oxidative stress and inflammatory responses in piglets partly through activating the Nrf2-Akt signaling pathway to suppress the transcriptional activity of FOXO1, while also inhibiting the activation of the TLR4-MAPK signaling pathway to reduce the secretion of pro-inflammatory cytokines. Moreover, GLU increased the relative abundance of Lactobacillus reuteri in the ileum of piglets and improved the composition of the gut microbiota. (4) Conclusions: GLU reduced inflammation and oxidative stress through the Nrf2/Akt/FOXO1 signaling pathway and improved intestinal health, resulting in improved growth performance of the piglets.
Collapse
Affiliation(s)
- Beibei Zhang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Min Tian
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Yueqin Qiu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Jing Wu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Chenbin Cui
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Shilong Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Jing Hou
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Chaoyang Tian
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Li Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Kaiguo Gao
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Xuefen Yang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| |
Collapse
|
2
|
Coelho FDA, Mezzina ALB, de Oliveira ACR, Alves LKS, Ciriaco Gomes NDA, Perez-Palencia JY, Dionizio MA, Lima EMC, Ferreira SV, Garbossa CAP. Supplementation with Tributyrin for Gestating Sows Reduces Stillborn Rate and Increases Litter Birth Weight. Vet Sci 2025; 12:260. [PMID: 40267021 PMCID: PMC11946464 DOI: 10.3390/vetsci12030260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/04/2025] [Accepted: 03/09/2025] [Indexed: 04/25/2025] Open
Abstract
This study evaluated the performance of gestating and lactating sows supplemented with tributyrin from gestation until the end of lactation. Additionally, it assessed the effects of this supplementation on pig growth performance during the nursery phase. A total of 148 commercial-line sows (DB90 Brasil; parity 1-4; initial weight: 201.7 ± 12.2 kg) were used during gestation and lactation, along with 180 weaned pigs. A randomized block design was utilized with two dietary treatments during gestation and lactation, and a 2 × 2 factorial arrangement during the nursery phase. Data on sow body composition and productivity during gestation and lactation, as well as piglet performance during nursery, were collected. Treatment effects and interactions were analyzed using ANOVA with the MIXED procedure of SAS Version 9.0 (SAS Inst. Inc., Cary, NC, USA). Sows fed tributyrin tended to weigh 3.05 kg more (p = 0.053) and had 6.51% less backfat accumulation prepartum (p = 0.099). Supplementation reduced stillborns by 35.47% (p = 0.032) and increased litter weight at birth by 10.14% (p = 0.018). Additionally, there was a trend toward an 18.73% reduction in weight variability (p = 0.053) with more piglets weighing ≥1.4 kg. Sow and litter performance during lactation were not affected. Piglets from sows supplemented with tributyrin showed a trend for higher feed intake immediately post-weaning (p = 0.056). Tributyrin supplementation during gestation reduced stillborn rates and increased litter weight at birth.
Collapse
Affiliation(s)
- Flávio de Aguiar Coelho
- Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Duque de Caxias Norte, 225, Jardim Elite, Pirassununga 13635-900, São Paulo, Brazil; (F.d.A.C.); (A.L.B.M.); (A.C.R.d.O.); (L.K.S.A.); (N.d.A.C.G.)
| | - Ana Ligia Braga Mezzina
- Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Duque de Caxias Norte, 225, Jardim Elite, Pirassununga 13635-900, São Paulo, Brazil; (F.d.A.C.); (A.L.B.M.); (A.C.R.d.O.); (L.K.S.A.); (N.d.A.C.G.)
| | - Ana Clara Rodrigues de Oliveira
- Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Duque de Caxias Norte, 225, Jardim Elite, Pirassununga 13635-900, São Paulo, Brazil; (F.d.A.C.); (A.L.B.M.); (A.C.R.d.O.); (L.K.S.A.); (N.d.A.C.G.)
| | - Laya Kannan Silva Alves
- Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Duque de Caxias Norte, 225, Jardim Elite, Pirassununga 13635-900, São Paulo, Brazil; (F.d.A.C.); (A.L.B.M.); (A.C.R.d.O.); (L.K.S.A.); (N.d.A.C.G.)
| | - Nadia de Almeida Ciriaco Gomes
- Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Duque de Caxias Norte, 225, Jardim Elite, Pirassununga 13635-900, São Paulo, Brazil; (F.d.A.C.); (A.L.B.M.); (A.C.R.d.O.); (L.K.S.A.); (N.d.A.C.G.)
| | - Jorge Yair Perez-Palencia
- Department of Animal Science, College of Agriculture, Food and Environmental Sciences, South Dakota State University, Brookings, SD 57007, USA;
| | | | | | | | - Cesar Augusto Pospissil Garbossa
- Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Duque de Caxias Norte, 225, Jardim Elite, Pirassununga 13635-900, São Paulo, Brazil; (F.d.A.C.); (A.L.B.M.); (A.C.R.d.O.); (L.K.S.A.); (N.d.A.C.G.)
| |
Collapse
|
3
|
Xiong L, Zhang Z, Dong S, Lin T, Yue X, Chen F, Guan W, Zhang S. Maternal consumption of glycerol monolaurate optimizes milk fatty acid profile and enhances piglet gut health in association with G protein-coupled receptor 84 (GPR84) activation. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:387-403. [PMID: 40034459 PMCID: PMC11872655 DOI: 10.1016/j.aninu.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 03/05/2025]
Abstract
This study evaluated the effect of maternal glycerol monolaurate (GML) supplementation during late gestation and lactation on sow reproductive performance, transfer of immunity and redox status, milk fat and fatty acid profile, and fecal microbiota. Eighty multiparous sows (Landrace × Large white) were randomly allocated to two treatment groups (with or without 1000 mg/kg GML) with 40 replicates per treatment. The feeding experiment lasted from d 85 of gestation (G85) to d 23 of lactation (L23). The samples were collected on d 1 (L1) and 21 (L21) of lactation. Our results showed that maternal GML supplementation significantly increased litter weight (P = 0.002), average daily gain of piglets (P = 0.048), and sow average daily feed intake (P = 0.032). Compared with CON group, the concentrations of lauric acid (C12:0; P = 0.022), C16:0 (P = 0.001), and total saturated fatty acids (P = 0.006) in colostrum as well as C12:0 in L21 milk (P = 0.001) were higher in GML group. Besides, the concentrations of immunoglobulin A (IgA) and IgG in colostrum as well as sow and piglet plasma, the total antioxidant capacity and superoxide dismutase activity in sow colostrum were also significantly higher in the GML group (P < 0.05). Microbiome results showed that GML addition increased fecal microbial alpha diversity as well as the relative abundances of short chain fatty acids producing bacteria Ruminococcaceae and Parabacteroides; and decreased the harmful Proteobacteria of sows (P < 0.05). The Spearman analysis showed that the microbial biomarkers Prevotellaceae, Ruminococcaceae, and Parabacteroides were positively correlated with IgA and IgG of sow plasma and milk (P < 0.05). Besides, maternal GML addition up-regulated the relative protein expressions of proliferating cell nuclear antigen, cyclin D1, G protein-coupled receptor 84 (GPR84) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in the duodenum and jejunum of piglets. Collectively, current findings suggested that maternal GML supplementation enhanced piglet growth during lactation, which might be associated with improving milk fat and lauric acid contents, microbiota derived immunoglobulins transfer, and gut health through potential involvement of GPR84 and PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Liang Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhijin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shiqi Dong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Tongbin Lin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xianhuai Yue
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Chen W, Ma Q, Li Y, Wei L, Zhang Z, Khan A, Khan MZ, Wang C. Butyrate Supplementation Improves Intestinal Health and Growth Performance in Livestock: A Review. Biomolecules 2025; 15:85. [PMID: 39858479 PMCID: PMC11763988 DOI: 10.3390/biom15010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Butyrate supplementation has gained considerable attention for its potential benefits in livestock, particularly concerning intestinal health and growth performance. This review synthesizes recent research on the diverse roles of butyrate, across various livestock species. As a short-chain fatty acid, butyrate is known for enhancing intestinal development, improving immune function, and modulating microbial diversity. Studies indicate that butyrate supports gut barrier integrity, reduces inflammation, and optimizes feed efficiency, especially during the critical weaning and post-weaning periods in calves, piglets, and lambs. Supplementation with butyrate in livestock has been shown to increase average daily gain (ADG), improve gut microbiota balance, promote growth, enhance gut health, boost antioxidant capacity, and reduce diarrhea. Additionally, butyrate plays a role in the epigenetic regulation of gene expression through histone acetylation, influencing tissue development and immune modulation. Its anti-inflammatory and antioxidant effects have been demonstrated across various species, positioning butyrate as a potential therapeutic agent in animal nutrition. This review suggests that optimizing butyrate supplementation strategies to meet the specific needs of each species may yield additional benefits, establishing butyrate as an important dietary additive for enhancing growth performance and health in livestock.
Collapse
Affiliation(s)
- Wenting Chen
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Qingshan Ma
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yan Li
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Lin Wei
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Zhenwei Zhang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Adnan Khan
- Animal Genomics Laboratory, School of Agriculture and Food Science, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Muhammad Zahoor Khan
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Changfa Wang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
5
|
Han W, Xu Y, Qimuge S, Wang C, Su X. Peptide BG From Bitter Gourd ( Momordica Charantia) Improves Adjuvant-Induced Arthritis by Modulating the Necroptosis/Neutrophil Extracellular Traps/Inflammation Axis and the Gut Microbiota. Mediators Inflamm 2024; 2024:1995952. [PMID: 39669913 PMCID: PMC11637617 DOI: 10.1155/mi/1995952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 12/14/2024] Open
Abstract
Background: BG is a novel bioactive peptide derived from bitter gourd (Momordica charantia), known for its anti-inflammatory and immunomodulatory properties. In the present study, our objective is to investigate the functional roles and mechanisms of BG in the context of rheumatoid arthritis (RA). Methods: A rat model of adjuvant-induced arthritis (AIA) was established by administering complete Freund's adjuvant (CFA). The viability of BG-mediated AIA was evaluated by assessing changes in rat body weight, joint swelling, ankle joint pathology, inflammation, necroptosis, the formation of neutrophil extracellular traps (NETs), and gut microbiota. Results: The results of the study showed that peptide BG was effective in improving weight loss, joint swelling, serum IgM-rheumatoid factor (IgM-RF) level, and pathological injury of ankle joint in rats with AIA. BG administration resulted in a decrease in erythrocyte sedimentation rate, serum C-reactive protein (CRP), and inflammatory factor (interferon-γ (IFN-γ), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α)) in AIA rats. Additionally, the administration of CFA resulted in an increase in the protein levels of myeloperoxidase (MPO), neutrophil elastase (NE), citrullinated histone H3 (CitH3), peptidyl arginine deiminase 4 (PAD4), p-mixed lineage kinase domain-like (p-MLKL), and cleaved caspase 8. However, this increase was found to be inhibited by BG treatment. Furthermore, it has been found that peptide BG possesses the capacity to regulate the species composition structure of the intestinal microbiota, thereby, facilitating the reestablishment of microbial diversity and equilibrium. Conclusion: Peptide BG has demonstrated efficacy in ameliorating AIA through its regulation of the necroptosis/NETs/inflammation axis and the gut microbiota. This finding underscores the potential of BG as a promising therapeutic intervention for RA.
Collapse
Affiliation(s)
- Wenyan Han
- School of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Yanan Xu
- Clinical Medical Research Center, Inner Mongolia Bioactive Peptide Engineering Laboratory, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Suyila Qimuge
- Clinical Medical Research Center, Inner Mongolia Bioactive Peptide Engineering Laboratory, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Changshan Wang
- School of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Xiulan Su
- Clinical Medical Research Center, Inner Mongolia Bioactive Peptide Engineering Laboratory, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
6
|
Miao J, Cui L, Zeng H, Hou M, Wang J, Hang S. Lactiplantibacillus plantarum L47 and inulin affect colon and liver inflammation in piglets challenged by enterotoxigenic Escherichia coli through regulating gut microbiota. Front Vet Sci 2024; 11:1496893. [PMID: 39664894 PMCID: PMC11631943 DOI: 10.3389/fvets.2024.1496893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/07/2024] [Indexed: 12/13/2024] Open
Abstract
Introduction Infection by pathogenic bacteria during weaning is a common cause of diarrhea and intestinal inflammation in piglets. Supplementing the diet with synbiotics is beneficial for animal health. The strain of Lactiplantibacillus plantarum L47 (L47) isolated in our lab exhibited good probiotic properties when combined with inulin. Here, the effectiveness of combining L47 and inulin (CLN) in protecting against enterotoxigenic Escherichia coli (ETEC) induced colon and liver inflammation in weaned piglets was evaluated. Methods Twenty-eight piglets aged 21 days were randomly assigned into 4 groups: CON (control), LI47 (oral CLN culture fluid, 1010 CFU/d of L47 and 1 g/d of inulin), ECON (oral ETEC culture fluid, 1010 CFU/d), and ELI47 (oral CLN and ETEC culture fluid). After 24 days, the colon and liver samples were collected for further analysis. Results and discussion CLN alleviated colon damage caused by ETEC challenge, as evidenced by an increase of colonic crypt depth, mRNA expression of tight junction Claudin-1 and Occludin, GPX activity, the concentration of IL-10 and sIgA (p < 0.05). Moreover, there was a decrease in MDA activity, the load of E. coli, the concentration of LPS, gene expression of TLR4, and the concentration of TNF-α and IL-6 (p < 0.05) in colonic mucosa. Additionally, CLN counteracted liver damage caused by ETEC challenge by modulating pathways associated with immunity and disease occurrence (p < 0.05). Conclusion Supplementing with CLN alleviated colon inflammation induced by ETEC challenge by decreasing the E. coli/LPS/TLR4 pathway and regulating hepatic immune response and disease-related pathways, suggesting that CLN could protect intestinal and liver health in animals.
Collapse
Affiliation(s)
| | | | | | | | | | - Suqin Hang
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Park S, Sun S, Kovanda L, Sokale AO, Barri A, Kim K, Li X, Liu Y. Effects of monoglyceride blend on systemic and intestinal immune responses, and gut health of weaned pigs experimentally infected with a pathogenic Escherichia coli. J Anim Sci Biotechnol 2024; 15:141. [PMID: 39396043 PMCID: PMC11479547 DOI: 10.1186/s40104-024-01103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/09/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Monoglycerides have emerged as a promising alternative to conventional practices due to their biological activities, including antimicrobial properties. However, few studies have assessed the efficacy of monoglyceride blend on weaned pigs and their impacts on performance, immune response, and gut health using a disease challenge model. Therefore, this study aimed to investigate the effects of dietary monoglycerides of short- and medium-chain fatty acids on the immunity and gut health of weaned pigs experimentally infected with an enterotoxigenic Escherichia coli F18. RESULTS Pigs supplemented with high-dose zinc oxide (ZNO) had greater (P < 0.05) growth performance than other treatments, but no difference was observed in average daily feed intake between ZNO and monoglycerides groups during the post-challenge period. Pigs in ZNO and antibiotic groups had lower (P < 0.05) severity of diarrhea than control, but the severity of diarrhea was not different between antibiotic and monoglycerides groups. Pigs fed with monoglycerides or ZNO had lower (P < 0.05) serum haptoglobin on d 2 or 5 post-inoculation than control. Pigs in ZNO had greater (P < 0.05) goblet cell numbers per villus, villus area and height, and villus height:crypt depth ratio (VH:CD) in duodenum on d 5 post-inoculation than pigs in other treatments. Pigs supplemented with monoglycerides, ZNO, or antibiotics had reduced (P < 0.05) ileal crypt depth compared with control on d 5 post-inoculation, contributing to the increase (P = 0.06) in VH:CD. Consistently, pigs in ZNO expressed the lowest (P < 0.05) TNFa, IL6, IL10, IL12, IL1A, IL1B, and PTGS2 in ileal mucosa on d 5 post-inoculation, and no difference was observed in the expression of those genes between ZNO and monoglycerides. Supplementation of ZNO and antibiotic had significant impacts on metabolic pathways in the serum compared with control, particularly on carbohydrate and amino acid metabolism, while limited impacts on serum metabolites were observed in monoglycerides group when compared with control. CONCLUSIONS The results suggest that supplementation of monoglyceride blend may enhance disease resistance of weaned pigs by alleviating the severity of diarrhea and mitigating intestinal and systemic inflammation, although the effectiveness may not be comparable to high-dose zinc oxide.
Collapse
Affiliation(s)
- Sangwoo Park
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Shuhan Sun
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Lauren Kovanda
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | | | | | - Kwangwook Kim
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Xunde Li
- School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, CA, 95616, USA.
- BASF Corporation, Florham Park, 07932, USA.
| |
Collapse
|
8
|
Hao Z, Ding X, Wang J. Effects of gut bacteria and their metabolites on gut health of animals. ADVANCES IN APPLIED MICROBIOLOGY 2024; 127:223-252. [PMID: 38763528 DOI: 10.1016/bs.aambs.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The intestine tract is a vital site for the body to acquire nutrients, serving as the largest immune organ. Intestinal health is crucial for maintaining a normal physiological state. Abundant microorganisms reside in the intestine, colonized in a symbiotic manner. These microorganisms can generate various metabolites that influence host physiological activities. Microbial metabolites serve as signaling molecules or metabolic substrates in the intestine, and some intestinal microorganisms act as probiotics and promote intestinal health. Researches on host, probiotics, microbial metabolites and their interactions are ongoing. This study reviews the effects of gut bacteria and their metabolites on intestinal health to provide useful references for animal husbandry.
Collapse
Affiliation(s)
- Zhuang Hao
- College of Animal Science and Technology, Nanjing Agricultural University, National Center for International Research on Animal Gut Nutrition, Nanjing, Jiangsu, P.R. China
| | - Xuedong Ding
- College of Animal Science and Technology, Nanjing Agricultural University, National Center for International Research on Animal Gut Nutrition, Nanjing, Jiangsu, P.R. China
| | - Jing Wang
- College of Animal Science and Technology, Nanjing Agricultural University, National Center for International Research on Animal Gut Nutrition, Nanjing, Jiangsu, P.R. China.
| |
Collapse
|
9
|
Yang T, Sun Y, Dai Z, Liu J, Xiao S, Liu Y, Wang X, Yang S, Zhang R, Yang C, Dai B. Microencapsulated Sodium Butyrate Alleviates Immune Injury and Intestinal Problems Caused by Clostridium Perfringens through Gut Microbiota. Animals (Basel) 2023; 13:3784. [PMID: 38136821 PMCID: PMC10741131 DOI: 10.3390/ani13243784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Microencapsulated sodium butyrate (MS-SB) is an effective sodium butyrate additive which can reduce the release of sodium butyrate (SB) in the fore gastrointestinal tract. In this study, we assess the protective effects and mechanisms of MS-SB in Clostridium perfringens (C. perfringens)-challenged broilers. Broiler chickens were pre-treated with SB or MS-SB for 56 days and then challenged with C. perfringens three times. Our results indicate that the addition of MS-SB or SB before C. perfringens infection significantly decreased the thymus index (p < 0.05). Serum IgA, IgY, and IgM concentrations were significantly increased (p < 0.05), while pro-inflammatory IL-1β, IL-6, and TNF-α were significantly decreased (p < 0.05) under MS-SB or SB supplementation. Compared with SB, MS-SB presented a stronger performance, with higher IgA content, as well as a lower IL-1β level when normal or C. perfringens-challenged. While C. perfringens challenge significantly decreased the villus height (p < 0.05), MS-SB or SB administration significantly increased the villus height and villus height/crypt depth (V/C ratio) (p < 0.05). Varying degrees of SB or MS-SB increased the concentrations of volatile fatty acids (VFAs) during C. perfringens challenge, where MS-SB presented a stronger performance, as evidenced by the higher content of isovaleric acid and valeric acid. Microbial analysis demonstrated that both SB or MS-SB addition and C. perfringens infection increase variation in the microbiota community. The results also indicate that the proportions of Bacteroides, Faecalibacterium, Clostridia, Ruminococcaceae, Alistipes, and Clostridia were significantly higher in the MS-SB addition group while, at same time, C. perfringens infection increased the abundance of Bacteroides and Alistipes. In summary, dietary supplementation with SB or MS-SB improves the immune status and morphology of intestinal villi, increases the production of VFAs, and modulates cecal microbiota in chickens challenged with C. perfringens. Moreover, MS-SB was more effective than SB with the same supplemental amount.
Collapse
Affiliation(s)
- Ting Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (T.Y.); (Y.S.); (Z.D.); (X.W.); (S.Y.); (R.Z.)
| | - Yaowei Sun
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (T.Y.); (Y.S.); (Z.D.); (X.W.); (S.Y.); (R.Z.)
| | - Zhenglie Dai
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (T.Y.); (Y.S.); (Z.D.); (X.W.); (S.Y.); (R.Z.)
| | - Jinsong Liu
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China; (J.L.); (S.X.); (Y.L.); (C.Y.)
| | - Shiping Xiao
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China; (J.L.); (S.X.); (Y.L.); (C.Y.)
| | - Yulan Liu
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China; (J.L.); (S.X.); (Y.L.); (C.Y.)
| | - Xiuxi Wang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (T.Y.); (Y.S.); (Z.D.); (X.W.); (S.Y.); (R.Z.)
| | - Shenglan Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (T.Y.); (Y.S.); (Z.D.); (X.W.); (S.Y.); (R.Z.)
| | - Ruiqiang Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (T.Y.); (Y.S.); (Z.D.); (X.W.); (S.Y.); (R.Z.)
| | - Caimei Yang
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China; (J.L.); (S.X.); (Y.L.); (C.Y.)
| | - Bing Dai
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (T.Y.); (Y.S.); (Z.D.); (X.W.); (S.Y.); (R.Z.)
| |
Collapse
|
10
|
Liang Y, Jiang Q, Zou H, Zhao J, Zhang J, Ren L. Withaferin A: A potential selective glucocorticoid receptor modulator with anti-inflammatory effect. Food Chem Toxicol 2023; 179:113949. [PMID: 37467946 DOI: 10.1016/j.fct.2023.113949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/03/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
Glucocorticoids have been widely applied to various clinical treatment, however some serious side effects may occur during the treatment. It is widely known that glucocorticoids produce a marked effect through binding to glucocorticoid receptor (GR). As withaferin A can provide multiple health benefits, this work aims to confirm withaferin A as a potential selective GR modulator with anti-inflammatory effect. Fluorescence polarization assay confirmed that withaferin A could steadily bind to GR with an IC50 value of 203.80 ± 0.36 μM. Meanwhile, glucocorticoid receptor translocation of withaferin A was measured by nuclear fractionation assay. Dual luciferase reporter assay showed that withaferin A did not activate GR transcription. Furthermore, withaferin A decreased the GR-related protein expression with less side effects. The result of molecular docking showed that hydrogen-bonding and hydrophobic interactions contributed to the binding of withaferin A with GR. In addition, the GR-withaferin A complex maintained a stable binding throughout the dynamics simulation process. Enzyme-linked immunosorbent assay showed that withaferin A inhibited the production of cytokines, confirming its anti-inflammatory effect. These findings indicate that withaferin A is a potential selective GR modulator and this work may provide a research basis for developing dietary supplements and nutraceuticals against inflammation.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Qiuyan Jiang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
11
|
Qi Y, Zheng T, Yang S, Zhang Q, Li B, Zeng X, Zhong Y, Chen F, Guan W, Zhang S. Maternal sodium acetate supplementation promotes lactation performance of sows and their offspring growth performance. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:213-224. [PMID: 37484994 PMCID: PMC10362078 DOI: 10.1016/j.aninu.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 07/25/2023]
Abstract
Milk yield and composition are critical determining factors for the early growth and development of neonates. The objective of this experiment was to comprehensively evaluate the effects of dietary sodium acetate (SA) supplementation on the milk yield and composition of sows and the growth performance of their offspring. A total of 80 sows (Landrace × Yorkshire, 3 to 6 parity) were randomly assigned to 2 groups (with or without 0.1% SA) from d 85 of gestation to d 21 of lactation. The result shows that maternal 0.1% SA supplementation significantly increased sows milk yield, milk fat, immunoglobulin A (IgA) and IgG content in milk (P < 0.05), with the up-regulation of short-chain fatty acids receptors (GPR41 and GPR43) expression and the activation of mammalian target of rapamycin complex C1 (mTORC1) signaling pathway. Consistently, in our in vitro experiment, SA also activated mTORC1 signaling in porcine mammary epithelial cells (P < 0.05). Furthermore, the improvement of milk quality and quantity caused by maternal SA supplementation led to the increase in body weight (BW) and average daily weight gain (ADG) of weaning piglets, with the improvement of gut health and colonization of the beneficial bacteria (P < 0.05). In conclusion, maternal supplementation of 0.1% SA improved the lactation performance (milk yield and milk fat) of sows, possibly with the activation of GPR41/GPR43-mTORC1 signaling. Furthermore, enhanced milk quality improved growth performance, gut health and the colonization of beneficial microbial flora of their piglets.
Collapse
Affiliation(s)
- Yingao Qi
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Tenghui Zheng
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Siwang Yang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qianzi Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Baofeng Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China
| | - Yongxing Zhong
- Chia Tai Conti Agri-Husbandry Group Co., Ltd, Shenzhen, China
| | - Fang Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Li H, Zhang Y, Xie J, Wang C, Yi D, Wu T, Wang L, Zhao D, Hou Y. Dietary Supplementation with Mono-Lactate Glyceride Enhances Intestinal Function of Weaned Piglets. Animals (Basel) 2023; 13:ani13081303. [PMID: 37106866 PMCID: PMC10135088 DOI: 10.3390/ani13081303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Mono-lactate glyceride (LG) is a short-chain fatty acid ester. It has been shown that short-chain fatty acid esters play an important role in maintaining intestinal structure and function. The aim of this study is to investigate the effects of mono-lactate glyceride on growth performance and intestinal morphology and function in weaned piglets. Sixteen 21-day-old weaned piglets of similar weight were distributed arbitrarily to two treatments: The control group (basal diet) and the LG group (basal diet + 0.6% mono-lactate glyceride). The experiment lasted for 21 days. On day 21 of the trial, piglets were weighed, and blood and intestinal samples were collected for further analysis. Results showed that dietary supplementation with 0.6% mono-lactate glyceride decreased (p < 0.05) the diarrhea rate and the contents of malondialdehyde and hydrogen peroxide in the ileum and jejunum and increased (p < 0.05) the expression of intestinal tight junction protein (Occludin) and the activities of superoxide dismutase and catalase in the ileum and colon. In addition, mono-lactate glyceride supplementation could enhance intestinal mucosal growth by increasing (p < 0.05) the mRNA levels of extracellular regulated protein kinases, promote intestinal mucosal water and nutrient transport and lipid metabolism by increasing (p < 0.05) the mRNA levels of b0,+ amino acid transporter, aquaporin 3, aquaporin 10, gap junction protein alpha 1, intestinal fatty acid-binding protein, and lipoprotein lipase, enhance antiviral and immune function by increasing (p < 0.05) the mRNA levels of nuclear factor kappa-B, interferon-β, mucovirus resistance protein II, 2'-5'-oligoadenylate synthetase-like, interferon-γ, C-C motif chemokine ligand 2, and toll-like receptor 4, and enhance antioxidant capacity by increasing (p < 0.05) the mRNA levels of NF-E2-related factor 2 and glutathione S-transferase omega 2 and decreasing (p < 0.05) the mRNA level of NADPH oxidase 2. These results suggested that dietary supplementation with mono-lactate glyceride could decrease the diarrhea rate by improving intestinal antioxidant capacity, intestinal mucosal barrier, intestinal immune defense function, and intestinal mucosal water and nutrient transport. Collectively, dietary supplementation with 0.6% mono-lactate glyceride improved the intestinal function of weaned piglets.
Collapse
Affiliation(s)
- Hanbo Li
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yanyan Zhang
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiaqian Xie
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chao Wang
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dan Yi
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Tao Wu
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lei Wang
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Di Zhao
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yongqing Hou
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|