1
|
Ma C, Ju B, Liu J, Wen L, Zhao Y, Yang J, Hu J. Phenylethanol Glycosides from Cistanche tubulosa Modulate the Gut Microbiota and Cecal Metabolites to Ameliorate Diabetic Nephropathy Induced by Streptozotocin Combined with High-Fat Diet in Rats. J Med Food 2025; 28:219-231. [PMID: 39401174 DOI: 10.1089/jmf.2024.k.0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Diabetic nephropathy (DN) is a prevalent complication and serious microvascular of diabetes mellitus. After previous studies, we found that phenylethanol glycosides (CPhGs) derived from Cistanche tubulosa (Schenk) Wight exerts antidiabetic and renoprotective effects. However, the effects of CPhGs on DN remain incompletely understood. The study aimed to examine the effects of CPhGs on DN in rats and explore the underlying mechanism involved. A DN rat model was established by streptozotocin (STZ) combined with a high-fat diet. Reagent kits were used to assess the extent to which CPhGs ameliorate hyperglycemia, insulin resistance (IR), renal dysfunction, kidney oxidative stress, and peripheral inflammation. Histology and immunohistochemical staining were used to detect the changes in renal tissue structure and the expression levels of α-smooth muscle actin (α-SMA) and collagen I. Furthermore, we analyzed the cecal contents of DN rats to investigate the effect of CPhGs on gut microbiota by using 16S rRNA sequencing and broad-spectrum metabolite profiling. The results showed that CPhGs demonstrated a range of advantageous outcomes in DN, encompassing the enhancement of kidney function and alleviation of hyperglycemia, IR, renal injury, oxidative stress, and peripheral inflammatory reactions. In addition, CPhGs regulated the abundance of the [Eubacterium]_coprostanoligenes_group, Oscillospiraceae_UCG-005, etc. to modulate the gut microbiota. CPhGs significantly upregulated the content of vitamin B6 and tyrosyl-tryptophan and downregulated histamine, L-methionine, etc. In summary, the therapeutic efficacy of CPhGs on DN rats may be achieved by modulating the gut microbiota and cecal metabolites to restore the metabolic disorders of vitamin B6, histidine, etc.
Collapse
Affiliation(s)
- Chong Ma
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Bowei Ju
- Department of Pharmacy, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jiangyun Liu
- College of Pharmacy, Department of Pharmacy, Soochow University, Jiangsu, China
| | - Limei Wen
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yao Zhao
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Jianhua Yang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Junping Hu
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
2
|
Sun X, Shan X, Zhu B, Cai Y, He Z, Zhou L, Yin L, Liu Y, Liu K, Zhang T, Yang N, Li Y, Lang T. 5-Fluorouracil Loaded Prebiotic-Probiotic Liposomes Modulating Gut Microbiota for Improving Colorectal Cancer Chemotherapy. Adv Healthc Mater 2025; 14:e2403587. [PMID: 39676353 DOI: 10.1002/adhm.202403587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/16/2024] [Indexed: 12/17/2024]
Abstract
The gut microbiota exerts inhibitory effects on the occurrence and progression of colorectal cancer (CRC) through various mechanisms. Compared to traditional microbiota regulation methods, prebiotics and probiotics demonstrate significant advantages in terms of safety and patient adaptability. Their synergy not only improves the intestinal environment but also enhances the host's anti-tumor immune response. 5-Fluorouracil (5-FU) is a first-line chemotherapy drug that has a short half-life and low bioavailability. However, if administered in an untargeted manner, 5-FU also causes adverse reactions. Liposomes can improve the pharmacokinetic profile of drugs and provide targeted delivery to the tumor site, thereby reducing side effects. In this work, a 5-FU-loaded liposome is modified with the prebiotic xylan derivative Sxy and the probiotic Akkermansia muciniphila active phospholipid homolog 1,2-dipalmitoylphosphatidy-lethanolamine (DPPE) to construct FLSK. The latter effectively prolongs the intestinal transport and release of 5-FU, maintaining high drug concentrations at the tumor site. FLSK is found to inhibit tumor growth and significantly extends the survival period of mice. In addition, FLSK promotes anti-tumor immunity and regulation of the gut microbiota. Combining the merits of prebiotics and probiotics, FLSK provides a potential strategy for integrating chemotherapy with gut microbiota regulation therapy for the treatment of CRC.
Collapse
Affiliation(s)
- Xujie Sun
- Lingang Laboratory, Shanghai, 200031, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiaoting Shan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Binyu Zhu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ying Cai
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zongyan He
- Lingang Laboratory, Shanghai, 200031, China
| | - Lingli Zhou
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lixuan Yin
- Lingang Laboratory, Shanghai, 200031, China
| | - Yiran Liu
- Lingang Laboratory, Shanghai, 200031, China
| | - Kaiyue Liu
- Lingang Laboratory, Shanghai, 200031, China
| | - Tian Zhang
- Lingang Laboratory, Shanghai, 200031, China
| | - Ning Yang
- Lingang Laboratory, Shanghai, 200031, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | | |
Collapse
|
3
|
Yang H, Yang B, Teng Y, Ge J, Feng X, Tian Y. Identification of α-tubulin alpha-1B chain as a target of asiatic acid using chemical proteomics in HepG2 hepatoma cells. Org Biomol Chem 2024; 22:9371-9378. [PMID: 39479883 DOI: 10.1039/d4ob01298d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Asiatic acid (AA) is a naturally occurring pentacyclic triterpene isolated from Centella asiatica and has various biological effects, most notably anticancer effects. While numerous investigations have demonstrated the possible mechanism underlying AA's anticancer action, the precise protein target of AA remains unclear. In this study, the protein target of AA in HepG2 hepatoma cells was identified using the AfBPP-based chemoproteomic approach. Initially, a diazirine and alkyne group modified AA photoaffinity probe was synthesized. Then, using mass spectrometry analysis, 13 putative target proteins were identified with high confidence. Combined with the competition bands in in situ fluorescence scanning, the α-tubulin alpha-1B chain (TUBA1B) was identified as the target protein of AA. Subsequently, the direct interaction between AA and TUBA1B was verified by surface plasmon resonance, pull-down and cellular thermal shift experiments, drug affinity responsive target stability assay, and molecular docking. This research will offer fresh perspectives on how AA prevents liver cancer at the molecular level.
Collapse
Affiliation(s)
- Hong Yang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Bingbing Yang
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yu Teng
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Jun Ge
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xinchi Feng
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yulin Tian
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| |
Collapse
|
4
|
Zhang Y, Zhao Q, Zhao R, Lu Y, Jiang S, Tang Y. Efficacy of DHA-enriched phosphatidylserine and its underlying mechanism in alleviating polystyrene nanoplastics-induced hepatotoxicity in mice. Int Immunopharmacol 2024; 142:113154. [PMID: 39278057 DOI: 10.1016/j.intimp.2024.113154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
OBJECTIVE Plastic pollution has become a global pollution problem that cannot be ignored. As the main destination of human oral intake, the toxic effects of plastic on the digestive system represented by the intestine and liver are the focus of current research. Marine-derived DHA-PS has a variety of biological activities, mainly focusing on improving brain function and regulating lipid metabolism. However, whether it has an improvement effect on PS-NPs-induced hepato-intestinal injury and the underlying mechanism remain unclear. METHODS A murine liver injury model was established by gavage of PS-NPs for six weeks. By integrating approaches from lipidomics, transcriptomics, and gut microbiota analysis, the molecular mechanism by which DHA-PS alleviates PS-NPs-induced murine hepatotoxicity was explored through the "gut-liver axis". RESULTS Our findings reveal that prolonged exposure to PS-NPs results in significant murine liver damage and dysfunction, characterized by increased oxidative stress and inflammation, along with exacerbated hepatic lipid accumulation. Mechanistically, PS-NPs disrupt the hepatic SIRT1-AMPK pathway by suppressing the expression of SIRT1, AMPKα, and PPARα, while enhancing the expression of SREBP-1c, ultimately leading to disordered hepatic lipid metabolism. The sphingolipid and glycerophospholipid metabolic pathways were particularly affected. Additionally, in agreement with transcriptomic analyses, PS-NPs activate the hepatic TLR4/NF-κB pathway. At the same time, exposure to PS-NPs decreases the expression of ZO-1, occludin, and claudin-1, diminishes the relative abundance of beneficial gut bacteria (norank_f_Muribaculaceae, Akkermansia, and norank_f_norank_o_Clostridia_UCG-014), and increases the prevalence of pathogenic gut bacteria (Coriobacteriaceae_UCG-002 and Desulfovibrio), exacerbating liver injury through the gut-liver axis. However, administering DHA-PS (50 mg/kg) effectively alleviated these injuries. CONCLUSION This study was the first to employ multi-omics techniques to elucidate the potential mechanisms underlying hepatotoxicity induced by PS-NPs, thereby supporting the use of DHA-PS as a dietary supplement to mitigate the effects of nanoplastic pollutants.
Collapse
Affiliation(s)
- Yuanlei Zhang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Qiaoling Zhao
- Zhoushan Institute for Food and Drug Control, Zhoushan, 316000, China
| | - Rui Zhao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yun Lu
- Medical Department, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China.
| | - Su Jiang
- ECA Healthcare Inc, Shanghai, 201101, China
| | - Yunping Tang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
5
|
Guo C, He S, Le Barz M, Binda S, Wang H. A Mix of Probiotic Strains Prevents Hepatic Steatosis, and Improves Oxidative Stress Status and Gut Microbiota Composition in Obese Mice. Mol Nutr Food Res 2024; 68:e2300672. [PMID: 39420712 DOI: 10.1002/mnfr.202300672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 08/23/2024] [Indexed: 10/19/2024]
Abstract
SCOPE The gut microbiota plays a role in fat accumulation and energy homeostasis. Therefore, probiotic supplementation may improve metabolic parameters and control body weight. METHODS AND RESULTS In this study, mice are fed either a high-fat diet (HFD) or an HFD supplemented with oral gavage of a mixture of three probiotic strains, Bifidobacterium lactis Lafti B94, Lactobacillus plantarum HA-119, and Lactobacillus helveticus Lafti L10 for 7 weeks. It finds that probiotic supplementation modulates body weight gain, food energy efficiency, and fat accumulation caused by the HFD. This probiotic mix prevents liver damage and lipid metabolic disorders in HFD-fed obese mice. The probiotic supplementation significantly downregulates the expression of the proinflammatory cytokines interleukin-1β, tumor necrosis factor-α, and malondialdehyde (MDA) in the liver and upregulated catalase (CAT), superoxide dismutase (SOD), and nuclear respiratory factor 1 (Nrf1) expression. Mice supplemented with the probiotic mix also show different microbiota compositions, with an increase in Clostridia_UCG-014 and Lachnospiraceae_nk4a136_group and a decrease in the Dubosiella genus compared with those in mice fed only an HFD. Finally, the amounts of fecal pentanoic acid and the three bile acid species increase in mice with probiotic supplementation. CONCLUSION Treatment with a combination of a mixture of three probiotic strains, B. lactis Lafti B94, L. plantarum HA-119, and L. helveticus Lafti L10 for 7 weeks, ameliorates the effects of HFD induced obesity in mice.
Collapse
Affiliation(s)
- Chenglin Guo
- Peking University First Hospital, Beijing, China
| | - Shengduo He
- Peking University First Hospital, Beijing, China
| | - Mélanie Le Barz
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, Montreal, QC, Canada
| | - Sylvie Binda
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, Montreal, QC, Canada
| | - Huahong Wang
- Peking University First Hospital, Beijing, China
| |
Collapse
|
6
|
Chen M, Wu Y, Yang H, Liu T, Han T, Dai W, Cen J, Ouyang F, Chen J, Liu J, Zhou L, Hu X. Effects of fermented Arctium lappa L. root by Lactobacillus casei on hyperlipidemic mice. Front Pharmacol 2024; 15:1447077. [PMID: 39529876 PMCID: PMC11551023 DOI: 10.3389/fphar.2024.1447077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction This study aimed to establish a fermentation system based on Lactobacillus casei (LC) and Arctium lappa L. root (AR) to investigate its effects. The objectives included comparing metabolite profiles pre- and post-fermentation using untargeted metabolomics and evaluating the impact of LC-AR in high-fat diet-induced hyperlipidemic mice. Methods Untargeted metabolomics was used to analyze differences in metabolites before and after fermentation. In vitro antioxidant activity, liver injury, lipid levels, pro-inflammatory cytokine levels, and cholesterol-related mRNA expression were assessed. 16S rRNA sequencing was conducted to evaluate changes in gut microbiota composition. Results LC-AR exhibited stronger antioxidant activity and higher metabolite levels than AR. It also improved liver injury as well as better regulation of lipid levels, pro-inflammatory cytokine levels, and cholesterol-related mRNA. 16S rRNA analysis revealed that LC-AR decreased the Firmicutes/Bacteroidetes ratio, which correlated negatively with triglycerides, total cholesterol, and low-density lipoprotein cholesterol levels. Discussion These findings suggest that LC-AR may serve as a promising functional food and drug raw material for improving hyperlipidemia, particularly through its beneficial effects on gut microbiota and lipid regulation.
Collapse
Affiliation(s)
- MingJu Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yuxiao Wu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Hongxuan Yang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Tianfeng Liu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Tongkun Han
- Shenzhen Bao’an District Songgang People’s Hospital, Shenzhen, Guangdong, China
| | - Wangqiang Dai
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Junyue Cen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Fan Ouyang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jingjing Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jianxin Liu
- School of Pharmaceutical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
| | - Lin Zhou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xuguang Hu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Wang X, Yao S, Yang X, Li Y, Yu Z, Huang J, Wang J. Peritoneal dialysis promotes microbial-driven biosynthesis pathways of sesquiterpenes and triterpenes compounds in end-stage renal disease patients. BMC Microbiol 2024; 24:377. [PMID: 39342083 PMCID: PMC11437912 DOI: 10.1186/s12866-024-03539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
The concept of the gut-kidney axis is gaining significant attention due to the close relationship between gut microbiota and kidney disease. Peritoneal dialysis is recognized as a crucial renal replacement therapy for end-stage renal disease (ESRD). The alterations in gut microbiota and related mechanisms after receiving this dialysis method are not fully understood. This study conducted shotgun metagenomic sequencing on fecal samples from 11 end-stage renal disease patients who did not receive dialysis (ESRD_N) and 7 patients who received peritoneal dialysis (ESRD_P). After quality control and correlation analysis of the data, our study is aimed at exploring the impact of peritoneal dialysis on the gut microbiota and health of ESRD patients. Our research findings indicate that the complexity and aggregation characteristics of gut microbiota interactions increase in ESRD_P. In addition, the gut microbiota drives the biosynthesis pathways of sesquiterpenes and triterpenes in ESRD_P patients, which may contribute to blood purification and improve circulation. Therefore, our research will lay the foundation for the prevention and treatment of ESRD.
Collapse
Affiliation(s)
- Xinran Wang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Siqi Yao
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Xinyu Yang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Yuxin Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Zheng Yu
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China.
| | - Jianwen Wang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China.
- The Critical Kidney Disease Research Center of Central South University, Changsha, China.
| |
Collapse
|
8
|
Lin X, Fang Y, Mi X, Fu J, Chen S, Wu M, Jin N. Asiatic acid inhibits cervical cancer cell proliferation and migration via PI3K/AKT/mTOR signaling pathway. Heliyon 2024; 10:e34047. [PMID: 39055791 PMCID: PMC11269897 DOI: 10.1016/j.heliyon.2024.e34047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/15/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024] Open
Abstract
Cervical cancer (CC) is a malignant tumor of the female reproductive system that typically occurs in cervical cells and has high incidence and mortality rates, strong metastatic ability, and poor prognosis. Asiatic acid (AA) exhibits anti-inflammatory, anti-depressant, and anti-tumor effects. However, the molecular targets and mechanisms underlying AA-mediated inhibition of CC metastasis remain unclear. AA affects the proliferation, metastasis, and epithelial-mesenchymal transition (EMT) process of CC cell lines. MTT experiments verified that AA inhibited the proliferation ability of CC cells, and the effect of AA on the lateral and longitudinal migration ability of CC was evaluated through wound healing and Transwell assays. Western blotting was used to explore whether AA inhibits EMT process in HeLa and C33a cells. Currently, targeting the PI3K/AKT/mTOR pathway as a strategy for cancer treatment remains an evolving field. However, the molecular mechanism by which AA inhibits CC via the PI3K/AKT/mTOR pathway remains unclear and requires further investigation.
Collapse
Affiliation(s)
- Xiuying Lin
- Medical College, Yanbian University, Yanji, China
- Reproductive Medicine Center, Jilin Province People's Hospital, Changchun, China
| | - Yanqiu Fang
- Reproductive Medicine Center, Jilin Province People's Hospital, Changchun, China
| | - Xuguang Mi
- Reproductive Medicine Center, Jilin Province People's Hospital, Changchun, China
| | - jianhua Fu
- Reproductive Medicine Center, Jilin Province People's Hospital, Changchun, China
| | - Shiling Chen
- Reproductive Medicine Center, Jilin Province People's Hospital, Changchun, China
| | - Mengxue Wu
- Reproductive Medicine Center, Jilin Province People's Hospital, Changchun, China
| | - Ningyi Jin
- Medical College, Yanbian University, Yanji, China
| |
Collapse
|
9
|
Yan B, Zheng X, Chen X, Hao H, Shen S, Yang J, Wang S, Sun Y, Xian J, Shao Z, Fu T. Silibinin Targeting Heat Shock Protein 90 Represents a Novel Approach to Alleviate Nonalcoholic Fatty Liver Disease by Simultaneously Lowering Hepatic Lipotoxicity and Enhancing Gut Barrier Function. ACS Pharmacol Transl Sci 2024; 7:2110-2124. [PMID: 39022366 PMCID: PMC11249643 DOI: 10.1021/acsptsci.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a clinicopathological condition characterized by intrahepatic ectopic steatosis. Due to the increase in high-calorie diets and sedentary lifestyles, NAFLD has surpassed viral hepatitis and become the most prevalent chronic liver disease globally. Silibinin, a natural compound, has shown promising therapeutic potential for the treatment of liver diseases. Nevertheless, the ameliorative effects of silibinin on NAFLD have not been completely understood, and the underlying mechanism is elusive. Therefore, in this study, we used high-fat diet (HFD)-induced mice and free fatty acid (FFA)-stimulated HepG2 cells to investigate the efficacy of silibinin for the treatment of NAFLD and elucidate the underlying mechanisms. In vivo, silibinin showed significant efficacy in inhibiting adiposity, improving lipid profile levels, ameliorating hepatic histological aberrations, healing the intestinal epithelium, and restoring gut microbiota compositions. Furthermore, in vitro, silibinin effectively inhibited FFA-induced lipid accumulation in HepG2 cells. Mechanistically, we reveal that silibinin possesses the ability to ameliorate hepatic lipotoxicity by suppressing the heat shock protein 90 (Hsp90)/peroxisome proliferator-activated receptor-γ (PPARγ) pathway and alleviating gut dysfunction by inhibiting the Hsp90/NOD-like receptor pyrin domain-containing 3 (NLRP3) pathway. Altogether, our findings provide evidence that silibinin is a promising candidate for alleviating the "multiple-hit" in the progression of NAFLD.
Collapse
Affiliation(s)
- Baofei Yan
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
- Jiangsu
Engineering, Research Center for Evaluation and Transformation of
Classic TCM Prescriptions, Jiangsu Health
Vocational College, Nanjing 211800, China
| | - Xian Zheng
- Department
of Pharmacy, Affiliated Kunshan Hospital
of Jiangsu University, Kunshan 215399, China
| | - Xi Chen
- Institute
of Medical technology, Jiangsu College of
Nursing, Huaian 223003, China
| | - Huihui Hao
- Department
of Pharmacology, Jiangsu College of Nursing, Huaian 223003, China
| | - Shen Shen
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Jingwen Yang
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Siting Wang
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Yuping Sun
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Jiaqi Xian
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Zhitao Shao
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Tingming Fu
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| |
Collapse
|
10
|
Bai G, Xie Y, Gao X, Xiao C, Yong T, Huang L, Cai M, Liu Y, Hu H, Chen S. Selective impact of three homogenous polysaccharides with different structural characteristics from Grifola frondosa on human gut microbial composition and the structure-activity relationship. Int J Biol Macromol 2024; 269:132143. [PMID: 38729493 DOI: 10.1016/j.ijbiomac.2024.132143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/08/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Natural polysaccharides interact with gut microbes to enhance human well-being. Grifola frondosa is a polysaccharides-rich edible and medicinal mushroom. The prebiotic potential of G. frondosa polysaccharides has been explored in recent years, however, the relationship between their various structural features and prebiotic activities is poorly understood. In this study, three homogenous polysaccharides GFP10, GFP21 and GFP22 having different molecular weights (Mw), monosaccharide compositions and glycosidic linkages were purified from G. frondosa, and their effects on intestinal microbial composition were compared. GFP10 was a fucomannogalactan with an Mw of 23.0 kDa, and it selectively inhibited Enterobacter, while GFP21 was a fucomannogalactoglucan with an Mw of 18.6 kDa, and it stimulated Catenibacterium. GFP22 was a 4.9 kDa mannoglucan that selectively inhibited Klebsiella and boosted Bifidobacterium, Catenibacterium and Phascolarctobacterium, and prominently promoted the production of short-chain fatty acids (SCFAs). The selective modulation of gut microbiota by polysaccharides was structure-dependent. A relatively lower Mw and a high proportion of glycosidic linkages like T-Glcp, 1,3-Glcp, 1,3,6-Glcp and 1,4-Glcp might be more easily utilized to produce SCFAs and beneficial for the proliferation of Catenibacterium and Phascolarctobacterium. This research provided a valuable resource for further exploring the structure-activity relationship and prebiotic activity of G. frondosa polysaccharides.
Collapse
Affiliation(s)
- Guangjian Bai
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China
| | - Yizhen Xie
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China; Guangdong Yuewei Edible Fungi Co., Ltd, China
| | - Xiong Gao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China
| | - Chun Xiao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China
| | - Tianqiao Yong
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China
| | - Longhua Huang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China
| | - Manjun Cai
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China
| | - Yuanchao Liu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China
| | - Huiping Hu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China.
| | - Shaodan Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China.
| |
Collapse
|
11
|
Bai Y, Zhang Y, Chao C, Yu J, Zhao J, Han D, Wang J, Wang S. Molecular Mechanisms Underlying the Effects of Small Intestinal Fermentation on Enhancement of Prebiotic Characteristics of Cellulose in the Large Intestine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3596-3605. [PMID: 38270580 DOI: 10.1021/acs.jafc.3c09146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Knowledge about the prebiotic characteristics of cellulose by in vitro fermentation is not complete due to the neglect of small intestinal fermentation. This study investigated the effects of small intestinal fermentation on the prebiotic characteristics of cellulose in the large intestine and potential mechanisms through an approach of combined in vivo small intestinal fermentation and in vitro fermentation. The structural similarity between cellulose in feces and after processing by the approach of this study confirmed the validity of the approach employed. Results showed that small intestinal fermentation of cellulose increased both acetate and propionate content and enriched Corynebacterium selectively. Compared to in vitro fermentation after in vitro digestion of cellulose, the in vitro fermentation of cellulose after in vivo small intestinal fermentation produced higher contents of acetate and propionate as well as the abundance of probiotics like Ruminococcaceae_UCG-002, Blautia, and Bifidobaterium. The changes in the structural features of cellulose after in vivo small intestinal fermentation were more obvious than those after in vitro digestion, which may account for the greater production of short-chain fatty acids (SCFAs) and the abundance of probiotics. In summary, small intestinal fermentation enhanced the prebiotic characteristics of cellulose in the large intestine by predisrupting its structure.
Collapse
Affiliation(s)
- Yu Bai
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yiming Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chen Chao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jinglin Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
12
|
Zhang Y, Gao C, Zhu M, Chen F, Sun Y, Jiang Y, Zhou Q, Gao X. Astaxanthin, Haematococcus pluvialis and Haematococcus pluvialis Residue Alleviate Liver Injury in D-Galactose-induced Aging Mice through Gut-liver Axis. J Oleo Sci 2024; 73:729-742. [PMID: 38692895 DOI: 10.5650/jos.ess24003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
Astaxanthin is a keto-based carotenoid mainly obtained from marine organisms, like Haematococcus pluvialis (H. pluvialis). Previous studies indicated the protective effects of Astaxanthin and H. pluvialis on aging related oxidative injury in liver, while the potential mechanisms are largely unknown. In addition, H. pluvialis residue is a by-product after astaxanthin extraction, which is rarely studied and utilized. The present study aimed to compare the effects of astaxanthin, H. pluvialis and H. pluvialis residue on the oxidant injury of liver in D-galactose-induced aging mice and explore the potential mechanisms through gut-liver axis. The results showed that all the three supplements prevented D-galactose-induced tissue injury, oxidative stress and chronic inflammation in liver and improved liver function. Gut microbiota analysis indicated that astaxanthin notably increased fecal levels of Bacteroidetes, unclassified_f__ Lachnospiraceae, norank_f__Lachnospiraceae, norank_f__norank_o__Clostridia_UCG-014, Prevotellaceae_ UCG-001, unclassified_f__Prevotellaceae in D-galactose-fed mice (p < 0.05). Compared to aging mice, H. pluvialis group had higher fecal levels of norank_f__Lachnospiraceae and Lachnospiraceae_UCG-006 (p < 0.05). H. pluvialis residue group displayed higher relative levels of Bacteroidetes, Streptococcus, and Rikenellaceae_RC9_gut_group (p < 0.05). Moreover, the production of fecal microbial metabolites, like SCFAs and LPS was also differently restored by the three supplements. Overall, our results suggest astaxanthin, H. pluvialis and H. pluvialis residue could prevent aging related hepatic injury through gutliver axis and provide evidence for exploiting of H. pluvialis residue as a functional ingredient for the treatment of liver diseases. Future studies are needed to further clarify the effect and mechanism of dominant components of H. pluvialis residue on liver injury, which is expected to provide a reference for the high-value utilization of H. pluvialis resources.
Collapse
Affiliation(s)
| | - Chunhao Gao
- College of Life Sciences, Qingdao University
| | - Mengjia Zhu
- College of Life Sciences, Qingdao University
| | - Fangtian Chen
- Department of Marine Technology, Rizhao Polytechnic; Shandong Engineering and Technology Research Center for Marine Crustacean Resources Comprehensive Utilization; Shandong Engineering Laboratory of Efficient Utilization Technology of Marine Food Resources; Rizhao Key Laboratory of Efficient Utilization of Marine Food Resources
| | - Yongye Sun
- Institute of Nutrition and Health, College of Public Health, Qingdao University
| | - Yu Jiang
- Experimental Animal Platform, Biomedical Center of Qingdao University, Qingdao University
| | - Qingxin Zhou
- Department of Marine Technology, Rizhao Polytechnic; Shandong Engineering and Technology Research Center for Marine Crustacean Resources Comprehensive Utilization; Shandong Engineering Laboratory of Efficient Utilization Technology of Marine Food Resources; Rizhao Key Laboratory of Efficient Utilization of Marine Food Resources
| | - Xiang Gao
- College of Life Sciences, Qingdao University
- Shandong Hongzai Biotechnology Co., LTD
| |
Collapse
|
13
|
Han L, Zhang M, Li F, Su J, Wang R, Li G, Yang X. 10-hydroxy-2-decenoic acid alleviates lipopolysaccharide-induced intestinal mucosal injury through anti-inflammatory, antioxidant, and gut microbiota modulation activities in chickens. Front Microbiol 2023; 14:1285299. [PMID: 37915852 PMCID: PMC10616258 DOI: 10.3389/fmicb.2023.1285299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction This study aimed to investigated the effects of 10-hydroxy-2-decenoic acid (10-HDA) on the growth performance, intestinal barrier, inflammatory response, oxidative stress, and gut microbiota of chickens challenged with lipopolysaccharide (LPS). Methods A total of 240 one-day-old chickens were randomly assigned to five treatment groups: (1) control group (basal diet + saline); (2) LPS group (basal diet + LPS); (3) Chlortetracycline (CTC) group (basal diet containing 75 mg/kg CTC + LPS); (4) 0.1% 10-HDA group (basal diet containing 1 g/kg 10-HDA + LPS); and (5) 0.5% 10-HDA group (basal diet containing 5 g/kg 10-HDA + LPS). All chickens were injected intraperitoneally with 0.5 mg/kg body weight of either LPS or saline at 17, 19, and 21 days of age. Results The results showed that dietary 10-HDA supplementation attenuated the loss in growth performance caused by the LPS challenge (p < 0.05). 10-HDA effectively alleviated LPS-induced intestinal mucosal injury, as evidenced by reduced bleeding, decreased serum diamine oxidase levels (p < 0.05), and increased villus/crypt ratios of the jejunum and ileum (p < 0.05). Dietary treatment with 0.1% 10-HDA reduced the concentrations of inflammatory cytokines (TNF-α, IL-1β, IL-6; p < 0.05), and increased immunoglobulin (IgA, IgG) and antioxidant enzyme levels (CAT, GSH-px, T-SOD) in the serum of LPS-challenged chickens (p < 0.05). These effects were similar to those observed in the CTC group. Moreover, 0.1% 10-HDA treatment reversed the LPS-induced variations in the mRNA expression of genes related to inflammation, antioxidant capacity, and intestinal tight junctions (p < 0.05). 16S rRNA analysis revealed that 10-HDA supplementation increased the relative abundance of Faecalibacterium and Clostridia_UCG-014 (p < 0.05). Additionally, it decreased the abundance of Clostridia_vadinBB60_group, Eubacterium_nodatum_group, and UC5-1-2E3 (p < 0.05). These changes were correlated with reduced inflammation and improved antioxidant capacity in the LPS-challenged chickens. Conclusion Collectively, dietary 10-HDA supplementation alleviated LPS-induced intestinal mucosal injury and the loss of growth performance through anti-inflammatory, antioxidant, and gut microbiota modulation activities in chickens. Moreover, 0.1% 10-HDA supplementation had comparable or even better protection for LPS-challenged chickens than supplementation with antibiotics or 0.5% 10-HDA. 10-HDA has the potential to be used as an alternative to antibiotics in protecting the intestinal health and improving the performance of poultry.
Collapse
Affiliation(s)
- Lianquan Han
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Maolu Zhang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Fuwei Li
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jing Su
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Guiming Li
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaohui Yang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
14
|
Ye M, Yang M, Dai W, Li H, Zhou X, Chen Y, He L. Targeting Renal Proximal Tubule Cells in Obesity-Related Glomerulopathy. Pharmaceuticals (Basel) 2023; 16:1256. [PMID: 37765062 PMCID: PMC10535317 DOI: 10.3390/ph16091256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
As a metabolic disorder, obesity can cause secondary kidney damage, which is called obesity-related glomerulopathy (ORG). As the incidence of obesity increases worldwide, so does the incidence of end-stage renal disease (ESRD) caused by ORGs. However, there is still a lack of effective strategies to prevent and delay the occurrence and development of ORG. Therefore, a deeper understanding and elaboration of the pathogenesis of ORG is conducive to the development of therapeutic drugs for ORG. Here, we review the characteristics of pathological lesions of ORG and describe the roles of lipid metabolism disorders and mitochondrial oxidative stress in the development of ORG. Finally, we summarize the current available drugs or compounds for the treatment of ORG and suggested that ameliorating renal lipid metabolism and mitochondrial function may be potential therapeutic targets for ORG.
Collapse
Affiliation(s)
- Muyao Ye
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha 410011, China; (M.Y.); (M.Y.)
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha 410011, China; (M.Y.); (M.Y.)
| | - Wenni Dai
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha 410011, China; (M.Y.); (M.Y.)
| | - Hao Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha 410011, China; (M.Y.); (M.Y.)
| | - Xun Zhou
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha 410011, China; (M.Y.); (M.Y.)
| | - Yinyin Chen
- Department of Nephrology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410081, China
- Changsha Clinical Research, Changsha 410011, China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha 410011, China; (M.Y.); (M.Y.)
| |
Collapse
|
15
|
Gao X, Yue C, Tian R, Yu L, Tian F, Zhao J, Chen W, Zhai Q. The regulatory effects of specific polyphenols on Akkermansia are dependent on uridine. Food Chem 2023; 410:135367. [PMID: 36610089 DOI: 10.1016/j.foodchem.2022.135367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
We examined the microbial regulatory capacity of four polyphenols with different structure in healthy mice and explore the mechanism according to exogenous metabolites and microbial metabolites. Oral administration of four polyphenols, including caffeic acid (CA), procyanidin (PA), puerarin (Pue), and resveratrol (Res), did not lead to metabolic disorder in healthy mice. Gut microbiota analysis revealed that CA, PA, and Pue administration significantly enhanced the abundance of Akkermansia and Ruminococcaceae UCG-014 while Res supplement mainly promoted the growth of Lactobacillus and Bacteroides. Furthermore, correlation analysis and exogenous metabolite prediction revealed that the effects of polyphenols, including CA, PA, and Pue, on Akkermansia have strong relationship with uridine while the regulation of Res on microbiota might be dependent on the decrease on petroselinic acid. These investigations considerably suggest the importance of exploration of exogenous metabolites and reveal the similarity of effects of polyphenols on microbiota and metabolites.
Collapse
Affiliation(s)
- Xiaoxiang Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chenbo Yue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ruocen Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
16
|
Niu K, Bai P, Zhang J, Feng X, Qiu F. Cytidine Alleviates Dyslipidemia and Modulates the Gut Microbiota Composition in ob/ob Mice. Nutrients 2023; 15:nu15051147. [PMID: 36904146 PMCID: PMC10005144 DOI: 10.3390/nu15051147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Cytidine and uridine are endogenous metabolites in the pyrimidine metabolism pathway, and cytidine is a substrate that can be metabolized into uridine via cytidine deaminase. Uridine has been widely reported to be effective in regulating lipid metabolism. However, whether cytidine could ameliorate lipid metabolism disorder has not yet been investigated. In this research, ob/ob mice were used, and the effect of cytidine (0.4 mg/mL in drinking water for five weeks) on lipid metabolism disorder was evaluated in terms of an oral glucose tolerance test, serum lipid levels, liver histopathological analysis and gut microbiome analysis. Uridine was used as a positive control. Our findings reveal that cytidine could alleviate certain aspects of dyslipidemia and improve hepatic steatosis via modulating the gut microbiota composition in ob/ob mice, especially increasing the abundance of short-chain fatty acids-producing microbiota. These results suggest that cytidine supplementation could be a potential therapeutic approach for dyslipidemia.
Collapse
Affiliation(s)
| | | | | | - Xinchi Feng
- Correspondence: (X.F.); (F.Q.); Tel.: +86-22-595-6223 (X.F.)
| | - Feng Qiu
- Correspondence: (X.F.); (F.Q.); Tel.: +86-22-595-6223 (X.F.)
| |
Collapse
|
17
|
Comparison of the Effects between Tannins Extracted from Different Natural Plants on Growth Performance, Antioxidant Capacity, Immunity, and Intestinal Flora of Broiler Chickens. Antioxidants (Basel) 2023; 12:antiox12020441. [PMID: 36829999 PMCID: PMC9952188 DOI: 10.3390/antiox12020441] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
In this study, four plant tannins, including AT (Acacia mearnsii tannin, 68%), CT (Castanea sativa tannin, 60%), QT (Schinopsis lorenzii tannin, 73%) and TT (Caesalpinia spinosa tannin, 50%) were added to broiler diets for 42 days to evaluate and compare their effects on growth performance, antioxidant capacity, immune performance and gut microbiota in broilers. The results showed that the supplementation of five tannins could increase the production of T-AOC, GSH-Px, SOD and CAT and reduce the production of MDA in the serum of broilers (p < 0.01), but the antioxidant effect of the AT group was lower than that of the other three groups (p < 0.01). All four tannins decreased the level of the pro-inflammatory factor IL-1β and increased the level of the anti-inflammatory factor IL-10 (p < 0.01). CT, QT and TT decreased the levels of pro-inflammatory factors IL-6 and TNF-α (p < 0.01), while AT and CT increased the level of IL-2 in serum (p < 0.01). Supplementation with four tannins also increased the levels of IgG, IgM, IgA and sIgA in serum (p < 0.01) and the levels of ZO-1, claudin-1 and occludin in the jejunum (p < 0.01). The detection results of ALT and AST showed that CT, QT and TT decreased the concentrations of ALT and AST in serum (p < 0.01). The results of the gut microbiota showed that the abundance of Clostridia and Subdoligranulum increased, and the abundance of Oscillospiraceae decreased, compared to the control group after adding the four tannins to the diets (p > 0.05). In addition, CT, QT and TT decreased the abundance of Lactobacillus and increased the abundance of Bacteroides compared to the control group, while AT showed the opposite result (p > 0.05). Overall, our study shows that tannins derived from different plants have their own unique effects on broilers. AT and CT can promote broilers' growth better than other tannins, CT has the best ability to improve immune and antioxidant properties, and QT and TT have the best effect on broilers' liver protection.
Collapse
|
18
|
Effects of Kadsura coccinea L. Fruit Extract on Growth Performance, Meat Quality, Immunity, Antioxidant, Intestinal Morphology and Flora of White-Feathered Broilers. Animals (Basel) 2022; 13:ani13010093. [PMID: 36611702 PMCID: PMC9817888 DOI: 10.3390/ani13010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
This study aimed to determine whether adding Kadsura coccinea fruit extract to the diet of broilers could replace antibiotics. For this study, 300 one-day-old AA white feathered broilers were divided into five groups (no sex separated), with six repetitions per group (n = 10), as follows: blank control group (basal feed, CK group), positive drug (basal feed + 300 mg/kg aureomycin, PD group), and Kadsura coccinea low-dose, medium-dose, and high-dose groups (basal feed + 100 mg/kg, 200 mg/kg, and 300 mg/kg of Kadsura coccinea fruit extract, LD group, MD group and HD group). The experiment period was divided into early (1−21 days) and late (22−42 days) stage. We found that supplementation with Kadsura coccinea fruit extract in the diet significantly improved the growth performance of broilers (p < 0.05), reduced the feed to meat ratio (p < 0.05), reduced the fat percentage (p < 0.05), while had no significant effect on meat quality (p > 0.05) and Kadsura coccinea fruit extract could promote the development of immune organs to different extents, enhance antioxidant capacity, the contents of SOD and GSH-Px in serum were significantly increased (p < 0.05), improve the ratio of villus height to crypt depth. Finally, Kadsura coccinea fruit extract increased the relative abundance of probiotics and beneficial bacteria (Bacteroidales, NK4A214, Subdoligranulum and Eubacterium hallii) (p < 0.05) and reduced the relative abundance of harmful bacteria (Erysipelatoclostridium) (p < 0.05) in the gut of broilers. Compared with positive drug group, most of the indexes in the medium-dose group were better or had similar effects. We believe that Kadsura coccinea fruit extract can be used as a potential natural antibiotic substitute in livestock and poultry breeding programs.
Collapse
|
19
|
Wu Y, Lu Y, Yi Y, Wang A, Wang W, Yang M, Fan B, Chen G. Biotransformation of asiatic acid by Cunninghamella echinulata and Circinella muscae to discover anti-neuroinflammatory derivatives. Nat Prod Res 2022:1-6. [PMID: 36218232 DOI: 10.1080/14786419.2022.2132500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In this study, the biotransformation of asiatic acid by Cunninghamella echinulata CGMCC 3.970 and Circinella muscae CGMCC 3.2695 was investigated. Scaled-up biotransformation reactions yielded eight metabolites. Their structures were established based on extensive NMR and HR-ESI-MS data analyses and four of them are new compounds. C. echinulata could catalyze the regioselecitve hydroxylation, carbonylation and lactonization to yield five metabolites. C. muscae could selectively catalyze hydroxylation, acetylation and glycosylation to yield four products. Furthermore, all the identified metabolites were evaluated for their anti-neuroinflammatory activities in LPS-induced BV-2 cells. Most metabolites displayed pronounced inhibitory effect on nitric oxide (NO) production. The results suggested that biotransformed derivatives of asiatic acid might be served as potential neuroinflammatory inhibitors.
Collapse
Affiliation(s)
- Yanni Wu
- School of Pharmacy, Nantong University, Nantong, China
| | - Youjia Lu
- School of Pharmacy, Nantong University, Nantong, China
| | - Ying Yi
- School of Pharmacy, Nantong University, Nantong, China
| | - Andong Wang
- School of Pharmacy, Nantong University, Nantong, China
| | - Wenli Wang
- School of Pharmacy, Nantong University, Nantong, China
| | - Min Yang
- School of Pharmacy, Nantong University, Nantong, China
| | - Boyi Fan
- School of Pharmacy, Nantong University, Nantong, China
| | | |
Collapse
|