1
|
Qi W, Cao X, Chen Y, Chen H, Zhang N, Liu R, Wang W, Liu Q, Zheng S, Li S, Li X, Zao X, Ye Y. JiGuCao capsule formula alleviates metabolic fatty liver disease by regulating the gut-liver axis and lipid metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156559. [PMID: 40064115 DOI: 10.1016/j.phymed.2025.156559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/12/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Metabolic-associated fatty liver disease (MAFLD) is a prevalent chronic liver condition globally, characterized by suboptimal treatment outcomes. Traditional therapies often fail to address the multifaceted pathogenesis of MAFLD, which involves lipid metabolism, inflammation, and gut-liver axis dysregulation. JiGuCao Capsule formula (JCF), a patented Chinese medicine, has demonstrated clinical efficacy in liver disease treatment, indicating its potential as a new therapeutic option for MAFLD. PURPOSE This study aimed to investigate the therapeutic effects and underlying mechanisms of JCF in treating MAFLD, particularly focusing on its impact on liver pathology, intestinal health, and gut microbiota composition. METHODS A MAFLD mouse model was developed by administering a high-fat diet and 5% fructose water for 16 weeks. At week 8, mice exhibited significant steatosis, inflammation, and insulin resistance. Fifty mice were allocated into two groups: the normal diet (ND) group with 19 mice and the high-fat feed diet (HFD) group with 31 mice. Seven mice from each group were sacrificed at week 8 for serological and histopathological assessments. The remaining mice were allocated into ND (n = 6), HFD (n = 6), HFD + JCFL (human equivalent dose,780 mg/kg, n = 6), HFD + JCFH (threefold the human equivalent dose, 2340 mg/kg, n = 6), HFD + Polyene Phosphatidylcholine (PPC) (human equivalent dose,177.84 mg/kg, n = 6) and ND+ JCF (human equivalent dose,780 mg/kg, n = 6) groups. Daily gavage started at week 9. At week 16, after fasting, body weight and liver condition were recorded, and mice were euthanized with pentobarbital sodium. Mouse tissues and feces were collected for histopathological, molecular biological, and multi-omics analyses. RESULTS JCF effectively slowed MAFLD progression in mice by decreasing hepatic lipid accumulation and inflammation. Treatment with JCF significantly reduced hepatic triglycerides and inflammatory markers, including TNF-α and IL-6. JCF enhanced lipid metabolism, repaired the intestinal barrier, and lowered inflammatory cytokines in the intestines, as indicated by reduced serum LPS and restored tight junction proteins expression, such as claudin-1 and occludin. Fecal microbiota analysis indicated that JCF treatment elevated Lactobacillus levels and reduced Colidextribacter levels, correlating with enhanced metabolic profiles. The primary bioactive compounds identified in JCF responsible for these therapeutic effects were betulinic acid, cholic acid, deoxycholic acid, oleanolic acid, and pectolinarigenin. Transcriptomic analysis showed that JCF regulated key pathways involved in lipid metabolism, including the pparγ-cd36 axis and modulation of ox-LDL levels. The results indicate that JCF effectively mitigates MAFLD by influencing the gut-liver axis and lipid metabolism. CONCLUSION JCF alleviates MAFLD by modulating the gut-liver axis and lipid metabolism. Its effects involve improving gut barrier function, regulating microbiota, and targeting the pparγ-cd36 axis. Active compounds like betulinic acid support its therapeutic potential. JCF shows promise as a novel treatment for MAFLD, with further clinical studies needed.
Collapse
Affiliation(s)
- Wenying Qi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, PR China
| | - Xu Cao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, PR China
| | - Yue Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, PR China
| | - Hening Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, PR China
| | - Ningyi Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, PR China
| | - Ruijia Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, PR China
| | - Wei Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, PR China
| | - Qiyao Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, PR China; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, PR China; Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100700, PR China
| | - Shihao Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, PR China
| | - Size Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, PR China
| | - Xiaoke Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, PR China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, PR China; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, PR China; Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100700, PR China.
| | - Yong'an Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, PR China; Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100700, PR China.
| |
Collapse
|
2
|
Zhang L, Yang M, Jiang D, Xiao Z, He Y, Chen W, Lai W, Chen K, Lu L, Xie Y, Liang P, Zhang C, Rao X, Jiang J. Condensed tannin ameliorates intestinal damage and mitochondrial dysfunction induced by high-fat diets in largemouth bass (Micropterus salmoides). Int J Biol Macromol 2025; 311:143642. [PMID: 40311963 DOI: 10.1016/j.ijbiomac.2025.143642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
This study investigated the effects of condensed tannin (CT) supplementation on the intestinal health and mitochondrial function in largemouth bass (Micropterus salmoides) fed a high-fat diet. Six experimental diets were formulated, comprising three lipid levels in the diets (10 %, 15 %, and 20 %) with or without 3.75 g/kg CT supplementation. The largemouth bass were fed those diets for 56 days. Results demonstrated that a dietary lipid content of 20 % had a detrimental impact on the growth, intestinal health, and mitochondrial function of largemouth bass. However, the adverse effects of high dietary lipid levels were mitigated by incorporating of CT. This mitigation may be ascribed to the ability of CT to improve the intestinal barrier (claudin-1, claudin-4, and zo-1), increase the abundance of beneficial intestines microbe, and enhance intestinal antioxidant capacity. Furthermore, CT promoted mitochondrial biogenesis (pgc-1α, nrf1, and ampk-α), maintained the balance of mitochondrial fission and fusion, increased ATP content, and enhanced the activity of mitochondrial complexes II, IV, and V. In conclusion, CT preserved intestinal health and function while boosting mitochondrial function, thereby facilitating the growth of largemouth bass.
Collapse
Affiliation(s)
- Liangliang Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Academy of Advanced Carbon Conversion Technology, Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, China.
| | - Manqi Yang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Academy of Advanced Carbon Conversion Technology, Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, China
| | - Dahai Jiang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Academy of Advanced Carbon Conversion Technology, Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, China
| | - Zhangyi Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Ye He
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Wenqian Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Weibin Lai
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Academy of Advanced Carbon Conversion Technology, Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, China
| | - Kai Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Academy of Advanced Carbon Conversion Technology, Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, China
| | - Liming Lu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Academy of Advanced Carbon Conversion Technology, Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, China
| | - Yunbo Xie
- Hebei Province Qinhuangdao Yunguan Tannin Extract Co., Ltd., Qinhuangdao 066500, China
| | - Peng Liang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Chunxiao Zhang
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Xiaoping Rao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Academy of Advanced Carbon Conversion Technology, Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, China
| | - Jianchun Jiang
- Academy of Advanced Carbon Conversion Technology, Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, China; Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China
| |
Collapse
|
3
|
Song W, Chen J, Ai G, Xiong P, Song Q, Wei Q, Zou Z, Chen X. Mechanisms of the effects of turpiniae folium extract on growth performance, immunity, antioxidant activity and intestinal barrier function in LPS-challenged broilers. Poult Sci 2025; 104:104903. [PMID: 39985896 PMCID: PMC11904579 DOI: 10.1016/j.psj.2025.104903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/24/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025] Open
Abstract
Turpiniae folium extract (TFE) has shown anti-inflammatory and immunomodulatory effects in broilers. However, its mechanisms remain unclear. The aim of this study is to investigate the underlying mechanisms by which TFE influences growth performance, jejunal morphology, immune function, antioxidant capacity and barrier integrity in broilers challenged with Lipopolysaccharide (LPS). A total of 240 one-day-old female broilers were randomly divided into four groups with six replicates of ten birds each. A 2 × 2 factorial design with TFE (basal diets supplemented with 0 or 500 mg/kg TFE) and LPS challenge (intraperitoneal injection of 1 mg/kg body weight of sterile saline or LPS at 21, 23 and 25 days of age). The trial lasted for 26 days. The results showed that: Prior to the LPS challenge, dietary supplementation with TFE for 21 days increased both average daily gain (ADG) (P = 0.037) and average daily feed intake (ADFI) (P = 0.045) in broilers. During the LPS challenge period, LPS challenge led to a decline in growth performance and a negative impact on intestinal morphology, while TFE supplementation significantly reversed these adverse effects, as evidenced by increases in ADG (P = 0.004), ADFI (P = 0.046), jejunal villus height (VH) (P = 0.035), the villus height to crypt depth ratio (VH/CD) (P = 0.007) and decreases in the feed-to-gain ratio (F/G) (P = 0.025), jejunal crypt depth (CD) (P = 0.049). LPS induced inflammatory responses and oxidative stress in the jejunum, leading to a significant upregulation of pro-inflammatory factor gene and protein expression, and a marked downregulation of anti-inflammatory and antioxidant gene and protein expression. TFE supplementation mitigated these effects by yielding completely opposite results except for the expression of toll-like receptor 4 (TLR4) protein (P = 0.916). LPS negatively regulates the expression of genes and proteins involved in intestinal mucosal barrier function. In contrast, TFE supplementation significantly upregulated the expression of zonula occludens-1 (ZO-1) (P < 0.001) gene and ZO-1 (P < 0.001), occludin (OCLN) (P < 0.001), claudin (CLDN) (P < 0.001) proteins. In conclusion, dietary supplementation with TFE effectively counteracts the intestinal immune and oxidative stress induced by LPS challenge in broilers, improves intestinal mucosal barrier integrity and tissue morphology, and ultimately mitigates the negative impact of LPS on broiler growth performance. This effect may involve the modulation of the Nrf2 and nuclear factor kappa B (NF-κB) signaling pathways.
Collapse
Affiliation(s)
- Wenjing Song
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China; Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang 330200, PR China
| | - Jiang Chen
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China; Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang 330200, PR China
| | - Gaoxiang Ai
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China; Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang 330200, PR China
| | - Pingwen Xiong
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China; Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang 330200, PR China
| | - Qiongli Song
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China; Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang 330200, PR China
| | - Qipeng Wei
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China; Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang 330200, PR China
| | - Zhiheng Zou
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China; Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang 330200, PR China
| | - Xiaolian Chen
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China; Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang 330200, PR China.
| |
Collapse
|
4
|
Suzuki M, Baillo A, Albarracin L, Elean M, Serda R, Suda Y, Namai F, Nishiyama K, Kitazawa H, Villena J. Modulation of Macrophages TLR4-Mediated Transcriptional Response by Lacticaseibacillus rhamnosus CRL1505 and Lactiplantibacillus plantarum CRL1506. Int J Mol Sci 2025; 26:2688. [PMID: 40141330 PMCID: PMC11942546 DOI: 10.3390/ijms26062688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Lacticaseibacillus rhamnosus CRL1505 and Lactiplantibacillus plantarum CRL1506 increase the resistance of mice to Gram-negative pathogens infections. In this work, we advanced the characterization of the CRL1505 and CRL1506 immunomodulatory properties by evaluating their effect on the Toll-like receptor 4 (TLR4)-triggered immune response in macrophages. We performed experiments in murine RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS) to evaluate the transcriptomic changes induced by lactobacilli. These in vitro experiments were complemented with in vivo studies in mice to determine the effect of CRL1505 and CRL1506 strains on Peyer's patches and peritoneal macrophages. Microarray transcriptomic studies and qPCR confirmation showed that the CRL1505 and CRL1506 strains modulated the expression of inflammatory cytokines and chemokines as well as adhesion molecules in LPS-challenged RAW macrophages, making the effect of L. rhamnosus CRL1505 more remarkable. Lactobacilli also modulate regulatory factors in macrophages. L. plantarum CRL1506 increased il10 and socs2 while L. rhamnosus CRL1505 upregulated il27, socs1, and socs3 in RAW cells, indicating a strain-specific effect. However, in vivo, both strains induced similar effects. Peyer's patches and peritoneal macrophages from mice treated with lactobacilli produced higher levels of tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-6, and colony stimulating factor (CSF)-3 after LPS stimulation. This effect would allow improved protection against pathogens. In addition, both lactobacilli equally modulated socs1 and socs2 expressions and IL-10 and IL-27 production in Peyer's patches macrophages and socs3 and IL-10 in peritoneal cells. Furthermore, lactobacilli reduced the production of IL-1β, IL-12, CSF2, C-C motif chemokine ligand (CCL)-2, and CCL8 in LPS-challenged macrophages. This differential modulation of regulatory and inflammatory factors would allow minimal inflammatory-mediated tissue damage during the generation of the innate immune response. This work provides evidence that L. rhamnosus CRL1505 and L. plantarum CRL1506 modulate macrophages' TLR4-mediated immunotranscriptomic response, helping to improve protection against Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Masahiko Suzuki
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.S.); (F.N.); (K.N.)
| | - Ayelen Baillo
- Laboratory of Technology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina;
| | - Leonardo Albarracin
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (L.A.); (M.E.); (R.S.)
| | - Mariano Elean
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (L.A.); (M.E.); (R.S.)
| | - Rodrigo Serda
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (L.A.); (M.E.); (R.S.)
| | - Yoshihito Suda
- Department of Food, Agriculture and Environment, Miyagi University, Sendai 980-8572, Japan;
| | - Fu Namai
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.S.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Keita Nishiyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.S.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.S.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Julio Villena
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.S.); (F.N.); (K.N.)
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (L.A.); (M.E.); (R.S.)
| |
Collapse
|
5
|
Xu Y, He P, He B, Chen Z. Bioactive flavonoids metabolites in citrus species: their potential health benefits and medical potentials. Front Pharmacol 2025; 16:1552171. [PMID: 40098613 PMCID: PMC11911525 DOI: 10.3389/fphar.2025.1552171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
Citrus flavonoids are naturally occurring phytochemicals widely present in the peels and pulps of citrus fruits. They exhibit a wide range of biological activities, including antioxidant, anti-inflammatory, hypoglycemic, lipid-lowering, antimicrobial, and gut-protective effects. These metabolites show great potential in improving metabolic syndromes such as diabetes, non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases. Additionally, citrus flavonoids have demonstrated significant effects in inhibiting pancreatic lipase activity, regulating lipid metabolism, and enhancing intestinal barrier function. Advances in extraction and purification techniques have further promoted their applications in the fields of food, medicine, and functional materials. This review systematically summarizes the types, bioactivities, and mechanisms of action of citrus flavonoids, providing scientific evidence for their research and development.
Collapse
Affiliation(s)
- Yuqian Xu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Pan He
- Sichuan Provincial Women's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, China
| | - Beihui He
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zheng Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
6
|
Tan S, Gu J, Yang J, Dang X, Liu K, Gong Z, Xiao W. L-Theanine Mitigates Acute Alcoholic Intestinal Injury by Activating the HIF-1 Signaling Pathway to Regulate the TLR4/NF-κB/HIF-1α Axis in Mice. Nutrients 2025; 17:720. [PMID: 40005048 PMCID: PMC11857980 DOI: 10.3390/nu17040720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Acute alcohol consumption can cause intestinal dysfunction, whereas L-theanine (LTA) has shown the potential to support intestinal health. We explored L-theanine's ability to protect against acute alcohol-induced injury. METHODS Male C57BL/6 mice were administered LTA for 28 d and then underwent acute alcohol intestinal injury modeling for 8 days. RESULTS The results revealed that LTA ameliorated alcohol-induced pathological damage in the duodenum and gut permeability, improved secretory immunoglobulin A (SIgA) content, and reduced oxidative stress, inflammatory markers, and serum lipopolysaccharide (LPS) content in mice. Furthermore, LTA restored the composition of the intestinal flora, increasing the abundance of Alloprevotella, Candidatus_Saccharimonas, Muribaculum, and Prevotellaceae_UCG-001. Additionally, LTA increased beneficial metabolites, such as oxyglutaric acid and L-ascorbic acid, in the HIF-1 pathway within the enrichment pathway. Further investigation into the HIF-1 signaling pathway identified up-regulation of claudin-1, HIF-1α, occludin, and ZO-1, and down-regulation of TLR4, PHD2, p65 NF-κB, TNF-α, and IFN-γ mRNA and protein levels. CONCLUSIONS These results suggest that LTA may enhance the intestinal barrier by activating the HIF-1 signaling pathway to regulate the TLR4/NF-κB/HIF-1α axis, thereby reducing acute alcoholic intestinal injury.
Collapse
Affiliation(s)
- Simin Tan
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (S.T.); (J.G.); (J.Y.); (X.D.); (K.L.)
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Jiayou Gu
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (S.T.); (J.G.); (J.Y.); (X.D.); (K.L.)
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Jiahao Yang
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (S.T.); (J.G.); (J.Y.); (X.D.); (K.L.)
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Xuhui Dang
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (S.T.); (J.G.); (J.Y.); (X.D.); (K.L.)
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Kehong Liu
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (S.T.); (J.G.); (J.Y.); (X.D.); (K.L.)
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Zhihua Gong
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (S.T.); (J.G.); (J.Y.); (X.D.); (K.L.)
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Wenjun Xiao
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (S.T.); (J.G.); (J.Y.); (X.D.); (K.L.)
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
7
|
Chen X, He X, Du X, Huang Z, Jia G, Zhao H. Dihydromyricetin attenuates lipopolysaccharide-induced intestinal injury in weaned piglets by regulating oxidative stress and inhibiting NLRP3 inflammasome. J Anim Sci 2025; 103:skaf114. [PMID: 40233030 PMCID: PMC12065410 DOI: 10.1093/jas/skaf114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Accepted: 04/10/2025] [Indexed: 04/17/2025] Open
Abstract
This study explored the effects of dihydromyricetin (DHM) on lipopolysaccharide (LPS)-induced intestinal injury in weaned piglets and also investigated its possible molecular mechanism. The results showed that dietary supplementation of DHM could improve the jejunum morphological structure of piglets induced by LPS, reduce jejunum mucosa inflammation and endoplasmic reticulum stress, increase jejunum mucosa antioxidant capacity and the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and improve jejunum mucosa permeability. In addition, DHM downregulated the expression of toll-like receptor 4 (TLR4), phosphor-nuclear factor kappa-B (NF-κB), hypoxia-inducible factor-1α (HIF-1α), and the activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome. Taken together, LPS could induce jejunum mucosa injury in weaned piglets, but dietary supplementation of DHM alleviated LPS-induced jejunum mucosa injury to a certain extent, and the mechanism may be related to the activation of Nrf2 to inhibit the oxidative stress and negatively regulate the activation of the TLR4/HIF-1α/NLRP3 signaling axis.
Collapse
Affiliation(s)
- Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Xiaoling He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Xinyi Du
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
8
|
Hu D, Yang X, Qin M, Pan L, Fang H, Chen P, Ni Y. Dietary bile acids supplementation protects against Salmonella Typhimurium infection via improving intestinal mucosal barrier and gut microbiota composition in broilers. J Anim Sci Biotechnol 2024; 15:155. [PMID: 39533418 PMCID: PMC11555931 DOI: 10.1186/s40104-024-01113-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Salmonella Typhimurium (S. Typhimurium) is a common pathogenic microorganism and poses a threat to the efficiency of poultry farms. As signaling molecules regulating the interaction between the host and gut microbiota, bile acids (BAs) play a protective role in maintaining gut homeostasis. However, the antibacterial effect of BAs on Salmonella infection in broilers has remained unexplored. Therefore, the aim of this study was to investigate the potential role of feeding BAs in protecting against S. Typhimurium infection in broilers. METHODS A total of 144 1-day-old Arbor Acres male broilers were randomly assigned to 4 groups, including non-challenged birds fed a basal diet (CON), S. Typhimurium-challenged birds (ST), S. Typhimurium-challenged birds treated with 0.15 g/kg antibiotic after infection (ST-ANT), and S. Typhimurium-challenged birds fed a basal diet supplemented with 350 mg/kg of BAs (ST-BA). RESULTS BAs supplementation ameliorated weight loss induced by S. Typhimurium infection and reduced the colonization of Salmonella in the liver and small intestine in broilers (P < 0.05). Compared to the ST group, broilers in ST-BA group had a higher ileal mucosal thickness and villus height, and BAs also ameliorated the increase of diamine oxidase (DAO) level in serum (P < 0.05). It was observed that the mucus layer thickness and the number of villous and cryptic goblet cells (GCs) were increased in the ST-BA group, consistent with the upregulation of MUC2 gene expression in the ileal mucosa (P < 0.05). Moreover, the mRNA expressions of Toll-like receptor 5 (TLR5), Toll-like receptor 4 (TLR4), and interleukin 1 beta (IL1b) were downregulated in the ileum by BAs treatment (P < 0.05). 16S rDNA sequencing analysis revealed that, compared to ST group, BAs ameliorated the decreases in Bacteroidota, Bacteroidaceae and Bacteroides abundances, which were negatively correlated with serum DAO activity, and the increases in Campylobacterota, Campylobacteraceae and Campylobacter abundances, which were negatively correlated with body weight but positively correlated with serum D-lactic acid (D-LA) levels (P < 0.05). CONCLUSIONS Dietary BAs supplementation strengthens the intestinal mucosal barrier and reverses dysbiosis of gut microbiota, which eventually relieves the damage to the intestinal barrier and weight loss induced by S. Typhimurium infection in broilers.
Collapse
Affiliation(s)
- Dan Hu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoran Yang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming Qin
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li'an Pan
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haiyan Fang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pengnan Chen
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
9
|
Jia N, Meng Y, Li J, Cui M, Li Y, Jiang D, Chu X. Pharmacodynamic and pharmacokinetic study of Shaoyao Gancao decoction for repairing intestinal barrier damage in ulcerative colitis. Mol Immunol 2024; 175:132-142. [PMID: 39369520 DOI: 10.1016/j.molimm.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
OBJECTIVE To study the therapeutic effect and mechanism of Shaoyao Gancao Decoction (SGD) on ulcerative colitis (UC) mice based on the perspective of intestinal barrier, and this study provides a new consultation for the clinical application of SGD. METHODS The chemical composition of SGD was characterized by HPLC. The UC mouse model was constructed by 3 % dextran sodium sulfate (DSS), which were randomly divided into the model group (DSS), the positive drug group (5-ASA), the Shaoyao group (SYD), Gancao group (GCD), and the Shaoyao Gancao Decoction group (SGD) at low, medium, and high dosages, respectively. The effects of each drug treatment group on UC were evaluated by the rate of body weight loss, disease activity index (DAI), colon length, spleen index, histopathological evaluations, and the levels of serum inflammatory factors (IL-1β, IL-6, IL-10, IL-21, and TNF-α). The goblet cell was observed by Alcian blue/periodic acid-Schiff (AB/PAS) straining, ELISA was used to detect the content of LPS in serum, and Western blot was used to detect the changes in the expression of tight junction proteins ZO-1, occludin, and the pathway proteins TLR4 and NF-κBp65 in the colonic tissues, to explore the protective effect of SGD on the intestinal barrier of UC mice. The vivo absorption process of the main active ingredients in the SG, SY and GC groups was determined by LC-MS. RESULTS The contents of albiflorin, paeoniflorin, liquiritin apioside, liquiritin and glycyrrhetinic acid were 6.1227 mg/g, 20.8993 mg/g, 4.0054 mg/g, 3.6140 mg/g and 8.2515 mg/g, respectively. Compared with DSS group, SGD reduced weight loss(P<0.01) and DAI scores(P<0.05), prevented colon shortening(P<0.01), and ameliorated histopathological damage of the colon in UC mice(P<0.01). SGD also protected the intestinal barrier to alleviate UC by significantly reducing serum LPS and inflammatory factor levels, altering the number of goblet cells, promoting tight junction proteins (ZO-1 and occludin) and decreasing the expression of TLR4 and NF-κB in colonic tissues. Pharmacokinetic results showed that there was no significant difference in Cmax, AUC0-t (μg/L.h) and Tmax of albiflorin and paeoniflorin between the SY and SG groups, the Tmax was within 1 h; the AUC0-t (μg/L.h) of liquiritin and glycyrrhizic acid were about 1.6 and 1.9 times higher in the SG group compared to the GC group, respectively. The Cmax, Tmax and AUC0-t (μg/L.h) of glycyrrhizinic acid were significantly reduced to 0.73, 0.68 and 0.68 times of that of the GC group. CONCLUSION SGD may have a therapeutic effect on DSS-induced UC mice by repairing the damaged intestinal barrier through the TLR4/NF-κB pathway. The combination of Shaoyao and Gancao increased the absorption of liquiritin and glycyrrhizic acid in vivo. The combination of Shaoyao and Gancao could promote the absorption of Gancao, and that the pairing of the two herbs could have a synergistic effect.
Collapse
Affiliation(s)
- Nini Jia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yun Meng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jing Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Mengyao Cui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yaqing Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | | | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Hefei, Anhui Province 230012, China.
| |
Collapse
|
10
|
Shang Q. Inulin alleviates inflammatory response and gut barrier dysfunction via modulating microbiota in lipopolysaccharide-challenged broilers. Int J Biol Macromol 2024; 282:137208. [PMID: 39489258 DOI: 10.1016/j.ijbiomac.2024.137208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/27/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
This study was conducted to explore the protective effects of inulin against lipopolysaccharide (LPS)-induced inflammatory response and intestinal barrier dysfunction in broilers. 108 broilers were allocated to 3 treatments: 1) non-challenged broilers (Control, CON); 2) LPS-challenged broilers (LPS); 3) LPS-challenged broilers fed the basal diet supplemented with 15 g/kg of inulin (Inulin + LPS). At 21 d of age, the LPS-challenged groups received an intraperitoneal injection of LPS, and the CON group received an equal volume of saline. After 4 h of LPS exposure, samples of blood, intestinal mucosa and cecal digesta were collected. The results showed that LPS challenge induced systemic inflammation and damaged intestinal barrier function, whereas inulin attenuated LPS-induced production of pro-inflammatory cytokines by inhibiting the activation of TLR4 and NF-κB p65, and enhanced intestinal barrier function. In addition, LPS stimulation caused cecal microbial dysbiosis as shown by increased abundance of pathogenic bacteria including Ruminococcus_torques_group, Escherichia-Shigella and Subdoligranulum, while supplementation of inulin increased abundance of beneficial bacteria Faecalibacterium and Anaeroplasma, and metabolite production including propionate and butyrate concentrations. In conclusion, dietary supplementation of inulin could partially alleviate LPS-induced inflammation and intestinal barrier injury by modulating intestinal microbiota, thereby minimizing growth retardation of broilers. Our results provide a basis for the rational utilization of inulin in alleviating immune stress in broiler production.
Collapse
Affiliation(s)
- Qinghui Shang
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
11
|
Xue X, Zhou H, Gao J, Li X, Wang J, Bai W, Bai Y, Fan L, Chang H, Shi S. The impact of traditional Chinese medicine and dietary compounds on modulating gut microbiota in hepatic fibrosis: A review. Heliyon 2024; 10:e38339. [PMID: 39391468 PMCID: PMC11466535 DOI: 10.1016/j.heliyon.2024.e38339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
Traditional Chinese medicine (TCM) and dietary compounds have a profound influence on the regulation of gut microbiota (GM) in hepatic fibrosis (HF). Certain substances found in both food and herbs that are edible and medicinal, such as dietary fiber, polyphenols, and polysaccharides, can generate beneficial metabolites like short-chain fatty acids (SCFAs), bile acids (BAs), and tryptophan (Trp). These compounds contribute to regulate the GM, reduce levels of endotoxins in the liver, and alleviate fibrosis and inflammation in the liver. Furthermore, they enhance the composition and functionality of GM, promoting the growth of beneficial bacteria while inhibiting the proliferation of harmful bacteria. These mechanisms mitigate the inflammatory response in the intestines and maintain the integrity of the intestinal barrier. The purpose of this review is to analyze how the GM regulates the pathogenesis of HF, evaluate the regulatory effect of TCM and dietary compounds on the intestinal microflora, with a particular emphasis on modulating flora structure, enhancing gut barrier function, and addressing associated pathogenic factors, thereby provide new insights for the treatment of HF.
Collapse
Affiliation(s)
- Xingting Xue
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Hongbing Zhou
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Jiaxing Gao
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Xinghua Li
- Changzhi People's Hospital, The Affiliated Hospital of Changzhi Medical College, Changzhi, Shanxi Province, China
| | - Jia Wang
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Wanfu Bai
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Yingchun Bai
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Liya Fan
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Hong Chang
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Songli Shi
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
- Institute of Bioactive Substance and Function of Mongolian Medicine and Chinese Materia Medica, Baotou Medical College, Baotou, China
| |
Collapse
|
12
|
Nie HY, Ge J, Huang GX, Liu KG, Yue Y, Li H, Lin HG, Zhang T, Yan HF, Xu BX, Sun HW, Yang JW, Si SY, Zhou JL, Cui Y. New insights into the intestinal barrier through "gut-organ" axes and a glimpse of the microgravity's effects on intestinal barrier. Front Physiol 2024; 15:1465649. [PMID: 39450142 PMCID: PMC11499591 DOI: 10.3389/fphys.2024.1465649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/02/2024] [Indexed: 10/26/2024] Open
Abstract
Gut serves as the largest interface between humans and the environment, playing a crucial role in nutrient absorption and protection against harmful substances. The intestinal barrier acts as the initial defense mechanism against non-specific infections, with its integrity directly impacting the homeostasis and health of the human body. The primary factor attributed to the impairment of the intestinal barrier in previous studies has always centered on the gastrointestinal tract itself. In recent years, the concept of the "gut-organ" axis has gained significant popularity, revealing a profound interconnection between the gut and other organs. It speculates that disruption of these axes plays a crucial role in the pathogenesis and progression of intestinal barrier damage. The evaluation of intestinal barrier function and detection of enterogenic endotoxins can serve as "detecting agents" for identifying early functional alterations in the heart, kidney, and liver, thereby facilitating timely intervention in the disorders. Simultaneously, consolidating intestinal barrier integrity may also present a potential therapeutic approach to attenuate damage in other organs. Studies have demonstrated that diverse signaling pathways and their corresponding key molecules are extensively involved in the pathophysiological regulation of the intestinal barrier. Aberrant activation of these signaling pathways and dysregulated expression of key molecules play a pivotal role in the process of intestinal barrier impairment. Microgravity, being the predominant characteristic of space, can potentially exert a significant influence on diverse intestinal barriers. We will discuss the interaction between the "gut-organ" axes and intestinal barrier damage, further elucidate the signaling pathways underlying intestinal barrier damage, and summarize alterations in various components of the intestinal barrier under microgravity. This review aims to offer a novel perspective for comprehending the etiology and molecular mechanisms of intestinal barrier injury as well as the prevention and management of intestinal barrier injury under microgravity environment.
Collapse
Affiliation(s)
- Hong-Yun Nie
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Jun Ge
- Clinical laboratory, The Ninth Medical Center of the PLA General Hospital, Beijing, China
| | - Guo-Xing Huang
- 306th Clinical College of PLA, The Fifth Clinical College, Anhui Medical University, Beijing, China
| | - Kai-Ge Liu
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Yuan Yue
- Department of Disease Control and Prevention, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Hao Li
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Hai-Guan Lin
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Tao Zhang
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Hong-Feng Yan
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Bing-Xin Xu
- Special Medical Laboratory Center, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Hong-Wei Sun
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Jian-Wu Yang
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Shao-Yan Si
- Special Medical Laboratory Center, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Jin-Lian Zhou
- Department of Pathology, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Yan Cui
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
13
|
Yue Y, Ke Y, Zheng J, Wang Z, Liu H, Liu S. Microbiota-derived tryptophan metabolism and AMPK/mTOR pathway mediate antidepressant-like effect of Shugan Hewei Decoction. Front Pharmacol 2024; 15:1466336. [PMID: 39351096 PMCID: PMC11439769 DOI: 10.3389/fphar.2024.1466336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Depression is a common psychological disorder, accompanied by a disturbance of the gut microbiota and its metabolites. Recently, microbiota-derived tryptophan metabolism and AMPK/mTOR pathway were found to be strongly linked to the development of depression. Shugan Hewei Decoction (SHD) is a classical anti-depression traditional Chinese medicine formula. Although, we have shown that SHD exerted antidepressant effects via cecal microbiota and cecum NLRP3 inflammasome, the specific mechanism of SHD on metabolism driven by gut microbiota is unknown. In this study, we focus on the tryptophan metabolism and AMPK/mTOR pathway to elucidate the multifaceted mechanisms of SHD. Methods Male rats were established to the chronic unpredictable stress (CUS)/social isolation for 6 weeks, and SHD-L (7.34 g/kg/d), SHD-H (14.68 g/kg/d), Fructooligosaccharide (FOS) (3.15 g/kg/d) were given by intragastric administration once daily during the last 2 weeks. Behavioral experiments were carried out to evaluate the model. The colonic content was taken out for shotgun metagenomic sequencing combined with the untargeted metabolomics, the targeted tryptophan metabolomics. ELISA was used to detect the levels of zonula occludens 1 (ZO-1), Occludin in colon, as well as lipopolysaccharide (LPS), diamine oxidase (DAO), D-lactate (DLA) in serum. The expressions of mRNA and proteins of adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway of autophagy were examined using RT-qPCR and Western blot in colon. Results SHD modulated gut microbiota function and biological pathways, which were related to tryptophan metabolism. In addition, SHD could regulate microbiota-derived tryptophan production (such as reduction of 3-HK, 3-HAA etc., increment of ILA, IAA etc.), which metabolites belong to kynurenine (KYN) and indole derivatives. Further, SHD reduced intestinal permeability and enhanced the intestinal barrier function. Moreover, SHD could upregulate the levels of AMPK, microtubule associated protein light chain 3 (LC3), autophagy related protein 5 (ATG5) and Beclin1, downregulate the levels of mTOR, p62, promoted autophagy in colon. Spearman's analysis illustrated the close correlation between tryptophan metabolites and intestinal barrier, AMPK/mTOR pathway. Conclusion SHD may exert antidepressant-like effects by regulating microbiota-derived tryptophan metabolism, and triggering the AMPK/mTOR pathway of autophagy, enhancing the intestinal barrier function.
Collapse
Affiliation(s)
- Yingying Yue
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| | - Youlan Ke
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| | - Junping Zheng
- Hubei Shizhen Laboratory, Wuhan, China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Zicheng Wang
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| | - Hongtao Liu
- Hubei Shizhen Laboratory, Wuhan, China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Songlin Liu
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| |
Collapse
|
14
|
Du L, Chen C, Yang YH, Zheng Y, Li H, Wu ZJ, Wu H, Miyashita K, Su GH. Fucoxanthin alleviates lipopolysaccharide-induced intestinal barrier injury in mice. Food Funct 2024; 15:6359-6373. [PMID: 38787699 DOI: 10.1039/d4fo00611a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The aim of this study was to evaluate the preventive role and underlying mechanisms of fucoxanthin (Fx) on lipopolysaccharide (LPS)-induced intestinal barrier injury in mice. Our results demonstrated that the oral administration of Fx (50 and 200 mg per kg body weight per day) for consecutive 7 days significantly alleviated the severity of LPS-induced intestinal barrier injury in mice, as evidenced by attenuating body weight loss, improving intestinal permeability, and ameliorating intestinal morphological damage such as reduction in the ratio of the villus length to the crypt depth (V/C), intestinal epithelium distortion, goblet cell depletion, and low mucin 2 (MUC2) expression. Fx also significantly mitigated LPS-induced excessive apoptosis of intestinal epithelial cells (IECs) and curbed the decrease of tight junction proteins including claudin-1, occludin, and zonula occludens-1 in the ileum and colon. Additionally, Fx effectively alleviated LPS-induced extensive infiltration of macrophages and neutrophils into the intestinal mucosa, the overproduction of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin 1beta (IL-1β) and IL-6, and gasdermin D (GSDMD)-mediated pyroptosis of IECs. The underlying mechanisms might be associated with inhibiting the activation of nuclear factor-kappa B (NF-κB), mitogen-activated protein kinases (MAPKs) and nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome signaling pathways. Moreover, Fx also notably restrained intestinal reactive oxygen species (ROS), malondialdehyde and protein carbonylation levels in LPS-treated mice, and it might be mediated by activating the nuclear factor-erythroid 2 related factor 2 (Nrf2) signaling pathway. Overall, these findings indicated that Fx might be developed as a potential effective dietary supplement to prevent intestinal barrier injury.
Collapse
Affiliation(s)
- Lei Du
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, No. 105 Jiefang Road, Jinan, Shandong, 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Chen Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Yu-Hong Yang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 Daxue Road, Jinan, Shandong, 250353, China
| | - Yan Zheng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, No. 105 Jiefang Road, Jinan, Shandong, 250013, China.
| | - Hui Li
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, No. 105 Jiefang Road, Jinan, Shandong, 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Zi-Jian Wu
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, No. 105 Jiefang Road, Jinan, Shandong, 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Hao Wu
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, No. 105 Jiefang Road, Jinan, Shandong, 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Kazuo Miyashita
- Center for Industry-University Collaboration, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Guo-Hai Su
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, No. 105 Jiefang Road, Jinan, Shandong, 250013, China.
| |
Collapse
|
15
|
Liu Y, Tang X, Yuan H, Gao R. Naringin Inhibits Macrophage Foam Cell Formation by Regulating Lipid Homeostasis and Metabolic Phenotype. Nutrients 2024; 16:1321. [PMID: 38732567 PMCID: PMC11085135 DOI: 10.3390/nu16091321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Imbalances in lipid uptake and efflux and inflammation are major contributors to foam cell formation, which is considered a therapeutic target to protect against atherosclerosis. Naringin, a citrus flavonoid abundant in citrus fruits, has been reported to exert an antiatherogenic function, but its pharmacological mechanism is unclear. Naringin treatment effectively inhibits foam cell formation in THP-1 and RAW264.7 macrophages. In this study, mechanically, naringin maintained lipid homeostasis within macrophages through downregulation of the key genes for lipid uptake (MSR1 and CD36) and the upregulation of ABCA1, ABCG1 and SR-B1, which are responsible for cholesterol efflux. Meanwhile, naringin significantly decreased the cholesterol synthesis-related genes and increased the genes involved in cholesterol metabolism. Subsequently, the results showed that ox-LDL-induced macrophage inflammatory responses were inhibited by naringin by reducing the proinflammatory cytokines IL-1β, IL-6 and TNF-α, and increasing the anti- inflammatory cytokine IL-10, which was further verified by the downregulation of pro-inflammatory and chemokine-related genes. Additionally, we found that naringin reprogrammed the metabolic phenotypes of macrophages by suppressing glycolysis and promoting lipid oxidation metabolism to restore macrophage phenotypes and functions. These results suggest that naringin is a potential drug for the treatment of AS as it inhibits macrophage foam cell formation by regulating metabolic phenotypes and inflammation.
Collapse
Affiliation(s)
- Yan Liu
- Department of Pharmacy, Air Force Medical Center, PLA, Beijing 100142, China; (Y.L.); (X.T.); (H.Y.)
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiaohan Tang
- Department of Pharmacy, Air Force Medical Center, PLA, Beijing 100142, China; (Y.L.); (X.T.); (H.Y.)
| | - Hailong Yuan
- Department of Pharmacy, Air Force Medical Center, PLA, Beijing 100142, China; (Y.L.); (X.T.); (H.Y.)
| | - Rong Gao
- Department of Pharmacy, Air Force Medical Center, PLA, Beijing 100142, China; (Y.L.); (X.T.); (H.Y.)
| |
Collapse
|
16
|
Zheng Y, Chen X, Ding C, Liu X, Chi L, Zhang S. Abscisic acid ameliorates d-galactose -induced aging in mice by modulating AMPK-SIRT1-p53 pathway and intestinal flora. Heliyon 2024; 10:e28283. [PMID: 38524603 PMCID: PMC10957431 DOI: 10.1016/j.heliyon.2024.e28283] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024] Open
Abstract
Abscisic acid (ABA) is a plant hormone with various biological activities. Aging is a natural process accompanied by cognitive and physiological decline, and aging and its associated diseases pose a serious threat to public health, but its mechanisms remain insufficient. Therefore, the purpose of this study was to investigate the ameliorative effects of ABA on d-galactose (D-Gal)-induced aging in mice and to delve into its molecular mechanisms. Aging model was es-tablished by theintraperitoneal injection of D-Gal. We evaluated the oxidative stress by measuring superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT) levels in serum. Proteins content in brain were determined by Western blot. D-Gal-induced brain damage was monitored by measuring the levels of acetylcholinesterase (AChE) content and hematoxylin-eosin staining (H&E). To evaluate the effects of ABA on aging, we measured the gut microbiota. The results demonstrated that ABA increased SOD, CAT and AChE, decreased MDA level. H&E staining showed that ABA could improve D-Gal-induced damage. In addition, ABA regulated the B-cell-lymphoma-2 (BCL-2) family and Phosphatidylinositol 3-kinase/Protein kinase B (PI3K/AKT) signaling pathway, while further regulating the acetylation of p53 protein by modulating the AMPK pathway and activating SIRT1 protein, thereby inhibiting the apoptosis of brain neurons and thus regulating the aging process. Interestingly, ABA improved the ratio of intestinal bacteria involved in regulating multiple metabolic pathways in the aging process, such as Bacteroides, Firmicutes, Lactobacillus and Ak-kermansia. In conclusion, the present study suggests that ABA may be responsible for improving and delaying the aging process by enhancing antioxidant activity, anti-apoptosis and regulating intestinal flora.
Collapse
Affiliation(s)
- Yongchun Zheng
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101, China
| | - Xueyan Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101, China
- Changbai Mountain Characteristic Medicinal Resources Research and Development Innovation Center, Jilin, 132101, China
| | - Xinglong Liu
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101, China
- Changbai Mountain Characteristic Medicinal Resources Research and Development Innovation Center, Jilin, 132101, China
| | - Lihua Chi
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101, China
| | - Shuai Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- Changbai Mountain Characteristic Medicinal Resources Research and Development Innovation Center, Jilin, 132101, China
| |
Collapse
|
17
|
Wang B, Liu S, Lin L, Xu W, Gong Z, Xiao W. The protective effect of L-theanine on the intestinal barrier in heat-stressed organisms. Food Funct 2024; 15:3036-3049. [PMID: 38414417 DOI: 10.1039/d3fo04459a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Heat stress caused by heatwaves, extreme temperatures, and other weather can damage the intestinal barrier of organisms. L-Theanine (LTA) attenuates heat stress-induced oxidative stress, inflammatory responses, and impaired immune function, but its protective effect on the intestinal barrier of heat-stressed organisms is unclear. In this study, low (100 mg kg-1 d-1), medium (200 mg kg-1 d-1), and high (400 mg kg-1 d-1) dosages of LTA were used in the gavage of C57BL/6J male mice that were experimented on for 50 d. These mice were subjected to heat stress for 2 h d-1 at 40 ± 1 °C and 60 ± 5% RH in the last 7 d. LTA attenuated the heat stress-induced decreases in body mass and feed intake, and the destruction of intestinal villi and crypt depth; reduced the serum levels of FITC-dextran and D-LA, as well as the DAO activity; and upregulated the colonic tissues of Occludin, Claudin-1, and ZO-1 mRNA and occludin protein expression. The number of goblet cells in the colon tissue of heat-stressed organisms increased in the presence of LTA, and the expression levels of Muc2, Muc4 mRNA, and Muc2 protein were upregulated. LTA increased the abundance of Bifidobacterium and Turicibacter, and decreased the abundance of Enterorhabdus and Desulfovibrio in the intestinal tract of heat-stressed organisms and restored gut microbiota homeostasis. LTA promoted the secretion of IL-4, IL-10, and sIgA and inhibited the secretion of TNF-α and IFN-γ in the colon of heat-stressed organisms. The expressions of Hsf1, Hsp70, Hsph1, TLR4, P38 MAPK, p-P65 NF-κB, MLCK mRNA, and proteins were downregulated by LTA in the colon of heat-stressed organisms. These results suggest that LTA protects the intestinal barrier in heat-stressed organisms by modulating multiple molecular pathways. Therefore, this study provides evidence on how tea-containing LTA treatments could be used to prevent and relieve intestinal problems related to heat stress.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Sha Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Ling Lin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Wei Xu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Zhihua Gong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Wenjun Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
18
|
He X, Liang J, Li X, Wang Y, Zhang X, Chen D, Wu L, Wang S. Dahuang zhechong pill ameliorates hepatic fibrosis by regulating gut microbiota and metabolites. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117402. [PMID: 37967779 DOI: 10.1016/j.jep.2023.117402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE DHZCP is a traditional Chinese medicinal formula in "The Synopsis of Prescriptions of the Golden Chamber" that has been often used in the treatment of hepatic disorders, gynecopathy and atherosclerosis. However, its underlying mechanisms in preventing hepatic fibrosis remain incompletely understood. AIM OF THE STUDY This study aims to explore the therapeutic efficacy and potential mechanism of DHZCP in a CCL4-induced experimental hepatic fibrosis rat model. MATERIALS AND METHODS DHZCP was orally administered at doses of 0.168, 0.084 and 0.042 g⋅kg-1⋅d-1 in a CCL4-induced hepatic fibrosis model using SD rats. Histopathology, immunohistochemistry and biochemical analysis, ELISA, Flow cytometry, WB, RT-PCR, 16 S rRNA, and untargeted metabolomic analysis were used to determine the therapeutic effects and mechanisms of DHZCP in the treatment of CCL4-induced hepatic fibrosis. RESULTS Pharmacodynamically, DHZCP inhibited ALT and AST, improved liver function, decreased NF-κB, TNF-α and IL-6 in liver tissue, indicating its role in inhibiting CCL4-induced liver inflammation. Most importantly, it reduces the level of fibrosis in serum and liver tissue. Histological analysis also showed that DHZCP could effectively inhibit inflammatory cytokine infiltration and excessive collagen deposition. Mechanistically, DHZCP regulates gut microbiota, improves the proportion of firmicutes and bacteroidota at the phylum level, and increases the abundance of beneficial bacteria at the genus level, such as muribagulaceae unclassified, prevotella, alloprevotella, closteriales unclassified, lachnospiraceae unclassified and phascolarctobacterium. Instead, it reduced the abundance of two harmful bacteria, desulfovibrio and colidextribacter. Four types of metabolites such as hydrocarbons, organic nitrogen compounds, organic oxygen compounds, and organosulfur compounds were added. Furthermore, DHZCP was found to reduce the damage of intestinal barrier caused by changes in gut microbiota and metabolites. CONCLUSION DHZCP is an effective inhibitor of hepatic fibrosis by regulating gut microbiota and metabolites, improving the integrity of the intestinal barrier.
Collapse
Affiliation(s)
- Xiaoyan He
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Jingtao Liang
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610036, PR China
| | - Xin Li
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Yao Wang
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Xiaobo Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Dayi Chen
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China.
| | - Lijuan Wu
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China.
| | - Shiyu Wang
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China.
| |
Collapse
|
19
|
Tang S, Ouyang Z, Tan X, Liu X, Bai J, Wang H, Huang L. Protective Effect of the Naringin-Chitooligosaccharide Complex on Lipopolysaccharide-Induced Systematic Inflammatory Response Syndrome Model in Mice. Foods 2024; 13:576. [PMID: 38397553 PMCID: PMC10887581 DOI: 10.3390/foods13040576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/27/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Naringin is one of the common flavonoids in grapefruit, which has anti-cancer, antioxidant, and anti-inflammatory activities. However, its poor solubility limits its wide application. Therefore, the aim of this study is to investigate the anti-inflammatory effect of naringin combined with chitooligosaccharides with good biocompatibility by constructing a mouse model of systemic inflammatory response syndrome (SIRS). The results showed that the naringin-chitooligosaccharide (NG-COS) complex significantly inhibited lipopolysaccharide (LPS)-induced weight loss, reduced food intake, tissue inflammatory infiltration, and proinflammatory cytokines IL-6, TNF-α, INF-γ, and IL-1β levels. The complex also significantly affected the content of malondialdehyde and the activities of MPO, SOD, and GSH in the liver, spleen, lungs, and serum of mice with systemic inflammation. In addition, NG-COS significantly inhibited the mRNA expression of inflammatory factors in the TLR4/NF-κB signaling pathway. Principal component analysis showed that the complexes could inhibit LPS-induced systemic inflammation in mice, and the effect was significantly better than that of naringin and chitooligosaccharides alone. This study explored the synergistic effects of chitosan and naringin in reducing inflammation and could contribute to the development of novel biomedical interventions.
Collapse
Affiliation(s)
- Sheng Tang
- Citrus Research Institute, Southwest University, Chongqing 400700, China
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Zhu Ouyang
- Citrus Research Institute, Southwest University, Chongqing 400700, China
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Xiang Tan
- Citrus Research Institute, Southwest University, Chongqing 400700, China
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Xin Liu
- Citrus Research Institute, Southwest University, Chongqing 400700, China
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Junying Bai
- Citrus Research Institute, Southwest University, Chongqing 400700, China
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Hua Wang
- Citrus Research Institute, Southwest University, Chongqing 400700, China
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Linhua Huang
- Citrus Research Institute, Southwest University, Chongqing 400700, China
- National Citrus Engineering Research Center, Chongqing 400700, China
| |
Collapse
|
20
|
Liu ST, Zha KJ, Li PJ, Gao JB, Zhang YG. Protective effect of naringin against radiation-induced heart disease in rats via Sirt1/NF-κB signaling pathway and endoplasmic reticulum stress. Chem Biol Drug Des 2024; 103:e14453. [PMID: 38230793 DOI: 10.1111/cbdd.14453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/18/2024]
Abstract
This study was designed to explore the protective effect and mechanism of naringin (NG) on radiation-induced heart disease (RIHD) in rats. Rats were divided into four x-ray (XR) irradiation groups with different absorbed doses (0/10/15/20 Gy), or into three groups (control, XR, and XR + NG groups). Subsequently, the ultrasonic diagnostic apparatus was adopted to assess and compare the left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), left ventricular internal diameter at end diastole (LVIDd), and left ventricular internal diameter at end systole (LVIDs) in rats. Hematoxylin-eosin (H&E) staining and Masson staining were applied to detect the pathological damage and fibrosis of heart tissue. Western blot was used to measure the expression levels of myocardial fibrosis-related proteins, endoplasmic reticulum stress-related proteins, and Sirt1 (silent information regulator 1)/NF-κB (nuclear factor kappa-B) signaling pathway-related proteins in cardiac tissues. Additionally, enzyme-linked immunosorbent assay was utilized to detect the activities of pro-inflammatory cytokines, malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) in cardiac tissue. The results showed that NG treatment significantly attenuated the 20 Gy XR-induced decline of LVEF and LVFS and the elevation of LVIDs. Cardiac tissue damage and fibrosis caused by 20 Gy XR were significant improved after NG treatment. Meanwhile, in rats irradiated by XR, marked downregulation was identified in the expressions of fibrosis-related proteins (Col I, collagen type I; α-SMA, α-smooth muscle actin; and TGF-β1, transforming growth factor-beta 1) and endoplasmic reticulum stress-related proteins (GRP78, glucose regulatory protein 78; CHOP, C/EBP homologous protein; ATF6, activating transcription factor 6; and caspase 12) after NG treatment. Moreover, NG treatment also inhibited the production of pro-inflammatory cytokines [interleukin-6, interleukin-1β, and monocyte chemoattractant protein-1 (MCP-1)], reduced the expression of MDA, and promoted the activities of SOD and CAT. Also, NG treatment promoted Sirt1 expression and inhibited p65 phosphorylation. Collectively, XR irradiation induced cardiac injury in rats in a dose-dependent manner. NG could improve the cardiac injury induced by XR irradiation by inhibiting endoplasmic reticulum stress and activating Sirt1/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shu-Ting Liu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kai-Ji Zha
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pei-Jie Li
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jian-Bo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yong-Gao Zhang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
21
|
Zhi Y, Li T, Li Y, Zhang T, Du M, Zhang Q, Wang X, Hu G. Protective role of Cecropin AD against LPS-induced intestinal mucosal injury in chickens. Front Immunol 2023; 14:1290182. [PMID: 38162646 PMCID: PMC10757607 DOI: 10.3389/fimmu.2023.1290182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Cecropin AD (CAD), a renowned antimicrobial peptide, has shown promising potential in treating various bacterial infections. This study investigates the protective effects of CAD against lipopolysaccharide (LPS)-induced intestinal adversities in chickens. Methods Sixty SPF-grade chicks were divided into groups and exposed to different dosages of CAD, followed by LPS administration. The study assessed the impact of CAD on intestinal mucosal injury markers, oxidative stress, and inflammation. Results LPS significantly increased Diamine oxidase (DAO) and D-lactate (D-LA) levels, both indicators of intestinal mucosal injury. CAD treatment substantially attenuated these elevations, particularly at higher dosages. Additionally, CAD markedly reduced oxidative stress in intestinal tissues, as shown by normalized antioxidant levels and decreased reactive oxygen species. Histological analysis supported these findings, showing better-preserved villi structures in CAD-treated groups. Furthermore, CAD significantly reduced IL-6 and IL-8 expression post-LPS stimulation and effectively regulated the NLRP3 inflammasome pathway, decreasing associated factors like NLRP3, Caspase-1, IL-1b, and IL-18. Discussion The study demonstrates CAD's therapeutic potential in alleviating LPS-induced intestinal injuries. The protective effects are primarily attributed to its anti-inflammatory and antioxidative actions and modulation of the NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Yan Zhi
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Tingyu Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yaxuan Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Tao Zhang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Mengze Du
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Qian Zhang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xiangdong Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, the Key Laboratory of Otolaryngology-Head and Neck Surgery (Ministry of Education of China), Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Ge Hu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
22
|
Fan YM, Wei YY, Wang HR, Yu-Ga, Zhang YN, Hao Z. Inhibitory effect of Portulaca oleracea L. aqueous extract and juice on NLRP3 inflammasome activation in an ulcerative colitis mouse model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86380-86394. [PMID: 37402916 DOI: 10.1007/s11356-023-28365-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 06/17/2023] [Indexed: 07/06/2023]
Abstract
Portulaca oleracea L. (PO) is an edible and medicinal plant used for treating gastrointestinal diseases. However, the effects of PO on ulcerative colitis (UC) and underlying mechanisms remain unclear. This study investigated the effects of PO aqueous extract (POE) and PO juice (PJ) on dextran sulfate sodium (DSS)-induced UC in a mouse model and attempted to unravel their underlying mechanisms. The results revealed that PJ contains more bioactive compounds and has more overlapping targets with UC than POE. Both POE and PJ effectively reduced Disease Activity Index scores and inflammatory cell infiltration in the UC mouse model, but PJ had a better effect than POE. Furthermore, PJ inhibited pyroptosis by decreasing the expression of the NLRP3 inflammasome, while also repairing the dysfunction of the intestinal barrier by upregulating the expression of tight junction proteins. Therefore, based on the study findings, we concluded that PJ can improve DSS-induced UC and may suppress pyroptosis by interfering with the activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Yi-Meng Fan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultura University, Beijing, 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing, 100193, China
| | - Yuan-Yuan Wei
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultura University, Beijing, 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing, 100193, China
| | - Hui-Ru Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultura University, Beijing, 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing, 100193, China
| | - Yu-Ga
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultura University, Beijing, 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing, 100193, China
| | - Yan-Nan Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultura University, Beijing, 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing, 100193, China
| | - Zhihui Hao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultura University, Beijing, 100193, China.
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China.
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing, 100193, China.
| |
Collapse
|
23
|
Chen Q, Ren R, Sun Y, Xu J, Yang H, Li X, Xiao Y, Li J, Lyu W. The combination of metagenome and metabolome to compare the differential effects and mechanisms of fructose and sucrose on the metabolic disorders and gut microbiota in vitro and in vivo. Food Funct 2023. [PMID: 37470119 DOI: 10.1039/d3fo02246c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Sucrose and fructose are the most commonly used sweeteners in the modern food industry, but there are few comparative studies on the mechanisms by which fructose and sucrose affect host health. The aim of the present study was to explain the different effects of fructose and sucrose on host metabolism from the perspective of gut microbiota. Mice were fed for 16 weeks with normal drinking water (CON), 30% fructose drinking water (CF) and 30% sucrose drinking water (SUC). Compared with fructose treatment, sucrose caused significantly higher weight gain, epididymal fat deposition, hepatic steatosis, and jejunum histological injury. Sucrose increased the abundance of LPS-producing bacteria which was positively correlated with obesity traits, while fructose increased the abundance of Lactobacillus. An in vitro fermentation experiment also showed that fructose increased the abundance of Lactobacillus, while sucrose increased the abundance of Klebsiella and Escherichia. In addition, combined with microbial functional analysis and metabolomics data, fructose led to the enhancement of carbohydrate metabolism and TCA cycle capacity, and increased the production of glutamate. The cross-cooperation network greatly influenced the microbiota (Klebsiella, Lactobacillus), metabolites (glutamate, fructose 1,6-biosphosphate, citric acid), and genes encoding enzymes (pyruvate kinase, 6-phosphofructokinase 1, fructokinase, lactate dehydrogenase, aconitate hydratase, isocitrate dehydrogenase 3), suggesting that they may be the key differential factors in the process of fructose and sucrose catabolism. Therefore, the changes in gut microbiome mediated by fructose and sucrose are important reasons for their differential effects on host health and metabolism.
Collapse
Affiliation(s)
- Qu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Ruochen Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Yue Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Jing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Xiaoqiong Li
- Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Jinjun Li
- Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|
24
|
Chen X, Luo D, Jia G, Zhao H, Liu G, Huang Z. L-theanine attenuates porcine intestinal tight junction damage induced by LPS via p38 MAPK/NLRP3 signaling in IPEC-J2 cells. Food Chem Toxicol 2023:113870. [PMID: 37271275 DOI: 10.1016/j.fct.2023.113870] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
L-theanine is a natural bioactive component in tea leaves and has anti-inflammatory effects. The study aimed to investigated the effects and underlying mechanisms of L-theanine on lipopolysaccharide (LPS)-induced intestinal tight junction damage in IPEC-J2 cells. Results showed that LPS induced tight junction damage by increasing reactive oxygen species production and lactate dehydrogenase (LDH) release and decreasing the mRNA expression of tight junction proteins related genes zonula occludens-1 (ZO-1, also known as Tjp1), Occludin and Claudin-1, while L-theanine reversed such an effect and attenuated the increase of p38 mitogen-activated protein kinase (p38 MAPK) mRNA expression. The p38 MAPK inhibitor (SB203580) attenuated the mRNA expression of nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (Nlrp3) inflammasome and interleukin-1β (Il-1β), and increased the mRNA expression of Tjp1, Occludin and Claudin-1, which showed a similar effect with L-theanine. In addition, NLRP3 inhibitor MCC950 attenuated the Il-1β expression and LDH release, while increased the expression of tight-junction protein-related genes. In conclusion, L-theanine could protect LPS-induced intestinal tight junction damage by inhibiting the activation of p38 MAPK-mediated NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Diaoyun Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China.
| |
Collapse
|
25
|
Fan Y, Zhao Q, Wei Y, Wang H, Ga Y, Zhang Y, Hao Z. Pingwei San Ameliorates Spleen Deficiency-Induced Diarrhea through Intestinal Barrier Protection and Gut Microbiota Modulation. Antioxidants (Basel) 2023; 12:antiox12051122. [PMID: 37237988 DOI: 10.3390/antiox12051122] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Pingwei San (PWS) has been used for more than a thousand years as a traditional Chinese medicine prescription for treating spleen-deficiency diarrhea (SDD). Nevertheless, the exact mechanism by which it exerts its antidiarrheal effects remains unclear. The objective of this investigation was to explore the antidiarrheal efficacy of PWS and its mechanism of action in SDD induced by Rhubarb. To this end, UHPLC-MS/MS was used to identify the chemical composition of PWS, while the body weight, fecal moisture content, and colon pathological alterations were used to evaluate the effects of PWS on the Rhubarb-induced rat model of SDD. Additionally, quantitative polymerase chain reaction (qPCR) and immunohistochemistry were employed to assess the expression of inflammatory factors, aquaporins (AQPs), and tight junction markers in the colon tissues. Furthermore, 16S rRNA was utilized to determine the impact of PWS on the intestinal flora of SDD rats. The findings revealed that PWS increased body weight, reduced fecal water content, and decreased inflammatory cell infiltration in the colon. It also promoted the expression of AQPs and tight junction markers and prevented the loss of colonic cup cells in SDD rats. In addition, PWS significantly increased the abundance of Prevotellaceae, Eubacterium_ruminantium_group, and Tuzzerella, while decreasing the abundance of Ruminococcus and Frisingicoccus in the feces of SDD rats. The LEfSe analysis revealed that Prevotella, Eubacterium_ruminantium_group, and Pantoea were relatively enriched in the PWS group. Overall, the findings of this study indicate that PWS exerted a therapeutic effect on Rhubarb-induced SDD in rats by both protecting the intestinal barrier and modulating the imbalanced intestinal microbiota.
Collapse
Affiliation(s)
- Yimeng Fan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultura University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Qingyu Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultura University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Yuanyuan Wei
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultura University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Huiru Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultura University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Yu Ga
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultura University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Yannan Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultura University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Zhihui Hao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultura University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| |
Collapse
|