1
|
Cianci R, Caldarelli M, Brani P, Bosi A, Ponti A, Giaroni C, Baj A. Cytokines Meet Phages: A Revolutionary Pathway to Modulating Immunity and Microbial Balance. Biomedicines 2025; 13:1202. [PMID: 40427029 PMCID: PMC12109214 DOI: 10.3390/biomedicines13051202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2025] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Bacteriophages are a unique and fascinating group of viruses, known for their highly specific ability to infect and replicate within bacterial cells. While their potential as antibacterial agents has been recognized for decades, recent research has revealed complex interactions between phages and the human immune system, offering new insights into their role in immune modulation. New evidence reveals a dynamic and intricate relationship between phages and cytokines, suggesting their ability to regulate inflammation, immune tolerance, and host-pathogen interaction. Herein, we review how phages affect the production of cytokines and the behavior of immune cells indirectly by lysis of bacterium or directly on mammalian cells. Phages have been shown to induce both pro- and anti-inflammatory responses and recently, they have been explored in personalized immunotherapy, cancer immunotherapy, and microbiome modulation, which are the focus of this review. Several challenges remain despite significant progress, including practical obstructions related to endotoxins along with host microbiome variability and regulatory issues. Nevertheless, the potential of bacteriophages to modulate immune responses makes them attractive candidates for the future of precision medicine.
Collapse
Affiliation(s)
- Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy;
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Mario Caldarelli
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy;
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Paola Brani
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy; (P.B.); (A.B.); (A.P.); (C.G.); (A.B.)
- Laboratory of Microbiology, ASST Sette Laghi, 21100 Varese, Italy
| | - Annalisa Bosi
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy; (P.B.); (A.B.); (A.P.); (C.G.); (A.B.)
| | - Alessandra Ponti
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy; (P.B.); (A.B.); (A.P.); (C.G.); (A.B.)
| | - Cristina Giaroni
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy; (P.B.); (A.B.); (A.P.); (C.G.); (A.B.)
| | - Andreina Baj
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy; (P.B.); (A.B.); (A.P.); (C.G.); (A.B.)
- Laboratory of Microbiology, ASST Sette Laghi, 21100 Varese, Italy
| |
Collapse
|
2
|
Faruk O, Jewel ZA, Bairagi S, Rasheduzzaman M, Bagchi H, Tuha ASM, Hossain I, Bala A, Ali S. Phage treatment of multidrug-resistant bacterial infections in humans, animals, and plants: The current status and future prospects. INFECTIOUS MEDICINE 2025; 4:100168. [PMID: 40104270 PMCID: PMC11919290 DOI: 10.1016/j.imj.2025.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 03/20/2025]
Abstract
Phages, including the viruses that lyse bacterial pathogens, offer unique therapeutic advantages, including their capacity to lyse antibiotic-resistant bacteria and disrupt biofilms without harming the host microbiota. The lack of new effective antibiotics and the growing limitations of existing antibiotics have refocused attention on phage therapy as an option in complex clinical cases such as burn wounds, cystic fibrosis, and pneumonia. This review describes clinical cases and preclinical studies in which phage therapy has been effective in both human and veterinary medicine, and in an agricultural context. In addition, critical challenges, such as the narrow host range of bacteriophages, the possibility of bacterial resistance, and regulatory constraints on the widespread use of phage therapy, are addressed. Future directions include optimizing phage therapy through strategies ranging from phage cocktails to broadening phage host range through genetic modification, and using phages as vaccines or biocontrol agents. In the future, if phage can be efficiently delivered, maintained in a stable state, and phage-antibiotic synergy can be achieved, phage therapy will offer much needed treatment options. However, the successful implementation of phage therapy within the current standards of practice will also require the considerable development of regulatory infrastructure and greater public acceptance. In closing, this review highlights the promise of phage therapy as a critical backup or substitute for antibiotics. It proposes a new role as a significant adjunct to, or even replacement for, antibiotics in treating multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Omor Faruk
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Zilhas Ahmed Jewel
- Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Sanjoy Bairagi
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Mohammad Rasheduzzaman
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Hindol Bagchi
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Akber Subahan Mahbub Tuha
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Imran Hossain
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Ayon Bala
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Sarafat Ali
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| |
Collapse
|
3
|
Ali Agha AS, Al-Samydai A, Aburjai T. New frontiers in CRISPR: Addressing antimicrobial resistance with Cas9, Cas12, Cas13, and Cas14. Heliyon 2025; 11:e42013. [PMID: 39906792 PMCID: PMC11791237 DOI: 10.1016/j.heliyon.2025.e42013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Background The issue of antimicrobial resistance (AMR) poses a major challenge to global health, evidenced by alarming mortality predictions and the diminishing efficiency of conventional antimicrobial drugs. The CRISPR-Cas system has proven to be a powerful tool in addressing this challenge. It originated from bacterial adaptive immune mechanisms and has gained significant recognition in the scientific community. Objectives This review aims to explore the applications of CRISPR-Cas technologies in combating AMR, evaluating their effectiveness, challenges, and potential for integration into current antimicrobial strategies. Methods We conducted a comprehensive review of recent literature from databases such as PubMed and Web of Science, focusing on studies that employ CRISPR-Cas technologies against AMR. Conclusions CRISPR-Cas technologies offer a transformative approach to combat AMR, with potential applications that extend beyond traditional antimicrobial strategies. Integrating these technologies with existing methods could significantly enhance our ability to manage and potentially reverse the growing problem of antimicrobial resistance. Future research should address technical and ethical barriers to facilitate safe and effective clinical and environmental applications. This review underscores the necessity for interdisciplinary collaboration and international cooperation to harness the full potential of CRISPR-Cas technologies in the fight against superbugs.
Collapse
Affiliation(s)
- Ahmed S.A. Ali Agha
- School of Pharmacy, Department of Pharmaceutical Sciences, The University of Jordan, Amman, 11942, Jordan
| | - Ali Al-Samydai
- Pharmacological and Diagnostic Research Center, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, (AA), Amman, 19328, Jordan
| | - Talal Aburjai
- School of Pharmacy, Department of Pharmaceutical Sciences, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
4
|
Peng H, Chen IA, Qimron U. Engineering Phages to Fight Multidrug-Resistant Bacteria. Chem Rev 2025; 125:933-971. [PMID: 39680919 PMCID: PMC11758799 DOI: 10.1021/acs.chemrev.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024]
Abstract
Facing the global "superbug" crisis due to the emergence and selection for antibiotic resistance, phages are among the most promising solutions. Fighting multidrug-resistant bacteria requires precise diagnosis of bacterial pathogens and specific cell-killing. Phages have several potential advantages over conventional antibacterial agents such as host specificity, self-amplification, easy production, low toxicity as well as biofilm degradation. However, the narrow host range, uncharacterized properties, as well as potential risks from exponential replication and evolution of natural phages, currently limit their applications. Engineering phages can not only enhance the host bacteria range and improve phage efficacy, but also confer new functions. This review first summarizes major phage engineering techniques including both chemical modification and genetic engineering. Subsequent sections discuss the applications of engineered phages for bacterial pathogen detection and ablation through interdisciplinary approaches of synthetic biology and nanotechnology. We discuss future directions and persistent challenges in the ongoing exploration of phage engineering for pathogen control.
Collapse
Affiliation(s)
- Huan Peng
- Cellular
Signaling Laboratory, International Research Center for Sensory Biology
and Technology of MOST, Key Laboratory of Molecular Biophysics of
MOE, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, Hubei China
| | - Irene A. Chen
- Department
of Chemical and Biomolecular Engineering, Department of Chemistry
and Biochemistry, University of California
Los Angeles, Los Angeles, California 90095-1592, United States
| | - Udi Qimron
- Department
of Clinical Microbiology and Immunology, School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
5
|
Zhang J, Chen S, Sun X, Chen S, Cheng Q. Phage Therapy: A Promising Treatment Strategy against Infections Caused by Multidrug-resistant Klebsiella pneumoniae. Curr Pharm Des 2025; 31:1007-1019. [PMID: 39757682 DOI: 10.2174/0113816128343976241117183624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/13/2024] [Accepted: 10/21/2024] [Indexed: 01/07/2025]
Abstract
Klebsiella pneumoniae (KP) is a common and highly pathogenic pathogen, which often causes several serious infections in humans. The rampant and inappropriate use of broad-spectrum antibiotics has fueled a worrisome surge in Multidrug Resistance (MDR) among the strains of K. pneumoniae, which has significantly boosted the risk and complexity of nosocomial infection transmission in clinical settings. Consequently, this situation presents a substantial challenge to the efficacy of anti-infective treatments, making the development of new and innovative therapeutic approaches important. Bacteriophages (phages) are viruses that can infect and kill bacteria. They and their derived products are now being considered as promising alternatives or adjuncts to antimicrobial therapies for treating bacterial infections in humans, which exhibit a remarkable safety profile and precise host specificity. Numerous studies have also unequivocally demonstrated the remarkable potential of phages in effectively combating MDR K. pneumoniae infections both in vitro and in vivo. These studies have explored various approaches to K. pneumoniae phages, such as phage cocktails, phage-derived enzymes, and the synergistic utilization of phages and antibiotics. Therefore, phage therapy is old but not obsolete, particularly in light of the escalating problem of antimicrobial-resistant K. pneumoniae infections. Here, we have presented a comprehensive summary of the current knowledge on phage therapy for K. pneumoniae infections, including phage distribution, in vitro characterization of phages, in vivo investigations, and cases of clinical study. This review highlights the rapid advancements in phage therapy for K. pneumoniae, offering a promising avenue for combating this global public health threat.
Collapse
Affiliation(s)
- Jinghan Zhang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Siyue Chen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Xiaoxiao Sun
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Sheng Chen
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Qipeng Cheng
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| |
Collapse
|
6
|
Chen B, Moriarty TF, Metsemakers WJ, Chittò M. Phage therapy: A primer for orthopaedic trauma surgeons. Injury 2024; 55 Suppl 6:111847. [PMID: 39482030 DOI: 10.1016/j.injury.2024.111847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 11/03/2024]
Abstract
Phage therapy (PT) continues to attract interest in the fight against fracture-related infection (FRI), particularly for recurring infections that have not been resolved using conventional therapeutic approaches. The journey PT has taken from early clinical application in the pre-antibiotic era to its recent reintroduction to western clinical practice has been accelerated by the increased prevalence of multi-drug resistant (MDR) pathogens in the clinic. This review will present PT's potential as a precise, adaptable, and effective treatment modality, with a focus on patient and phage selection, as well as the various administration protocols currently applied to patients. The challenges for PT, for example the most optimal application technique and dosing, are also discussed and underscore the importance of personalized approaches and the urgent need for more robust clinical evidence. Future perspectives, including phage engineering and innovative delivery systems will be discussed, as they may broaden the applicability of PT to a point where it may become a standard rather than an option of last resort for orthopedic infection management.
Collapse
Affiliation(s)
- Baixing Chen
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | | | - Willem-Jan Metsemakers
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
7
|
Cui L, Watanabe S, Miyanaga K, Kiga K, Sasahara T, Aiba Y, Tan XE, Veeranarayanan S, Thitiananpakorn K, Nguyen HM, Wannigama DL. A Comprehensive Review on Phage Therapy and Phage-Based Drug Development. Antibiotics (Basel) 2024; 13:870. [PMID: 39335043 PMCID: PMC11428490 DOI: 10.3390/antibiotics13090870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Phage therapy, the use of bacteriophages (phages) to treat bacterial infections, is regaining momentum as a promising weapon against the rising threat of multidrug-resistant (MDR) bacteria. This comprehensive review explores the historical context, the modern resurgence of phage therapy, and phage-facilitated advancements in medical and technological fields. It details the mechanisms of action and applications of phages in treating MDR bacterial infections, particularly those associated with biofilms and intracellular pathogens. The review further highlights innovative uses of phages in vaccine development, cancer therapy, and as gene delivery vectors. Despite its targeted and efficient approach, phage therapy faces challenges related to phage stability, immune response, and regulatory approval. By examining these areas in detail, this review underscores the immense potential and remaining hurdles in integrating phage-based therapies into modern medical practices.
Collapse
Affiliation(s)
- Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kazuhiko Miyanaga
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kotaro Kiga
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Teppei Sasahara
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Yoshifumi Aiba
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Xin-Ee Tan
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Srivani Veeranarayanan
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kanate Thitiananpakorn
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Huong Minh Nguyen
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Japan
| |
Collapse
|
8
|
Le Pogam A, Medina F, Belkacem A, Raffetin A, Jaafar D, Wodecki P, Corlouer C, Dublanchet A, Caraux-Paz P, Diallo K. Proportion of patients with prosthetic joint infection eligible for adjuvant phage therapy: a French single-centre retrospective study. BMC Infect Dis 2024; 24:923. [PMID: 39237903 PMCID: PMC11378432 DOI: 10.1186/s12879-024-09814-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Bone and joint infections represent a major public health issue due to their increasing prevalence, their functional prognosis and their cost to society. Phage therapy has valuable anti-biofilm properties against prosthetic joint infections (PJI). The aim of this study was to establish the proportion of patients eligible for phage therapy and to assess their clinical outcome judged against all patients presenting with PJI. METHOD . Patients admitted for periprosthetic joint infection (PJI) at a French general hospital between 2015 and 2019 were retrospectively included. Eligibility for phage therapy was determined based on French recommendations, with polymicrobial infections serving as exclusion criteria. Patients were categorized into two groups: those eligible and those ineligible for phage therapy. We analyzed their characteristics and outcomes, including severe adverse events, duration of intravenous antibiotic therapy, length of hospitalization, and relapse rates. RESULTS . In this study, 96 patients with PJI were considered in multidisciplinary medical meetings. Of these, 44% patients (42/96) were eligible for additional phage therapy. This group of patients had a longer duration of intravenous therapy (17 days vs. 10 days, p = 0.02), more severe adverse events (11 vs. 3, p = 0.08) and had a longer hospital stay (43 days vs. 18 days, p < 0.01). CONCLUSION . A large number of patients met eligibility criteria for phage therapy and treatment and follow-up is more complex. A larger epidemiological study would more accurately describe the prognosis of eligible patients.
Collapse
Affiliation(s)
- Ambroise Le Pogam
- Department of Infective and Tropical Diseases, Intercommunal Hospital Centre of Villeneuve- Saint-Georges, Villeneuve-Saint-Georges, 94190, France
| | - Fernanda Medina
- Department of Infective and Tropical Diseases, Intercommunal Hospital Centre of Villeneuve- Saint-Georges, Villeneuve-Saint-Georges, 94190, France
| | - Anna Belkacem
- Department of Infective and Tropical Diseases, Intercommunal Hospital Centre of Villeneuve- Saint-Georges, Villeneuve-Saint-Georges, 94190, France
| | - Alice Raffetin
- Department of Infective and Tropical Diseases, Intercommunal Hospital Centre of Villeneuve- Saint-Georges, Villeneuve-Saint-Georges, 94190, France
| | - Danielle Jaafar
- Department of Infective and Tropical Diseases, Intercommunal Hospital Centre of Villeneuve- Saint-Georges, Villeneuve-Saint-Georges, 94190, France
| | - Philippe Wodecki
- Department of Orthopaedic surgery, Intercommunal Hospital Centre of Villeneuve-Saint- Georges, Villeneuve-Saint-Georges, 94190, France
| | - Camille Corlouer
- Department of Bacteriology, Intercommunal Hospital Centre of Villeneuve-Saint-Georges, Villeneuve-Saint-Georges, 94190, France
| | | | - Pauline Caraux-Paz
- Department of Infective and Tropical Diseases, Intercommunal Hospital Centre of Villeneuve- Saint-Georges, Villeneuve-Saint-Georges, 94190, France
| | - Kevin Diallo
- Department of Infective and Tropical Diseases and Dermatology, University Hospital of La Reunion, Saint-Pierre, 97448, France.
| |
Collapse
|
9
|
Winkelmayer L, Rathammer K, Richter S, Requat T, Matt M, Ljuhar D, Jäger P, Kernmauner F, Naemi S, Mansfeld MD, Duscher GG. Aerosolic Application of Phages Against S. infantis on Plates and Chicken Skin. PHAGE (NEW ROCHELLE, N.Y.) 2024; 5:126-129. [PMID: 39372362 PMCID: PMC11447383 DOI: 10.1089/phage.2023.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Phages are known as a promising method to combat antimicrobial resistance (AMR) in the human and veterinary sector. Use of phage aerosols enormously increases the application field, although the impact on the infectivity of phages during nebulization needs to be evaluated. In this study S. infantis was treated on plates and chicken skin with nebulized phage particles of the Myoviridae type, identified by transmission electron microscopy, using a commercial nebulizer primarily used for H2O2 disinfection. The reduction of bacterial number by aerosol applied phage particles was evaluated. It could clearly be shown that the phage particles were able to infect Salmonella after being nebulized using ultrasound technology. Further studies on other types of phages as well as other conditions must be performed to standardize the aerosolic application of phages.
Collapse
Affiliation(s)
| | | | | | - Theres Requat
- Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Monika Matt
- Austrian Agency for Health and Food Safety, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
10
|
Young J, Mehta N, Lee SW, Rodriguez EK. How Effective Is Phage Therapy for Prosthetic Joint Infections? A Preliminary Systematic Review and Proportional Meta-Analysis of Early Outcomes. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:790. [PMID: 38792972 PMCID: PMC11122905 DOI: 10.3390/medicina60050790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Background and Objectives: Despite the promise of phage therapy (PT), its efficacy in prosthetic joint infection (PJI) management is unknown. Much of the current literature is largely limited to case reports and series. Materials and Methods: In order to help inform power calculations for future clinical trials and comparative analyses, we performed a systematic review and proportional meta-analysis of early PT outcomes to provide a preliminary assessment of early phage therapy treatment outcomes for cases of PJI. Results: In a search of available literature across MEDLINE (Ovid, Wolters Kluwer, Alphen aan den Rijn, The Netherlands), Embase (Elsevier, Amsterdam, The Netherlands), the Web of Science Core Collection (Clarivate, London, UK), and Cochrane Central (Wiley, Hoboken, NJ, USA) up to 23 September 2023, we identified 37 patients with PJIs receiving adjunctive PT. Patients most frequently reported Staphylococcal species infection (95%) and intraarticular phage delivery (73%). Phage cocktail (65%) and antibiotic co-administration (97%) were common. A random-effects proportional meta-analysis suggested infection remission in 78% of patients (95% CI: 39%, 95%) (I2 = 55%, p = 0.08) and 83% with a minimum 12-month follow-up (95% CI: 53%, 95%) (I2 = 26%, p = 0.26). Conclusions: Our study provides a preliminary estimate of PT's efficacy in PJIs and informs future comparative studies.
Collapse
Affiliation(s)
- Jason Young
- Harvard Combined Orthopedic Residency Program, Boston, MA 02114, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Nicita Mehta
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Sang Won Lee
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Edward Kenneth Rodriguez
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Carl J Shapiro Department of Orthopaedics, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| |
Collapse
|
11
|
Duque-Sanchez L, Qu Y, Voelcker NH, Thissen H. Tackling catheter-associated urinary tract infections with next-generation antimicrobial technologies. J Biomed Mater Res A 2024; 112:312-335. [PMID: 37881094 DOI: 10.1002/jbm.a.37630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Urinary catheters and other medical devices associated with the urinary tract such as stents are major contributors to nosocomial urinary tract infections (UTIs) as they provide an access path for pathogens to enter the bladder. Considering that catheter-associated urinary tract infections (CAUTIs) account for approximately 75% of UTIs and that UTIs represent the most common type of healthcare-associated infections, novel anti-infective device technologies are urgently required. The rapid rise of antimicrobial resistance in the context of CAUTIs further highlights the importance of such preventative strategies. In this review, the risk factors for pathogen colonization in the urinary tract are dissected, taking into account the nature and mechanistics of this unique environment. Moreover, the most promising next-generation preventative strategies are critically assessed, focusing in particular on anti-infective surface coatings. Finally, emerging approaches in this field and their likely clinical impact are examined.
Collapse
Affiliation(s)
- Lina Duque-Sanchez
- Department of Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, Australia
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Yue Qu
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Nicolas H Voelcker
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
| | - Helmut Thissen
- Department of Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, Australia
| |
Collapse
|
12
|
Bisen M, Kharga K, Mehta S, Jabi N, Kumar L. Bacteriophages in nature: recent advances in research tools and diverse environmental and biotechnological applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22199-22242. [PMID: 38411907 DOI: 10.1007/s11356-024-32535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
Bacteriophages infect and replicate within bacteria and play a key role in the environment, particularly in microbial ecosystems and bacterial population dynamics. The increasing recognition of their significance stems from their wide array of environmental and biotechnological uses, which encompass the mounting issue of antimicrobial resistance (AMR). Beyond their therapeutic potential in combating antibiotic-resistant infections, bacteriophages also find vast applications such as water quality monitoring, bioremediation, and nutrient cycling within environmental sciences. Researchers are actively involved in isolating and characterizing bacteriophages from different natural sources to explore their applications. Gaining insights into key aspects such as the life cycle of bacteriophages, their host range, immune interactions, and physical stability is vital to enhance their application potential. The establishment of diverse phage libraries has become indispensable to facilitate their wide-ranging uses. Consequently, numerous protocols, ranging from traditional to cutting-edge techniques, have been developed for the isolation, detection, purification, and characterization of bacteriophages from diverse environmental sources. This review offers an exploration of tools, delves into the methods of isolation, characterization, and the extensive environmental applications of bacteriophages, particularly in areas like water quality assessment, the food sector, therapeutic interventions, and the phage therapy in various infections and diseases.
Collapse
Affiliation(s)
- Monish Bisen
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Kusum Kharga
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sakshi Mehta
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Nashra Jabi
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India.
- Cancer Biology Laboratory, Raj Khosla Centre for Cancer Research, Shoolini University, Himachal Pradesh, Solan, 173229, India.
| |
Collapse
|
13
|
Marchianò V, Duarte AC, Agún S, Luque S, Marcet I, Fernández L, Matos M, Blanco MDC, García P, Gutiérrez G. Phage Lytic Protein CHAPSH3b Encapsulated in Niosomes and Gelatine Films. Microorganisms 2024; 12:119. [PMID: 38257944 PMCID: PMC10819965 DOI: 10.3390/microorganisms12010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Antimicrobial resistance (AMR) has emerged as a global health challenge, sparking worldwide interest in exploring the antimicrobial potential of natural compounds as an alternative to conventional antibiotics. In recent years, one area of focus has been the utilization of bacteriophages and their derivative proteins. Specifically, phage lytic proteins, or endolysins, are specialized enzymes that induce bacterial cell lysis and can be efficiently produced and purified following overexpression in bacteria. Nonetheless, a significant limitation of these proteins is their vulnerability to certain environmental conditions, which may impair their effectiveness. Encapsulating endolysins in vesicles could mitigate this issue by providing added protection to the proteins, enabling controlled release, and enhancing their stability, particularly at temperatures around 4 °C. In this work, the chimeric lytic protein CHAPSH3b was encapsulated within non-ionic surfactant-based vesicles (niosomes) created using the thin film hydrating method (TFH). These protein-loaded niosomes were then characterized, revealing sizes in the range of 30-80 nm, zeta potentials between 30 and 50 mV, and an encapsulation efficiency (EE) of 50-60%. Additionally, with the objective of exploring their potential application in the food industry, these endolysin-loaded niosomes were incorporated into gelatine films. This was carried out to evaluate their stability and antimicrobial efficacy against Staphylococcus aureus.
Collapse
Affiliation(s)
- Verdiana Marchianò
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain (M.d.C.B.)
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (S.L.); (I.M.); (M.M.)
| | - Ana Catarina Duarte
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n., 33300 Villaviciosa, Spain; (A.C.D.); (S.A.); (L.F.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Seila Agún
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n., 33300 Villaviciosa, Spain; (A.C.D.); (S.A.); (L.F.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Susana Luque
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (S.L.); (I.M.); (M.M.)
| | - Ismael Marcet
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (S.L.); (I.M.); (M.M.)
| | - Lucía Fernández
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n., 33300 Villaviciosa, Spain; (A.C.D.); (S.A.); (L.F.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - María Matos
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (S.L.); (I.M.); (M.M.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - Mª del Carmen Blanco
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain (M.d.C.B.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - Pilar García
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n., 33300 Villaviciosa, Spain; (A.C.D.); (S.A.); (L.F.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Gemma Gutiérrez
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (S.L.); (I.M.); (M.M.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
14
|
Aljabali AAA, Aljbaly MBM, Obeid MA, Shahcheraghi SH, Tambuwala MM. The Next Generation of Drug Delivery: Harnessing the Power of Bacteriophages. Methods Mol Biol 2024; 2738:279-315. [PMID: 37966606 DOI: 10.1007/978-1-0716-3549-0_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The use of biomaterials, such as bacteriophages, as drug delivery vehicles (DDVs) has gained increasing interest in recent years due to their potential to address the limitations of conventional drug delivery systems. Bacteriophages offer several advantages as drug carriers, such as high specificity for targeting bacterial cells, low toxicity, and the ability to be engineered to express specific proteins or peptides for enhanced targeting and drug delivery. In addition, bacteriophages have been shown to reduce the development of antibiotic resistance, which is a major concern in the field of antimicrobial therapy. Many initiatives have been taken to take up various payloads selectively and precisely by surface functionalization of the outside or interior of self-assembling viral protein capsids. Bacteriophages have emerged as a promising platform for the targeted delivery of therapeutic agents, including drugs, genes, and imaging agents. They possess several properties that make them attractive as drug delivery vehicles, including their ability to specifically target bacterial cells, their structural diversity, their ease of genetic manipulation, and their biocompatibility. Despite the potential advantages of using bacteriophages as drug carriers, several challenges and limitations need to be addressed. One of the main challenges is the limited host range of bacteriophages, which restricts their use to specific bacterial strains. However, this can also be considered as an advantage, as it allows for precise and targeted drug delivery to the desired bacterial cells. The use of biomaterials, including bacteriophages, as drug delivery vehicles has shown promising potential to address the limitations of conventional drug delivery systems. Further research is needed to fully understand the potential of these biomaterials and address the challenges and limitations associated with their use.
Collapse
Affiliation(s)
- Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan.
| | | | - Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Seyed Hossein Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Murtaza M Tambuwala
- Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln, UK.
| |
Collapse
|
15
|
Islam MS, Fan J, Pan F. The power of phages: revolutionizing cancer treatment. Front Oncol 2023; 13:1290296. [PMID: 38033486 PMCID: PMC10684691 DOI: 10.3389/fonc.2023.1290296] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Cancer is a devastating disease with a high global mortality rate and is projected to increase further in the coming years. Current treatment options, such as chemotherapy and radiation therapy, have limitations including side effects, variable effectiveness, high costs, and limited availability. There is a growing need for alternative treatments that can target cancer cells specifically with fewer side effects. Phages, that infect bacteria but not eukaryotic cells, have emerged as promising cancer therapeutics due to their unique properties, including specificity and ease of genetic modification. Engineered phages can transform cancer treatment by targeting cancer cells while sparing healthy ones. Phages exhibit versatility as nanocarriers, capable of delivering therapeutic agents like gene therapy, immunotherapy, and vaccines. Phages are extensively used in vaccine development, with filamentous, tailed, and icosahedral phages explored for different antigen expression possibilities. Engineered filamentous phages bring benefits such as built in adjuvant properties, cost-effectiveness, versatility in multivalent formulations, feasibility of oral administration, and stability. Phage-based vaccines stimulate the innate immune system by engaging pattern recognition receptors on antigen-presenting cells, enhancing phage peptide antigen presentation to B-cells and T-cells. This review presents recent phage therapy advances and challenges in cancer therapy, exploring its versatile tools and vaccine potential.
Collapse
Affiliation(s)
- Md. Sharifull Islam
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jie Fan
- Department of Cardiology, Handan Central Hospital, Handan, Hebei, China
| | - Fan Pan
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
16
|
Kumbhare SV, Pedroso I, Ugalde JA, Márquez-Miranda V, Sinha R, Almonacid DE. Drug and gut microbe relationships: Moving beyond antibiotics. Drug Discov Today 2023; 28:103797. [PMID: 37806386 DOI: 10.1016/j.drudis.2023.103797] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
Our understanding of drug-microbe relationships has evolved from viewing microbes as mere drug producers to a dynamic, modifiable system where they can serve as drugs or targets of precision pharmacology. This review highlights recent findings on the gut microbiome, particularly focusing on four aspects of research: (i) drugs for bugs, covering recent strategies for targeting gut pathogens; (ii) bugs as drugs, including probiotics; (iii) drugs from bugs, including postbiotics; and (iv) bugs and drugs, discussing additional types of drug-microbe interactions. This review provides a perspective on future translational research, including efficient companion diagnostics in pharmaceutical interventions.
Collapse
Affiliation(s)
| | | | - Juan A Ugalde
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Valeria Márquez-Miranda
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | | | | |
Collapse
|
17
|
Mboowa G. Reviewing the journey to the clinical application of bacteriophages to treat multi-drug-resistant bacteria. BMC Infect Dis 2023; 23:654. [PMID: 37789281 PMCID: PMC10548642 DOI: 10.1186/s12879-023-08621-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023] Open
Abstract
Antimicrobial resistance (AMR) was a leading cause of death globally in 2019. Sadly, COVID-19 has exacerbated AMR, nonetheless, the process of developing new antibiotics remains very challenging. This urgently requires the adoption of alternative approaches to treat multi-drug-resistant bacterial infections. This editorial introduces the 'Bacteriophages against multi-drug resistant bacteria' collection launched at BMC Infectious Diseases which highlights progress towards using bacteriophages to tackle AMR.
Collapse
Affiliation(s)
- Gerald Mboowa
- African Centre of Excellence in Bioinformatics and Data-Intensive Sciences, the Infectious Diseases Institute, College of Health Sciences, Makerere University, P.O Box 22418, Kampala, Uganda.
- Africa Centres for Disease Control and Prevention, African Union Commission, Roosevelt Street, P.O. Box 3243, Addis Ababa, W21 K19, Ethiopia.
| |
Collapse
|