1
|
Ouyang Y, Sohn YS, Chen X, Nechushtai R, Pikarsky E, Xia F, Huang F, Willner I. Adenosine-Triggered Dynamic and Transient Aptamer-Based Networks Integrated in Liposome Protocell Assemblies. J Am Chem Soc 2025. [PMID: 40403280 DOI: 10.1021/jacs.5c05090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
The development of transient dissipative nucleic-acid-based reaction circuits and constitutional dynamic networks attracts growing interest as a means of emulating native dynamic reaction circuits. Recent efforts applying enzymes, DNAzymes, or light as catalysts controlling the transient, dissipative functions of DNA networks and circuits were reported. Moreover, the integration of the dynamic networks in protocell assemblies and the identification of potential applications are challenging objectives. Here, we introduce the adenosine (AD) aptamer subunit complex coupled with adenosine deaminase (ADA) as a versatile recognition/catalytic framework for driving transient allosterically AD-stabilized DNAzyme circuits or dissipative AD-stabilized constitutional dynamic networks. In addition, the AD/ADA-driven transient frameworks are integrated into liposome assemblies as protocell models. Functionalized liposomes carrying allosterically ATP-stabilized DNAzymes cleaving EGR-1 mRNA are fused with MCF-7 breast cancer cells, demonstrating effective gene therapy and selective apoptosis of cancer cells.
Collapse
Affiliation(s)
- Yu Ouyang
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yang Sung Sohn
- Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Xinghua Chen
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Rachel Nechushtai
- Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Eli Pikarsky
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Fan Xia
- State Key Laboratory of Geomicrobiology and Environmental Changes, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fujian Huang
- State Key Laboratory of Geomicrobiology and Environmental Changes, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
2
|
Wang G, Sun Y, Liu C, Li Z. Immuno-transcription-amplified single microbead assay for protein and exosome analysis through an S9.6 antibody-nucleic acid recognition strategy. Biosens Bioelectron 2025; 271:117043. [PMID: 39657553 DOI: 10.1016/j.bios.2024.117043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
High-sensitive detection of circulating biomarkers is in high demand because many of them are found at low concentrations in bioliquids. Herein, we report an immuno-transcription-amplified single microbead (MB) assay (IT-SMA) based on the specific S9.6 antibody-DNA/RNA hybrid recognition strategy for the sensitive and universal quantification of protein biomarkers. This design rationally converts the immunoreaction events into amplified nucleic acid transcription to produce numerous RNA molecules, which can efficiently enrich fluorescent signals onto a single MB through a specific S9.6 antibody-DNA/RNA hybrid recognition mechanism, enabling sensitive protein analysis. This method exhibits excellent specificity and high sensitivity for protein analysis with a low detection limit at the fg/mL level. Furthermore, the S9.6 antibody-aided IT-SMA allows for universal detection of various proteins and even exosomes, testing target proteins in serum samples, and differentiating cancer patients from healthy individuals by directly analyzing the exosomes in human blood samples. These features make the IT-SMA strategy a promising tool for the quantitative detection of a variety of biomarkers toward precision diagnostics.
Collapse
Affiliation(s)
- Gaoting Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China
| | - Yuanyuan Sun
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province, 710119, PR China.
| | - Zhengping Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China.
| |
Collapse
|
3
|
Dong J, Willner I. Photochemically Triggered, Transient, and Oscillatory Transcription Machineries Guide Temporal Modulation of Fibrinogenesis. J Am Chem Soc 2025; 147:2216-2227. [PMID: 39740143 PMCID: PMC11744759 DOI: 10.1021/jacs.4c16829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
Photochemically triggered, transient, and temporally oscillatory-modulated transcription machineries are introduced. The resulting dynamic transcription circuits are implemented to guide photochemically triggered, transient, and oscillatory modulation of thrombin toward temporal control over fibrinogenesis. One system describes the assembly of a reaction module leading to the photochemically triggered formation of an active transcription machinery that, in the presence of RNase H, guides the transient activation of thrombin toward fibrinogenesis. A second system introduces photochemical triggering of a reaction circuit consisting of two coupled transcription machineries, leading to the temporally oscillatory formation and depletion of an intermediate reaction product. The concept is applied to develop a photochemically triggered transcription circuit that, in the presence of RNase H, leads to the oscillatory generation of an intermediate anti-thrombin aptamer-modified product. The oscillating aptamer-modified product induces the rhythmic inhibition of thrombin, accompanied by the cyclic activation and deactivation of the fibrinogenesis process. The operation of the transient and oscillatory-modulated transcription machinery reaction circuits is accompanied by computational kinetic models, allowing to predict the dynamic behaviors of the system under different auxiliary conditions. The phototriggered transient transcription machinery and oscillatory circuit-guided fibrinogenesis is examined under physiological-like conditions and within a human plasma environment.
Collapse
Affiliation(s)
- Jiantong Dong
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
4
|
Ouyang Y, Zhang P, Willner I. DNA Tetrahedra as Functional Nanostructures: From Basic Principles to Applications. Angew Chem Int Ed Engl 2024; 63:e202411118. [PMID: 39037936 DOI: 10.1002/anie.202411118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Self-assembled supramolecular DNA tetrahedra composed of programmed sequence-engineered complementary base-paired strands represent elusive nanostructures having key contributions to the development and diverse applications of DNA nanotechnology. By appropriate engineering of the strands, DNA tetrahedra of tuneable sizes and chemical functionalities were designed. Programmed functionalities for diverse applications were integrated into tetrahedra structures including sequence-specific recognition strands (aptamers), catalytic DNAzymes, nanoparticles, proteins, or fluorophore. The article presents a comprehensive review addressing methods to assemble and characterize the DNA tetrahedra nanostructures, and diverse applications of DNA tetrahedra framework are discussed. Topics being addressed include the application of structurally functionalized DNA tetrahedra nanostructure for the assembly of diverse optical or electrochemical sensing platforms and functionalized intracellular sensing and imaging modules. In addition, the triggered reconfiguration of DNA tetrahedra nanostructures and dynamic networks and circuits emulating biological transformations are introduced. Moreover, the functionalization of DNA tetrahedra frameworks with nanoparticles provides building units for the assembly of optical devices and for the programmed crystallization of nanoparticle superlattices. Finally, diverse applications of DNA tetrahedra in the field of nanomedicine are addressed. These include the DNA tetrahedra-assisted permeation of nanocarriers into cells for imaging, controlled drug release, active chemodynamic/photodynamic treatment of target tissues, and regenerative medicine.
Collapse
Affiliation(s)
- Yu Ouyang
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Pu Zhang
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- Current address: Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P.R. China
| | - Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
5
|
Lee H, Xie T, Kang B, Yu X, Schaffter SW, Schulman R. Plug-and-play protein biosensors using aptamer-regulated in vitro transcription. Nat Commun 2024; 15:7973. [PMID: 39266511 PMCID: PMC11393120 DOI: 10.1038/s41467-024-51907-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/19/2024] [Indexed: 09/14/2024] Open
Abstract
Molecular biosensors that accurately measure protein concentrations without external equipment are critical for solving numerous problems in diagnostics and therapeutics. Modularly transducing the binding of protein antibodies, protein switches or aptamers into a useful output remains challenging. Here, we develop a biosensing platform based on aptamer-regulated transcription in which aptamers integrated into transcription templates serve as inputs to molecular circuits that can be programmed to a produce a variety of responses. We modularly design molecular biosensors using this platform by swapping aptamer domains for specific proteins and downstream domains that encode different RNA transcripts. By coupling aptamer-regulated transcription with diverse transduction circuits, we rapidly construct analog protein biosensors and digital protein biosensors with detection ranges that can be tuned over two orders of magnitude and can exceed the binding affinity of the aptamer. Aptamer-regulated transcription is a straightforward and inexpensive approach for constructing programmable protein biosensors that could have diverse applications in research and biotechnology.
Collapse
Affiliation(s)
- Heonjoon Lee
- Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tian Xie
- Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Byunghwa Kang
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Xinjie Yu
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Rebecca Schulman
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Computer Science, Johns Hopkins University, Baltimore, MD, USA.
- Chemistry, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
6
|
Ouyang Y, Willner I. Phototriggered Equilibrated and Transient Orthogonally Operating Constitutional Dynamic Networks Guiding Biocatalytic Cascades. J Am Chem Soc 2024; 146:6806-6816. [PMID: 38422481 PMCID: PMC10941189 DOI: 10.1021/jacs.3c13562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
The photochemical deprotection of structurally engineered o-nitrobenzylphosphate-caged hairpin nucleic acids is introduced as a versatile method to evolve constitutional dynamic networks, CDNs. The photogenerated CDNs, in the presence of fuel strands, interact with auxiliary CDNs, resulting in their dynamically equilibrated reconfiguration. By modification of the constituents associated with the auxiliary CDNs with glucose oxidase (GOx)/horseradish peroxidase (HRP) or the lactate dehydrogenase (LDH)/nicotinamide adenine dinucleotide (NAD+) cofactor, the photogenerated CDN drives the orthogonal operation upregulated/downregulated operation of the GOx/HRP and LDH/NAD+ biocatalytic cascade in the conjugate mixture of auxiliary CDNs. Also, the photogenerated CDN was applied to control the reconfiguration of coupled CDNs, leading to upregulated/downregulated formation of the antithrombin aptamer units, resulting in the dictated inhibition of thrombin activity (fibrinogen coagulation). Moreover, a reaction module consisting of GOx/HRP-modified o-nitrobenzyl phosphate-caged DNA hairpins, photoresponsive caged auxiliary duplexes, and nickase leads upon irradiation to the emergence of a transient, dissipative CDN activating in the presence of two alternate auxiliary triggers, achieving transient operation of up- and downregulated GOx/HRP biocatalytic cascades.
Collapse
Affiliation(s)
- Yu Ouyang
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
7
|
Bargstedt J, Reinschmidt M, Tydecks L, Kolmar T, Hendrich CM, Jäschke A. Photochromic Nucleosides and Oligonucleotides. Angew Chem Int Ed Engl 2024; 63:e202310797. [PMID: 37966433 DOI: 10.1002/anie.202310797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
Photochromism is a reversible phenomenon wherein a material undergoes a change in color upon exposure to light. In organic photochromes, this effect often results from light-induced isomerization reactions, leading to alterations in either the spatial orientation or electronic properties of the photochrome. The incorporation of photochromic moieties into biomolecules, such as proteins or nucleic acids, has become a prevalent approach to render these biomolecules responsive to light stimuli. Utilizing light as a trigger for the manipulation of biomolecular structure and function offers numerous advantages compared to other stimuli, such as chemical or electrical treatments, due to its non-invasive nature. Consequently, light proves particularly advantageous in cellular and tissue applications. In this review, we emphasize recent advancements in the field of photochromic nucleosides and oligonucleotides. We provide an overview of the design principles of different classes of photochromes, synthetic strategies, critical analytical challenges, as well as structure-property relationships. The applications of photochromic nucleic acid derivatives encompass diverse domains, ranging from the precise photoregulation of gene expression to the controlled modulation of the three-dimensional structures of oligonucleotides and the development of DNA-based fluorescence modulators. Moreover, we present a future perspective on potential modifications and applications.
Collapse
Affiliation(s)
- Jörn Bargstedt
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Martin Reinschmidt
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Leon Tydecks
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Theresa Kolmar
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Christoph M Hendrich
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| |
Collapse
|
8
|
Li Z, Wang J, Willner I. Alternate Strategies to Induce Dynamically Modulated Transient Transcription Machineries. ACS NANO 2023; 17:18266-18279. [PMID: 37669432 PMCID: PMC10540262 DOI: 10.1021/acsnano.3c05336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
Abstract
Emulating native transient transcription machineries modulating temporal gene expression by synthetic circuits is a major challenge in the area of systems chemistry. Three different methods to operate transient transcription machineries and to modulate the gated transcription processes of target RNAs are introduced. One method involves the design of a reaction module consisting of transcription templates being triggered by promoter fuel strands transcribing target RNAs and in parallel generating functional DNAzymes in the transcription templates, modulating the dissipative depletion of the active templates and the transient operation of transcription circuits. The second approach involves the application of a reaction module consisting of two transcription templates being activated by a common fuel promoter strand. While one transcription template triggers the transcription of the target RNA, the second transcription template transcribes the anti-fuel strand, displacing the promoter strand associated with the transcription templates, leading to the depletion of the transcription templates and to the dynamic transient modulation of the transcription process. The third strategy involves the assembly of a reaction module consisting of a reaction template triggered by a fuel promoter strand transcribing the target RNA. The concomitant nickase-stimulated depletion of the promoter strand guides the transient modulation of the transcription process. Via integration of two parallel fuel-triggered transcription templates in the three transcription reaction modules and application of template-specific blocker units, the parallel and gated transiently modulated transcription of two different RNA aptamers is demonstrated. The nickase-stimulated transiently modulated transcription reaction module is applied as a functional circuit guiding the dynamic expression of gated, transiently operating, catalytic DNAzymes.
Collapse
Affiliation(s)
| | | | - Itamar Willner
- The Institute of Chemistry, The Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
9
|
Li Z, Wang J, O’Hagan MP, Huang F, Xia F, Willner I. Dynamic Fusion of Nucleic Acid Functionalized Nano-/Micro-Cell-Like Containments: From Basic Concepts to Applications. ACS NANO 2023; 17:15308-15327. [PMID: 37549398 PMCID: PMC10448756 DOI: 10.1021/acsnano.3c04415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Membrane fusion processes play key roles in biological transformations, such as endocytosis/exocytosis, signal transduction, neurotransmission, or viral infections, and substantial research efforts have been directed to emulate these functions by artificial means. The recognition and dynamic reconfiguration properties of nucleic acids provide a versatile means to induce membrane fusion. Here we address recent advances in the functionalization of liposomes or membranes with structurally engineered lipidated nucleic acids guiding the fusion of cell-like containments, and the biophysical and chemical parameters controlling the fusion of the liposomes will be discussed. Intermembrane bridging by duplex or triplex nucleic acids and light-induced activation of membrane-associated nucleic acid constituents provide the means for spatiotemporal fusion of liposomes or nucleic acid modified liposome fusion with native cell membranes. The membrane fusion processes lead to exchange of loads in the fused containments and are a means to integrate functional assemblies. This is exemplified with the operation of biocatalytic cascades and dynamic DNA polymerization/nicking or transcription machineries in fused protocell systems. Membrane fusion processes of protocell assemblies are found to have important drug-delivery, therapeutic, sensing, and biocatalytic applications. The future challenges and perspectives of DNA-guided fused containments and membranes are addressed.
Collapse
Affiliation(s)
- Zhenzhen Li
- The
Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jianbang Wang
- The
Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Michael P. O’Hagan
- The
Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Fujian Huang
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, People’s Republic of China
| | - Fan Xia
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, People’s Republic of China
| | - Itamar Willner
- The
Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
10
|
Dong J, Willner I. Transient Transcription Machineries Modulate Dynamic Functions of G-Quadruplexes: Temporal Regulation of Biocatalytic Circuits, Gene Replication and Transcription. Angew Chem Int Ed Engl 2023; 62:e202307898. [PMID: 37380611 DOI: 10.1002/anie.202307898] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
Native G-quadruplex-regulated temporal biocatalytic circuits, gene polymerization, and transcription processes are emulated by biomimetic, synthetically engineered transcription machineries coupled to reconfigurable G-quadruplex nanostructures. These are addressed by the following example: (i) A reaction module demonstrates the fuel-triggered transcription machinery-guided transient synthesis of G-quadruplex nanostructures. (ii) A dynamically triggered and modulated transcription machinery that guides the temporal separation and reassembly of the anti-thrombin G-quadruplex aptamer/thrombin complex is introduced, and the transient thrombin-catalyzed coagulation of fibrinogen is demonstrated. (iii) A dynamically fueled transient transcription machinery for the temporal activation of G-quadruplex-topologically blocked gene polymerization circuits is introduced. (iv) Transcription circuits revealing G-quadruplex-promoted or G-quadruplex-inhibited cascaded transcription machineries are presented. Beyond advancing the rapidly developing field of dynamically modulated G-quadruplex DNA nanostructures, the systems introduce potential therapeutic applications.
Collapse
Affiliation(s)
- Jiantong Dong
- The Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Itamar Willner
- The Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
11
|
Lee H, Xie T, Yu X, Schaffter SW, Schulman R. Plug-and-play protein biosensors using aptamer-regulated in vitro transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552680. [PMID: 37645783 PMCID: PMC10461910 DOI: 10.1101/2023.08.10.552680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Molecular biosensors that accurately measure protein concentrations without external equipment are critical for solving numerous problems in diagnostics and therapeutics. Modularly transducing the binding of protein antibodies, protein switches or aptamers into a useful output remains challenging. Here, we develop a biosensing platform based on aptamer-regulated transcription in which aptamers integrated into transcription templates serve as inputs to molecular circuits that can be programmed to a produce a variety of responses. We modularly design molecular biosensors using this platform by swapping aptamer domains for specific proteins and downstream domains that encode different RNA transcripts. By coupling aptamer-regulated transcription with diverse transduction circuits, we rapidly construct analog protein biosensors or digital protein biosensors with detection ranges that can be tuned over two orders of magnitude. Aptamer-regulated transcription is a straightforward and inexpensive approach for constructing programmable protein biosensors suitable for diverse research and diagnostic applications.
Collapse
Affiliation(s)
- Heonjoon Lee
- Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218
| | - Tian Xie
- Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Xinjie Yu
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | | | - Rebecca Schulman
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
- Computer Science, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
12
|
Zhou Z, Lin N, Ouyang Y, Liu S, Zhang Y, Willner I. Cascaded, Feedback-Driven, and Spatially Localized Emergence of Constitutional Dynamic Networks Driven by Enzyme-Free Catalytic DNA Circuits. J Am Chem Soc 2023. [PMID: 37257165 DOI: 10.1021/jacs.3c02083] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The enzyme-free catalytic hairpin assembly (CHA) process is introduced as a functional reaction module for guided, high-throughput, emergence, and evolution of constitutional dynamic networks, CDNs, from a set of nucleic acids. The process is applied to assemble networks of variable complexities, functionalities, and spatial confinement, and the systems provide possible mechanistic pathways for the evolution of dynamic networks under prebiotic conditions. Subjecting a set of four or six structurally engineered hairpins to a promoter P1 leads to the CHA-guided emergence of a [2 × 2] CDN or the evolution of a [3 × 3] CDN, respectively. Reacting of a set of branched three-arm DNA-hairpin-functionalized junctions to the promoter strand activates the CHA-induced emergence of a three-dimensional (3D) CDN framework emulating native gene regulatory networks. In addition, activation of a two-layer CHA cascade circuit or a cross-catalytic CHA circuit and cascaded driving feedback-driven evolution of CDNs are demonstrated. Also, subjecting a four-hairpin-modified DNA tetrahedron nanostructure to an auxiliary promoter strand simulates the evolution of a dynamically equilibrated DNA tetrahedron-based CDN that undergoes secondary fueled dynamic reconfiguration. Finally, the effective permeation of DNA tetrahedron structures into cells is utilized to integrate the four-hairpin-functionalized tetrahedron reaction module into cells. The spatially localized miRNA-triggered CHA evolution and reconfiguration of CDNs allowed the logic-gated imaging of intracellular RNAs. Beyond the bioanalytical applications of the systems, the study introduces possible mechanistic pathways for the evolution of functional networks under prebiotic conditions.
Collapse
Affiliation(s)
- Zhixin Zhou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Nina Lin
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yu Ouyang
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Songqin Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yuanjian Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
13
|
Li Z, Wang J, Willner B, Willner I. Topologically Triggered Dynamic DNA Frameworks. Isr J Chem 2023. [DOI: 10.1002/ijch.202300013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Zhenzhen Li
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Jianbang Wang
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Bilha Willner
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Itamar Willner
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
14
|
Zhang P, Ouyang Y, Zhuo Y, Chai Y, Yuan R. Recent Advances in DNA Nanostructures Applied in Sensing Interfaces and Cellular Imaging. Anal Chem 2023; 95:407-419. [PMID: 36625113 DOI: 10.1021/acs.analchem.2c04540] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Pu Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Yu Ouyang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China.,Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| |
Collapse
|