1
|
Deng Y, Jia J, Yi M. EDCLoc: a prediction model for mRNA subcellular localization using improved focal loss to address multi-label class imbalance. BMC Genomics 2024; 25:1252. [PMID: 39731012 DOI: 10.1186/s12864-024-11173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND The subcellular localization of mRNA plays a crucial role in gene expression regulation and various cellular processes. However, existing wet lab techniques like RNA-FISH are usually time-consuming, labor-intensive, and limited to specific tissue types. Researchers have developed several computational methods to predict mRNA subcellular localization to address this. These methods face the problem of class imbalance in multi-label classification, causing models to favor majority classes and overlook minority classes during training. Additionally, traditional feature extraction methods have high computational costs, incomplete features, and may lead to the loss of critical information. On the other hand, deep learning methods face challenges related to hardware performance and training time when handling complex sequences. They may suffer from the curse of dimensionality and overfitting problems. Therefore, there is an urgent need for more efficient and accurate prediction models. RESULTS To address these issues, we propose a multi-label classifier, EDCLoc, for predicting mRNA subcellular localization. EDCLoc reduces training pressure through a stepwise pooling strategy and applies grouped convolution blocks of varying sizes at different levels, combined with residual connections, to achieve efficient feature extraction and gradient propagation. The model employs global max pooling at the end to further reduce feature dimensions and highlight key features. To tackle class imbalance, we improved the focal loss function to enhance the model's focus on minority classes. Evaluation results show that EDCLoc outperforms existing methods in most subcellular regions. Additionally, the position weight matrix extracted by multi-scale CNN filters can match known RNA-binding protein motifs, demonstrating EDCLoc's effectiveness in capturing key sequence features. CONCLUSIONS EDCLoc outperforms existing prediction tools in most subcellular regions and effectively mitigates class imbalance issues in multi-label classification. These advantages make EDCLoc a reliable choice for multi-label mRNA subcellular localization. The dataset and source code used in this study are available at https://github.com/DellCode233/EDCLoc .
Collapse
Affiliation(s)
- Yu Deng
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China.
| | - Jianhua Jia
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China.
| | - Mengyue Yi
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| |
Collapse
|
2
|
Reis RS. Thermomorphogenesis: Opportunities and challenges in posttranscriptional regulation. JOURNAL OF EXPERIMENTAL BOTANY 2023:7134107. [PMID: 37082809 DOI: 10.1093/jxb/erad134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Indexed: 05/03/2023]
Abstract
Plants exposed to mildly elevated temperatures display morphological and developmental changes collectively termed thermomorphogenesis. This adaptative process has several undesirable consequences to food production, including yield reduction and increased vulnerability to pathogens. Understanding thermomorphogenesis is, thus, critical for understanding how plants will respond to increasingly warmer temperature conditions, such as those caused by climate change. Recently, we have made major advances in that direction, and it has become apparent that plants resource to a broad range of molecules and molecular mechanisms to perceive and respond to increases in environmental temperature. However, most of our efforts have been focused on regulation of transcription and protein abundance and activity, with an important gap encompassing nearly all processes involving RNA (i.e., posttranscriptional regulation). Here, I summarized our current knowledge of thermomorphogenesis involving transcriptional, posttranscriptional, and posttranslational regulation, focused on opportunities and challenges in understanding posttranscriptional regulation-a fertile field for exciting new discoveries.
Collapse
Affiliation(s)
- Rodrigo S Reis
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, Switzerland
| |
Collapse
|
3
|
Artz O, Ackermann A, Taylor L, Koo PK, Pedmale UV. Light and temperature regulate m 6A-RNA modification to regulate growth in plants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524395. [PMID: 36711495 PMCID: PMC9882139 DOI: 10.1101/2023.01.17.524395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
N6-methyladenosine is a highly dynamic, abundant mRNA modification which is an excellent potential mechanism for fine tuning gene expression. Plants adapt to their surrounding light and temperature environment using complex gene regulatory networks. The role of m6A in controlling gene expression in response to variable environmental conditions has so far been unexplored. Here, we map the transcriptome-wide m6A landscape under various light and temperature environments. Identified m6A-modifications show a highly specific spatial distribution along transcripts with enrichment occurring in 5'UTR regions and around transcriptional end sites. We show that the position of m6A modifications on transcripts might influence cellular transcript localization and the presence of m6A-modifications is associated with alternative polyadenylation, a process which results in multiple RNA isoforms with varying 3'UTR lengths. RNA with m6A-modifications exhibit a higher preference for shorter 3'UTRs. These shorter 3'UTR regions might directly influence transcript abundance and localization by including or excluding cis-regulatory elements. We propose that environmental stimuli might change the m6A landscape of plants as one possible way of fine tuning gene regulation through alternative polyadenylation and transcript localization.
Collapse
Affiliation(s)
- Oliver Artz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724. USA
| | - Amanda Ackermann
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724. USA
| | - Laura Taylor
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724. USA
| | - Peter K. Koo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724. USA
| | - Ullas V. Pedmale
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724. USA
| |
Collapse
|
4
|
Zhang J, Lin X, Chen Y, Li T, Lee AC, Chow EY, Cho WC, Chan T. LAFITE Reveals the Complexity of Transcript Isoforms in Subcellular Fractions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203480. [PMID: 36461702 PMCID: PMC9875686 DOI: 10.1002/advs.202203480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Characterization of the subcellular distribution of RNA is essential for understanding the molecular basis of biological processes. Here, the subcellular nanopore direct RNA-sequencing (DRS) of four lung cancer cell lines (A549, H1975, H358, and HCC4006) is performed, coupled with a computational pipeline, Low-abundance Aware Full-length Isoform clusTEr (LAFITE), to comprehensively analyze the full-length cytoplasmic and nuclear transcriptome. Using additional DRS and orthogonal data sets, it is shown that LAFITE outperforms current methods for detecting full-length transcripts, particularly for low-abundance isoforms that are usually overlooked due to poor read coverage. Experimental validation of six novel isoforms exclusively identified by LAFITE further confirms the reliability of this pipeline. By applying LAFITE to subcellular DRS data, the complexity of the nuclear transcriptome is revealed in terms of isoform diversity, 3'-UTR usage, m6A modification patterns, and intron retention. Overall, LAFITE provides enhanced full-length isoform identification and enables a high-resolution view of the RNA landscape at the isoform level.
Collapse
Affiliation(s)
- Jizhou Zhang
- School of Life SciencesThe Chinese University of Hong KongShatinHong Kong SARChina
- State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongShatinHong Kong SARChina
| | - Xiao Lin
- School of Life SciencesThe Chinese University of Hong KongShatinHong Kong SARChina
- State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongShatinHong Kong SARChina
| | - Yuelong Chen
- School of Life SciencesThe Chinese University of Hong KongShatinHong Kong SARChina
| | - Tsz‐Ho Li
- School of Life SciencesThe Chinese University of Hong KongShatinHong Kong SARChina
- State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongShatinHong Kong SARChina
| | - Alan Chun‐Kit Lee
- School of Life SciencesThe Chinese University of Hong KongShatinHong Kong SARChina
| | | | | | - Ting‐Fung Chan
- School of Life SciencesThe Chinese University of Hong KongShatinHong Kong SARChina
- State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongShatinHong Kong SARChina
| |
Collapse
|
5
|
Seeking a Role for Translational Control by Alternative Polyadenylation in Saccharomyces cerevisiae. Microorganisms 2021; 9:microorganisms9091885. [PMID: 34576779 PMCID: PMC8464734 DOI: 10.3390/microorganisms9091885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Alternative polyadenylation (APA) represents an important mechanism for regulating isoform-specific translation efficiency, stability, and localisation. Though some progress has been made in understanding its consequences in metazoans, the role of APA in the model organism Saccharomyces cerevisiae remains a relative mystery because, despite abundant studies on the translational state of mRNA, none differentiate mRNA isoforms’ alternative 3′-end. This review discusses the implications of alternative polyadenylation in S. cerevisiae using other organisms to draw inferences. Given the foundational role that research in this yeast has played in the discovery of the mechanisms of cleavage and polyadenylation and in the drivers of APA, it is surprising that such an inference is required. However, because advances in ribosome profiling are insensitive to APA, how it impacts translation is still unclear. To bridge the gap between widespread observed APA and the discovery of any functional consequence, we also provide a review of the experimental techniques used to uncover the functional importance of 3′ UTR isoforms on translation.
Collapse
|
6
|
Anda S, Boye E, Schink KO, Grallert B. Cosegregation of asymmetric features during cell division. Open Biol 2021; 11:210116. [PMID: 34343465 PMCID: PMC8331232 DOI: 10.1098/rsob.210116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cellular asymmetry plays a major role in the ageing and evolution of multicellular organisms. However, it remains unknown how the cell distinguishes 'old' from 'new' and whether asymmetry is an attribute of highly specialized cells or a feature inherent in all cells. Here, we investigate the segregation of three asymmetric features: old and new DNA, the spindle pole body (SPB, the centrosome analogue) and the old and new cell ends, using a simple unicellular eukaryote, Schizosaccharomyces pombe. To our knowledge, this is the first study exploring three asymmetric features in the same cells. We show that of the three chromosomes of S. pombe, chromosome I containing the new parental strand, preferentially segregated to the cells inheriting the old cell end. Furthermore, the new SPB also preferentially segregated to the cells inheriting the old end. Our results suggest that the ability to distinguish 'old' from 'new' and to segregate DNA asymmetrically are inherent features even in simple unicellular eukaryotes.
Collapse
Affiliation(s)
- Silje Anda
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway
| | - Erik Boye
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kay Oliver Schink
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Beata Grallert
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
7
|
Kumar S, Kumari N, Talukdar D, Kothidar A, Sarkar M, Mehta O, Kshetrapal P, Wadhwa N, Thiruvengadam R, Desiraju BK, Nair GB, Bhatnagar S, Mukherjee S, Das B. The Vaginal Microbial Signatures of Preterm Birth Delivery in Indian Women. Front Cell Infect Microbiol 2021; 11:622474. [PMID: 34094994 PMCID: PMC8169982 DOI: 10.3389/fcimb.2021.622474] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/23/2021] [Indexed: 01/03/2023] Open
Abstract
Background The incidence of preterm birth (PTB) in India is around 13%. Specific bacterial communities or individual taxon living in the vaginal milieu of pregnant women is a potential risk factor for PTB and may play an important role in its pathophysiology. Besides, bacterial taxa associated with PTB vary across populations. Objective Conduct a comparative analysis of vaginal microbiome composition and microbial genomic repertoires of women who enrolled in the Interdisciplinary Group for Advanced Research on Birth Outcomes – A DBT India Initiative (GARBH-Ini) pregnancy cohort to identify bacterial taxa associated with term birth (TB) and PTB in Indian women. Methods Vaginal swabs were collected during all three trimesters from 38 pregnant Indian women who delivered spontaneous term (n=20) and preterm (n=18) neonates. Paired-end sequencing of V3-V4 region of 16S rRNA gene was performed using the metagenomic DNA isolated from vaginal swabs (n=115). Whole genome sequencing of bacterial species associated with birth outcomes was carried out by shotgun method. Lactobacillus species were grown anaerobically in the De Man, Rogosa and Sharpe (MRS) agar culture medium for isolation of genomic DNA and whole genome sequencing. Results Vaginal microbiome of both term and preterm samples reveals similar alpha diversity indices. However, significantly higher abundance of Lactobacillus iners (p-value All_Trimesters<0.02), Megasphaera sp (p-value1st_Trimester <0.05), Gardnerella vaginalis (p-value2nd_Trimester= 0.01) and Sneathia sanguinegens (p-value2nd_Trimester <0.0001) were identified in preterm samples whereas higher abundance of L. gasseri (p-value3rd_Trimester =0.010) was observed in term samples by Wilcoxon rank-sum test. The relative abundance of L. iners, and Megasphaera sp. were found to be significantly different over time between term and preterm mothers. Analyses of the representative genomes of L. crispatus and L. gasseri indicate presence of secretory transcriptional regulator and several ribosomally synthesized antimicrobial peptides correlated with anti-inflammatory condition in the vagina. These findings indicate protective role of L. crispatus and L. gasseri in reducing the risk of PTB. Conclusion Our findings indicate that the dominance of specific Lactobacillus species and few other facultative anaerobes are associated with birth outcomes.
Collapse
Affiliation(s)
- Shakti Kumar
- Molecular Genetics Laboratory, Translational Health Science and Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Naina Kumari
- National Institute of Biomedical Genomics, Kalyani, India
| | - Daizee Talukdar
- Molecular Genetics Laboratory, Translational Health Science and Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Akansha Kothidar
- Molecular Genetics Laboratory, Translational Health Science and Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Mousumi Sarkar
- National Institute of Biomedical Genomics, Kalyani, India
| | - Ojasvi Mehta
- Molecular Genetics Laboratory, Translational Health Science and Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Pallavi Kshetrapal
- Pediatric Biology Center, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Nitya Wadhwa
- Pediatric Biology Center, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Ramachandran Thiruvengadam
- Pediatric Biology Center, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Bapu Koundinya Desiraju
- Pediatric Biology Center, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - G Balakrish Nair
- Molecular Genetics Laboratory, Translational Health Science and Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Shinjini Bhatnagar
- Pediatric Biology Center, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | | | - Bhabatosh Das
- Molecular Genetics Laboratory, Translational Health Science and Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | | |
Collapse
|
8
|
Abouward R, Schiavo G. Walking the line: mechanisms underlying directional mRNA transport and localisation in neurons and beyond. Cell Mol Life Sci 2021; 78:2665-2681. [PMID: 33341920 PMCID: PMC8004493 DOI: 10.1007/s00018-020-03724-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/02/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022]
Abstract
Messenger RNA (mRNA) localisation enables a high degree of spatiotemporal control on protein synthesis, which contributes to establishing the asymmetric protein distribution required to set up and maintain cellular polarity. As such, a tight control of mRNA localisation is essential for many biological processes during development and in adulthood, such as body axes determination in Drosophila melanogaster and synaptic plasticity in neurons. The mechanisms controlling how mRNAs are localised, including diffusion and entrapment, local degradation and directed active transport, are largely conserved across evolution and have been under investigation for decades in different biological models. In this review, we will discuss the standing of the field regarding directional mRNA transport in light of the recent discovery that RNA can hitchhike on cytoplasmic organelles, such as endolysosomes, and the impact of these transport modalities on our understanding of neuronal function during development, adulthood and in neurodegeneration.
Collapse
Affiliation(s)
- Reem Abouward
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
9
|
Geva P, Komoshvili K, Liberman-Aronov S. Two- and Three-Dimensional Tracking of MFA2 mRNA Molecules in Mating Yeast. Cells 2020; 9:E2151. [PMID: 32977598 PMCID: PMC7650813 DOI: 10.3390/cells9102151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022] Open
Abstract
Intracellular mRNA transport contributes to the spatio-temporal regulation of mRNA function and localized translation. In the budding yeast, Saccharomyces cerevisiae, asymmetric mRNA transport localizes ~30 specific mRNAs including those encoding polarity and secretion factors, to the bud tip. The underlying process involves RNA-binding proteins (RBPs), molecular motors, processing bodies (PBs), and the actin cytoskeleton. Recently, pheromone a-factor expression in mating yeast was discovered to depend on proper localization of its mRNA, MFA2 mRNAs in conjunction with PBs cluster at the shmoo tip to form "mating bodies", from which a-factor is locally expressed. The mechanism ensuring the correct targeting of mRNA to the shmoo tip is poorly understood. Here we analyzed the kinetics and trajectories of MFA2 mRNA transport in living, alpha-factor treated yeast. Two- (2D) and three-dimensional (3D) analyses allowed us to reconstruct the granule tracks and estimate granule velocities. Tracking analysis of single MFA2 mRNA granules, labeled using a fluorescent aptamer system, demonstrated three types movement: vibrational, oscillatory and translocational. The mRNA granule transport was complex; a granule could change its movement behavior and composition during its journey to the shmoo. Processing body assembly and the actin-based motor, Myo4p, were involved in movement of MFA2 mRNA to the shmoo, but neither was required, indicating that multiple mechanisms for translocation were at play. Our visualization studies present a dynamic view of the localization mechanism in shmoo-bearing cells.
Collapse
Affiliation(s)
- Polina Geva
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel;
| | | | | |
Collapse
|
10
|
Yeast as a Model to Understand Actin-Mediated Cellular Functions in Mammals-Illustrated with Four Actin Cytoskeleton Proteins. Cells 2020; 9:cells9030672. [PMID: 32164332 PMCID: PMC7140605 DOI: 10.3390/cells9030672] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/31/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has an actin cytoskeleton that comprises a set of protein components analogous to those found in the actin cytoskeletons of higher eukaryotes. Furthermore, the actin cytoskeletons of S. cerevisiae and of higher eukaryotes have some similar physiological roles. The genetic tractability of budding yeast and the availability of a stable haploid cell type facilitates the application of molecular genetic approaches to assign functions to the various actin cytoskeleton components. This has provided information that is in general complementary to that provided by studies of the equivalent proteins of higher eukaryotes and hence has enabled a more complete view of the role of these proteins. Several human functional homologues of yeast actin effectors are implicated in diseases. A better understanding of the molecular mechanisms underpinning the functions of these proteins is critical to develop improved therapeutic strategies. In this article we chose as examples four evolutionarily conserved proteins that associate with the actin cytoskeleton: (1) yeast Hof1p/mammalian PSTPIP1, (2) yeast Rvs167p/mammalian BIN1, (3) yeast eEF1A/eEF1A1 and eEF1A2 and (4) yeast Yih1p/mammalian IMPACT. We compare the knowledge on the functions of these actin cytoskeleton-associated proteins that has arisen from studies of their homologues in yeast with information that has been obtained from in vivo studies using live animals or in vitro studies using cultured animal cell lines.
Collapse
|
11
|
Chaudhuri A, Das S, Das B. Localization elements and zip codes in the intracellular transport and localization of messenger RNAs in Saccharomyces cerevisiae. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1591. [PMID: 32101377 DOI: 10.1002/wrna.1591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/13/2022]
Abstract
Intracellular trafficking and localization of mRNAs provide a mechanism of regulation of expression of genes with excellent spatial control. mRNA localization followed by localized translation appears to be a mechanism of targeted protein sorting to a specific cell-compartment, which is linked to the establishment of cell polarity, cell asymmetry, embryonic axis determination, and neuronal plasticity in metazoans. However, the complexity of the mechanism and the components of mRNA localization in higher organisms prompted the use of the unicellular organism Saccharomyces cerevisiae as a simplified model organism to study this vital process. Current knowledge indicates that a variety of mRNAs are asymmetrically and selectively localized to the tip of the bud of the daughter cells, to the vicinity of endoplasmic reticulum, mitochondria, and nucleus in this organism, which are connected to diverse cellular processes. Interestingly, specific cis-acting RNA localization elements (LEs) or RNA zip codes play a crucial role in the localization and trafficking of these localized mRNAs by providing critical binding sites for the specific RNA-binding proteins (RBPs). In this review, we present a comprehensive account of mRNA localization in S. cerevisiae, various types of localization elements influencing the mRNA localization, and the RBPs, which bind to these LEs to implement a number of vital physiological processes. Finally, we emphasize the significance of this process by highlighting their connection to several neuropathological disorders and cancers. This article is categorized under: RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
- Anusha Chaudhuri
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Subhadeep Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| |
Collapse
|
12
|
Abstract
RNA localization mechanisms have been intensively studied and include localized protection of mRNA from degradation, diffusion-coupled local entrapment of mRNA, and directed transport of mRNAs along the cytoskeleton. While it is well understood how cells utilize these three mechanisms to organize mRNAs within the cytoplasm, a newly appreciated mechanism of RNA localization has emerged in recent years in which mRNAs phase-separate and form liquid-like droplets. mRNAs both contribute to condensation of proteins into liquid-like structures and are themselves regulated by being incorporated into membraneless organelles. This ability to condense into droplets is in many instances contributing to previously appreciated mRNA localization phenomena. Here we review how phase separation enables mRNAs to selectively and efficiently colocalize and be coregulated, allowing control of gene expression in time and space.
Collapse
Affiliation(s)
- Erin M Langdon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; .,Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
| |
Collapse
|
13
|
Matsuyama T. Recent developments in terminator technology in Saccharomyces cerevisiae. J Biosci Bioeng 2019; 128:655-661. [PMID: 31324384 DOI: 10.1016/j.jbiosc.2019.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 11/26/2022]
Abstract
Metabolically engineered microorganisms that produce useful organic compounds will be helpful for realizing a sustainable society. The budding yeast Saccharomyces cerevisiae has high utility as a metabolic engineering platform because of its high fermentation ability, non-pathogenicity, and ease of handling. When producing yeast strains that produce exogenous compounds, it is a prerequisite to control the expression of exogenous enzyme-encoding genes. Terminator region in a gene expression cassette, as well as promoter region, could be used to improve metabolically engineered yeasts by increasing or decreasing the expression of the target enzyme-encoding genes. The findings on terminators have grown rapidly in the last decade, so an overview of these findings should provide a foothold for new developments.
Collapse
|
14
|
Adivarahan S, Zenklusen D. Lessons from (pre-)mRNA Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:247-284. [DOI: 10.1007/978-3-030-31434-7_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Messenger RNA transport in the opportunistic fungal pathogen Candida albicans. Curr Genet 2017; 63:989-995. [PMID: 28512683 DOI: 10.1007/s00294-017-0707-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 01/12/2023]
Abstract
Candida albicans, a common commensal fungus, can cause disease in immunocompromised hosts ranging from mild mucosal infections to severe bloodstream infections with high mortality rates. The ability of C. albicans cells to switch between a budding yeast form and an elongated hyphal form is linked to pathogenicity in animal models. Hyphal-specific proteins such as cell-surface adhesins and secreted hydrolases facilitate tissue invasion and host cell damage, but the specific mechanisms leading to asymmetric protein localization in hyphae remain poorly understood. In many eukaryotes, directional cytoplasmic transport of messenger RNAs that encode asymmetrically localized proteins allows efficient local translation at the site of protein function. Over the past two decades, detailed mechanisms for polarized mRNA transport have been elucidated in the budding yeast Saccharomyces cerevisiae and the filamentous fungus Ustilago maydis. This review highlights recent studies of RNA-binding proteins in C. albicans that have revealed intriguing similarities to and differences from known fungal mRNA transport systems. I also discuss outstanding questions that will need to be answered to reach an in-depth understanding of C. albicans mRNA transport mechanisms and the roles of asymmetric mRNA localization in polarized growth, hyphal function, and virulence of this opportunistic pathogen.
Collapse
|
16
|
Goldman CH, Gonsalvez GB. The Role of Microtubule Motors in mRNA Localization and Patterning Within the Drosophila Oocyte. Results Probl Cell Differ 2017; 63:149-168. [PMID: 28779317 DOI: 10.1007/978-3-319-60855-6_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Messenger RNA (mRNA) localization is a powerful and prevalent mechanism of post-transcriptional gene regulation, enabling the cell to produce protein at the exact location at which it is needed. The phenomenon of mRNA localization has been observed in many types of cells in organisms ranging from yeast to man. Thus, the process appears to be widespread and highly conserved. Several model systems have been used to understand the mechanism by which mRNAs are localized. One such model, and the focus of this chapter, is the egg chamber of the female Drosophila melanogaster. The polarity of the developing Drosophila oocyte and resulting embryo relies on the specific localization of three critical mRNAs: gurken, bicoid, and oskar. If these mRNAs are not localized during oogenesis, the resulting progeny will not survive. The study of these mRNAs has served as a model for understanding the general mechanisms by which mRNAs are sorted. In this chapter, we will discuss how the localization of these mRNAs enables polarity establishment. We will also discuss the role of motor proteins in the localization pathway. Finally, we will consider potential mechanisms by which mRNAs can be anchored at their site of localization. It is likely that the lessons learned using the Drosophila oocyte model system will be applicable to mRNAs that are localized in other organisms as well.
Collapse
Affiliation(s)
- Chandler H Goldman
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1459 Laney Walker Blvd., CB2917, Augusta, GA, 30912, USA
| | - Graydon B Gonsalvez
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1459 Laney Walker Blvd., CB2917, Augusta, GA, 30912, USA.
| |
Collapse
|
17
|
Veeranan-Karmegam R, Boggupalli DP, Liu G, Gonsalvez GB. A new isoform of Drosophila non-muscle Tropomyosin 1 interacts with Kinesin-1 and functions in oskar mRNA localization. J Cell Sci 2016; 129:4252-4264. [PMID: 27802167 DOI: 10.1242/jcs.194332] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/05/2016] [Indexed: 12/16/2022] Open
Abstract
Recent studies have revealed that diverse cell types use mRNA localization as a means to establish polarity. Despite the prevalence of this phenomenon, much less is known regarding the mechanism by which mRNAs are localized. The Drosophila melanogaster oocyte provides a useful model for examining the process of mRNA localization. oskar (osk) mRNA is localized at the posterior of the oocyte, thus restricting the expression of Oskar protein to this site. The localization of osk mRNA is microtubule dependent and requires the plus-end-directed motor Kinesin-1. Unlike most Kinesin-1 cargoes, localization of osk mRNA requires the Kinesin heavy chain (Khc) motor subunit, but not the Kinesin light chain (Klc) adaptor. In this report, we demonstrate that a newly discovered isoform of Tropomyosin 1, referred to as Tm1C, directly interacts with Khc and functions in concert with this microtubule motor to localize osk mRNA. Apart from osk mRNA localization, several additional Khc-dependent processes in the oocyte are unaffected upon loss of Tm1C. Our results therefore suggest that the Tm1C-Khc interaction is specific for the osk localization pathway.
Collapse
Affiliation(s)
- Rajalakshmi Veeranan-Karmegam
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1459 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Devi Prasad Boggupalli
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1459 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Guojun Liu
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1459 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Graydon B Gonsalvez
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1459 Laney Walker Blvd, Augusta, GA 30912, USA
| |
Collapse
|
18
|
In the right place at the right time: visualizing and understanding mRNA localization. Nat Rev Mol Cell Biol 2014; 16:95-109. [PMID: 25549890 DOI: 10.1038/nrm3918] [Citation(s) in RCA: 413] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The spatial regulation of protein translation is an efficient way to create functional and structural asymmetries in cells. Recent research has furthered our understanding of how individual cells spatially organize protein synthesis, by applying innovative technology to characterize the relationship between mRNAs and their regulatory proteins, single-mRNA trafficking dynamics, physiological effects of abrogating mRNA localization in vivo and for endogenous mRNA labelling. The implementation of new imaging technologies has yielded valuable information on mRNA localization, for example, by observing single molecules in tissues. The emerging movements and localization patterns of mRNAs in morphologically distinct unicellular organisms and in neurons have illuminated shared and specialized mechanisms of mRNA localization, and this information is complemented by transgenic and biochemical techniques that reveal the biological consequences of mRNA mislocalization.
Collapse
|
19
|
Jung H, Gkogkas CG, Sonenberg N, Holt CE. Remote control of gene function by local translation. Cell 2014; 157:26-40. [PMID: 24679524 PMCID: PMC3988848 DOI: 10.1016/j.cell.2014.03.005] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/04/2014] [Accepted: 03/04/2014] [Indexed: 12/12/2022]
Abstract
The subcellular position of a protein is a key determinant of its function. Mounting evidence indicates that RNA localization, where specific mRNAs are transported subcellularly and subsequently translated in response to localized signals, is an evolutionarily conserved mechanism to control protein localization. On-site synthesis confers novel signaling properties to a protein and helps to maintain local proteome homeostasis. Local translation plays particularly important roles in distal neuronal compartments, and dysregulated RNA localization and translation cause defects in neuronal wiring and survival. Here, we discuss key findings in this area and possible implications of this adaptable and swift mechanism for spatial control of gene function.
Collapse
Affiliation(s)
- Hosung Jung
- Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Christos G Gkogkas
- Patrick Wild Centre, Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada.
| | - Christine E Holt
- Department of Physiology Development and Neuroscience, Anatomy Building, Downing Street, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|
20
|
Gu W, Li M, Xu Y, Wang T, Ko JH, Zhou T. The impact of RNA structure on coding sequence evolution in both bacteria and eukaryotes. BMC Evol Biol 2014; 14:87. [PMID: 24758737 PMCID: PMC4021280 DOI: 10.1186/1471-2148-14-87] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/07/2014] [Indexed: 12/03/2022] Open
Abstract
Background Many studies have found functional RNA secondary structures are selectively conserved among species. But, the effect of RNA structure selection on coding sequence evolution remains unknown. To address this problem, we systematically investigated the relationship between nucleotide conservation level and its structural sensitivity in four model organisms, Escherichia coli, yeast, fly, and mouse. Results We define structurally sensitive sites as those with putative local structure-disruptive mutations. Using both the Mantel-Haenszel procedure and association test, we found structurally sensitive nucleotide sites evolved more slowly than non-sensitive sites in all four organisms. Furthermore, we observed that this association is more obvious in highly expressed genes and region near the start codon. Conclusion We conclude that structurally sensitive sites in mRNA sequences normally have less nucleotide divergence in all species we analyzed. This study extends our understanding of the impact of RNA structure on coding sequence evolution, and is helpful to the development of a codon model with RNA structure information.
Collapse
Affiliation(s)
- Wanjun Gu
- Research Center for Learning Sciences, Southeast University, Nanjing, Jiangsu 210096, China.
| | | | | | | | | | | |
Collapse
|
21
|
Yamanishi M, Ito Y, Kintaka R, Imamura C, Katahira S, Ikeuchi A, Moriya H, Matsuyama T. A genome-wide activity assessment of terminator regions in Saccharomyces cerevisiae provides a ″terminatome″ toolbox. ACS Synth Biol 2013; 2:337-47. [PMID: 23654277 DOI: 10.1021/sb300116y] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The terminator regions of eukaryotes encode functional elements in the 3' untranslated region (3'-UTR) that influence the 3'-end processing of mRNA, mRNA stability, and translational efficiency, which can modulate protein production. However, the contribution of these terminator regions to gene expression remains unclear, and therefore their utilization in metabolic engineering or synthetic genetic circuits has been limited. Here, we comprehensively evaluated the activity of 5302 terminator regions from a total of 5880 genes in the budding yeast Saccharomyces cerevisiae by inserting each terminator region downstream of the P TDH3 - green fluorescent protein (GFP) reporter gene and measuring the fluorescent intensity of GFP. Terminator region activities relative to that of the PGK1 standard terminator ranged from 0.036 to 2.52, with a mean of 0.87. We thus could isolate the most and least active terminator regions. The activities of the terminator regions showed a positive correlation with mRNA abundance, indicating that the terminator region is a determinant of mRNA abundance. The least active terminator regions tended to encode longer 3'-UTRs, suggesting the existence of active degradation mechanisms for those mRNAs. The terminator regions of ribosomal protein genes tended to be the most active, suggesting the existence of a common regulator of those genes. The ″terminatome″ (the genome-wide set of terminator regions) thus not only provides valuable information to understand the modulatory roles of terminator regions on gene expression but also serves as a useful toolbox for the development of metabolically and genetically engineered yeast.
Collapse
Affiliation(s)
| | | | - Reiko Kintaka
- Research Core for Interdisciplinary
Sciences, Okayama University, 3-1-1 Tsushima-Naka,
Kita-ku, Okayama, 700-8530, Japan
| | | | | | | | - Hisao Moriya
- Research Core for Interdisciplinary
Sciences, Okayama University, 3-1-1 Tsushima-Naka,
Kita-ku, Okayama, 700-8530, Japan
| | | |
Collapse
|
22
|
Inducible control of subcellular RNA localization using a synthetic protein-RNA aptamer interaction. PLoS One 2012; 7:e46868. [PMID: 23056498 PMCID: PMC3466194 DOI: 10.1371/journal.pone.0046868] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 09/05/2012] [Indexed: 12/18/2022] Open
Abstract
Evidence is accumulating in support of the functional importance of subcellular RNA localization in diverse biological contexts. In different cell types, distinct RNA localization patterns are frequently observed, and the available data indicate that this is achieved through a series of highly coordinated events. Classically, cis–elements within the RNA to be localized are recognized by RNA-binding proteins (RBPs), which then direct specific localization of a target RNA. Until now, the precise control of the spatiotemporal parameters inherent to regulating RNA localization has not been experimentally possible. Here, we demonstrate the development and use of a chemically–inducible RNA–protein interaction to regulate subcellular RNA localization. Our system is composed primarily of two parts: (i) the Tet Repressor protein (TetR) genetically fused to proteins natively involved in localizing endogenous transcripts; and (ii) a target transcript containing genetically encoded TetR–binding RNA aptamers. TetR–fusion protein binding to the target RNA and subsequent localization of the latter are directly regulated by doxycycline. Using this platform, we demonstrate that enhanced and controlled subcellular localization of engineered transcripts are achievable. We also analyze rules for forward engineering this RNA localization system in an effort to facilitate its straightforward application to studying RNA localization more generally.
Collapse
|
23
|
Abstract
beta-Actin mRNA is localized near the leading edge in several cell types where actin polymerization is actively promoting forward protrusion. The localization of the beta-actin mRNA near the leading edge is facilitated by a short sequence in the 3'UTR (untranslated region), the 'zipcode'. Localization of the mRNA at this region is important physiologically. Treatment of chicken embryo fibroblasts with antisense oligonucleotides complementary to the localization sequence (zipcode) in the 3'UTR leads to delocalization of beta-actin mRNA, alteration of cell phenotype and a decrease in cell motility. The dynamic image analysis system (DIAS) used to quantify movement of cells in the presence of sense and antisense oligonucleotides to the zipcode showed that net pathlength and average speed of antisense-treated cells were significantly lower than in sense-treated cells. This suggests that a decrease in persistence of direction of movement and not in velocity results from treatment of cells with zipcode-directed antisense oligonucleotides. We postulate that delocalization of beta-actin mRNA results in delocalization of nucleation sites and beta-actin protein from the leading edge followed by loss of cell polarity and directional movement. Hence the physiological consequences of beta-actin mRNA delocalization affect the stability of the cell phenotype.
Collapse
Affiliation(s)
- John Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | |
Collapse
|
24
|
Daly T, Chen XS, Penny D. How old are RNA networks? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 722:255-73. [PMID: 21915795 DOI: 10.1007/978-1-4614-0332-6_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Some major classes of RNAs (such as mRNA, rRNA, tRNA and RNase P) are ubiquitous in all living systems so are inferred to have arisen early during the origin of life. However, the situation is not so clear for the system of RNA regulatory networks that continue to be uncovered, especially in eukaryotes. It is increasingly being recognised that networks of small RNAs are important for regulation in all cells, but it is not certain whether the origin of these networks are as old as rRNAs and tRNA. Another group of ncRNAs, including snoRNAs, occurs mainly in archaea and eukaryotes and their ultimate origin is less certain, although perhaps the simplest hypothesis is that they were present in earlier stages of life and were lost from bacteria. Some RNA networks may trace back to an early stage when there was just RNA and proteins, the RNP-world; before DNA.
Collapse
Affiliation(s)
- Toni Daly
- Allan Wilson Centre of Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand
| | | | | |
Collapse
|
25
|
Sinnamon JR, Czaplinski K. mRNA trafficking and local translation: the Yin and Yang of regulating mRNA localization in neurons. Acta Biochim Biophys Sin (Shanghai) 2011; 43:663-70. [PMID: 21749992 DOI: 10.1093/abbs/gmr058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Localized translation and the requisite trafficking of the mRNA template play significant roles in the nervous system including the establishment of dendrites and axons, axon path-finding, and synaptic plasticity. We provide a brief review on the regulation of localizing mRNA in mammalian neurons through critical post-translational modifications of the factors involved. These examples highlight the relationship between mRNA trafficking and the translational regulation of trafficked mRNAs and provide insight into how extracellular signals target these events during signal transduction.
Collapse
Affiliation(s)
- John R Sinnamon
- Program in Neuroscience, Stony Brook University, NY 11794, USA
| | | |
Collapse
|
26
|
Wan Y, Kertesz M, Spitale RC, Segal E, Chang HY. Understanding the transcriptome through RNA structure. Nat Rev Genet 2011; 12:641-55. [PMID: 21850044 DOI: 10.1038/nrg3049] [Citation(s) in RCA: 351] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RNA structure is crucial for gene regulation and function. In the past, transcriptomes have largely been parsed by primary sequences and expression levels, but it is now becoming feasible to annotate and compare transcriptomes based on RNA structure. In addition to computational prediction methods, the recent advent of experimental techniques to probe RNA structure by high-throughput sequencing has enabled genome-wide measurements of RNA structure and has provided the first picture of the structural organization of a eukaryotic transcriptome - the 'RNA structurome'. With additional advances in method refinement and interpretation, structural views of the transcriptome should help to identify and validate regulatory RNA motifs that are involved in diverse cellular processes and thereby increase understanding of RNA function.
Collapse
Affiliation(s)
- Yue Wan
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
27
|
Gadir N, Haim-Vilmovsky L, Kraut-Cohen J, Gerst JE. Localization of mRNAs coding for mitochondrial proteins in the yeast Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2011; 17:1551-65. [PMID: 21705432 PMCID: PMC3153978 DOI: 10.1261/rna.2621111] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Targeted mRNA localization is a likely determinant of localized protein synthesis. To investigate whether mRNAs encoding mitochondrial proteins (mMPs) localize to mitochondria and, thus, might confer localized protein synthesis and import, we visualized endogenously expressed mMPs in vivo for the first time. We determined the localization of 24 yeast mMPs encoding proteins of the mitochondrial matrix, outer and inner membrane, and intermembrane space and found that many mMPs colocalize with mitochondria in vivo. This supports earlier cell fractionation and microarray-based studies that proposed mMP association with the mitochondrial fraction. Interestingly, a number of mMPs showed a dependency on the mitochondrial Puf3 RNA-binding protein, as well as nonessential proteins of the translocase of the outer membrane (TOM) complex import machinery, for normal colocalization with mitochondria. We examined the specific determinants of ATP2 and OXA1 mRNA localization and found a mutual dependency on the 3' UTR, Puf3, Tom7, and Tom70, but not Tom20, for localization. Tom6 may facilitate the localization of specific mRNAs as OXA1, but not ATP2, mRNA was mislocalized in tom6Δ cells. Interestingly, a substantial fraction of OXA1 and ATP2 RNA granules colocalized with the endoplasmic reticulum (ER) and a deletion in MDM10, which mediates mitochondria-ER tethering, resulted in a significant loss of OXA1 mRNA localization with ER. Finally, neither ATP2 nor OXA1 mRNA targeting was affected by a block in translation initiation, indicating that translation may not be essential for mRNA anchoring. Thus, endogenously expressed mRNAs are targeted to the mitochondria in vivo, and multiple factors contribute to mMP localization.
Collapse
Affiliation(s)
- Noga Gadir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Liora Haim-Vilmovsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Judith Kraut-Cohen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jeffrey E. Gerst
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
- Corresponding author.E-mail
| |
Collapse
|
28
|
Macdonald PM. mRNA localization: assembly of transport complexes and their incorporation into particles. Curr Opin Genet Dev 2011; 21:407-13. [PMID: 21536427 PMCID: PMC4301680 DOI: 10.1016/j.gde.2011.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 01/28/2023]
Abstract
Localization of mRNAs to subcellular domains can enrich proteins at sites where they function. Coordination with translational control can ensure that the encoded proteins will not appear elsewhere, an important property for factors that control cell fate or body patterning. Here I focus on two aspects of mRNA localization. One is the question of how mRNAs that undergo directed transport by a shared mechanism are bound to the transport machinery, and why localization signals from these mRNAs have very diverse sequences. The second topic concerns the role of particles, in which localized mRNAs often appear. Recent evidence highlights the importance of such assemblies, and the possibility that close association of mRNAs confers community effects and a novel form of regulation.
Collapse
Affiliation(s)
- Paul M Macdonald
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A4800, Austin, TX 78712, USA.
| |
Collapse
|
29
|
Abstract
mRNA transport is a widely used method to achieve the asymmetric distribution of proteins within a cell or organism. In order to understand how RNA is transported, it is essential to utilize a system that can readily detect RNA movement in live cells. The tagged RNA system has recently emerged as a feasible non-invasive solution for such purpose. In this chapter, we describe in detail the U1A-based tagged RNA system. This system coexpresses U1Ap-GFP with the RNA of interest tagged with U1A aptamers, and has been proven to effectively track RNA in vivo. In addition, we provide further applications of the system for ribonucleoprotein complex purification by TAP-tagging the U1Ap-GFP construct.
Collapse
|
30
|
Visualizing endogenous mRNAs in living yeast using m-TAG, a PCR-based RNA aptamer integration method, and fluorescence microscopy. Methods Mol Biol 2011; 714:237-47. [PMID: 21431745 DOI: 10.1007/978-1-61779-005-8_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Localized mRNA translation is involved in cell-fate determination, polarization, and morphogenesis in eukaryotes. While various tools are available to examine mRNA localization, no easy and quick method has allowed for the visualization of endogenously expressed mRNAs in vivo. We describe a simple method (m-TAG) for PCR-based chromosomal gene tagging that uses homologous recombination to insert binding sites for the RNA-binding MS2 coat protein (MS2-CP) between the coding region and 3'-untranslated region of any yeast gene. Upon co-expression of MS2-CP fused with GFP, specific endogenously expressed mRNAs can be visualized in vivo for the first time. This method allows for the easy examination of mRNA localization using fluorescence microscopy and leaves the yeast cells amenable for further genetic analysis.
Collapse
|
31
|
Lichius A, Berepiki A, Read ND. Form follows function – The versatile fungal cytoskeleton. Fungal Biol 2011; 115:518-40. [DOI: 10.1016/j.funbio.2011.02.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/15/2011] [Accepted: 02/17/2011] [Indexed: 12/11/2022]
|
32
|
Abstract
RNA localization, the enrichment of RNA in a specific subcellular region, is a mechanism for the establishment and maintenance of cellular polarity in a variety of systems. Ultimately, this results in a universal method for spatially restricting gene expression. Although the consequences of RNA localization are well-appreciated, many of the mechanisms that are responsible for carrying out polarized transport remain elusive. Several recent studies have illuminated the roles that molecular motor proteins play in the process of RNA localization. These studies have revealed complex mechanisms in which the coordinated action of one or more motor proteins can act at different points in the localization process to direct RNAs to their final destination. In this review, we discuss recent findings from several different systems in an effort to clarify pathways and mechanisms that control the directed movement of RNA.
Collapse
Affiliation(s)
| | - Kimberly L. Mowry
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence RI 02912, USA
| |
Collapse
|
33
|
Hartman MA, Finan D, Sivaramakrishnan S, Spudich JA. Principles of unconventional myosin function and targeting. Annu Rev Cell Dev Biol 2011; 27:133-55. [PMID: 21639800 DOI: 10.1146/annurev-cellbio-100809-151502] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unconventional myosins are a superfamily of actin-based motors implicated in diverse cellular processes. In recent years, much progress has been made in describing their biophysical properties, and headway has been made into analyzing their cellular functions. Here, we focus on the principles that guide in vivo motor function and targeting to specific cellular locations. Rather than describe each motor comprehensively, we outline the major themes that emerge from research across the superfamily and use specific examples to illustrate each. In presenting the data in this format, we seek to identify open questions in each field as well as to point out commonalities between them. To advance our understanding of myosins' roles in vivo, clearly we must identify their cellular cargoes and the protein complexes that regulate motor attachment to fully appreciate their functions on the cellular and developmental levels.
Collapse
Affiliation(s)
- M Amanda Hartman
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
34
|
Sattarzadeh A, Schmelzer E, Hanson MR. Analysis of Organelle Targeting by DIL Domains of the Arabidopsis Myosin XI Family. FRONTIERS IN PLANT SCIENCE 2011; 2:72. [PMID: 22645548 PMCID: PMC3355782 DOI: 10.3389/fpls.2011.00072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/16/2011] [Indexed: 05/07/2023]
Abstract
The Arabidopsis thaliana genome encodes 13 myosin XI motor proteins. Previous insertional mutant analysis has implicated substantial redundancy of function of plant myosin XIs in transport of intracellular organelles. Considerable information is available about the interaction of cargo with the myosin XI-homologous yeast myosin V protein myo2p. We identified a region in each of 12 myosin XI sequences that correspond to the yeast myo2p secretory-vesicle binding domain (the "DIL" domain). Structural modeling of the myosin DIL domain region of plant myosin XIs revealed significant similarity to the yeast myo2p and myo4p DIL domains. Transient expression of YFP fusions with the Arabidopsis myosin XI DIL domain resulted in fluorescent labeling of a variety of organelles, including the endoplasmic reticulum, peroxisomes, Golgi, and nuclear envelope. With the exception of the YFP::MYA1 DIL fusion, expression of the DIL-YFP fusions resulted in loss of motility of labeled organelles, consistent with a dominant-negative effect. Certain fusions resulted in localization to the cytoplasm, plasma membrane, or to unidentified vesicles. The same YFP-domain fusion sometimes labeled more than one organelle. Expression of a YFP fusion to a yeast myo2p DIL domain resulted in labeling of plant peroxisomes. Fusions with some of the myosin XI domains resulted in labeling of known cargoes of the particular myosin XI; however, certain myosin XI YFP fusions labeled organelles that had not previously been found to be detectably affected by mutations nor by expression of dominant-negative constructs.
Collapse
Affiliation(s)
- Amirali Sattarzadeh
- Central Microscopy, Max-Planck-Institute for Plant Breeding ResearchCologne, Germany
- Department of Molecular Biology and Genetics, Cornell UniversityIthaca, NY, USA
| | - Elmon Schmelzer
- Central Microscopy, Max-Planck-Institute for Plant Breeding ResearchCologne, Germany
| | - Maureen R. Hanson
- Department of Molecular Biology and Genetics, Cornell UniversityIthaca, NY, USA
- *Correspondence: Maureen R. Hanson, Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building, Ithaca, NY 14853, USA. e-mail:
| |
Collapse
|
35
|
Takatori N, Kumano G, Saiga H, Nishida H. Segregation of germ layer fates by nuclear migration-dependent localization of Not mRNA. Dev Cell 2010; 19:589-98. [PMID: 20951349 DOI: 10.1016/j.devcel.2010.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 08/25/2010] [Accepted: 08/26/2010] [Indexed: 10/18/2022]
Abstract
An important step in early embryonic development is the allocation and segregation of germ layer fates into distinct embryonic regions. However, the mechanism that segregates the mesendoderm into mesoderm and endoderm fates remains largely unknown in most animals. Here, using ascidians, a primitive chordate, we show that these fates are segregated by partitioning of asymmetrically localized Not mRNA from the mesendoderm cell to its mesodermal daughter. Migration of the mesendoderm cell nucleus to the future mesoderm-forming region, release of Not mRNA from the nucleus, Wnt5α-dependent local retention of the mRNA, and subsequent repositioning of the mitotic spindle to the center of the cell are each required for the asymmetric localization and partitioning of Not mRNA. Our results show that nuclear migration plays an unexpected role in asymmetric cell divisions that segregate germ layer fates in chordate embryos.
Collapse
Affiliation(s)
- Naohito Takatori
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | | | | | | |
Collapse
|
36
|
Kraut-Cohen J, Gerst JE. Addressing mRNAs to the ER: cis sequences act up! Trends Biochem Sci 2010; 35:459-69. [DOI: 10.1016/j.tibs.2010.02.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 02/15/2010] [Accepted: 02/18/2010] [Indexed: 12/26/2022]
|
37
|
Chung S, Takizawa PA. Multiple Myo4 motors enhance ASH1 mRNA transport in Saccharomyces cerevisiae. J Cell Biol 2010; 189:755-67. [PMID: 20457760 PMCID: PMC2872910 DOI: 10.1083/jcb.200912011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 04/15/2010] [Indexed: 11/22/2022] Open
Abstract
In Saccharomyces cerevisiae, ASH1 mRNA is transported to the bud tip by the class V myosin Myo4. In vivo, Myo4 moves RNA in a rapid and continuous fashion, but in vitro Myo4 is a nonprocessive, monomeric motor that forms a complex with She3. To understand how nonprocessive motors generate continuous transport, we used a novel purification method to show that Myo4, She3, and the RNA-binding protein She2 are the sole major components of an active ribonucleoprotein transport unit. We demonstrate that a single localization element contains multiple copies of Myo4 and a tetramer of She2, which suggests that She2 may recruit multiple motors to an RNA. Furthermore, we show that increasing the number of Myo4-She3 molecules bound to ASH1 RNA in the absence of She2 increases the efficiency of RNA transport to the bud. Our data suggest that multiple, nonprocessive Myo4 motors can generate continuous transport of mRNA to the bud tip.
Collapse
Affiliation(s)
- Sunglan Chung
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
38
|
A novel 65 kDa RNA-binding protein in squid presynaptic terminals. Neuroscience 2010; 166:73-83. [DOI: 10.1016/j.neuroscience.2009.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 12/01/2009] [Indexed: 11/22/2022]
|
39
|
Ding D, Dave KR, Bhattacharya SK. On Message Ribonucleic Acids Targeting to Mitochondria. BIOCHEMISTRY INSIGHTS 2009. [DOI: 10.4137/bci.s3745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mitochondria are subcellular organelles that provide energy for a variety of basic cellular processes in eukaryotic cells. Mitochondria maintain their own genomes and many of their endosymbiont genes are encoded by nuclear genomes. The crosstalk between the mitochondrial and nuclear genomes ensures mitochondrial biogenesis, dynamics and maintenance. Mitochondrial proteins are partly encoded by nucleus and synthesized in the cytosol and partly in the mitochondria coded by mitochondrial genome. The efficiency of transport systems that transport nuclear encoded gene products such as proteins and mRNAs to the mitochondrial vicinity to allow for their translation and/or import are recently receiving wide attention. There is currently no concrete evidence that nuclear encoded mRNA is transported into the mitochondria, however, they can be transported onto the mitochondrial surface and translated at the surface of mitochondria utilizing cytosolic machinery. In this review we present an overview of the recent advances in the mRNA transport, with emphasis on the transport of nuclear-encoded mitochondrial protein mRNA into the mitochondria.
Collapse
Affiliation(s)
- Di Ding
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Kunjan R. Dave
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Sanjoy K. Bhattacharya
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA
- Department of Neurology, University of Miami, Miami, FL, USA
| |
Collapse
|
40
|
Elson SL, Noble SM, Solis NV, Filler SG, Johnson AD. An RNA transport system in Candida albicans regulates hyphal morphology and invasive growth. PLoS Genet 2009; 5:e1000664. [PMID: 19779551 PMCID: PMC2739428 DOI: 10.1371/journal.pgen.1000664] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 08/26/2009] [Indexed: 11/18/2022] Open
Abstract
Localization of specific mRNAs is an important mechanism through which cells achieve polarity and direct asymmetric growth. Based on a framework established in Saccharomyces cerevisiae, we describe a She3-dependent RNA transport system in Candida albicans, a fungal pathogen of humans that grows as both budding (yeast) and filamentous (hyphal and pseudohyphal) forms. We identify a set of 40 mRNAs that are selectively transported to the buds of yeast-form cells and to the tips of hyphae, and we show that many of the genes encoded by these mRNAs contribute to hyphal development, as does the transport system itself. Although the basic system of mRNA transport is conserved between S. cerevisiae and C. albicans, we find that the cargo mRNAs have diverged considerably, implying that specific mRNAs can easily move in and out of transport control over evolutionary timescales. The differences in mRNA cargos likely reflect the distinct selective pressures acting on the two species.
Collapse
Affiliation(s)
- Sarah L. Elson
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Suzanne M. Noble
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, Division of Infectious Diseases, University of California San Francisco, San Francisco, California, United States of America
| | - Norma V. Solis
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Scott G. Filler
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Alexander D. Johnson
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
41
|
Abstract
The asymmetric localization of four maternal mRNAs - gurken, bicoid, oskar and nanos - in the Drosophila oocyte is essential for the development of the embryonic body axes. Fluorescent imaging methods are now being used to visualize these mRNAs in living tissue, allowing dynamic analysis of their behaviors throughout the process of localization. This review summarizes recent findings from such studies that provide new insight into the elaborate cellular mechanisms that are used to transport mRNAs to different regions of the oocyte and to maintain their localized distributions during oogenesis.
Collapse
Affiliation(s)
- Agata N Becalska
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
42
|
Slaughter BD, Smith SE, Li R. Symmetry breaking in the life cycle of the budding yeast. Cold Spring Harb Perspect Biol 2009; 1:a003384. [PMID: 20066112 PMCID: PMC2773630 DOI: 10.1101/cshperspect.a003384] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The budding yeast Saccharomyces cerevisiae has been an invaluable model system for the study of the establishment of cellular asymmetry and growth polarity in response to specific physiological cues. A large body of experimental observations has shown that yeast cells are able to break symmetry and establish polarity through two coupled and partially redundant intrinsic mechanisms, even in the absence of any pre-existing external asymmetry. One of these mechanisms is dependent upon interplay between the actin cytoskeleton and the Rho family GTPase Cdc42, whereas the other relies on a Cdc42 GTPase signaling network. Integral to these mechanisms appear to be positive feedback loops capable of amplifying small and stochastic asymmetries. Spatial cues, such as bud scars and pheromone gradients, orient cell polarity by modulating the regulation of the Cdc42 GTPase cycle, thereby biasing the site of asymmetry amplification.
Collapse
Affiliation(s)
- Brian D Slaughter
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, USA.
| | | | | |
Collapse
|
43
|
m-TAG: a PCR-based genomic integration method to visualize the localization of specific endogenous mRNAs in vivo in yeast. Nat Protoc 2009; 4:1274-84. [PMID: 19680241 DOI: 10.1038/nprot.2009.115] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This protocol describes m-TAG, a novel method for the visualization of endogenously expressed mRNAs in live yeast (Saccharomyces cerevisiae). First, a gene of interest is tagged with multiple binding sites for the RNA-binding MS2 coat protein (MS2-CP), using a PCR-based genomic-tagging strategy and homologous recombination. Next, MS2-CP fused to GFP(x3) is expressed in cells; binding of this fusion protein to the tagged mRNA yields an RNA granule that can be visualized by fluorescence microscopy. While existing methods necessitate cell fixation (for in situ hybridization) or the detection of exogenously expressed mRNAs (from plasmids), or give transient signals (i.e., with fluorescent hybridization probes), m-TAG allows for the robust and stable visualization of endogenously expressed mRNAs in vivo and facilitates the study of mRNA dynamics under different growth conditions. The m-TAG procedure is simple, easy to perform and takes <3 weeks to yield cultured yeast strains for mRNA visualization.
Collapse
|
44
|
Eydeler K, Magbanua E, Werner A, Ziegelmüller P, Hahn U. Fluorophore binding aptamers as a tool for RNA visualization. Biophys J 2009; 96:3703-7. [PMID: 19413975 DOI: 10.1016/j.bpj.2009.01.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/16/2009] [Accepted: 01/23/2009] [Indexed: 10/20/2022] Open
Abstract
Fluorescence correlation spectroscopy (FCS) is suitable for the detection of fluorescent molecules in living cells. For the visualization of mRNA, we genetically fused a fluorophore-specific RNA aptamer to the coding mRNA of the green fluorescent protein, as well as to noncoding sequences. Using these constructs, we showed that the aptamer portion of the mRNA still binds the fluorophore in the nanomolar range as determined via FCS. Furthermore, the binding took place in the context of total RNA extract. A tandem construct of the RNA aptamer even exhibited a lower K(d) than the monomer. This FCS-based method establishes a tool for minimal invasive detection of RNA at the single molecule level in individual living cells.
Collapse
Affiliation(s)
- Katja Eydeler
- Department of Chemistry, Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | | | | | | | | |
Collapse
|
45
|
Abstract
Bicaudal-D (Bic-D) and Egalitarian (Egl) are required for the dynein-dependent localization of many mRNAs in Drosophila, but the mRNAs show no obvious sequence similarities, and the RNA-binding proteins that recognize them and link them to dynein are not known. In this issue of Genes & Development, Dienstbier and colleagues (pp. 1546-1558) present evidence that the elusive RNA-binding protein is Egl itself. As well as linking mRNA to dynein, they show that Egl also activates dynein motility by binding Bic-D and the dynein light chain.
Collapse
Affiliation(s)
- Dmitry Nashchekin
- Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
46
|
Dienstbier M, Boehl F, Li X, Bullock SL. Egalitarian is a selective RNA-binding protein linking mRNA localization signals to the dynein motor. Genes Dev 2009; 23:1546-58. [PMID: 19515976 PMCID: PMC2704466 DOI: 10.1101/gad.531009] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 05/07/2009] [Indexed: 01/05/2023]
Abstract
Cytoplasmic sorting of mRNAs by microtubule-based transport is widespread, yet very little is known at the molecular level about how specific transcripts are linked to motor complexes. In Drosophila, minus-end-directed transport of developmentally important transcripts by the dynein motor is mediated by seemingly divergent mRNA elements. Here we provide evidence that direct recognition of these mRNA localization signals is mediated by the Egalitarian (Egl) protein. Egl and the dynein cofactor Bicaudal-D (BicD) are the only proteins from embryonic extracts that are abundantly and specifically enriched on RNA localization signals from transcripts of gurken, hairy, K10, and the I factor retrotransposon. In vitro assays show that, despite lacking a canonical RNA-binding motif, Egl directly recognizes active localization elements. We also reveal a physical interaction between Egl and a conserved domain for cargo recruitment in BicD and present data suggesting that Egl participates selectively in BicD-mediated transport of mRNA in vivo. Our work leads to the first working model for a complete connection between minus-end-directed mRNA localization signals and microtubules and reveals molecular strategies that are likely to be of general relevance for cargo transport by dynein.
Collapse
Affiliation(s)
- Martin Dienstbier
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Florian Boehl
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Xuan Li
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Simon L. Bullock
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
47
|
Bookwalter CS, Lord M, Trybus KM. Essential features of the class V myosin from budding yeast for ASH1 mRNA transport. Mol Biol Cell 2009; 20:3414-21. [PMID: 19477930 DOI: 10.1091/mbc.e08-08-0801] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Myo4p, a single-headed and nonprocessive class V myosin in budding yeast, transports >20 different mRNAs asymmetrically to the bud. Here, we determine the features of the Myo4p motor that are necessary for correct localization of ASH1 mRNA to the daughter cell, a process that also requires the adapter protein She3p and the dimeric mRNA-binding protein She2p. The rod region of Myo4p, but not the globular tail, is essential for correct localization of ASH1 mRNA, confirming that the rod contains the primary binding site for She3p. The requirement for both the rod region and She3p can be bypassed by directly coupling the mRNA-binding protein She2p to Myo4p. ASH1 mRNA was also correctly localized when one motor was bound per dimeric She2p, or when two motors were joined together by a leucine zipper. Because multiple mRNAs are cotransported to the bud, it is likely that this process involves multiple motor transport regardless of the number of motors per zip code. Our results show that the most important feature for correct localization is the retention of coupling between all the members of the complex (Myo4p-She3p-She2p-ASH1 mRNA), which is aided by She3p being a tightly bound subunit of Myo4p.
Collapse
Affiliation(s)
- Carol S Bookwalter
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA
| | | | | |
Collapse
|
48
|
She3p possesses a novel activity required for ASH1 mRNA localization in Saccharomyces cerevisiae. EUKARYOTIC CELL 2009; 8:1072-83. [PMID: 19429778 DOI: 10.1128/ec.00084-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Intracellular and intercellular polarity requires that specific proteins be sorted to discreet locations within and between cells. One mechanism for sorting proteins is through RNA localization. In Saccharomyces cerevisiae, ASH1 mRNA localizes to the distal tip of the bud, resulting in the asymmetric sorting of the transcriptional repressor Ash1p. ASH1 mRNA localization requires four cis-acting localization elements and the trans-acting factors Myo4p, She3p, and She2p. Myo4p is a type V myosin motor that functions to directly transport ASH1 mRNA to the bud. She2p is an RNA-binding protein that directly interacts with the ASH1 mRNA cis-acting elements. Currently, the role for She3p in ASH1 mRNA localization is as an adaptor protein, since it can simultaneously associate with Myo4p and She2p. Here, we present data for two novel mutants of She3p, S348E and the double mutant S343E S361E, that are defective for ASH1 mRNA localization, and yet both of these mutants retain the ability to associate with Myo4p and She2p. These observations suggest that She3p possesses a novel activity required for ASH1 mRNA localization, and our data imply that this function is related to the ability of She3p to associate with ASH1 mRNA. Interestingly, we determined that She3p is phosphorylated, and global mass spectrometry approaches have determined that Ser 343, 348, and 361 are sites of phosphorylation, suggesting that the novel function for She3p could be negatively regulated by phosphorylation. The present study reveals that the current accepted model for ASH1 mRNA localization does not fully account for the function of She3p in ASH1 mRNA localization.
Collapse
|
49
|
Christensen N, Tilsner J, Bell K, Hammann P, Parton R, Lacomme C, Oparka K. The 5' cap of tobacco mosaic virus (TMV) is required for virion attachment to the actin/endoplasmic reticulum network during early infection. Traffic 2009; 10:536-51. [PMID: 19220815 DOI: 10.1111/j.1600-0854.2009.00889.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Almost nothing is known of the earliest stages of plant virus infections. To address this, we microinjected Cy3 (UTP)-labelled tobacco mosaic virus (TMV) into living tobacco trichome cells. The Cy3-virions were infectious, and the viral genome trafficked from cell to cell. However, neither the fluorescent vRNA pool nor the co-injected green fluorescent protein (GFP) left the injected trichome, indicating that the synthesis of (unlabelled) progeny viral (v)RNA is required to initiate cell-to-cell movement, and that virus movement is not accompanied by passive plasmodesmatal gating. Cy3-vRNA formed granules that became anchored to the motile cortical actin/endoplasmic reticulum (ER) network within minutes of injection. Granule movement on actin/ER was arrested by actin inhibitors indicating actin-dependent RNA movement. The 5' methylguanosine cap was shown to be required for vRNA anchoring to the actin/ER. TMV vRNA lacking the 5' cap failed to form granules and was degraded in the cytoplasm. Removal of the 3' untranslated region or replicase both inhibited replication but did not prevent granule formation and movement. Dual-labelled TMV virions in which the vRNA and the coat protein were highlighted with different fluorophores showed that both fluorescent signals were initially located on the same ER-bound granules, indicating that TMV virions may become attached to the ER prior to uncoating of the viral genome.
Collapse
Affiliation(s)
- Nynne Christensen
- Institute of Molecular Plant Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK
| | | | | | | | | | | | | |
Collapse
|
50
|
Kiel JAKW, van den Berg MA, Fusetti F, Poolman B, Bovenberg RAL, Veenhuis M, van der Klei IJ. Matching the proteome to the genome: the microbody of penicillin-producing Penicillium chrysogenum cells. Funct Integr Genomics 2009; 9:167-84. [PMID: 19156454 DOI: 10.1007/s10142-009-0110-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 01/05/2009] [Accepted: 01/05/2009] [Indexed: 10/21/2022]
Abstract
In the filamentous fungus Penicillium chrysogenum, microbodies are essential for penicillin biosynthesis. To better understand the role of these organelles in antibiotics production, we determined the matrix enzyme contents of P. chrysogenum microbodies. Using a novel in silico approach, we first obtained a catalogue of 200 P. chrysogenum proteins with putative microbody targeting signals (PTSs). This included two orthologs of proteins involved in cephalosporin biosynthesis, which we demonstrate to be bona fide microbody matrix constituents. Subsequently, we performed a proteomics based inventory of P. chrysogenum microbody matrix proteins using nano-LC-MS/MS analysis. We identified 89 microbody proteins, 79 with a PTS, including the two known microbody-borne penicillin biosynthesis enzymes, isopenicillin N:acyl CoA acyltransferase and phenylacetyl-CoA ligase. Comparative analysis revealed that 69 out of 79 PTS proteins identified experimentally were in the reference list. A prominent microbody protein was identified as a novel fumarate reductase-cytochrome b5 fusion protein, which contains an internal PTS2 between the two functional domains. We show that this protein indeed localizes to P. chrysogenum microbodies.
Collapse
Affiliation(s)
- Jan A K W Kiel
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, AA Haren, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|