1
|
Ji J, Lefebvre E, Laporte J. Comparative in vivo characterization of newly discovered myotropic adeno-associated vectors. Skelet Muscle 2024; 14:9. [PMID: 38702726 PMCID: PMC11067285 DOI: 10.1186/s13395-024-00341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/08/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Adeno-associated virus (AAV)-based gene therapy is a promising strategy to treat muscle diseases. However, this strategy is currently confronted with challenges, including a lack of transduction efficiency across the entire muscular system and toxicity resulting from off-target tissue effects. Recently, novel myotropic AAVs named MyoAAVs and AAVMYOs have been discovered using a directed evolution approach, all separately demonstrating enhanced muscle transduction efficiency and liver de-targeting effects. However, these newly discovered AAV variants have not yet been compared. METHODS In this study, we performed a comparative analysis of these various AAV9-derived vectors under the same experimental conditions following different injection time points in two distinct mouse strains. RESULTS We highlight differences in transduction efficiency between AAV9, AAVMYO, MyoAAV2A and MyoAAV4A that depend on age at injection, doses and mouse genetic background. In addition, specific AAV serotypes appeared more potent to transduce skeletal muscles including diaphragm and/or to de-target heart or liver. CONCLUSIONS Our study provides guidance for researchers aiming to establish proof-of-concept approaches for preventive or curative perspectives in mouse models, to ultimately lead to future clinical trials for muscle disorders.
Collapse
Affiliation(s)
- Jacqueline Ji
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, IGBMC, 1 rue Laurent Fries, Illkirch, 67404, France
| | - Elise Lefebvre
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, IGBMC, 1 rue Laurent Fries, Illkirch, 67404, France
| | - Jocelyn Laporte
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, IGBMC, 1 rue Laurent Fries, Illkirch, 67404, France.
| |
Collapse
|
2
|
Tripathi AS, Zaki MEA, Al-Hussain SA, Dubey BK, Singh P, Rind L, Yadav RK. Material matters: exploring the interplay between natural biomaterials and host immune system. Front Immunol 2023; 14:1269960. [PMID: 37936689 PMCID: PMC10627157 DOI: 10.3389/fimmu.2023.1269960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023] Open
Abstract
Biomaterials are widely used for various medical purposes, for instance, implants, tissue engineering, medical devices, and drug delivery systems. Natural biomaterials can be obtained from proteins, carbohydrates, and cell-specific sources. However, when these biomaterials are introduced into the body, they trigger an immune response which may lead to rejection and failure of the implanted device or tissue. The immune system recognizes natural biomaterials as foreign substances and triggers the activation of several immune cells, for instance, macrophages, dendritic cells, and T cells. These cells release pro-inflammatory cytokines and chemokines, which recruit other immune cells to the implantation site. The activation of the immune system can lead to an inflammatory response, which can be beneficial or detrimental, depending on the type of natural biomaterial and the extent of the immune response. These biomaterials can also influence the immune response by modulating the behavior of immune cells. For example, biomaterials with specific surface properties, such as charge and hydrophobicity, can affect the activation and differentiation of immune cells. Additionally, biomaterials can be engineered to release immunomodulatory factors, such as anti-inflammatory cytokines, to promote a tolerogenic immune response. In conclusion, the interaction between biomaterials and the body's immune system is an intricate procedure with potential consequences for the effectiveness of therapeutics and medical devices. A better understanding of this interplay can help to design biomaterials that promote favorable immune responses and minimize adverse reactions.
Collapse
Affiliation(s)
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad lbn Saud Islamic University, Riyadh, Saudi Arabia
| | - Sami A Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad lbn Saud Islamic University, Riyadh, Saudi Arabia
| | - Bidhyut Kumar Dubey
- Department of Pharmaceutical Chemistry, Era College of Pharmacy, Era University, Lucknow, India
| | - Prabhjot Singh
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| | - Laiba Rind
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| | - Rajnish Kumar Yadav
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| |
Collapse
|
3
|
Szondy Z, Al‐Zaeed N, Tarban N, Fige É, Garabuczi É, Sarang Z. Involvement of phosphatidylserine receptors in the skeletal muscle regeneration: therapeutic implications. J Cachexia Sarcopenia Muscle 2022; 13:1961-1973. [PMID: 35666022 PMCID: PMC9397555 DOI: 10.1002/jcsm.13024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 04/09/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Sarcopenia is a progressive loss of muscle mass and strength with a risk of adverse outcomes such as disability, poor quality of life, and death. Increasing evidence indicates that diminished ability of the muscle to activate satellite cell-dependent regeneration is one of the factors that might contribute to its development. Skeletal muscle regeneration following myogenic cell death results from the proliferation and differentiation of myogenic stem cells, called satellite cells, located beneath the basal lamina of the muscle fibres. Satellite cell differentiation is not a satellite cell-autonomous process but depends on signals provided by the surrounding cells. Infiltrating macrophages play a key role in the process partly by clearing the necrotic cell debris, partly by producing cytokines and growth factors that guide myogenesis. At the beginning of the muscle regeneration process, macrophages are pro-inflammatory, and the cytokines produced by them trigger the proliferation and differentiation of satellite cells. Following the uptake of dead cells, however, a transcriptionally regulated phenotypic change (macrophage polarization) is induced in them resulting in their transformation into healing macrophages that guide resolution of inflammation, completion of myoblast differentiation, myoblast fusion and growth, and return to homeostasis. Impaired efferocytosis results in delayed cell death clearance, delayed macrophage polarization, prolonged inflammation, and impaired muscle regeneration. Thus, proper efferocytosis by macrophages is a determining factor during muscle repair. Here we review that both efferocytosis and myogenesis are dependent on the cell surface phosphatidylserine (PS), and surprisingly, these two processes share a number of common PS receptors and signalling pathways. Based on these findings, we propose that stimulating the function of PS receptors for facilitating muscle repair following injury could be a successful approach, as it would enhance efferocytosis and myogenesis simultaneously. Because increasing evidence indicates a pathophysiological role of impaired efferocytosis in the development of chronic inflammatory conditions, as well as in impaired muscle regeneration both contributing to the development of sarcopenia, improving efferocytosis should be considered also in its management. Again applying or combining those treatments that target PS receptors would be expected to be the most effective, because they would also promote myogenesis. A potential PS receptor-triggering candidate molecule is milk fat globule-EGF-factor 8 (MFG-E8), which not only stimulates PS-dependent efferocytosis and myoblast fusion but also promotes extracellular signal-regulated kinase (ERK) and Akt activation-mediated cell proliferation and cell cycle progression in myoblasts.
Collapse
Affiliation(s)
- Zsuzsa Szondy
- Section of Dental Biochemistry, Department of Basic Medical Sciences, Faculty of DentistryUniversity of DebrecenDebrecenHungary
- Department of Biochemistry and Molecular Biology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Nour Al‐Zaeed
- Doctoral School of Molecular Cell and Immune Biology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Nastaran Tarban
- Doctoral School of Molecular Cell and Immune Biology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Éva Fige
- Section of Dental Biochemistry, Department of Basic Medical Sciences, Faculty of DentistryUniversity of DebrecenDebrecenHungary
| | - Éva Garabuczi
- Department of Biochemistry and Molecular Biology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Zsolt Sarang
- Department of Biochemistry and Molecular Biology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| |
Collapse
|
4
|
Tomasch J, Maleiner B, Heher P, Rufin M, Andriotis OG, Thurner PJ, Redl H, Fuchs C, Teuschl-Woller AH. Changes in Elastic Moduli of Fibrin Hydrogels Within the Myogenic Range Alter Behavior of Murine C2C12 and Human C25 Myoblasts Differently. Front Bioeng Biotechnol 2022; 10:836520. [PMID: 35669058 PMCID: PMC9164127 DOI: 10.3389/fbioe.2022.836520] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Fibrin hydrogels have proven highly suitable scaffold materials for skeletal muscle tissue engineering in the past. Certain parameters of those types of scaffolds, however, greatly affect cellular mechanobiology and therefore the myogenic outcome. The aim of this study was to identify the influence of apparent elastic properties of fibrin scaffolds in 2D and 3D on myoblasts and evaluate if those effects differ between murine and human cells. Therefore, myoblasts were cultured on fibrin-coated multiwell plates ("2D") or embedded in fibrin hydrogels ("3D") with different elastic moduli. Firstly, we established an almost linear correlation between hydrogels' fibrinogen concentrations and apparent elastic moduli in the range of 7.5 mg/ml to 30 mg/ml fibrinogen (corresponds to a range of 7.7-30.9 kPa). The effects of fibrin hydrogel elastic modulus on myoblast proliferation changed depending on culture type (2D vs 3D) with an inhibitory effect at higher fibrinogen concentrations in 3D gels and vice versa in 2D. The opposite effect was evident in differentiating myoblasts as shown by gene expression analysis of myogenesis marker genes and altered myotube morphology. Furthermore, culture in a 3D environment slowed down proliferation compared to 2D, with a significantly more pronounced effect on human myoblasts. Differentiation potential was also substantially impaired upon incorporation into 3D gels in human, but not in murine, myoblasts. With this study, we gained further insight in the influence of apparent elastic modulus and culture type on cellular behavior and myogenic outcome of skeletal muscle tissue engineering approaches. Furthermore, the results highlight the need to adapt parameters of 3D culture setups established for murine cells when applied to human cells.
Collapse
Affiliation(s)
- Janine Tomasch
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Babette Maleiner
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Philipp Heher
- Ludwig Randall Centre for Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London, United Kingdom
| | - Manuel Rufin
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria
| | - Orestis G. Andriotis
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria
| | - Philipp J. Thurner
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria
| | - Heinz Redl
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Christiane Fuchs
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Wellman Center for Photomedicine, MGH, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Andreas H. Teuschl-Woller
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
5
|
Lijten OW, Rosero Salazar DH, van Erp M, Bronkhorst E, Von den Hoff JW. Effect of niche components on masseter satellite cell differentiation on fibrin coatings. Eur J Oral Sci 2022; 130:e12849. [PMID: 35020959 PMCID: PMC9303748 DOI: 10.1111/eos.12849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022]
Abstract
In skeletal muscles, niche factors stimulate satellite cells to activate and induce muscle regeneration after injury. In vitro, matrigel is widely used for myoblast differentiation, however, is unsuitable for clinical applications. Therefore, this study aimed to analyze attachment and differentiation of satellite cells into myotubes on fibrin coatings with selected niche components. The attachment of satellite cells to fibrin alone and fibrin with niche components (laminin, collagen‐IV, laminin‐entactin complex [LEC]) were compared to matrigel. Only on matrigel and fibrin with LEC, Pax7‐positive cells attached well. Then, LEC was selected to analyze proliferation, differentiation, and fusion indices. The proliferation index at day 1 on fibrin‐LEC (22.5%, SD 9.1%) was similar to that on matrigel (30.8% [SD 11.1%]). The differentiation index on fibrin‐LEC (28.7% [SD 6.1%] at day 5 and 32.8% [SD 6.7%] at day 7) was similar to that on matrigel (40.1% [5.1%] at day 5 and 27.1% [SD 4.3%] at day 7). On fibrin‐LEC, the fusion index at day 9 (26.9% [SD 11.5%]) was similar to that on matrigel (25.5% [SD 4.7%]). Our results showed that the addition of LEC enhances the formation of myotubes on fibrin. Fibrin with LEC might be suitable to enhance muscle regeneration after surgery such as cleft palate repair and other muscle defects.
Collapse
Affiliation(s)
- Olivier Willem Lijten
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Doris Haydee Rosero Salazar
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Medical Basic Sciences, Faculty of Health, Universidad Icesi, Cali, Colombia
| | - Merijn van Erp
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ewald Bronkhorst
- Department of Dentistry, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Johannes W Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Budai Z, Al-Zaeed N, Szentesi P, Halász H, Csernoch L, Szondy Z, Sarang Z. Impaired Skeletal Muscle Development and Regeneration in Transglutaminase 2 Knockout Mice. Cells 2021; 10:3089. [PMID: 34831312 PMCID: PMC8623654 DOI: 10.3390/cells10113089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/13/2021] [Accepted: 11/04/2021] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle regeneration is triggered by local inflammation and is accompanied by phagocytosis of dead cells at the injury site. Efferocytosis regulates the inflammatory program in macrophages by initiating the conversion of their inflammatory phenotype into the healing one. While pro-inflammatory cytokines induce satellite cell proliferation and differentiation into myoblasts, growth factors, such as GDF3, released by healing macrophages drive myoblast fusion and myotube growth. Therefore, improper efferocytosis may lead to impaired muscle regeneration. Transglutaminase 2 (TG2) is a versatile enzyme participating in efferocytosis. Here, we show that TG2 ablation did not alter the skeletal muscle weights or sizes but led to the generation of small size myofibers and to decreased grip force in TG2 null mice. Following cardiotoxin-induced injury, the size of regenerating fibers was smaller, and the myoblast fusion was delayed in the tibialis anterior muscle of TG2 null mice. Loss of TG2 did not affect the efferocytic capacity of muscle macrophages but delayed their conversion to Ly6C-CD206+, GDF3 expressing cells. Finally, TG2 promoted myoblast fusion in differentiating C2C12 myoblasts. These results indicate that TG2 expressed by both macrophages and myoblasts contributes to proper myoblast fusion, and its ablation leads to impaired muscle development and regeneration in mice.
Collapse
Affiliation(s)
- Zsófia Budai
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.B.); (N.A.-Z.); (H.H.)
| | - Nour Al-Zaeed
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.B.); (N.A.-Z.); (H.H.)
| | - Péter Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (P.S.); (L.C.)
| | - Hajnalka Halász
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.B.); (N.A.-Z.); (H.H.)
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (P.S.); (L.C.)
| | - Zsuzsa Szondy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
- Division of Dental Biochemistry, Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsolt Sarang
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|
7
|
Rosero Salazar DH, van Rheden REM, van Hulzen M, Carvajal Monroy PL, Wagener FADTG, Von den Hoff JW. Fibrin with Laminin-Nidogen Reduces Fibrosis and Improves Soft Palate Regeneration Following Palatal Injury. Biomolecules 2021; 11:1547. [PMID: 34680180 PMCID: PMC8533998 DOI: 10.3390/biom11101547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/06/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
This study aimed to analyze the effects of fibrin constructs enhanced with laminin-nidogen, implanted in the wounded rat soft palate. Fibrin constructs with and without laminin-nidogen were implanted in 1 mm excisional wounds in the soft palate of 9-week-old rats and compared with the wounded soft palate without implantation. Collagen deposition and myofiber formation were analyzed at days 3, 7, 28 and 56 after wounding by histochemistry. In addition, immune staining was performed for a-smooth muscle actin (a-SMA), myosin heavy chain (MyHC) and paired homeobox protein 7 (Pax7). At day 56, collagen areas were smaller in both implant groups (31.25 ± 7.73% fibrin only and 21.11 ± 6.06% fibrin with laminin-nidogen)) compared to the empty wounds (38.25 ± 8.89%, p < 0.05). Moreover, the collagen area in the fibrin with laminin-nidogen group was smaller than in the fibrin only group (p ˂ 0.05). The areas of myofiber formation in the fibrin only group (31.77 ± 10.81%) and fibrin with laminin-nidogen group (43.13 ± 10.39%) were larger than in the empty wounds (28.10 ± 11.68%, p ˂ 0.05). Fibrin-based constructs with laminin-nidogen reduce fibrosis and improve muscle regeneration in the wounded soft palate. This is a promising strategy to enhance cleft soft palate repair and other severe muscle injuries.
Collapse
Affiliation(s)
- Doris H. Rosero Salazar
- Department of Dentistry, Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525EX Nijmegen, The Netherlands; (D.H.R.S.); (R.E.M.v.R.); (F.A.D.T.G.W.)
- Department of Medical Basic Sciences, Faculty of Health, Universidad Icesi, Cali 760008, Colombia
| | - René E. M. van Rheden
- Department of Dentistry, Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525EX Nijmegen, The Netherlands; (D.H.R.S.); (R.E.M.v.R.); (F.A.D.T.G.W.)
| | - Manon van Hulzen
- Central Facility for Research with Laboratory Animals (CDL), Radboud University Medical Centre, 6525EZ Nijmegen, The Netherlands;
| | - Paola L. Carvajal Monroy
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus Medical Center, 3015GD Rotterdam, The Netherlands;
| | - Frank A. D. T. G. Wagener
- Department of Dentistry, Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525EX Nijmegen, The Netherlands; (D.H.R.S.); (R.E.M.v.R.); (F.A.D.T.G.W.)
| | - Johannes W. Von den Hoff
- Department of Dentistry, Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525EX Nijmegen, The Netherlands; (D.H.R.S.); (R.E.M.v.R.); (F.A.D.T.G.W.)
| |
Collapse
|
8
|
Sun G, Guillon E, Holley SA. Integrin intra-heterodimer affinity inversely correlates with integrin activatability. Cell Rep 2021; 35:109230. [PMID: 34107244 PMCID: PMC8227800 DOI: 10.1016/j.celrep.2021.109230] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/13/2021] [Accepted: 05/17/2021] [Indexed: 11/21/2022] Open
Abstract
Integrins are heterodimeric cell surface receptors composed of an α and β subunit that mediate cell adhesion to extracellular matrix proteins such as fibronectin. We previously studied integrin α5β1 activation during zebrafish somitogenesis, and in the present study, we characterize the integrin αV fibronectin receptors. Integrins are activated via a conformational change, and we perform single-molecule biophysical measurements of both integrin activation via fluorescence resonance energy transfer (FRET)-fluorescence lifetime imaging microscopy (FLIM) and integrin intra-heterodimer stability via fluorescence cross-correlation spectroscopy (FCCS) in living embryos. We find that integrin heterodimers that exhibit robust cell surface expression, including αVβ3, αVβ5, and αVβ6, are never activated in this in vivo context, even in the presence of fibronectin matrix. In contrast, activatable integrins, such as integrin αVβ1, and alleles of αVβ3, αVβ5, αVβ6 that are biased to the active conformation exhibit poor cell surface expression and have a higher intra-heterodimer dissociation constant (KD). These observations suggest that a weak integrin intra-heterodimer affinity decreases integrin cell surface stability and increases integrin activatability.
Collapse
Affiliation(s)
- Guangyu Sun
- Department of Molecular, Cellular and Developmental Biology, Yale University, 260 Whitney Avenue, New Haven, CT 06520, USA
| | - Emilie Guillon
- Department of Molecular, Cellular and Developmental Biology, Yale University, 260 Whitney Avenue, New Haven, CT 06520, USA
| | - Scott A Holley
- Department of Molecular, Cellular and Developmental Biology, Yale University, 260 Whitney Avenue, New Haven, CT 06520, USA.
| |
Collapse
|
9
|
Ebenhan T, Kleynhans J, Zeevaart JR, Jeong JM, Sathekge M. Non-oncological applications of RGD-based single-photon emission tomography and positron emission tomography agents. Eur J Nucl Med Mol Imaging 2020; 48:1414-1433. [PMID: 32918574 DOI: 10.1007/s00259-020-04975-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/23/2020] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Non-invasive imaging techniques (especially single-photon emission tomography and positron emission tomography) apply several RGD-based imaging ligands developed during a vast number of preclinical and clinical investigations. The RGD (Arg-Gly-Asp) sequence is a binding moiety for a large selection of adhesive extracellular matrix and cell surface proteins. Since the first identification of this sequence as the shortest sequence required for recognition in fibronectin during the 1980s, fundamental research regarding the molecular mechanisms of integrin action have paved the way for development of several pharmaceuticals and radiopharmaceuticals with clinical applications. Ligands recognizing RGD may be developed for use in the monitoring of these interactions (benign or pathological). Although RGD-based molecular imaging has been actively investigated for oncological purposes, their utilization towards non-oncology applications remains relatively under-exploited. METHODS AND SCOPE This review highlights the new non-oncologic applications of RGD-based tracers (with the focus on single-photon emission tomography and positron emission tomography). The focus is on the last 10 years of scientific literature (2009-2020). It is proposed that these imaging agents will be used for off-label indications that may provide options for disease monitoring where there are no approved tracers available, for instance Crohn's disease or osteoporosis. Fundamental science investigations have made progress in elucidating the involvement of integrin in various diseases not pertaining to oncology. Furthermore, RGD-based radiopharmaceuticals have been evaluated extensively for safety during clinical evaluations of various natures. CONCLUSION Clinical translation of non-oncological applications for RGD-based radiopharmaceuticals and other imaging tracers without going through time-consuming extensive development is therefore highly plausible. Graphical abstract.
Collapse
Affiliation(s)
- Thomas Ebenhan
- Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa. .,Nuclear Medicine Research Infrastructure, NPC, Pretoria, 0001, South Africa.
| | - Janke Kleynhans
- Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa.,Nuclear Medicine Research Infrastructure, NPC, Pretoria, 0001, South Africa
| | - Jan Rijn Zeevaart
- Nuclear Medicine Research Infrastructure, NPC, Pretoria, 0001, South Africa.,DST/NWU Preclinical Drug Development Platform, North-West University, Potchefstroom, 2520, South Africa
| | - Jae Min Jeong
- Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, 101 Daehangno Jongno-gu, Seoul, 110-744, South Korea
| | - Mike Sathekge
- Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa
| |
Collapse
|
10
|
Accorsi A, Cramer ML, Girgenrath M. Fibrogenesis in LAMA2-Related Muscular Dystrophy Is a Central Tenet of Disease Etiology. Front Mol Neurosci 2020; 13:3. [PMID: 32116541 PMCID: PMC7010923 DOI: 10.3389/fnmol.2020.00003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
LAMA2-related congenital muscular dystrophy, also known as MDC1A, is caused by loss-of-function mutations in the alpha2 chain of Laminin-211. Loss of this protein interrupts the connection between the muscle cell and its extracellular environment and results in an aggressive, congenital-onset muscular dystrophy characterized by severe hypotonia, lack of independent ambulation, and early mortality driven by respiratory complications and/or failure to thrive. Of the pathomechanisms of MDC1A, the earliest and most prominent is widespread and rampant fibrosis. Here, we will discuss some of the key drivers of fibrosis including TGF-beta and renin–angiotensin system signaling and consequences of these pathways including myofibroblast transdifferentiation and matrix remodeling. We will also highlight some of the differences in fibrogenesis in congenital muscular dystrophy (CMD) with that seen in Duchenne muscular dystrophy (DMD). Finally, we will connect the key signaling pathways in the pathogenesis of MDC1A to the current status of the therapeutic approaches that have been tested in the preclinical models of MDC1A to treat fibrosis.
Collapse
Affiliation(s)
| | - Megan L Cramer
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA, United States
| | | |
Collapse
|
11
|
Das Ghosh L, Hasan J, Jain A, Sundaresan NR, Chatterjee K. A nanopillar array on black titanium prepared by reactive ion etching augments cardiomyogenic commitment of stem cells. NANOSCALE 2019; 11:20766-20776. [PMID: 31651003 DOI: 10.1039/c9nr03424b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A major impediment in the clinical translation of stem cell therapy has been the inability to efficiently and reproducibly direct differentiation of a large population of stem cells. Thus, we aimed to engineer a substrate for culturing stem cells to efficiently induce cardiomyogenic lineage commitment. In this work, we present a nanopillar array on the surface of titanium that was prepared by mask-less reactive ion etching. Scanning electron and atomic force microscopy revealed that the surface was covered by vertically aligned nanopillars each of ≈1 μm with a diameter of ≈80 nm. The nanopillars supported the attachment and proliferation of human mesenchymal stem cells (hMSCs). Cardiomyogenic lineage commitment of the stem cells was more enhanced on the nanopillars than on the smooth surface. When co-cultured with neonatal rat cardiomyocytes, the cyclic pattern of calcium transport observed distinctly in cells differentiated on the arrays compared to the cells cultured on the smooth surface was the functional validation of differentiation. The use of small molecule inhibitors revealed that integrins namely, α2β1 and αvβ3, are essential for cardiomyogenesis on the nanostructured surface, which is further mediated by FAK, Erk and Akt cell signaling pathways. This study demonstrates that the nanopillar array efficiently promotes the cardiomyogenic lineage commitment of stem cells via integrin-mediated signaling and can potentially serve as a platform for the ex vivo differentiation of stem cells toward cell therapy in cardiac tissue repair and regeneration.
Collapse
Affiliation(s)
- Lopamudra Das Ghosh
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Jafar Hasan
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Aditi Jain
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Nagalingam R Sundaresan
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India. and Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India. and Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
12
|
Comparative Transcriptome and Methylome Analysis in Human Skeletal Muscle Anabolism, Hypertrophy and Epigenetic Memory. Sci Rep 2019; 9:4251. [PMID: 30862794 PMCID: PMC6414679 DOI: 10.1038/s41598-019-40787-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/22/2019] [Indexed: 02/07/2023] Open
Abstract
Transcriptome wide changes in human skeletal muscle after acute (anabolic) and chronic resistance exercise (RE) induced hypertrophy have been extensively determined in the literature. We have also recently undertaken DNA methylome analysis (850,000 + CpG sites) in human skeletal muscle after acute and chronic RE, detraining and retraining, where we identified an association between DNA methylation and epigenetic memory of exercise induced skeletal muscle hypertrophy. However, it is currently unknown as to whether all the genes identified in the transcriptome studies to date are also epigenetically regulated at the DNA level after acute, chronic or repeated RE exposure. We therefore aimed to undertake large scale bioinformatical analysis by pooling the publicly available transcriptome data after acute (110 samples) and chronic RE (181 samples) and comparing these large data sets with our genome-wide DNA methylation analysis in human skeletal muscle after acute and chronic RE, detraining and retraining. Indeed, after acute RE we identified 866 up- and 936 down-regulated genes at the expression level, with 270 (out of the 866 up-regulated) identified as being hypomethylated, and 216 (out of 936 downregulated) as hypermethylated. After chronic RE we identified 2,018 up- and 430 down-regulated genes with 592 (out of 2,018 upregulated) identified as being hypomethylated and 98 (out of 430 genes downregulated) as hypermethylated. After KEGG pathway analysis, genes associated with ‘cancer’ pathways were significantly enriched in both bioinformatic analysis of the pooled transcriptome and methylome datasets after both acute and chronic RE. This resulted in 23 (out of 69) and 28 (out of 49) upregulated and hypomethylated and 12 (out of 37) and 2 (out of 4) downregulated and hypermethylated ‘cancer’ genes following acute and chronic RE respectively. Within skeletal muscle tissue, these ‘cancer’ genes predominant functions were associated with matrix/actin structure and remodelling, mechano-transduction (e.g. PTK2/Focal Adhesion Kinase and Phospholipase D- following chronic RE), TGF-beta signalling and protein synthesis (e.g. GSK3B after acute RE). Interestingly, 51 genes were also identified to be up/downregulated in both the acute and chronic RE pooled transcriptome analysis as well as significantly hypo/hypermethylated after acute RE, chronic RE, detraining and retraining. Five genes; FLNB, MYH9, SRGAP1, SRGN, ZMIZ1 demonstrated increased gene expression in the acute and chronic RE transcriptome and also demonstrated hypomethylation in these conditions. Importantly, these 5 genes demonstrated retained hypomethylation even during detraining (following training induced hypertrophy) when exercise was ceased and lean mass returned to baseline (pre-training) levels, identifying them as genes associated with epigenetic memory in skeletal muscle. Importantly, for the first time across the transcriptome and epigenome combined, this study identifies novel differentially methylated genes associated with human skeletal muscle anabolism, hypertrophy and epigenetic memory.
Collapse
|
13
|
Isola G, Anastasi GP, Matarese G, Williams RC, Cutroneo G, Bracco P, Piancino MG. Functional and molecular outcomes of the human masticatory muscles. Oral Dis 2018; 24:1428-1441. [PMID: 29156093 DOI: 10.1111/odi.12806] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/30/2017] [Accepted: 11/14/2017] [Indexed: 02/05/2023]
Abstract
The masticatory muscles achieve a broad range of different activities such as chewing, sucking, swallowing, and speech. In order to accomplish these duties, masticatory muscles have a unique and heterogeneous structure and fiber composition, enabling them to produce their strength and contraction speed largely dependent on their motor units and myosin proteins that can change in response to genetic and environmental factors. Human masticatory muscles express unique myosin isoforms, including a combination of thick fibers, expressing myosin light chains (MyLC) and myosin class I and II heavy chains (MyHC) -IIA, -IIX, α-cardiac, embryonic and neonatal and thin fibers, respectively. In this review, we discuss the current knowledge regarding the importance of fiber-type diversity in masticatory muscles versus supra- and infrahyoid muscles, and versus limb and trunk muscles. We also highlight new information regarding the adaptive response and specific genetic variations of muscle fibers on the functional significance of the masticatory muscles, which influences craniofacial characteristics, malocclusions, or asymmetry. These findings may offer future possibilities for the prevention of craniofacial growth disturbances.
Collapse
Affiliation(s)
- G Isola
- Department of Biomedical, Odontostomatological Sciences and of Morphological and Functional Images, School of Dentistry, University of Messina, Messina, Italy
| | - G P Anastasi
- Department of Biomedical, Odontostomatological Sciences and of Morphological and Functional Images, School of Dentistry, University of Messina, Messina, Italy
| | - G Matarese
- Department of Biomedical, Odontostomatological Sciences and of Morphological and Functional Images, School of Dentistry, University of Messina, Messina, Italy
| | - R C Williams
- Department of Periodontology, UNC School of Dentistry, Chapel Hill, NC, USA
| | - G Cutroneo
- Department of Biomedical, Odontostomatological Sciences and of Morphological and Functional Images, School of Dentistry, University of Messina, Messina, Italy
| | - P Bracco
- Department of Orthodontics and Gnathology-Masticatory Function, University of Turin, Turin, Italy
| | - M G Piancino
- Department of Orthodontics and Gnathology-Masticatory Function, University of Turin, Turin, Italy
| |
Collapse
|
14
|
Uchinaka A, Tasaka K, Mizuno Y, Maeno Y, Ban T, Mori S, Hamada Y, Miyagawa S, Saito A, Sawa Y, Matsuura N, Nagata K, Yamamoto H, Kawaguchi N. Laminin α2-secreting fibroblasts enhance the therapeutic effect of skeletal myoblast sheets. Eur J Cardiothorac Surg 2017; 51:457-464. [PMID: 27663298 DOI: 10.1093/ejcts/ezw296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/02/2016] [Indexed: 11/14/2022] Open
Abstract
Objectives Skeletal myoblast sheet (SMB) transplantation, a method used for treating failing hearts, results in the secretion of cytokines that improve heart function. Enhancing the survival rate of implanted myoblasts should yield more continuous and effective therapies. We hypothesized that laminin-211 (merosin), a major component of skeletal muscle extracellular matrix (ECM), which mediates cell-to-ECM adhesion by binding to α -dystroglycan ( α DG) on muscle cells, could inhibit detachment of implanted myoblasts from host myocardia. Methods Multilayered sheets composed of fibroblasts expressing laminin G-module (LG)4-5 of α 2 and skeletal myoblasts were transplanted into ischemic cardiomyopathy model rats. Animals were divided into four groups: the ligation only (Control) group, and those transplanted with SMB alone, with both myoblasts and control fibroblast sheets (SMB + normal Fb), or with myoblasts and laminin α 2 LG4-5-expressing fibroblast sheets (SMB + laminin Fb). Results Quantitative estimation of nebulin mRNA levels indicated that the transplanted myoblasts in SMB + laminin Fb group exhibited significantly higher survival rates than those in the other groups. Consistent with these findings, the myoblasts in SMB + laminin Fb group exhibited elevated expression of growth factors, while SMB + laminin Fb rats also showed significant improvements in percent fractional shortening (%FS) and left ventricular remodelling, compared to the other groups. Conclusions Laminin secreted by implanted fibroblasts inhibited the detachment of implanted myoblasts from grafted myocardia, resulting in more permanent therapeutic effects upon myoblast sheet transplantation.
Collapse
Affiliation(s)
- Ayako Uchinaka
- Graduate School of Medicine, Osaka University, Suita, Japan.,Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Kanako Tasaka
- Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yoko Mizuno
- Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yoshitaka Maeno
- Department of Food and Nutritional Sciences, Chubu University, Kasugai, Japan
| | - Tsuyoshi Ban
- Graduate School of Medicine, Osaka University, Suita, Japan
| | - Seiji Mori
- Graduate School of Medicine, Osaka University, Suita, Japan
| | | | | | - Atsuhiro Saito
- Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yoshiki Sawa
- Graduate School of Medicine, Osaka University, Suita, Japan
| | | | - Kohzo Nagata
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | | | | |
Collapse
|
15
|
Zhang GW, Gu TX, Guan XY, Sun XJ, Qi X, Li XY, Wang XB, Yu L, Jiang DQ, Tang R, Li-Ling J. bFGF binding cardiac extracellular matrix promotes the repair potential of bone marrow mesenchymal stem cells in a rabbit model for acute myocardial infarction. ACTA ACUST UNITED AC 2015; 10:065018. [PMID: 26657457 DOI: 10.1088/1748-6041/10/6/065018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
To assess the effect of basic fibroblast growth factor-binding extracellular matrix (bFGF-ECM) combined with bone marrow mesenchymal stem cells (BMSCs) transplantation on acute myocardial infarction (AMI) and explore the underlying mechenisms. Rabbit hearts were processed by decellularization with sodium dodecyl sulfate (SDS) perfusion, heparin immobilization, bFGF-binding and homogenization, for preparation of bFGF-binding cardiac ECM suspension (bFGF-ECM). Thereafter, the characteristics of bFGF release were analyzed in vitro. Following ligation of the mid-third of the left anterior descending artery, the rabbits were divided into a control group (no treatment), BMSCs group (BMSCs transplantation), bFGF-ECM group (bFGF-ECM implantation), and BMSCs + bFGF-ECM group (BMSCs and bFGF-ECM implantation). Apoptosis and differentiation of implanted BMSCs, and the left ventricular (LV) remodeling and function were assessed. The ex vivo proliferation, apoptosis, migration and differentiation of BMSCs were determined after exposure to bFGF and/or ECM. The ECM could sustainably release bFGF. 24 h and 6 weeks after the operation, improved viability and differentiation of the implanted BMSCs, as well as inhibited dilatation and preserved function of the left ventricle (LV), were significant in the BMSCs + bFGF-ECM group compared with other groups (P < 0.05), although BMSCs and ECM-bFGF groups also showed better results than control group (P < 0.05). Additionally, ECM and bFGF showed a synergistic effect on BMSCs proliferation, viability, migration and differentiation. The combination of bFGF-binding ECM and BMSCs implantation may promote myocardial regeneration and LV function, and become a new strategy for the treatment of AMI.
Collapse
Affiliation(s)
- Guang-Wei Zhang
- Department of Cardiac Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nowak R, Kwiecien M, Tkacz M, Mazurek U. Transforming growth factor-beta (TGF- β) signaling in paravertebral muscles in juvenile and adolescent idiopathic scoliosis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:594287. [PMID: 25313366 PMCID: PMC4181945 DOI: 10.1155/2014/594287] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 07/19/2014] [Accepted: 08/20/2014] [Indexed: 12/31/2022]
Abstract
Most researchers agree that idiopathic scoliosis (IS) is a multifactorial disease influenced by complex genetic and environmental factors. The onset of the spinal deformity that determines the natural course of the disease, usually occurs in the juvenile or adolescent period. Transforming growth factors β (TGF-βs) and their receptors, TGFBRs, may be considered as candidate genes related to IS susceptibility and natural history. This study explores the transcriptional profile of TGF-βs, TGFBRs, and TGF-β responsive genes in the paravertebral muscles of patients with juvenile and adolescent idiopathic scoliosis (JIS and AIS, resp.). Muscle specimens were harvested intraoperatively and grouped according to the side of the curve and the age of scoliosis onset. The results of microarray and qRT-PCR analysis confirmed significantly higher transcript abundances of TGF-β2, TGF-β3, and TGFBR2 in samples from the curve concavity of AIS patients, suggesting a difference in TGF-β signaling in the pathogenesis of juvenile and adolescent curves. Analysis of TGF-β responsive genes in the transcriptomes of patients with AIS suggested overrepresentation of the genes localized in the extracellular region of curve concavity: LTBP3, LTBP4, ITGB4, and ITGB5. This finding suggests the extracellular region of paravertebral muscles as an interesting target for future molecular research into AIS pathogenesis.
Collapse
Affiliation(s)
- Roman Nowak
- Department of Orthopedics, School of Medicine with the Division of Dentistry, Medical University of Silesia, Wojewódzki Szpital Specjalistyczny nr 5 Plac Medyków 1, 41-200 Sosnowiec, Poland
| | - Magdalena Kwiecien
- Department of Molecular Biology, Medical University of Silesia, Ulica Narcyzów 1, 41-100 Sosnowiec, Poland
| | - Magdalena Tkacz
- Institute of Computer Science, Division of Information Systems, University of Silesia, Ulica Będzińska 39, 41-200 Sosnowiec, Poland
| | - Urszula Mazurek
- Department of Molecular Biology, Medical University of Silesia, Ulica Narcyzów 1, 41-100 Sosnowiec, Poland
| |
Collapse
|
17
|
Incerpi S, Hsieh MT, Lin HY, Cheng GY, De Vito P, Fiore AM, Ahmed RG, Salvia R, Candelotti E, Leone S, Luly P, Pedersen JZ, Davis FB, Davis PJ. Thyroid hormone inhibition in L6 myoblasts of IGF-I-mediated glucose uptake and proliferation: new roles for integrin αvβ3. Am J Physiol Cell Physiol 2014; 307:C150-61. [PMID: 24808494 DOI: 10.1152/ajpcell.00308.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thyroid hormones L-thyroxine (T4) and 3,3',5-triiodo-L-thyronine (T3) have been shown to initiate short- and long-term effects via a plasma membrane receptor site located on integrin αvβ3. Also insulin-like growth factor type I (IGF-I) activity is known to be subject to regulation by this integrin. To investigate the possible cross-talk between T4 and IGF-I in rat L6 myoblasts, we have examined integrin αvβ3-mediated modulatory actions of T4 on glucose uptake, measured through carrier-mediated 2-deoxy-[3H]-D-glucose uptake, and on cell proliferation stimulated by IGF-I, assessed by cell counting, [3H]-thymidine incorporation, and fluorescence-activated cell sorting analysis. IGF-I stimulated glucose transport and cell proliferation via the cell surface IGF-I receptor (IGFIR) and, downstream of the receptor, by the phosphatidylinositol 3-kinase signal transduction pathway. Addition of 0.1 nM free T4 caused little or no cell proliferation but prevented both glucose uptake and proliferative actions of IGF-I. These actions of T4 were mediated by an Arg-Gly-Asp (RGD)-sensitive pathway, suggesting the existence of crosstalk between IGFIR and the T4 receptor located near the RGD recognition site on the integrin. An RGD-sequence-containing integrin inhibitor, a monoclonal antibody to αvβ3, and the T4 metabolite tetraiodothyroacetic acid all blocked the inhibition by T4 of IGF-I-stimulated glucose uptake and cell proliferation. Western blotting confirmed roles for activated phosphatidylinositol 3-kinase and extracellular regulated kinase 1/2 (ERK1/2) in the effects of IGF-I and also showed a role for ERK1/2 in the actions of T4 that modified the effects of IGF-I. We conclude that thyroid hormone inhibits IGF-I-stimulated glucose uptake and cell proliferation in L6 myoblasts.
Collapse
Affiliation(s)
- Sandra Incerpi
- Department of Sciences, University Roma Tre, Rome, Italy;
| | - Meng-Ti Hsieh
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yun Lin
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Guei-Yun Cheng
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Paolo De Vito
- Department of Biology, University Tor Vergata, Rome, Italy
| | | | - R G Ahmed
- Department of Zoology, Beni-Suef University, Beni-Suef, Egypt
| | - Rosanna Salvia
- Department of Sciences, University Roma Tre, Rome, Italy
| | | | - Stefano Leone
- Department of Sciences, University Roma Tre, Rome, Italy
| | - Paolo Luly
- Department of Biology, University Tor Vergata, Rome, Italy
| | | | - Faith B Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, New York
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, New York; Department of Medicine, Albany Medical College, Albany, New York
| |
Collapse
|
18
|
Grover S, Arya R. Role of UDP-N-acetylglucosamine2-epimerase/N-acetylmannosamine kinase (GNE) in β1-integrin-mediated cell adhesion. Mol Neurobiol 2014; 50:257-73. [PMID: 24474513 DOI: 10.1007/s12035-013-8604-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/08/2013] [Indexed: 12/13/2022]
Abstract
Hereditary inclusion body myopathy (GNE myopathy) is a neuromuscular disorder due to mutation in key sialic acid biosynthetic enzyme, GNE. The pathomechanism of the disease is poorly understood as GNE is involved in other cellular functions beside sialic acid synthesis. In the present study, a HEK293 cell-based model system has been established where GNE is either knocked down or over-expressed along with pathologically relevant GNE mutants (D176V and V572L). The subcellular distribution of recombinant GNE and its mutant showed differential localization in the cell. The effect of mutation on GNE function was investigated by studying hyposialylation of cell membrane receptor, β1-integrin. Hyposialylated β1-integrin localized to internal vesicles that was restored upon supplementation with sialic acid. Fibronectin stimulation caused migration of hyposialylated β1-integrin to the cell membrane and co-localization with focal adhesion kinase (FAK) leading to increased focal adhesion formation. This further activated FAK and Src, downstream signaling molecules and led to increased cell adhesion. This is the first report to show that mutation in GNE affects β1-integrin-mediated cell adhesion process in GNE mutant cells.
Collapse
Affiliation(s)
- Sonam Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | | |
Collapse
|
19
|
Lee P, Bax DV, Bilek MMM, Weiss AS. A novel cell adhesion region in tropoelastin mediates attachment to integrin αVβ5. J Biol Chem 2013; 289:1467-77. [PMID: 24293364 DOI: 10.1074/jbc.m113.518381] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tropoelastin protein monomers assemble to form elastin. Cellular integrin αVβ3 binds RKRK at the C-terminal tail of tropoelastin. We probed cell interactions with tropoelastin by deleting the RKRK sequence to identify other cell-binding interactions within tropoelastin. We found a novel human dermal fibroblast attachment and spreading site on tropoelastin that is located centrally in the molecule. Inhibition studies demonstrated that this cell adhesion was not mediated by either elastin-binding protein or glycosaminoglycans. Cell interactions were divalent cation-dependent, indicating integrin dependence. Function-blocking monoclonal antibodies revealed that αV integrin(s) and integrin αVβ5 specifically were critical for cell adhesion to this part of tropoelastin. These data reveal a common αV integrin-binding theme for tropoelastin: αVβ3 at the C terminus and αVβ5 at the central region of tropoelastin. Each αV region contributes to fibroblast attachment and spreading, but they differ in their effects on cytoskeletal assembly.
Collapse
Affiliation(s)
- Pearl Lee
- From the School of Molecular Bioscience
| | | | | | | |
Collapse
|
20
|
Human limbal epithelial progenitor cells express αvβ5-integrin and the interferon-inducible chemokine CXCL10/IP-10. Stem Cell Res 2013; 11:888-901. [PMID: 23838123 DOI: 10.1016/j.scr.2013.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 05/29/2013] [Accepted: 05/29/2013] [Indexed: 02/08/2023] Open
Abstract
Stem cell (SC) therapy is the main treatment modality for patients with limbal stem cell deficiency. If limbal epithelial stem cells (LESC) can be more readily identified, isolated and maintained ex vivo, patients could be treated with better quality grafts. With prior knowledge that vitronectin (VN) is present within the LESC niche and that it supports LESC in vitro, we postulated that VN receptors (integrins αvβ3/5) are expressed by, and can be used to identify and isolate LESC. Immunolocalization studies were conducted on human corneas. Corneas were also used to expand limbal epithelial cells from either biopsies or enzyme-dissociated tissue and αvβ3/5 expression determined by flow cytometry. Integrin expressing cells were isolated by magnetic activated cell sorting then assessed by immunocytology, colony forming efficiency, RT-PCR and microarray analysis. Integrin αvβ5(+) cells co-localized to N-cadherin(+)/CK-15(+) putative LESC. αvβ5 was restricted to less than 4% of the total limbal epithelial cells, which expressed higher levels of CK-15 and formed more colonies compared to αvβ5(-) cells. Transcriptional profiling of αvβ5(+/-) cells by microarray identified several highly expressed interferon-inducible genes, which localize to putative LESC. Integrin αvβ5 is a candidate LESC marker since its expression is restricted to the limbus and αvβ5(+) limbal epithelial cells have phenotypic and functional properties of LESC. Knowledge of the niche's molecular composition and the genes expressed by its SC will facilitate isolation and maintenance of these cells for therapeutic purposes.
Collapse
|
21
|
Grasman JM, Page RL, Dominko T, Pins GD. Crosslinking strategies facilitate tunable structural properties of fibrin microthreads. Acta Biomater 2012; 8:4020-30. [PMID: 22824528 DOI: 10.1016/j.actbio.2012.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 07/11/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
Abstract
A significant challenge in the design of biomimetic scaffolds is combining morphologic, mechanical, and biochemical cues into a single construct to promote tissue regeneration. In this study, we analyzed the effects of different crosslinking conditions on fibrin biopolymer microthreads to create morphologic scaffolds with tunable mechanical properties that are designed for directional cell guidance. Fibrin microthreads were crosslinked using carbodiimides in either acidic or neutral buffer, and the mechanical, structural, and biochemical responses of the microthreads were investigated. Crosslinking in the presence of acidic buffer (EDCa) created microthreads that had significantly higher tensile strengths and moduli than all other microthreads, and failed at lower strains than all other microthreads. Microthreads crosslinked in neutral buffer (EDCn) were also significantly stronger and stiffer than uncrosslinked threads and were comparable to contracting muscle in stiffness. Swelling ratios of crosslinked microthreads were significantly different from each other and uncrosslinked controls, suggesting a difference in the internal organization and compaction of the microthreads. Using an in vitro degradation assay, we observed that EDCn microthreads degraded within 24h, six times slower than uncrosslinked control threads, but EDCa microthreads did not show any significant indication of degradation within the 7-day assay period. Microthreads with higher stiffnesses supported significantly increased attachment of C2C12 cells, as well as increases in cell proliferation without a decrease in cell viability. Taken together, these data demonstrate the ability to create microthreads with tunable mechanical and structural properties that differentially direct cellular functions. Ultimately, we anticipate that we can strategically exploit these properties to promote site-specific tissue regeneration.
Collapse
|
22
|
Frost RA, Lang CH. Multifaceted role of insulin-like growth factors and mammalian target of rapamycin in skeletal muscle. Endocrinol Metab Clin North Am 2012; 41:297-322, vi. [PMID: 22682632 PMCID: PMC3376019 DOI: 10.1016/j.ecl.2012.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This review describes the current literature on the interaction between insulin-like growth factors, endocrine hormones, and branched-chain amino acids on muscle physiology in healthy young individuals and during select pathologic conditions. Emphasis is placed on the mechanism by which physical and hormonal signals are transduced at the cellular level to either grow or atrophy skeletal muscle. The key role of the mammalian target of rapamycin and its ability to respond to hypertrophic and atrophic signals informs our understanding how a combination of physical, nutritional, and pharmacologic therapies may be used in tandem to prevent or ameliorate reductions in muscle mass.
Collapse
Affiliation(s)
- Robert A. Frost
- Associate Professor, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey PA, 17033
- Professor and Vice Chairman, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey PA, 17033
| | - Charles H. Lang
- Associate Professor, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey PA, 17033
| |
Collapse
|
23
|
Vidal B, Ardite E, Suelves M, Ruiz-Bonilla V, Janué A, Flick MJ, Degen JL, Serrano AL, Muñoz-Cánoves P. Amelioration of Duchenne muscular dystrophy in mdx mice by elimination of matrix-associated fibrin-driven inflammation coupled to the αMβ2 leukocyte integrin receptor. Hum Mol Genet 2012; 21:1989-2004. [PMID: 22381526 DOI: 10.1093/hmg/dds012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In Duchenne muscular dystrophy (DMD), a persistently altered and reorganizing extracellular matrix (ECM) within inflamed muscle promotes damage and dysfunction. However, the molecular determinants of the ECM that mediate inflammatory changes and faulty tissue reorganization remain poorly defined. Here, we show that fibrin deposition is a conspicuous consequence of muscle-vascular damage in dystrophic muscles of DMD patients and mdx mice and that elimination of fibrin(ogen) attenuated dystrophy progression in mdx mice. These benefits appear to be tied to: (i) a decrease in leukocyte integrin α(M)β(2)-mediated proinflammatory programs, thereby attenuating counterproductive inflammation and muscle degeneration; and (ii) a release of satellite cells from persistent inhibitory signals, thereby promoting regeneration. Remarkably, Fib-gamma(390-396A) (Fibγ(390-396A)) mice expressing a mutant form of fibrinogen with normal clotting function, but lacking the α(M)β(2) binding motif, ameliorated dystrophic pathology. Delivery of a fibrinogen/α(M)β(2) blocking peptide was similarly beneficial. Conversely, intramuscular fibrinogen delivery sufficed to induce inflammation and degeneration in fibrinogen-null mice. Thus, local fibrin(ogen) deposition drives dystrophic muscle inflammation and dysfunction, and disruption of fibrin(ogen)-α(M)β(2) interactions may provide a novel strategy for DMD treatment.
Collapse
Affiliation(s)
- Berta Vidal
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University, CIBER on Neurodegenerative Diseases, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
αVβ3-integrin expression through ERK activation mediates cell attachment and is necessary for production of tumor necrosis factor alpha in monocytic THP-1 cells stimulated by phorbol myristate acetate. Cell Immunol 2011; 270:25-31. [PMID: 21481849 DOI: 10.1016/j.cellimm.2011.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 02/28/2011] [Accepted: 03/21/2011] [Indexed: 11/21/2022]
Abstract
Macrophages play a key role in inflammation. Activated macrophages express adhesion molecules and produce tumor necrosis factor alpha (TNFα). Integrins are the main adhesion molecules that mediate binding to the extracellular matrix and they are involved in intracellular pathways. In the present study, human monocytic THP-1 cell adhesion to uncoated plastic plate was examined to investigate the regulatory mechanism of TNFα secretion. Addition of phorbol myristate acetate (PMA) for THP-1 cell activation induced cell adhesion in parallel with TNFα production. Among the mitogen-activated protein kinase pathways, the protein kinase C (PKC)-extracellular signal-regulated kinase (ERK) pathway was involved in αVβ3-integrin expression and PMA-induced cell adhesion. Flow cytometry and reverse transcription - quantitative polymerase chain reaction analysis revealed increased expression of matrix-binding integrins including integrin-αVβ3. Blockade of αVβ3-integrin by a specific antibody suppressed cell adhesion and TNFα production. These findings indicate that TNFα production from THP-1 cells is PKC-ERK, αVβ3-integrin and adhesion-dependent and its related pathway could be a target for TNFα-related diseases.
Collapse
|
25
|
Wang J, Han X, Yang H, Lu L, Wu Y, Liu X, Guo R, Zhang Y, Zhang Y, Li Q. A novel RGD-toxin protein, Lj-RGD3, from the buccal gland secretion of Lampetra japonica impacts diverse biological activities. Biochimie 2010; 92:1387-96. [PMID: 20650303 DOI: 10.1016/j.biochi.2010.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 07/01/2010] [Indexed: 11/19/2022]
Abstract
RGD (Arg-Gly-Asp) motif toxin proteins from snake venoms, saliva glands secretion of leech or tick have typical characteristics of inhibiting platelet aggregation, angiogenesis, and tumor growth. Here we report cloning and characterization of a novel RGD-toxin protein from the buccal gland of Lampetra japonica. In an attempt to study the activities of anticoagulant in the buccal gland secretion of L. japonica, we established buccal gland cDNA library and identified a gene encoding a predicted protein of 118 amino acids with 3 RGD motifs. The predicted protein was named Lj-RGD3. We generated the cDNA of Lj-RGD3 and obtained the recombinant protein rLj-RGD3. The polyclonal antibodies against rLj-RGD3 recognized the native Lj-RGD3 protein in buccal gland secretion in Western blot analyses. The biological function studies reveal that rLj-RGD3 inhibited human platelet aggregation in a dose-dependent manner with IC(50) value at 5.277 μM. In addition, rLj-RGD3 repressed bFGF-induced angiogenesis in the chick chorioallantoic membrane model. rLj-RGD3 also inhibited the adhesion of ECV304 cells to vitronectin. Furthermore, rLj-RGD3 induced apoptosis and significantly inhibited proliferation, migration, and invasion evoked by bFGF in ECV304 cells. Taken together, these results suggested that rLj-RGD3 is a novel RGD-toxin protein possessing typical functions of the RGD-toxin protein.
Collapse
Affiliation(s)
- Jihong Wang
- Department of Biological Sciences, Liaoning Normal University, Dalian 116029, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Davis PJ, Davis FB, Lin HY, Mousa SA, Zhou M, Luidens MK. Translational implications of nongenomic actions of thyroid hormone initiated at its integrin receptor. Am J Physiol Endocrinol Metab 2009; 297:E1238-46. [PMID: 19755667 DOI: 10.1152/ajpendo.00480.2009] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A thyroid hormone receptor on integrin alphavbeta3 that mediates cell surface-initiated nongenomic actions of thyroid hormone on tumor cell proliferation and on angiogenesis has been described. Transduction of the hormone signal into these recently recognized proliferative effects is by extracellular-regulated kinases 1/2 (ERK1/2). Other nongenomic actions of the hormone may be transduced by phosphatidylinositol 3-kinase (PI3K) and are initiated in cytoplasm or at the cell surface. PI3K-mediated effects are important to angiogenesis or other recently appreciated cell functions but apparently not to tumor cell division. For those actions of thyroid hormone [L-thyroxine (T(4)) and 3,3'-5-triiodo-L-thyronine (T(3))] that begin at the integrin receptor, tetraiodothyroacetic acid (tetrac) is an inhibitor of and probe for the participation of the receptor in downstream intracellular events. In addition, tetrac has actions initiated at the integrin receptor that are unrelated to inhibition of the effects of T(4) and T(3) but do involve gene transcription in tumor cells. Discussed here are the implications of translating these nongenomic mechanisms of thyroid hormone analogs into clinical cancer cell biology, tumor-related angiogenesis, and modulation of angiogenesis that is not related to cancer.
Collapse
Affiliation(s)
- Paul J Davis
- Signal Transduction Laboratory, Ordway Research Institute, Albany, NY 12208, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Bai J, Zhang J, Wu J, Shen L, Zeng J, Ding J, Wu Y, Gong Z, Li A, Xu S, Zhou J, Li G. JWA regulates melanoma metastasis by integrin alphaVbeta3 signaling. Oncogene 2009; 29:1227-37. [PMID: 19946336 DOI: 10.1038/onc.2009.408] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
JWA, a newly identified novel microtubule-associated protein (MAP), was recently demonstrated to be indispensable for the rearrangement of actin cytoskeleton and activation of MAPK cascades induced by arsenic trioxide (As(2)O(3)) and phorbol ester (PMA). JWA depletion blocked the inhibitory effect of As(2)O(3) on HeLa cell migration, but enhanced cell migration after PMA treatment. As cancer cell migration is a hallmark of tumor metastasis and the functional role of JWA in cancer metastasis is not understood, here we show that JWA has an important role in melanoma metastasis. Our data demonstrated that JWA knockdown increased the adhesion and invasion abilities of melanoma cells. Furthermore, JWA knockdown in B16-F10 and A375 melanoma cells significantly promoted the formation and growth of metastatic colonies in vivo. Moreover, in the tumor biopsies from human melanoma patients, JWA expression was significantly decreased in malignant melanoma compared with normal nevi. In addition, we found that JWA knockdown could intensify tumor integrin alpha(V)beta(3) signaling by regulating nuclear factor Sp1. These findings suggest that JWA suppresses melanoma metastasis and may serve a potential therapeutic target for human melanoma.
Collapse
Affiliation(s)
- J Bai
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|