1
|
Qin B, Fan B, Li Y, Wang Y, Shen B, Xia N. An endoplasmic reticulum localized acetyl-CoA transporter is required for efficient fatty acid synthesis in Toxoplasma gondii. Open Biol 2024; 14:240184. [PMID: 39532149 PMCID: PMC11557232 DOI: 10.1098/rsob.240184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that can infect humans and diverse animals. Fatty acids are critical for the growth and proliferation of T. gondii, which has at least two pathways to synthesize fatty acids, including the type II de novo synthesis pathway in the apicoplast and the elongation pathway in the endoplasmic reticulum (ER). Acetyl-CoA is the key substrate for both fatty acid synthesis pathways. In the apicoplast, acetyl-CoA is mainly provided by the pyruvate dehydrogenase complex. However, how the ER acquires acetyl-CoA is not fully understood. Here, we identified a putative acetyl-CoA transporter (TgAT1) that localized to the ER of T. gondii. Deletion of TgAT1 impaired parasite growth and invasion in vitro and attenuated tachyzoite virulence in vivo. Metabolic tracing using 13C-acetate found that loss of TgAT1 reduced the incorporation of 13C into certain fatty acids, suggesting reduced activities of elongation. Truncation of AT1 was previously reported to confer resistance to the antimalarial compound GNF179 in Plasmodium falciparum. Interestingly, GNF179 had much weaker inhibitory effect on Toxoplasma than on Plasmodium. In addition, deletion of AT1 did not affect the susceptibility of Toxoplasma to GNF179, suggesting that this compound might be taken up differently or has different inhibitory mechanisms in these parasites. Together, our data show that TgAT1 has important roles for parasite growth and fatty acid synthesis, but its disruption does not confer GNF179 resistance in T. gondii.
Collapse
Affiliation(s)
- Biyun Qin
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Bolin Fan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Yazhou Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Yidan Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Bang Shen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei Province, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan, Hubei Province, People’s Republic of China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong Province, People’s Republic of China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, People’s Republic of China
| | - Ningbo Xia
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, People’s Republic of China
| |
Collapse
|
2
|
Lyu C, Meng Y, Zhang X, Yang J, Shen B. Two enzymes contribute to citrate production in the mitochondrion of Toxoplasma gondii. J Biol Chem 2024; 300:107565. [PMID: 39002675 PMCID: PMC11359734 DOI: 10.1016/j.jbc.2024.107565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024] Open
Abstract
Citrate synthase catalyzes the first and the rate-limiting reaction of the tricarboxylic acid (TCA) cycle, producing citrate from the condensation of oxaloacetate and acetyl-coenzyme A. The parasitic protozoan Toxoplasma gondii has full TCA cycle activity, but its physiological roles remain poorly understood. In this study, we identified three proteins with predicted citrate synthase (CS) activities two of which were localized in the mitochondrion, including the 2-methylcitrate synthase (PrpC) that was thought to be involved in the 2-methylcitrate cycle, an alternative pathway for propionyl-CoA detoxification. Further analyses of the two mitochondrial enzymes showed that both had citrate synthase activity, but the catalytic efficiency of CS1 was much higher than that of PrpC. Consistently, the deletion of CS1 resulted in a significantly reduced flux of glucose-derived carbons into TCA cycle intermediates, leading to decreased parasite growth. In contrast, disruption of PrpC had little effect. On the other hand, simultaneous disruption of both CS1 and PrpC resulted in more severe metabolic changes and growth defects than a single deletion of either gene, suggesting that PrpC does contribute to citrate production under physiological conditions. Interestingly, deleting Δcs1 and Δprpc individually or in combination only mildly or negligibly affected the virulence of parasites in mice, suggesting that both enzymes are dispensable in vivo. The dispensability of CS1 and PrpC suggests that either the TCA cycle is not essential for the asexual reproduction of tachyzoites or there are other routes of citrate supply in the parasite mitochondrion.
Collapse
Affiliation(s)
- Congcong Lyu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Yanan Meng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Xin Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Jichao Yang
- College of Life Sciences, Longyan University, Longyan, Fujian, PR China
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China; Hubei Hongshan Laboratory, Wuhan, Hubei Province, PR China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong Province, PR China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, PR China.
| |
Collapse
|
3
|
Santos JM, Frénal K. Dominique Soldati-Favre: Bringing Toxoplasma gondii to the Molecular World. Front Cell Infect Microbiol 2022; 12:910611. [PMID: 35711657 PMCID: PMC9196188 DOI: 10.3389/fcimb.2022.910611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Joana M Santos
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Karine Frénal
- Université Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| |
Collapse
|
4
|
de Vries LE, Lunghi M, Krishnan A, Kooij TWA, Soldati-Favre D. Pantothenate and CoA biosynthesis in Apicomplexa and their promise as antiparasitic drug targets. PLoS Pathog 2021; 17:e1010124. [PMID: 34969059 PMCID: PMC8717973 DOI: 10.1371/journal.ppat.1010124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Apicomplexa phylum comprises thousands of distinct intracellular parasite species, including coccidians, haemosporidians, piroplasms, and cryptosporidia. These parasites are characterized by complex and divergent life cycles occupying a variety of host niches. Consequently, they exhibit distinct adaptations to the differences in nutritional availabilities, either relying on biosynthetic pathways or by salvaging metabolites from their host. Pantothenate (Pan, vitamin B5) is the precursor for the synthesis of an essential cofactor, coenzyme A (CoA), but among the apicomplexans, only the coccidian subgroup has the ability to synthesize Pan. While the pathway to synthesize CoA from Pan is largely conserved across all branches of life, there are differences in the redundancy of enzymes and possible alternative pathways to generate CoA from Pan. Impeding the scavenge of Pan and synthesis of Pan and CoA have been long recognized as potential targets for antimicrobial drug development, but in order to fully exploit these critical pathways, it is important to understand such differences. Recently, a potent class of pantothenamides (PanAms), Pan analogs, which target CoA-utilizing enzymes, has entered antimalarial preclinical development. The potential of PanAms to target multiple downstream pathways make them a promising compound class as broad antiparasitic drugs against other apicomplexans. In this review, we summarize the recent advances in understanding the Pan and CoA biosynthesis pathways, and the suitability of these pathways as drug targets in Apicomplexa, with a particular focus on the cyst-forming coccidian, Toxoplasma gondii, and the haemosporidian, Plasmodium falciparum.
Collapse
Affiliation(s)
- Laura E. de Vries
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Matteo Lunghi
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aarti Krishnan
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Taco W. A. Kooij
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dominique Soldati-Favre
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Biochemical Studies of Mitochondrial Malate: Quinone Oxidoreductase from Toxoplasma gondii. Int J Mol Sci 2021; 22:ijms22157830. [PMID: 34360597 PMCID: PMC8345934 DOI: 10.3390/ijms22157830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022] Open
Abstract
Toxoplasma gondii is a protozoan parasite that causes toxoplasmosis and infects almost one-third of the global human population. A lack of effective drugs and vaccines and the emergence of drug resistant parasites highlight the need for the development of new drugs. The mitochondrial electron transport chain (ETC) is an essential pathway for energy metabolism and the survival of T. gondii. In apicomplexan parasites, malate:quinone oxidoreductase (MQO) is a monotopic membrane protein belonging to the ETC and a key member of the tricarboxylic acid cycle, and has recently been suggested to play a role in the fumarate cycle, which is required for the cytosolic purine salvage pathway. In T. gondii, a putative MQO (TgMQO) is expressed in tachyzoite and bradyzoite stages and is considered to be a potential drug target since its orthologue is not conserved in mammalian hosts. As a first step towards the evaluation of TgMQO as a drug target candidate, in this study, we developed a new expression system for TgMQO in FN102(DE3)TAO, a strain deficient in respiratory cytochromes and dependent on an alternative oxidase. This system allowed, for the first time, the expression and purification of a mitochondrial MQO family enzyme, which was used for steady-state kinetics and substrate specificity analyses. Ferulenol, the only known MQO inhibitor, also inhibited TgMQO at IC50 of 0.822 μM, and displayed different inhibition kinetics compared to Plasmodium falciparum MQO. Furthermore, our analysis indicated the presence of a third binding site for ferulenol that is distinct from the ubiquinone and malate sites.
Collapse
|
6
|
Velásquez ZD, López-Osorio S, Mazurek S, Hermosilla C, Taubert A. Eimeria bovis Macromeront Formation Induces Glycolytic Responses and Mitochondrial Changes in Primary Host Endothelial Cells. Front Cell Infect Microbiol 2021; 11:703413. [PMID: 34336724 PMCID: PMC8319763 DOI: 10.3389/fcimb.2021.703413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022] Open
Abstract
Eimeria bovis is an intracellular apicomplexan parasite that causes considerable economic losses in the cattle industry worldwide. During the first merogony, E. bovis forms large macromeronts with >140,000 merozoites I in host endothelial cells. Because this is a high-energy demanding process, E. bovis exploits the host cellular metabolism to fulfill its metabolic requirements. We here analyzed the carbohydrate-related energetic metabolism of E. bovis–infected primary bovine umbilical vein endothelial cells during first merogony and showed that during the infection, E. bovis–infected culture presented considerable changes in metabolic signatures, glycolytic, and mitochondrial responses. Thus, an increase in both oxygen consumption rates (OCR) and extracellular acidification rates (ECAR) were found in E. bovis–infected host cells indicating a shift from quiescent to energetic cell status. Enhanced levels of glucose and pyruvate consumption in addition to increased lactate production, suggesting an important role of glycolysis in E. bovis–infected culture from 12 days p.i. onward. This was also tested by glycolytic inhibitors (2-DG) treatment, which reduced the macromeront development and diminished merozoite I production. As an interesting finding, we observed that 2-DG treatment boosted sporozoite egress. Referring to mitochondrial activities, intracellular ROS production was increased toward the end of merogony, and mitochondrial potential was enhanced from 12 d p. i. onward in E. bovis–infected culture. Besides, morphological alterations of membrane potential signals also indicated mitochondrial dysfunction in macromeront-carrying host endothelial culture.
Collapse
Affiliation(s)
- Zahady D Velásquez
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University of Giessen, Giessen, Germany
| | - Sara López-Osorio
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University of Giessen, Giessen, Germany.,Research Group CIBAV, School of Veterinary Medicine, Faculty of Agrarian Sciences, University of Antioquia, Medellin, Colombia
| | - Sybille Mazurek
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University of Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University of Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
7
|
Atchou K, Ongus J, Machuka E, Juma J, Tiambo C, Djikeng A, Silva JC, Pelle R. Comparative Transcriptomics of the Bovine Apicomplexan Parasite Theileria parva Developmental Stages Reveals Massive Gene Expression Variation and Potential Vaccine Antigens. Front Vet Sci 2020; 7:287. [PMID: 32582776 PMCID: PMC7296165 DOI: 10.3389/fvets.2020.00287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/28/2020] [Indexed: 01/10/2023] Open
Abstract
Theileria parva is a protozoan parasite that causes East Coast fever (ECF), an economically important disease of cattle in Africa. It is transmitted mainly by the tick Rhipicephalus appendiculatus. Research efforts to develop a subunit vaccine based on parasite neutralizing antibodies and cytotoxic T-lymphocytes have met with limited success. The molecular mechanisms underlying T. parva life cycle stages in the tick vector and bovine host are poorly understood, thus limiting progress toward an effective and efficient control of ECF. Transcriptomics has been used to identify candidate vaccine antigens or markers associated with virulence and disease pathology. Therefore, characterization of gene expression throughout the parasite's life cycle should shed light on host-pathogen interactions in ECF and identify genes underlying differences in parasite stages as well as potential, novel therapeutic targets. Recently, the first gene expression profiling of T. parva was conducted for the sporoblast, sporozoite, and schizont stages. The sporozoite is infective to cattle, whereas the schizont is the major pathogenic form of the parasite. The schizont can differentiate into piroplasm, which is infective to the tick vector. The present study was designed to extend the T. parva gene expression profiling to the piroplasm stage with reference to the schizont. Pairwise comparison revealed that 3,279 of a possible 4,084 protein coding genes were differentially expressed, with 1,623 (49%) genes upregulated and 1,656 (51%) downregulated in the piroplasm relative to the schizont. In addition, over 200 genes were stage-specific. In general, there were more molecular functions, biological processes, subcellular localizations, and pathways significantly enriched in the piroplasm than in the schizont. Using known antigens as benchmarks, we identified several new potential vaccine antigens, including TP04_0076 and TP04_0640, which were highly immunogenic in naturally T. parva-infected cattle. All the candidate vaccine antigens identified have yet to be investigated for their capacity to induce protective immune response against ECF.
Collapse
Affiliation(s)
- Kodzo Atchou
- Institute for Basic Sciences, Technology and Innovation, Pan African University, Nairobi, Kenya.,Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI), Nairobi, Kenya
| | - Juliette Ongus
- Institute for Basic Sciences, Technology and Innovation, Pan African University, Nairobi, Kenya
| | - Eunice Machuka
- Institute for Basic Sciences, Technology and Innovation, Pan African University, Nairobi, Kenya.,Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI), Nairobi, Kenya
| | - John Juma
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI), Nairobi, Kenya
| | - Christian Tiambo
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI), Nairobi, Kenya
| | - Appolinaire Djikeng
- Centre for Tropical Livestock Genetics and Health, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Scotland, United Kingdom
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Roger Pelle
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI), Nairobi, Kenya
| |
Collapse
|
8
|
Krishnan A, Kloehn J, Lunghi M, Soldati-Favre D. Vitamin and cofactor acquisition in apicomplexans: Synthesis versus salvage. J Biol Chem 2020; 295:701-714. [PMID: 31767680 PMCID: PMC6970920 DOI: 10.1074/jbc.aw119.008150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Apicomplexa phylum comprises diverse parasitic organisms that have evolved from a free-living ancestor. These obligate intracellular parasites exhibit versatile metabolic capabilities reflecting their capacity to survive and grow in different hosts and varying niches. Determined by nutrient availability, they either use their biosynthesis machineries or largely depend on their host for metabolite acquisition. Because vitamins cannot be synthesized by the mammalian host, the enzymes required for their synthesis in apicomplexan parasites represent a large repertoire of potential therapeutic targets. Here, we review recent advances in metabolic reconstruction and functional studies coupled to metabolomics that unravel the interplay between biosynthesis and salvage of vitamins and cofactors in apicomplexans. A particular emphasis is placed on Toxoplasma gondii, during both its acute and latent stages of infection.
Collapse
Affiliation(s)
- Aarti Krishnan
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, 1 Rue Michel-Servet, 1211 Geneva 4 Switzerland
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, 1 Rue Michel-Servet, 1211 Geneva 4 Switzerland
| | - Matteo Lunghi
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, 1 Rue Michel-Servet, 1211 Geneva 4 Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, 1 Rue Michel-Servet, 1211 Geneva 4 Switzerland
| |
Collapse
|
9
|
Krishnan A, Kloehn J, Lunghi M, Soldati-Favre D. Vitamin and cofactor acquisition in apicomplexans: Synthesis versus salvage. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49928-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
10
|
Cao XZ, Wang JL, Elsheikha HM, Li TT, Sun LX, Liang QL, Zhang ZW, Lin RQ. Characterization of the Role of Amylo-Alpha-1,6-Glucosidase Protein in the Infectivity of Toxoplasma gondii. Front Cell Infect Microbiol 2019; 9:418. [PMID: 31867292 PMCID: PMC6908810 DOI: 10.3389/fcimb.2019.00418] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/22/2019] [Indexed: 11/13/2022] Open
Abstract
In this study, we characterized the role of amylo-alpha-1,6-glucosidase (Aa16GL) in the biology and infectivity of Toxoplasma gondii, using Aa16GL-deficient parasites of type I RH and type II Prugniaud (Pru) strains. The subcellular localization of Aa16GL protein was characterized by tagging a 3 × HA to the 3′ end of the Aa16GL gene endogenous locus. Immunostaining of the expressed Aa16GL protein revealed that it is located in several small cytoplasmic puncta. Functional characterization of ΔAa16GL mutants using plaque assay, egress assay and intracellular replication assay showed that parasites lacking Aa16GL exhibit a slight reduction in the growth rate, but remained virulent to mice. Although PruΔAa16GL tachyzoites retained the ability to differentiate into bradyzoites in vitro, they exhibited slight reduction in their ability to form cysts in mice. These findings reveal new properties of Aa16GL and suggest that while it does not have a substantial role in mediating T. gondii infectivity, this protein can influence the formation of parasite cysts in mice.
Collapse
Affiliation(s)
- Xue-Zhen Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Veterinary Parasitology of Gansu Province, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jin-Lei Wang
- Key Laboratory of Veterinary Parasitology of Gansu Province, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Ting-Ting Li
- Key Laboratory of Veterinary Parasitology of Gansu Province, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Li-Xiu Sun
- Key Laboratory of Veterinary Parasitology of Gansu Province, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qin-Li Liang
- Key Laboratory of Veterinary Parasitology of Gansu Province, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhi-Wei Zhang
- Key Laboratory of Veterinary Parasitology of Gansu Province, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Rui-Qing Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
11
|
He C, Kong L, Puthiyakunnon S, Wei HX, Zhou LJ, Peng HJ. iTRAQ-based phosphoproteomic analysis reveals host cell's specific responses to Toxoplasma gondii at the phases of invasion and prior to egress. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:202-212. [PMID: 30576742 DOI: 10.1016/j.bbapap.2018.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 10/27/2022]
Abstract
Protein phosphorylation plays a key role in host cell-T. gondii interaction. However, the phosphoproteome data of host cell at various phases of T. gondii infection has not been thoroughly described. In this study, we assessed the host phosphoproteome data with isobaric tags for relative and absolute quantification (iTRAQ) method during the phases of T. gondii invasion (30 min post infection, PI) and prior to egress (28 h PI). Our iTRAQ analysis revealed a total of 665 phosphoproteins, among which the significantly regulated phosphoproteins in different between-group comparisons were further analyzed. Functional analysis of these significantly regulated phosphoproteins suggested that T. gondii modulated host cell processes through phosphorylation including cell cycle regulation, inducing apoptosis, blocking the synthesis of some inflammatory factors, mediating metabolism to support its proliferation at the infection phase prior to egress, and utilizing membrane and energy from host cell, reorganizing cytoskeleton to favor its invasion and PV formation at the phase of invasion. The phosphorylation level of Smad2, CTNNA1, and HSPB1 identified with western blot revealed a consistent trend of change with iTRAQ result. These newly identified and significantly regulated phosphoproteins from our phosphoproteome data may provide new clues to unravel the host cell's complex reaction against T. gondii infection and the interaction between the host cell and T. gondii.
Collapse
Affiliation(s)
- Cheng He
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Ling Kong
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Santhosh Puthiyakunnon
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hai-Xia Wei
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Li-Juan Zhou
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hong-Juan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
12
|
Farhat S, Florent I, Noel B, Kayal E, Da Silva C, Bigeard E, Alberti A, Labadie K, Corre E, Aury JM, Rombauts S, Wincker P, Guillou L, Porcel BM. Comparative Time-Scale Gene Expression Analysis Highlights the Infection Processes of Two Amoebophrya Strains. Front Microbiol 2018; 9:2251. [PMID: 30333799 PMCID: PMC6176090 DOI: 10.3389/fmicb.2018.02251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/04/2018] [Indexed: 01/31/2023] Open
Abstract
Understanding factors that generate, maintain, and constrain host-parasite associations is of major interest to biologists. Although little studied, many extremely virulent micro-eukaryotic parasites infecting microalgae have been reported in the marine plankton. This is the case for Amoebophrya, a diverse and highly widespread group of Syndiniales infecting and potentially controlling dinoflagellate populations. Here, we analyzed the time-scale gene expression of a complete infection cycle of two Amoebophrya strains infecting the same host (the dinoflagellate Scrippsiella acuminata), but diverging by their host range (one infecting a single host, the other infecting more than one species). Over two-thirds of genes showed two-fold differences in expression between at least two sampled stages of the Amoebophrya life cycle. Genes related to carbohydrate metabolism as well as signaling pathways involving proteases and transporters were overexpressed during the free-living stage of the parasitoid. Once inside the host, all genes related to transcription and translation pathways were actively expressed, suggesting the rapid and extensive protein translation needed following host-cell invasion. Finally, genes related to cellular division and components of the flagellum organization were overexpressed during the sporont stage. In order to gain a deeper understanding of the biological basis of the host-parasitoid interaction, we screened proteins involved in host-cell recognition, invasion, and protection against host-defense identified in model apicomplexan parasites. Very few of the genes encoding critical components of the parasitic lifestyle of apicomplexans could be unambiguously identified as highly expressed in Amoebophrya. Genes related to the oxidative stress response were identified as highly expressed in both parasitoid strains. Among them, the correlated expression of superoxide dismutase/ascorbate peroxidase in the specialist parasite was consistent with previous studies on Perkinsus marinus defense. However, this defense process could not be identified in the generalist Amoebophrya strain, suggesting the establishment of different strategies for parasite protection related to host specificity.
Collapse
Affiliation(s)
- Sarah Farhat
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France
| | - Isabelle Florent
- Communication Molecules and Adaptation of Microorganisms, National Museum of Natural History, CNRS, Paris, France
| | - Benjamin Noel
- Genoscope, Institut François Jacob, CEA, Evry, France
| | - Ehsan Kayal
- Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, CNRS, UMR 7144, Station Biologique de Roscoff, Roscoff, France
| | | | - Estelle Bigeard
- Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, CNRS, UMR 7144, Station Biologique de Roscoff, Roscoff, France
| | | | | | - Erwan Corre
- Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, CNRS, UMR 7144, Station Biologique de Roscoff, Roscoff, France
| | | | - Stephane Rombauts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France
| | - Laure Guillou
- Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, CNRS, UMR 7144, Station Biologique de Roscoff, Roscoff, France
| | - Betina M Porcel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France
| |
Collapse
|
13
|
Shukla A, Olszewski KL, Llinás M, Rommereim LM, Fox BA, Bzik DJ, Xia D, Wastling J, Beiting D, Roos DS, Shanmugam D. Glycolysis is important for optimal asexual growth and formation of mature tissue cysts by Toxoplasma gondii. Int J Parasitol 2018; 48:955-968. [PMID: 30176233 DOI: 10.1016/j.ijpara.2018.05.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 12/31/2022]
Abstract
Toxoplasma gondii can grow and replicate using either glucose or glutamine as the major carbon source. Here, we have studied the essentiality of glycolysis in the tachyzoite and bradyzoite stages of T. gondii, using transgenic parasites that lack a functional hexokinase gene (Δhk) in RH (Type-1) and Prugniaud (Type-II) strain parasites. Tachyzoite stage Δhk parasites exhibit a fitness defect similar to that reported previously for the major glucose transporter mutant, and remain virulent in mice. However, although Prugniaud strain Δhk tachyzoites were capable of transforming into bradyzoites in vitro, they were severely compromised in their ability to make mature bradyzoite cysts in the brain tissue of mice. Isotopic labelling studies reveal that glucose-deprived tacyzoites utilise glutamine to replenish glycolytic and pentose phosphate pathway intermediates via gluconeogenesis. Interestingly, while glutamine-deprived intracellular Δhk tachyzoites continued to replicate, extracellular parasites were unable to efficiently invade host cells. Further, studies on mutant tachyzoites lacking a functional phosphoenolpyruvate carboxykinase (Δpepck1) revealed that glutaminolysis is the sole source of gluconeogenic flux in glucose-deprived parasites. In addition, glutaminolysis is essential for sustaining oxidative phosphorylation in Δhk parasites, while wild type (wt) and Δpepck1 parasites can obtain ATP from either glycolysis or oxidative phosphorylation. This study provides insights into the role of nutrient metabolism during asexual propagation and development of T. gondii, and validates the versatile nature of central carbon and energy metabolism in this parasite.
Collapse
Affiliation(s)
- Anurag Shukla
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
| | | | - Manuel Llinás
- Department of Biochemistry and Molecular Biology and Department of Chemistry, Huck Center for Malaria Research, The Pennsylvania State University, W126 Millennium Science Complex, University Park, PA, USA
| | - Leah M Rommereim
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Barbara A Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - David J Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Dong Xia
- The Royal Veterinary College, London NW1 0TU, UK
| | - Jonathan Wastling
- Faculty of Natural Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Daniel Beiting
- School of Veterinary Medicine, Dept. of Pathobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - David S Roos
- Department of Biology and Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, PA, USA.
| | | |
Collapse
|
14
|
Salunke R, Mourier T, Banerjee M, Pain A, Shanmugam D. Highly diverged novel subunit composition of apicomplexan F-type ATP synthase identified from Toxoplasma gondii. PLoS Biol 2018; 16:e2006128. [PMID: 30005062 PMCID: PMC6059495 DOI: 10.1371/journal.pbio.2006128] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/25/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022] Open
Abstract
The mitochondrial F-type ATP synthase, a multisubunit nanomotor, is critical for maintaining cellular ATP levels. In T. gondii and other apicomplexan parasites, many subunit components necessary for proper assembly and functioning of this enzyme appear to be missing. Here, we report the identification of 20 novel subunits of T. gondii F-type ATP synthase from mass spectrometry analysis of partially purified monomeric (approximately 600 kDa) and dimeric (>1 MDa) forms of the enzyme. Despite extreme sequence diversification, key FO subunits a, b, and d can be identified from conserved structural features. Orthologs for these proteins are restricted to apicomplexan, chromerid, and dinoflagellate species. Interestingly, their absence in ciliates indicates a major diversion, with respect to subunit composition of this enzyme, within the alveolate clade. Discovery of these highly diversified novel components of the apicomplexan F-type ATP synthase complex could facilitate the development of novel antiparasitic agents. Structural and functional characterization of this unusual enzyme complex will advance our fundamental understanding of energy metabolism in apicomplexan species.
Collapse
Affiliation(s)
- Rahul Salunke
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| | - Tobias Mourier
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, India
| | - Arnab Pain
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Dhanasekaran Shanmugam
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| |
Collapse
|
15
|
Nolan SJ, Romano JD, Coppens I. Host lipid droplets: An important source of lipids salvaged by the intracellular parasite Toxoplasma gondii. PLoS Pathog 2017; 13:e1006362. [PMID: 28570716 PMCID: PMC5469497 DOI: 10.1371/journal.ppat.1006362] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 06/13/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022] Open
Abstract
Toxoplasma is an obligate intracellular parasite that replicates in mammalian cells within a parasitophorous vacuole (PV) that does not fuse with any host organelles. One mechanism developed by the parasite for nutrient acquisition is the attraction of host organelles to the PV. Here, we examined the exploitation of host lipid droplets (LD), ubiquitous fat storage organelles, by Toxoplasma. We show that Toxoplasma replication is reduced in host cells that are depleted of LD, or impaired in TAG lipolysis or fatty acid catabolism. In infected cells, the number of host LD and the expression of host LD-associated genes (ADRP, DGAT2), progressively increase until the onset of parasite replication. Throughout infection, the PV are surrounded by host LD. Toxoplasma is capable of accessing lipids stored in host LD and incorporates these lipids into its own membranes and LD. Exogenous addition of oleic acid stimulates LD biogenesis in the host cell and results in the overaccumulation of neutral lipids in very large LD inside the parasite. To access LD-derived lipids, Toxoplasma intercepts and internalizes within the PV host LD, some of which remaining associated with Rab7, which become wrapped by an intravacuolar network of membranes (IVN). Mutant parasites impaired in IVN formation display diminished capacity of lipid uptake from host LD. Moreover, parasites lacking an IVN-localized phospholipase A2 are less proficient in salvaging lipids from host LD in the PV, suggesting a major contribution of the IVN for host LD processing in the PV and, thus lipid content release. Interestingly, gavage of parasites with lipids unveils, for the first time, the presence in Toxoplasma of endocytic-like structures containing lipidic material originating from the PV lumen. This study highlights the reliance of Toxoplasma on host LD for its intracellular development and the parasite’s capability in scavenging neutral lipids from host LD. Toxoplasma is an obligate intracellular pathogen that multiplies in mammalian cells within a specialized compartment, named the parasitophorous vacuole (PV). While the vacuole does not fuse with host organelles, the parasite scavenges nutrients, including lipids, from these compartments. Present in all mammalian cells, lipid droplets (LD) are dynamic structures that store neutral lipids. Whether Toxoplasma targets host LD for their nutritional content remains to be investigated. We demonstrate that the parasite relies on host LD lipids and their lipolytic enzymatic activities to grow. Toxoplasma salvages lipids from host LD, which surround the PV and, at least partially, accesses these lipids by intercepting and engulfing within the PV host Rab7-associated LD. In the PV lumen, a parasite lipase releases lipids from host LD, thus making them available to the parasite. Exogenous addition of fatty acids stimulates host LD biogenesis and results in the accumulation of enlarged LD containing neutral lipids in Toxoplasma. This study highlights the ability of Toxoplasma to scavenge and store lipids from host LD. Interestingly, exposure of Toxoplasma to excess lipids reveals, for the first time, coated invaginations of the parasite’s plasma membrane and cytoplasmic vesicles containing lipids originating from the PV lumen, potentially involved in endocytosis.
Collapse
Affiliation(s)
- Sabrina J. Nolan
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Julia D. Romano
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
16
|
Abstract
Transcriptomics is shedding new light on the relationship between photosynthetic algae and salamander eggs.
Collapse
Affiliation(s)
- Steven G Ball
- Institute for Functional and Structural Glycobiology (UGSF), UMR8576 University of Lille/CNRS, Villeneuve d'Ascq, France
| | - Ugo Cenci
- Institute for Functional and Structural Glycobiology (UGSF), UMR8576 University of Lille/CNRS, Villeneuve d'Ascq, France
| |
Collapse
|
17
|
Naemat A, Elsheikha HM, Boitor RA, Notingher I. Tracing amino acid exchange during host-pathogen interaction by combined stable-isotope time-resolved Raman spectral imaging. Sci Rep 2016; 6:20811. [PMID: 26857158 PMCID: PMC4746650 DOI: 10.1038/srep20811] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/13/2016] [Indexed: 11/09/2022] Open
Abstract
This study investigates the temporal and spatial interchange of the aromatic amino acid phenylalanine (Phe) between human retinal pigment epithelial cell line (ARPE-19) and tachyzoites of the apicomplexan protozoan parasite Toxoplasma gondii (T. gondii). Stable isotope labelling by amino acids in cell culture (SILAC) is combined with Raman micro-spectroscopy to selectively monitor the incorporation of deuterium-labelled Phe into proteins in individual live tachyzoites. Our results show a very rapid uptake of l-Phe(D8) by the intracellular growing parasite. T. gondii tachyzoites are capable of extracting l-Phe(D8) from host cells as soon as it invades the cell. l-Phe(D8) from the host cell completely replaces the l-Phe within T. gondii tachyzoites 7-9 hours after infection. A quantitative model based on Raman spectra allowed an estimation of the exchange rate of Phe as 0.5-1.6 × 10(4) molecules/s. On the other hand, extracellular tachyzoites were not able to consume l-Phe(D8) after 24 hours of infection. These findings further our understanding of the amino acid trafficking between host cells and this strictly intracellular parasite. In particular, this study highlights new aspects of the metabolism of amino acid Phe operative during the interaction between T. gondii and its host cell.
Collapse
Affiliation(s)
- Abida Naemat
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK
| | - Radu A Boitor
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Ioan Notingher
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
18
|
Metabolic signatures of Besnoitia besnoiti-infected endothelial host cells and blockage of key metabolic pathways indicate high glycolytic and glutaminolytic needs of the parasite. Parasitol Res 2016; 115:2023-34. [PMID: 26852124 DOI: 10.1007/s00436-016-4946-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/29/2016] [Indexed: 10/22/2022]
Abstract
Besnoitia besnoiti is an obligate intracellular and emerging coccidian parasite of cattle with a significant economic impact on cattle industry. During acute infection, fast-proliferating tachyzoites are continuously formed mainly in endothelial host cells of infected animals. Given that offspring formation is a highly energy and cell building block demanding process, the parasite needs to exploit host cellular metabolism to meet its metabolic demands. Here, we analyzed the metabolic signatures of B. besnoiti-infected endothelial host cells and aimed to influence parasite proliferation by inhibitors of specific metabolic pathways. The following inhibitors were tested: fluoro 2-deoxy-D-glucose and 2-deoxy-D-glucose (FDG, DG; inhibitors of glycolysis), 6-diazo-5-oxo-L-norleucin (DON; inhibitor of glutaminolysis), dichloroacetate (DCA; inhibitor of pyruvate dehydrogenase kinase which favorites channeling of glucose carbons into the TCA cycle) and adenosine-monophosphate (AMP; inhibitor of ribose 5-P synthesis). Overall, B. besnoiti infections of bovine endothelial cells induced a significant and infection rate-dependent increase of glucose, lactate, glutamine, glutamate, pyruvate, alanine, and serine conversion rates which together indicate a parasite-triggered up-regulation of glycolysis and glutaminolysis. Thus, addition of DON, FDG, and DG into the cultivation medium of B. besnoiti infected endothelial cells led to a dose-dependent inhibition of parasite replication (4 μM DON, 99.5 % inhibition; 2 mM FDG, 99.1 % inhibition; 2 mM DG, 93 % inhibition; and 8 mM DCA, 71.9 % inhibition). In contrast, AMP had no significant effects on total tachyzoite production up to a concentration of 20 mM. Together, these data may open new strategies for the development of therapeutics for B. besnoiti infections.
Collapse
|
19
|
Jacot D, Waller RF, Soldati-Favre D, MacPherson DA, MacRae JI. Apicomplexan Energy Metabolism: Carbon Source Promiscuity and the Quiescence Hyperbole. Trends Parasitol 2015; 32:56-70. [PMID: 26472327 DOI: 10.1016/j.pt.2015.09.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/28/2015] [Accepted: 09/03/2015] [Indexed: 12/17/2022]
Abstract
The nature of energy metabolism in apicomplexan parasites has been closely investigated in the recent years. Studies in Plasmodium spp. and Toxoplasma gondii in particular have revealed that these parasites are able to employ enzymes in non-traditional ways, while utilizing multiple anaplerotic routes into a canonical tricarboxylic acid (TCA) cycle to satisfy their energy requirements. Importantly, some life stages of these parasites previously considered to be metabolically quiescent are, in fact, active and able to adapt their carbon source utilization to survive. We compare energy metabolism across the life cycle of malaria parasites and consider how this varies in other apicomplexans and related organisms, while discussing how this can be exploited for therapeutic intervention in these diseases.
Collapse
Affiliation(s)
- Damien Jacot
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - James I MacRae
- The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
20
|
Tymoshenko S, Oppenheim RD, Agren R, Nielsen J, Soldati-Favre D, Hatzimanikatis V. Metabolic Needs and Capabilities of Toxoplasma gondii through Combined Computational and Experimental Analysis. PLoS Comput Biol 2015; 11:e1004261. [PMID: 26001086 PMCID: PMC4441489 DOI: 10.1371/journal.pcbi.1004261] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/31/2015] [Indexed: 11/18/2022] Open
Abstract
Toxoplasma gondii is a human pathogen prevalent worldwide that poses a challenging and unmet need for novel treatment of toxoplasmosis. Using a semi-automated reconstruction algorithm, we reconstructed a genome-scale metabolic model, ToxoNet1. The reconstruction process and flux-balance analysis of the model offer a systematic overview of the metabolic capabilities of this parasite. Using ToxoNet1 we have identified significant gaps in the current knowledge of Toxoplasma metabolic pathways and have clarified its minimal nutritional requirements for replication. By probing the model via metabolic tasks, we have further defined sets of alternative precursors necessary for parasite growth. Within a human host cell environment, ToxoNet1 predicts a minimal set of 53 enzyme-coding genes and 76 reactions to be essential for parasite replication. Double-gene-essentiality analysis identified 20 pairs of genes for which simultaneous deletion is deleterious. To validate several predictions of ToxoNet1 we have performed experimental analyses of cytosolic acetyl-CoA biosynthesis. ATP-citrate lyase and acetyl-CoA synthase were localised and their corresponding genes disrupted, establishing that each of these enzymes is dispensable for the growth of T. gondii, however together they make a synthetic lethal pair.
Collapse
Affiliation(s)
- Stepan Tymoshenko
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CMU, Geneva, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge, Batiment Genopode, Lausanne, Switzerland
| | - Rebecca D. Oppenheim
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CMU, Geneva, Switzerland
| | - Rasmus Agren
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CMU, Geneva, Switzerland
| | - Vassily Hatzimanikatis
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CMU, Geneva, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge, Batiment Genopode, Lausanne, Switzerland
| |
Collapse
|
21
|
Hassan IA, Wang S, Xu L, Yan R, Song X, XiangRui L. Immunological response and protection of mice immunized with plasmid encodingToxoplasma gondiiglycolytic enzyme malate dehydrogenase. Parasite Immunol 2014; 36:674-83. [DOI: 10.1111/pim.12146] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/16/2014] [Indexed: 12/31/2022]
Affiliation(s)
- I. A. Hassan
- Key Laboratory of Animal Diseases Diagnosis and Immunology; Ministry of Agriculture; College of Veterinary Medicine; Nanjing Agricultural University; Nanjing Jiangsu China
| | - S. Wang
- Key Laboratory of Animal Diseases Diagnosis and Immunology; Ministry of Agriculture; College of Veterinary Medicine; Nanjing Agricultural University; Nanjing Jiangsu China
| | - L. Xu
- Key Laboratory of Animal Diseases Diagnosis and Immunology; Ministry of Agriculture; College of Veterinary Medicine; Nanjing Agricultural University; Nanjing Jiangsu China
| | - R. Yan
- Key Laboratory of Animal Diseases Diagnosis and Immunology; Ministry of Agriculture; College of Veterinary Medicine; Nanjing Agricultural University; Nanjing Jiangsu China
| | - X. Song
- Key Laboratory of Animal Diseases Diagnosis and Immunology; Ministry of Agriculture; College of Veterinary Medicine; Nanjing Agricultural University; Nanjing Jiangsu China
| | - L. XiangRui
- Key Laboratory of Animal Diseases Diagnosis and Immunology; Ministry of Agriculture; College of Veterinary Medicine; Nanjing Agricultural University; Nanjing Jiangsu China
| |
Collapse
|
22
|
Tonkin ML, Halavaty AS, Ramaswamy R, Ruan J, Igarashi M, Ngô HM, Boulanger MJ. Structural and functional divergence of the aldolase fold in Toxoplasma gondii. J Mol Biol 2014; 427:840-852. [PMID: 25284756 DOI: 10.1016/j.jmb.2014.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/27/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
Abstract
Parasites of the phylum Apicomplexa are highly successful pathogens of humans and animals worldwide. As obligate intracellular parasites, they have significant energy requirements for invasion and gliding motility that are supplied by various metabolic pathways. Aldolases have emerged as key enzymes involved in these pathways, and all apicomplexans express one or both of fructose 1,6-bisphosphate (F16BP) aldolase and 2-deoxyribose 5-phosphate (dR5P) aldolase (DERA). Intriguingly, Toxoplasma gondii, a highly successful apicomplexan parasite, expresses F16BP aldolase (TgALD1), d5RP aldolase (TgDERA), and a divergent dR5P aldolase-like protein (TgDPA) exclusively in the latent bradyzoite stage. While the importance of TgALD1 in glycolysis is well established and TgDERA is also likely to be involved in parasite metabolism, the detailed function of TgDPA remains elusive. To gain mechanistic insight into the function of different T. gondii aldolases, we first determined the crystal structures of TgALD1 and TgDPA. Structural analysis revealed that both aldolases adopt a TIM barrel fold accessorized with divergent secondary structure elements. Structural comparison of TgALD1 and TgDPA with members of their respective enzyme families revealed that, while the active-site residues are conserved in TgALD1, key catalytic residues are absent in TgDPA. Consistent with this observation, biochemical assays showed that, while TgALD1 was active on F16BP, TgDPA was inactive on dR5P. Intriguingly, both aldolases are competent to bind polymerized actin in vitro. Altogether, structural and biochemical analyses of T. gondii aldolase and aldolase-like proteins reveal diverse functionalization of the classic TIM barrel aldolase fold.
Collapse
Affiliation(s)
- Michelle L Tonkin
- Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, Canada V8W 3P6
| | - Andrei S Halavaty
- Center for Structural Genomics of Infectious Diseases, Department of Biochemistry and Molecular Genetics, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Raghavendran Ramaswamy
- Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, Canada V8W 3P6
| | - Jiapeng Ruan
- Center for Structural Genomics of Infectious Diseases, Department of Biochemistry and Molecular Genetics, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Makoto Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, 2-13 Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Huân M Ngô
- Center for Structural Genomics of Infectious Diseases, Department of Biochemistry and Molecular Genetics, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA; BrainMicro LLC, 21 Pendleton Street, New Haven, CT 06511, USA
| | - Martin J Boulanger
- Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, Canada V8W 3P6.
| |
Collapse
|
23
|
Exploitation of auxotrophies and metabolic defects in Toxoplasma as therapeutic approaches. Int J Parasitol 2014; 44:109-20. [DOI: 10.1016/j.ijpara.2013.09.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 09/22/2013] [Accepted: 09/22/2013] [Indexed: 12/30/2022]
|
24
|
Cobbold SA, Vaughan AM, Lewis IA, Painter HJ, Camargo N, Perlman DH, Fishbaugher M, Healer J, Cowman AF, Kappe SHI, Llinás M. Kinetic flux profiling elucidates two independent acetyl-CoA biosynthetic pathways in Plasmodium falciparum. J Biol Chem 2013; 288:36338-50. [PMID: 24163372 DOI: 10.1074/jbc.m113.503557] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The malaria parasite Plasmodium falciparum depends on glucose to meet its energy requirements during blood-stage development. Although glycolysis is one of the best understood pathways in the parasite, it is unclear if glucose metabolism appreciably contributes to the acetyl-CoA pools required for tricarboxylic acid metabolism (TCA) cycle and fatty acid biosynthesis. P. falciparum possesses a pyruvate dehydrogenase (PDH) complex that is localized to the apicoplast, a specialized quadruple membrane organelle, suggesting that separate acetyl-CoA pools are likely. Herein, we analyze PDH-deficient parasites using rapid stable-isotope labeling and show that PDH does not appreciably contribute to acetyl-CoA synthesis, tricarboxylic acid metabolism, or fatty acid synthesis in blood stage parasites. Rather, we find that acetyl-CoA demands are supplied through a "PDH-like" enzyme and provide evidence that the branched-chain keto acid dehydrogenase (BCKDH) complex is performing this function. We also show that acetyl-CoA synthetase can be a significant contributor to acetyl-CoA biosynthesis. Interestingly, the PDH-like pathway contributes glucose-derived acetyl-CoA to the TCA cycle in a stage-independent process, whereas anapleurotic carbon enters the TCA cycle via a stage-dependent phosphoenolpyruvate carboxylase/phosphoenolpyruvate carboxykinase process that decreases as the parasite matures. Although PDH-deficient parasites have no blood-stage growth defect, they are unable to progress beyond the oocyst phase of the parasite mosquito stage.
Collapse
Affiliation(s)
- Simon A Cobbold
- From the Department of Biochemistry and Molecular Biology and Center for Infectious Disease Dynamics, Pennsylvania State University, State College, Pennsylvania 16802
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
MacRae JI, Sheiner L, Nahid A, Tonkin C, Striepen B, McConville MJ. Mitochondrial metabolism of glucose and glutamine is required for intracellular growth of Toxoplasma gondii. Cell Host Microbe 2013; 12:682-92. [PMID: 23159057 DOI: 10.1016/j.chom.2012.09.013] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 07/07/2012] [Accepted: 09/20/2012] [Indexed: 12/23/2022]
Abstract
Toxoplasma gondii proliferates within host cell vacuoles where the parasite relies on host carbon and nutrients for replication. To assess how T. gondii utilizes these resources, we mapped the carbon metabolism pathways in intracellular and egressed parasite stages. We determined that intracellular T. gondii stages actively catabolize host glucose via a canonical, oxidative tricarboxylic acid (TCA) cycle, a mitochondrial pathway in which organic molecules are broken down to generate energy. These stages also catabolize glutamine via the TCA cycle and an unanticipated γ-aminobutyric acid (GABA) shunt, which generates GABA and additional molecules that enter the TCA cycle. Chemically inhibiting the TCA cycle completely prevents intracellular parasite replication. Parasites lacking the GABA shunt exhibit attenuated growth and are unable to sustain motility under nutrient-limited conditions, suggesting that GABA functions as a short-term energy reserve. Thus, T. gondii tachyzoites have metabolic flexibility that likely allows the parasite to infect diverse cell types.
Collapse
Affiliation(s)
- James I MacRae
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, VIC 3010, Australia
| | | | | | | | | | | |
Collapse
|
26
|
Steeb B, Claudi B, Burton NA, Tienz P, Schmidt A, Farhan H, Mazé A, Bumann D. Parallel exploitation of diverse host nutrients enhances Salmonella virulence. PLoS Pathog 2013; 9:e1003301. [PMID: 23633950 PMCID: PMC3636032 DOI: 10.1371/journal.ppat.1003301] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 02/26/2013] [Indexed: 12/20/2022] Open
Abstract
Pathogen access to host nutrients in infected tissues is fundamental for pathogen growth and virulence, disease progression, and infection control. However, our understanding of this crucial process is still rather limited because of experimental and conceptual challenges. Here, we used proteomics, microbial genetics, competitive infections, and computational approaches to obtain a comprehensive overview of Salmonella nutrition and growth in a mouse typhoid fever model. The data revealed that Salmonella accessed an unexpectedly diverse set of at least 31 different host nutrients in infected tissues but the individual nutrients were available in only scarce amounts. Salmonella adapted to this situation by expressing versatile catabolic pathways to simultaneously exploit multiple host nutrients. A genome-scale computational model of Salmonella in vivo metabolism based on these data was fully consistent with independent large-scale experimental data on Salmonella enzyme quantities, and correctly predicted 92% of 738 reported experimental mutant virulence phenotypes, suggesting that our analysis provided a comprehensive overview of host nutrient supply, Salmonella metabolism, and Salmonella growth during infection. Comparison of metabolic networks of other pathogens suggested that complex host/pathogen nutritional interfaces are a common feature underlying many infectious diseases.
Collapse
Affiliation(s)
- Benjamin Steeb
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Beatrice Claudi
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Neil A. Burton
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Petra Tienz
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Hesso Farhan
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Alain Mazé
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Dirk Bumann
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
27
|
Witschi M, Xia D, Sanderson S, Baumgartner M, Wastling J, Dobbelaere D. Proteomic analysis of the Theileria annulata schizont. Int J Parasitol 2013; 43:173-80. [PMID: 23178997 PMCID: PMC3572392 DOI: 10.1016/j.ijpara.2012.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 10/11/2012] [Accepted: 10/12/2012] [Indexed: 12/25/2022]
Abstract
The apicomplexan parasite, Theileria annulata, is the causative agent of tropical theileriosis, a devastating lymphoproliferative disease of cattle. The schizont stage transforms bovine leukocytes and provides an intriguing model to study host/pathogen interactions. The genome of T. annulata has been sequenced and transcriptomic data are rapidly accumulating. In contrast, little is known about the proteome of the schizont, the pathogenic, transforming life cycle stage of the parasite. Using one-dimensional (1-D) gel LC-MS/MS, a proteomic analysis of purified T. annulata schizonts was carried out. In whole parasite lysates, 645 proteins were identified. Proteins with transmembrane domains (TMDs) were under-represented and no proteins with more than four TMDs could be detected. To tackle this problem, Triton X-114 treatment was applied, which facilitates the extraction of membrane proteins, followed by 1-D gel LC-MS/MS. This resulted in the identification of an additional 153 proteins. Half of those had one or more TMD and 30 proteins with more than four TMDs were identified. This demonstrates that Triton X-114 treatment can provide a valuable additional tool for the identification of new membrane proteins in proteomic studies. With two exceptions, all proteins involved in glycolysis and the citric acid cycle were identified. For at least 29% of identified proteins, the corresponding transcripts were not present in the existing expressed sequence tag databases. The proteomics data were integrated into the publicly accessible database resource at EuPathDB (www.eupathdb.org) so that mass spectrometry-based protein expression evidence for T. annulata can be queried alongside transcriptional and other genomics data available for these parasites.
Collapse
Affiliation(s)
- M. Witschi
- Division of Molecular Pathobiology, DCR-VPH, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| | - D. Xia
- Department of Infection Biology, Institute of Infection and Global Health & School of Veterinary Science, University of Liverpool, Liverpool L69 7ZJ, UK
| | - S. Sanderson
- Department of Infection Biology, Institute of Infection and Global Health & School of Veterinary Science, University of Liverpool, Liverpool L69 7ZJ, UK
| | - M. Baumgartner
- Division of Molecular Pathobiology, DCR-VPH, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| | - J.M. Wastling
- Department of Infection Biology, Institute of Infection and Global Health & School of Veterinary Science, University of Liverpool, Liverpool L69 7ZJ, UK
| | - D.A.E. Dobbelaere
- Division of Molecular Pathobiology, DCR-VPH, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|
28
|
Limenitakis J, Oppenheim RD, Creek DJ, Foth BJ, Barrett MP, Soldati-Favre D. The 2-methylcitrate cycle is implicated in the detoxification of propionate in Toxoplasma gondii. Mol Microbiol 2013; 87:894-908. [PMID: 23279335 PMCID: PMC3593168 DOI: 10.1111/mmi.12139] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2012] [Indexed: 12/22/2022]
Abstract
Toxoplasma gondii belongs to the coccidian subgroup of the Apicomplexa phylum. The Coccidia are obligate intracellular pathogens that establish infection in their mammalian host via the enteric route. These parasites lack a mitochondrial pyruvate dehydrogenase complex but have preserved the degradation of branched-chain amino acids (BCAA) as a possible pathway to generate acetyl-CoA. Importantly, degradation of leucine, isoleucine and valine could lead to concomitant accumulation of propionyl-CoA, a toxic metabolite that inhibits cell growth. Like fungi and bacteria, the Coccidia possess the complete set of enzymes necessary to metabolize and detoxify propionate by oxidation to pyruvate via the 2-methylcitrate cycle (2-MCC). Phylogenetic analysis provides evidence that the 2-MCC was acquired via horizontal gene transfer. In T. gondii tachyzoites, this pathway is split between the cytosol and the mitochondrion. Although the rate-limiting enzyme 2-methylisocitrate lyase is dispensable for parasite survival, its substrates accumulate in parasites deficient in the enzyme and its absence confers increased sensitivity to propionic acid. BCAA is also dispensable in tachyzoites, leaving unresolved the source of mitochondrial acetyl-CoA.
Collapse
Affiliation(s)
- Julien Limenitakis
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CMU 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
29
|
Danne JC, Gornik SG, Macrae JI, McConville MJ, Waller RF. Alveolate mitochondrial metabolic evolution: dinoflagellates force reassessment of the role of parasitism as a driver of change in apicomplexans. Mol Biol Evol 2012; 30:123-39. [PMID: 22923466 DOI: 10.1093/molbev/mss205] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial metabolism is central to the supply of ATP and numerous essential metabolites in most eukaryotic cells. Across eukaryotic diversity, however, there is evidence of much adaptation of the function of this organelle according to specific metabolic requirements and/or demands imposed by different environmental niches. This includes substantial loss or retailoring of mitochondrial function in many parasitic groups that occupy potentially nutrient-rich environments in their metazoan hosts. Infrakingdom Alveolata comprises a well-supported alliance of three disparate eukaryotic phyla-dinoflagellates, apicomplexans, and ciliates. These major taxa represent diverse lifestyles of free-living phototrophs, parasites, and predators and offer fertile territory for exploring character evolution in mitochondria. The mitochondria of apicomplexan parasites provide much evidence of loss or change of function from analysis of mitochondrial protein genes. Much less, however, is known of mitochondrial function in their closest relatives, the dinoflagellate algae. In this study, we have developed new models of mitochondrial metabolism in dinoflagellates based on gene predictions and stable isotope labeling experiments. These data show that many changes in mitochondrial gene content previously only known from apicomplexans are found in dinoflagellates also. For example, loss of the pyruvate dehydrogenase complex and changes in tricarboxylic acid (TCA) cycle enzyme complement are shared by both groups and, therefore, represent ancestral character states. Significantly, we show that these changes do not result in loss of typical TCA cycle activity fueled by pyruvate. Thus, dinoflagellate data show that many changes in alveolate mitochondrial metabolism are independent of the major lifestyle changes seen in these lineages and provide a revised view of mitochondria character evolution during evolution of parasitism in apicomplexans.
Collapse
Affiliation(s)
- Jillian C Danne
- School of Botany, University of Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
30
|
Host metabolism regulates growth and differentiation of Toxoplasma gondii. Int J Parasitol 2012; 42:947-59. [PMID: 22940576 DOI: 10.1016/j.ijpara.2012.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 07/28/2012] [Accepted: 07/30/2012] [Indexed: 01/21/2023]
Abstract
A critical step in the pathogenesis of Toxoplasma gondii is conversion from the fast-replicating tachyzoite form experienced during acute infection to the slow-replicating bradyzoite form that establishes long-lived tissue cysts during chronic infection. Bradyzoite cyst development exhibits a clear tissue tropism in vivo, yet conditions of the host cell environment that influence this tropism remain unclear. Using an in vitro assay of bradyzoite conversion, we have found that cell types differ dramatically in the ability to facilitate differentiation of tachyzoites into bradyzoites. Characterization of cell types that were either resistant or permissive for conversion revealed that resistant cell lines release low molecular weight metabolites that could support tachyzoite growth under metabolic stress conditions and thereby inhibit bradyzoite formation in permissive cells. Biochemical analysis revealed that the glycolytic metabolite lactate is an inhibitory component of supernatants from resistant cells. Furthermore, upregulation of glycolysis in permissive cells through the addition of glucose or by overexpression of the host kinase, Akt, was sufficient to convert cells from a permissive to a resistant phenotype. These results suggest that the metabolic state of the host cell may play a role in determining the predilection of the parasite to switch from the tachyzoite to bradyzoite form.
Collapse
|
31
|
Abstract
Nutrient sensing and the capacity to respond to starvation is tightly regulated as a means of cell survival. Among the features of the starvation response are induction of both translational repression and autophagy. Despite the fact that intracellular parasite like Toxoplasma gondii within a host cell predicted to be nutrient rich, they encode genes involved in both translational repression and autophagy. We therefore examined the consequence of starvation, a classic trigger of autophagy, on intracellular parasites. As expected, starvation results in the activation of the translational repression system as evidenced by elevation of phosphorylated TgIF2α (TgIF2α-P). Surprisingly, we also observe a rapid and selective fragmentation of the single parasite mitochondrion that leads irreversibly to parasite death. This profound effect was dependent primarily on the limitation of amino acids and involved signalling by the parasite TOR homologue. Notably, the effective blockade of mitochondrial fragmentation by the autophagy inhibitor 3-methyl adenine (3-MA) suggests an autophagic mechanism. In the absence of a documented apoptotic cascade in T. gondii, the data suggest that autophagy is the primary mechanism of programmed cell death in T. gondii and potentially other related parasites.
Collapse
Affiliation(s)
- Debasish Ghosh
- Department of Microbiology, Immunology and Molecular Genetics; University of Kentucky College of Medicine, Lexington KY 40536, USA
| | - Julia L. Walton
- Department of Microbiology, Immunology and Molecular Genetics; University of Kentucky College of Medicine, Lexington KY 40536, USA
| | - Paul D. Roepe
- Departments of Chemistry, Biochemistry and Cellular and Molecular Biology, Georgetown University, Washington DC. 20057, USA
| | - Anthony P. Sinai
- Department of Microbiology, Immunology and Molecular Genetics; University of Kentucky College of Medicine, Lexington KY 40536, USA
| |
Collapse
|
32
|
Lin SS, Blume M, von Ahsen N, Gross U, Bohne W. Extracellular Toxoplasma gondii tachyzoites do not require carbon source uptake for ATP maintenance, gliding motility and invasion in the first hour of their extracellular life. Int J Parasitol 2011; 41:835-41. [PMID: 21515276 DOI: 10.1016/j.ijpara.2011.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/08/2011] [Accepted: 03/02/2011] [Indexed: 11/25/2022]
Abstract
Apicomplexan parasites undergo metabolic shifts in adaptation to environmental changes. Here, we investigate the metabolic requirements which are responsible for ATP homeostasis in the extracellular stage of Toxoplasma gondii. Surprisingly, we found that freshly released tachyzoites are able to maintain a constant ATP level during the first hour of extracellular incubation without the acquisition of external carbon sources. We further demonstrated that the extent of gliding motility and that of host cell invasion is independent from the availability of external carbon sources during this one hour extracellular period. The ATP level and the invasion efficiency of extracellular parasites were severely decreased by treatment with the glycolysis inhibitor, 2-deoxy-d-glucose, but not by the F(0)F(1)-ATPase inhibitor, oligomycin. This suggests that although the uptake of glucose itself is not required during the 1h incubation period, extracellular parasites depend on the activity of the glycolytic pathway for ATP homeostasis. Furthermore, active glycolysis was evident by the secretion of lactate into the culture medium, even in the absence of external carbon sources. Together, our studies suggest that tachyzoites are independent from external carbon sources within the first hour of their extracellular life, which is the most relevant time span for finding a new host cell, but rely on the glycolytic metabolisation of internal carbon sources for ATP maintenance, gliding motility and host cell invasion.
Collapse
Affiliation(s)
- San San Lin
- Institute of Medical Microbiology, University Medical Center Göttingen, Germany
| | | | | | | | | |
Collapse
|