1
|
Wu J, Ding C, Zhang C, Xu Z, Deng Z, Wei H, He T, Long L, Tang L, Ma J, Liang X. Methionine metabolite spermidine inhibits tumor pyroptosis by enhancing MYO6-mediated endocytosis. Nat Commun 2025; 16:2184. [PMID: 40038267 PMCID: PMC11880502 DOI: 10.1038/s41467-025-57511-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 02/19/2025] [Indexed: 03/06/2025] Open
Abstract
The connection between amino acid metabolism and pyroptosis remains elusive. Herein, we screen the effect of individual amino acid on pyroptosis and identify that methionine inhibits GSDME-mediated pyroptosis. Mechanistic analyses unveil that MYO6, a unique actin-based motor protein, bridges the GSDME N-terminus (GSDME-NT) and the endocytic adaptor AP2, mediating endolysosomal degradation of GSDME-NT. This degradation is increased by the methionine-derived metabolite spermidine noncanonically by direct binding to MYO6, which enhances MYO6 selectivity for GSDME-NT. Moreover, combination targeted therapies using dietary or pharmacological inhibition in methionine-to-spermidine metabolism in the tumor promotes pyroptosis and anti-tumor immunity, leading to a stronger tumor-suppressive effect in in vivo models. Clinically, higher levels of tumor spermidine and expression of methionine-to-spermidine metabolism-related gene signature predict poorer survival. Conclusively, our research identifies an unrecognized mechanism of pyroptotic resistance mediated by methionine-spermidine metabolic axis, providing a fresh angle for cancer treatment.
Collapse
Affiliation(s)
- Jiawei Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Cong Ding
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Ultrasound and Electrocardiogram, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Chuqing Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Zhimin Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Zhenji Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Hanmiao Wei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Tingxiang He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Liufen Long
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Linglong Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| | - Jun Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| | - Xiaoyu Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
2
|
Larose A, Miller CCJ, Mórotz GM. The lemur tail kinase family in neuronal function and disfunction in neurodegenerative diseases. Cell Mol Life Sci 2024; 81:447. [PMID: 39520508 PMCID: PMC11550312 DOI: 10.1007/s00018-024-05480-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/12/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024]
Abstract
The complex neuronal architecture and the long distance of synapses from the cell body require precisely orchestrated axonal and dendritic transport processes to support key neuronal functions including synaptic signalling, learning and memory formation. Protein phosphorylation is a major regulator of both intracellular transport and synaptic functions. Some kinases and phosphatases such as cyclin dependent kinase-5 (cdk5)/p35, glycogen synthase kinase-3β (GSK3β) and protein phosphatase-1 (PP1) are strongly involved in these processes. A primary pathological hallmark of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis/frontotemporal dementia, is synaptic degeneration together with disrupted intracellular transport. One attractive possibility is that alterations to key kinases and phosphatases may underlie both synaptic and axonal transport damages. The brain enriched lemur tail kinases (LMTKs, formerly known as lemur tyrosine kinases) are involved in intracellular transport and synaptic functions, and are also centrally placed in cdk5/p35, GSK3β and PP1 signalling pathways. Loss of LMTKs is documented in major neurodegenerative diseases and thus can contribute to pathological defects in these disorders. However, whilst function of their signalling partners became clearer in modulating both synaptic signalling and axonal transport progress has only recently been made around LMTKs. In this review, we describe this progress with a special focus on intracellular transport, synaptic functions and neurodegenerative diseases.
Collapse
Affiliation(s)
- Angelique Larose
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Christopher C J Miller
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane Camberwell, London, SE5 9RX, UK.
| | - Gábor M Mórotz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary.
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
3
|
Raghuvanshi R, Panda KC, Ray CS, Ramchander PV. Targeted Next-Generation Sequencing Analysis Reveals a Novel Genetic Variant in MYO6 Gene in an Indian Family with Postlingual Nonsyndromic Hearing Loss. Genet Test Mol Biomarkers 2024. [PMID: 39019031 DOI: 10.1089/gtmb.2023.0747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024] Open
Abstract
Background: Hereditary nonsyndromic hearing loss (NSHL) is an extremely heterogeneous disorder, both genetically and clinically. Myosin VI (MYO6) pathogenic variations have been reported to cause both prelingual and postlingual forms of NSHL. Postlingual autosomal dominant cases are often overlooked for genetic etiology in clinical setups. In this study, we used next-generation sequencing (NGS)-based targeted deafness gene panel assay to identify the cause of postlingual hearing loss in an Indian family. Methods: The proband and his father from a multigenerational Indian family affected by postlingual hearing loss were examined via targeted capture of 129 deafness genes, after excluding gap junction protein beta 2 (GJB2) pathogenic variants by Sanger sequencing. NGS data analysis and co-segregation of the candidate variants in the family were carried out. The variant effect was predicted by in silico tools and interpreted following American College of Medical Genetics and Genomics-Association for Molecular Pathology guidelines. Results: A novel heterozygous transversion c.3225T>G, p.(Tyr1075*) in MYO6 gene was identified as the disease-causing variant in this family. This stop-gained variant is predicted to form a truncated myosin VI protein, which is devoid of crucial cargo-binding domain. PCR-RFLP screening in 200 NSHL cases and 200 normal-hearing controls showed the absence of this variant indicating its de novo nature in the population. Furthermore, we reviewed MYO6 variants reported from various populations to date. Conclusions: To the best of our knowledge, this is the first family with MYO6-associated hearing loss from an Indian population. The study also highlights the importance of deafness gene panels in molecular diagnosis of GJB2-negative pedigrees, contributing to genetic counseling in the affected families.
Collapse
Affiliation(s)
- Ruchika Raghuvanshi
- Institute of Life Sciences, Nalco Square, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Khirod Chandra Panda
- Ear, Nose, and Throat (ENT) Unit, Capital Hospital, Unit VI, Bhubaneswar, India
- Department of Ear, Nose, and Throat (ENT), Shrirama Chandra Bhanja (SCB) Medical College and Hospital, Cuttack, India
| | - Chinmay Sundar Ray
- Department of Ear, Nose, and Throat (ENT), Shrirama Chandra Bhanja (SCB) Medical College and Hospital, Cuttack, India
| | | |
Collapse
|
4
|
Behbehani R, Johnson C, Holmes AJ, Gratian MJ, Mulvihill DP, Buss F. The two C. elegans class VI myosins, SPE-15/HUM-3 and HUM-8, share similar motor properties, but have distinct developmental and tissue expression patterns. Front Physiol 2024; 15:1368054. [PMID: 38660538 PMCID: PMC11040104 DOI: 10.3389/fphys.2024.1368054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Myosins of class VI move toward the minus-end of actin filaments and play vital roles in cellular processes such as endocytosis, autophagy, protein secretion, and the regulation of actin filament dynamics. In contrast to the majority of metazoan organisms examined to date which contain a single MYO6 gene, C. elegans, possesses two MYO6 homologues, SPE-15/HUM-3 and HUM-8. Through a combination of in vitro biochemical/biophysical analysis and cellular assays, we confirmed that both SPE-15/HUM-3 and HUM-8 exhibit reverse directionality, velocities, and ATPase activity similar to human MYO6. Our characterization also revealed that unlike SPE-15/HUM-3, HUM-8 is expressed as two distinct splice isoforms, one with an additional unique 14 amino acid insert in the cargo-binding domain. While lipid and adaptor binding sites are conserved in SPE-15/HUM-3 and HUM-8, this conservation does not enable recruitment to endosomes in mammalian cells. Finally, we performed super-resolution confocal imaging on transgenic worms expressing either mNeonGreen SPE-15/HUM-3 or wrmScarlet HUM-8. Our results show a clear distinction in tissue distribution between SPE-15/HUM-3 and HUM-8. While SPE-15/HUM-3 exhibited specific expression in the gonads and neuronal tissue in the head, HUM-8 was exclusively localized in the intestinal epithelium. Overall, these findings align with the established tissue distributions and localizations of human MYO6.
Collapse
Affiliation(s)
- Ranya Behbehani
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Chloe Johnson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Alexander J. Holmes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Matthew J. Gratian
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | | | - Folma Buss
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
dos Santos Á, Fili N, Hari-Gupta Y, Gough RE, Wang L, Martin-Fernandez M, Aaron J, Wait E, Chew TL, Toseland CP. Binding partners regulate unfolding of myosin VI to activate the molecular motor. Biochem J 2022; 479:1409-1428. [PMID: 35722941 PMCID: PMC9342898 DOI: 10.1042/bcj20220025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022]
Abstract
Myosin VI is the only minus-end actin motor and it is coupled to various cellular processes ranging from endocytosis to transcription. This multi-potent nature is achieved through alternative isoform splicing and interactions with a network of binding partners. There is a complex interplay between isoforms and binding partners to regulate myosin VI. Here, we have compared the regulation of two myosin VI splice isoforms by two different binding partners. By combining biochemical and single-molecule approaches, we propose that myosin VI regulation follows a generic mechanism, independently of the spliced isoform and the binding partner involved. We describe how myosin VI adopts an autoinhibited backfolded state which is released by binding partners. This unfolding activates the motor, enhances actin binding and can subsequently trigger dimerization. We have further expanded our study by using single-molecule imaging to investigate the impact of binding partners upon myosin VI molecular organization and dynamics.
Collapse
Affiliation(s)
- Ália dos Santos
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, U.K
| | - Natalia Fili
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, U.K
| | - Yukti Hari-Gupta
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, U.K
| | - Rosemarie E. Gough
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, U.K
| | - Lin Wang
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford OX11 0QX, U.K
| | - Marisa Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford OX11 0QX, U.K
| | - Jesse Aaron
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, U.S.A
| | - Eric Wait
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, U.S.A
| | - Teng-Leong Chew
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, U.S.A
| | | |
Collapse
|
6
|
Cirilo JA, Gunther LK, Yengo CM. Functional Role of Class III Myosins in Hair Cells. Front Cell Dev Biol 2021; 9:643856. [PMID: 33718386 PMCID: PMC7947357 DOI: 10.3389/fcell.2021.643856] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/01/2021] [Indexed: 11/14/2022] Open
Abstract
Cytoskeletal motors produce force and motion using the energy from ATP hydrolysis and function in a variety of mechanical roles in cells including muscle contraction, cargo transport, and cell division. Actin-based myosin motors have been shown to play crucial roles in the development and function of the stereocilia of auditory and vestibular inner ear hair cells. Hair cells can contain hundreds of stereocilia, which rely on myosin motors to elongate, organize, and stabilize their structure. Mutations in many stereocilia-associated myosins have been shown to cause hearing loss in both humans and animal models suggesting that each myosin isoform has a specific function in these unique parallel actin bundle-based protrusions. Here we review what is known about the classes of myosins that function in the stereocilia, with a special focus on class III myosins that harbor point mutations associated with delayed onset hearing loss. Much has been learned about the role of the two class III myosin isoforms, MYO3A and MYO3B, in maintaining the precise stereocilia lengths required for normal hearing. We propose a model for how class III myosins play a key role in regulating stereocilia lengths and demonstrate how their motor and regulatory properties are particularly well suited for this function. We conclude that ongoing studies on class III myosins and other stereocilia-associated myosins are extremely important and may lead to novel therapeutic strategies for the treatment of hearing loss due to stereocilia degeneration.
Collapse
Affiliation(s)
- Joseph A Cirilo
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Laura K Gunther
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
7
|
Myomics: myosin VI structural and functional plasticity. Curr Opin Struct Biol 2020; 67:33-40. [PMID: 33053464 DOI: 10.1016/j.sbi.2020.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 11/21/2022]
Abstract
Myosin VI is a minus end-directed actin motor protein that fulfils several roles in the cell. The interaction of myosin VI with its cellular cargoes is dictated by the presence of binding domains at the C-terminus of the protein. In this review, we describe how alternative splicing and structural and conformational changes modulate the plasticity of the myosin VI interactome. Recent findings highlight how the various partners can cooperate or compete for binding to allow a precise temporal and spatial regulation of myosin VI recruitment to different cellular compartments, where its motor or anchor function is needed.
Collapse
|
8
|
The Functional Characterization of TcMyoF Implicates a Family of Cytostome-Cytopharynx Targeted Myosins as Integral to the Endocytic Machinery of Trypanosoma cruzi. mSphere 2020; 5:5/3/e00313-20. [PMID: 32554712 PMCID: PMC7300353 DOI: 10.1128/msphere.00313-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The parasite Trypanosoma cruzi is the etiological agent of Chagas disease and chronically infects upwards of 7 million people in the Americas. Current diagnostics and treatments remain grossly inadequate due, in part, to our general lack of understanding of this parasite’s basic biology. One aspect that has resisted detailed scrutiny is the mechanism employed by this parasite to extract nutrient resources from the radically different environments that it encounters as it transitions between its invertebrate and mammalian hosts. These parasites engulf food via a tubular invagination of its membrane, a strategy used by many protozoan species, but how this structure is formed or functions mechanistically remains a complete mystery. The significance of our research is in the identification of the mechanistic underpinnings of this feeding organelle that may bring to light new potential therapeutic targets to impede parasite feeding and thus halt the spread of this deadly human pathogen. Of the pathogenic trypanosomatids, Trypanosoma cruzi alone retains an ancient feeding apparatus known as the cytostome-cytopharynx complex (SPC) that it uses as its primary mode of endocytosis in a manner akin to its free-living kinetoplastid relatives who capture and eat bacterial prey via this endocytic organelle. In a recent report, we began the process of dissecting how this organelle functions by identifying the first SPC-specific proteins in T. cruzi. Here, we continued these studies and report on the identification of the first enzymatic component of the SPC, a previously identified orphan myosin motor (MyoF) specifically targeted to the SPC. We overexpressed MyoF as a dominant-negative mutant, resulting in parasites that, although viable, were completely deficient in measurable endocytosis in vitro. To our surprise, however, a full deletion of MyoF demonstrated only a decrease in the overall rate of endocytosis, potentially indicative of redundant myosin motors at work. Thereupon, we identified three additional orphan myosin motors, two of which (MyoB and MyoE) were targeted to the preoral ridge region adjacent to the cytostome entrance and another (MyoC) which was targeted to the cytopharynx tubular structure similar to that of MyoF. Additionally, we show that the C-terminal tails of each myosin are sufficient for targeting a fluorescent reporter to SPC subregions. This work highlights a potential mechanism used by the SPC to drive the inward flow of material for digestion and unveils a new level of overlapping complexity in this system with four distinct myosin isoforms targeted to this feeding structure. IMPORTANCE The parasite Trypanosoma cruzi is the etiological agent of Chagas disease and chronically infects upwards of 7 million people in the Americas. Current diagnostics and treatments remain grossly inadequate due, in part, to our general lack of understanding of this parasite’s basic biology. One aspect that has resisted detailed scrutiny is the mechanism employed by this parasite to extract nutrient resources from the radically different environments that it encounters as it transitions between its invertebrate and mammalian hosts. These parasites engulf food via a tubular invagination of its membrane, a strategy used by many protozoan species, but how this structure is formed or functions mechanistically remains a complete mystery. The significance of our research is in the identification of the mechanistic underpinnings of this feeding organelle that may bring to light new potential therapeutic targets to impede parasite feeding and thus halt the spread of this deadly human pathogen.
Collapse
|
9
|
Cook AW, Gough RE, Toseland CP. Nuclear myosins - roles for molecular transporters and anchors. J Cell Sci 2020; 133:133/11/jcs242420. [PMID: 32499319 DOI: 10.1242/jcs.242420] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The myosin family of molecular motors are well-characterised cytoskeletal proteins. However, myosins are also present in the nucleus, where they have been shown to have roles in transcription, DNA repair and viral infections. Despite their involvement in these fundamental cellular processes, our understanding of these functions and their regulation remains limited. Recently, research on nuclear myosins has been gathering pace, and this Review will evaluate the current state of the field. Here, we will focus on the variation in structure of nuclear myosins, their nuclear import and their roles within transcription, DNA damage, chromatin organisation and viral infections. We will also consider both the biochemical and biophysical properties and restraints that are placed on these multifunctional motors, and how they link to their cytoplasmic counterparts. By highlighting these properties and processes, we show just how integral nuclear myosins are for cellular survival.
Collapse
Affiliation(s)
- Alexander W Cook
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | - Rosemarie E Gough
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | | |
Collapse
|
10
|
Oka SI, Day TF, Nishio SY, Moteki H, Miyagawa M, Morita S, Izumi S, Ikezono T, Abe S, Nakayama J, Hyogo M, Okamoto N, Uehara N, Oshikawa C, Kitajiri SI, Usami SI. Clinical Characteristics and In Vitro Analysis of MYO6 Variants Causing Late-Onset Progressive Hearing Loss. Genes (Basel) 2020; 11:genes11030273. [PMID: 32143290 PMCID: PMC7140843 DOI: 10.3390/genes11030273] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 12/21/2022] Open
Abstract
MYO6 is known as a genetic cause of autosomal dominant and autosomal recessive inherited hearing loss. In this study, to clarify the frequency and clinical characteristics of hearing loss caused by MYO6 gene mutations, a large-scale genetic analysis of Japanese patients with hearing loss was performed. By means of massively parallel DNA sequencing (MPS) using next-generation sequencing for 8074 Japanese families, we found 27 MYO6 variants in 33 families, 22 of which are novel. In total, 2.40% of autosomal dominant sensorineural hearing loss (ADSNHL) in families in this study (32 out of 1336) was found to be caused by MYO6 mutations. The present study clarified that most cases showed juvenile-onset progressive hearing loss and their hearing deteriorated markedly after 40 years of age. The estimated hearing deterioration was found to be 0.57 dB per year; when restricted to change after 40 years of age, the deterioration speed was accelerated to 1.07 dB per year. To obtain supportive evidence for pathogenicity, variants identified in the patients were introduced to MYO6 cDNA by site-directed mutagenesis and overexpressed in epithelial cells. They were then assessed for their effects on espin1-induced microvilli formation. Cells with wildtype myosin 6 and espin1 co-expressed created long microvilli, while co-expression with mutant constructs resulted in severely shortened microvilli. In conclusion, the present data clearly showed that MYO6 is one of the genes to keep in mind with regard to ADSNHL, and the molecular characteristics of the identified gene variants suggest that a possible pathology seems to result from malformed stereocilia of the cochlear hair cells.
Collapse
Affiliation(s)
- Shin-ichiro Oka
- Department of Otorhinolaryngology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (S.-i.O.); (T.F.D.); (H.M.); (M.M.)
| | - Timothy F. Day
- Department of Otorhinolaryngology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (S.-i.O.); (T.F.D.); (H.M.); (M.M.)
| | - Shin-ya Nishio
- Department of Otorhinolaryngology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (S.-i.O.); (T.F.D.); (H.M.); (M.M.)
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Hideaki Moteki
- Department of Otorhinolaryngology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (S.-i.O.); (T.F.D.); (H.M.); (M.M.)
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Maiko Miyagawa
- Department of Otorhinolaryngology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (S.-i.O.); (T.F.D.); (H.M.); (M.M.)
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Shinya Morita
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North-15, West-7, Sapporo 060-8638, Japan;
| | - Shuji Izumi
- Department of Otolaryngology, Head and Neck Surgery, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi 1, Niigata city, Niigata 951-8510, Japan;
| | - Tetsuo Ikezono
- Department of Otorhinolaryngology, Saitama Medical University Faculty of Medicine, Morohongo 38, Moroyamamachi, Irumagun, Saitama-ken 350-0495, Japan;
| | - Satoko Abe
- Department of Otorhinolaryngology, Toranomon Hosipital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan;
| | - Jun Nakayama
- Department of Otorhinolaryngology, Shiga University School of Medical Science, Seta Tsukinowacho, Otsu 520-2192, Japan;
| | - Misako Hyogo
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, 465 Kagii-cho, Kyoto 602-8566, Japan;
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women’s and Children’s Hospital, 840 Murodo-cho, Izumi, Osaka 594-1101, Japan;
| | - Natsumi Uehara
- Department of Otolaryngology-Head and Neck Surgery, Kobe University School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan;
| | - Chie Oshikawa
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Shin-ichiro Kitajiri
- Department of Otorhinolaryngology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (S.-i.O.); (T.F.D.); (H.M.); (M.M.)
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Shin-ichi Usami
- Department of Otorhinolaryngology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (S.-i.O.); (T.F.D.); (H.M.); (M.M.)
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
- Correspondence: ; Tel.: +81-263-37-2666
| |
Collapse
|
11
|
O'Loughlin T, Kendrick-Jones J, Buss F. Approaches to Identify and Characterise MYO6-Cargo Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1239:355-380. [PMID: 32451866 DOI: 10.1007/978-3-030-38062-5_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Given the prevalence and importance of the actin cytoskeleton and the host of associated myosin motors, it comes as no surprise to find that they are linked to a plethora of cellular functions and pathologies. Although our understanding of the biophysical properties of myosin motors has been aided by the high levels of conservation in their motor domains and the extensive work on myosin in skeletal muscle contraction, our understanding of how the nonmuscle myosins participate in such a wide variety of cellular processes is less clear. It is now well established that the highly variable myosin tails are responsible for targeting these myosins to distinct cellular sites for specific functions, and although a number of adaptor proteins have been identified, our current understanding of the cellular processes involved is rather limited. Furthermore, as more adaptor proteins, cargoes and complexes are identified, the importance of elucidating the regulatory mechanisms involved is essential. Ca2+, and now phosphorylation and ubiquitination, are emerging as important regulators of cargo binding, and it is likely that other post-translational modifications are also involved. In the case of myosin VI (MYO6), a number of immediate binding partners have been identified using traditional approaches such as yeast two-hybrid screens and affinity-based pull-downs. However, these methods have only been successful in identifying the cargo adaptors, but not the cargoes themselves, which may often comprise multi-protein complexes. Furthermore, motor-adaptor-cargo interactions are dynamic by nature and often weak, transient and highly regulated and therefore difficult to capture using traditional affinity-based methods. In this chapter we will discuss the various approaches including functional proteomics that have been used to uncover and characterise novel MYO6-associated proteins and complexes and how this work contributes to a fuller understanding of the targeting and function(s) of this unique myosin motor.
Collapse
Affiliation(s)
- Thomas O'Loughlin
- Cambridge Institute for Medical Research, University of Cambridge, The Keith Peters Building, Cambridge, UK
| | | | - Folma Buss
- Cambridge Institute for Medical Research, University of Cambridge, The Keith Peters Building, Cambridge, UK.
| |
Collapse
|
12
|
Hu S, Guo Y, Wang Y, Li Y, Fu T, Zhou Z, Wang Y, Liu J, Pan L. Structure of Myosin VI/Tom1 complex reveals a cargo recognition mode of Myosin VI for tethering. Nat Commun 2019; 10:3459. [PMID: 31371777 PMCID: PMC6673701 DOI: 10.1038/s41467-019-11481-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/16/2019] [Indexed: 12/31/2022] Open
Abstract
Myosin VI plays crucial roles in diverse cellular processes. In autophagy, Myosin VI can facilitate the maturation of autophagosomes through interactions with Tom1 and the autophagy receptors, Optineurin, NDP52 and TAX1BP1. Here, we report the high-resolution crystal structure of the C-terminal cargo-binding domain (CBD) of Myosin VI in complex with Tom1, which elucidates the mechanistic basis underpinning the specific interaction between Myosin VI and Tom1, and uncovers that the C-terminal CBD of Myosin VI adopts a unique cargo recognition mode to interact with Tom1 for tethering. Furthermore, we show that Myosin VI can serve as a bridging adaptor to simultaneously interact with Tom1 and autophagy receptors through two distinct interfaces. In all, our findings provide mechanistic insights into the interactions of Myosin VI with Tom1 and relevant autophagy receptors, and are valuable for further understanding the functions of these proteins in autophagy and the cargo recognition modes of Myosin VI. Myosin VI can facilitate the maturation of autophagosomes in autophagy through interactions with Tom1 and autophagy receptors. Here authors report the structure of the cargobinding domain of Myosin VI in complex with Tom1, which provides insights into Myosin IV’s cargo recognition modes.
Collapse
Affiliation(s)
- Shichen Hu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Yujiao Guo
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Yingli Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Ying Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Tao Fu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Zixuan Zhou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Yaru Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Jianping Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Lifeng Pan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200032, Shanghai, China.
| |
Collapse
|
13
|
de Jonge JJ, Batters C, O'Loughlin T, Arden SD, Buss F. The MYO6 interactome: selective motor-cargo complexes for diverse cellular processes. FEBS Lett 2019; 593:1494-1507. [PMID: 31206648 DOI: 10.1002/1873-3468.13486] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022]
Abstract
Myosins of class VI (MYO6) are unique actin-based motor proteins that move cargo towards the minus ends of actin filaments. As the sole myosin with this directionality, it is critically important in a number of biological processes. Indeed, loss or overexpression of MYO6 in humans is linked to a variety of pathologies including deafness, cardiomyopathy, neurodegenerative diseases as well as cancer. This myosin interacts with a wide variety of direct binding partners such as for example the selective autophagy receptors optineurin, TAX1BP1 and NDP52 and also Dab2, GIPC, TOM1 and LMTK2, which mediate distinct functions of different MYO6 isoforms along the endocytic pathway. Functional proteomics has recently been used to identify the wider MYO6 interactome including several large functionally distinct multi-protein complexes, which highlight the importance of this myosin in regulating the actin and septin cytoskeleton. Interestingly, adaptor-binding not only triggers cargo attachment, but also controls the inactive folded conformation and dimerisation of MYO6. Thus, the C-terminal tail domain mediates cargo recognition and binding, but is also crucial for modulating motor activity and regulating cytoskeletal track dynamics.
Collapse
Affiliation(s)
| | | | - Thomas O'Loughlin
- Cambridge Institute for Medical Research, University of Cambridge, UK
| | - Susan D Arden
- Cambridge Institute for Medical Research, University of Cambridge, UK
| | - Folma Buss
- Cambridge Institute for Medical Research, University of Cambridge, UK
| |
Collapse
|
14
|
Dash B, Dib-Hajj SD, Waxman SG. Multiple myosin motors interact with sodium/potassium-ATPase alpha 1 subunits. Mol Brain 2018; 11:45. [PMID: 30086768 PMCID: PMC6081954 DOI: 10.1186/s13041-018-0388-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/20/2018] [Indexed: 11/10/2022] Open
Abstract
The alpha1 (α1) subunit of the sodium/potassium ATPase (i.e., Na+/K+-ATPase α1), the prototypical sodium pump, is expressed in each eukaryotic cell. They pump out three sodium ions in exchange for two extracellular potassium ions to establish a cellular electrochemical gradient important for firing of neuronal and cardiac action potentials. We hypothesized that myosin (myo or myh) motor proteins might interact with Na+/K+-ATPase α1 subunits in order for them to play an important role in the transport and trafficking of sodium pump. To this end immunoassays were performed to determine whether class II non-muscle myosins (i.e., NMHC-IIA/myh9, NMHC-IIB/myh10 or NMHC-IIC/myh14), myosin Va (myoVa) and myosin VI (myoVI) would interact with Na+/K+-ATPase α1 subunits. Immunoprecipitation of myh9, myh10, myh14, myoVa and myoVI from rat brain tissues led to the co-immunoprecipitation of Na+/K+-ATPase α1 subunits expressed there. Heterologous expression studies using HEK293 cells indicated that recombinant myh9, myh10, myh14 and myoVI interact with Na+/K+-ATPase α1 subunits expressed in HEK293 cells. Additional results indicated that loss of tail regions in recombinant myh9, myh10, myh14 and myoVI did not affect their interaction with Na+/K+-ATPase α1 subunits. However, recombinant myh9, myh10 and myh14 mutants having reduced or no actin binding ability, as a result of loss of their actin binding sites, displayed greatly reduced or null interaction with Na+/K+-ATPase α1 subunits. These results suggested the involvement of the actin binding site, but not tail regions, of NMHC-IIs in their interaction with Na+/K+-ATPase α1 subunits. Overall these results suggest a role for these diverse myosins in the trafficking and transport of sodium pump in neuronal and non-neuronal tissues.
Collapse
Affiliation(s)
- Bhagirathi Dash
- Department of Neurology, Yale University Schoolof Medicine, New Haven, CT, 06510, USA.,Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT, 06510, USA.,Rehabilitation Research center, VA Connecticut Healthcare System, 950 Campbell Avenue, Bldg. 34, West Haven, CT, 06516, USA
| | - Sulayman D Dib-Hajj
- Department of Neurology, Yale University Schoolof Medicine, New Haven, CT, 06510, USA.,Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT, 06510, USA.,Rehabilitation Research center, VA Connecticut Healthcare System, 950 Campbell Avenue, Bldg. 34, West Haven, CT, 06516, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University Schoolof Medicine, New Haven, CT, 06510, USA. .,Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT, 06510, USA. .,Rehabilitation Research center, VA Connecticut Healthcare System, 950 Campbell Avenue, Bldg. 34, West Haven, CT, 06516, USA.
| |
Collapse
|
15
|
Bencze J, Mórotz GM, Seo W, Bencs V, Kálmán J, Miller CCJ, Hortobágyi T. Biological function of Lemur tyrosine kinase 2 (LMTK2): implications in neurodegeneration. Mol Brain 2018; 11:20. [PMID: 29631601 PMCID: PMC5891947 DOI: 10.1186/s13041-018-0363-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative disorders are frequent, incurable diseases characterised by abnormal protein accumulation and progressive neuronal loss. Despite their growing prevalence, the underlying pathomechanism remains unclear. Lemur tyrosine kinase 2 (LMTK2) is a member of a transmembrane serine/threonine-protein kinase family. Although it was described more than a decade ago, our knowledge on LMTK2’s biological functions is still insufficient. Recent evidence has suggested that LMTK2 is implicated in neurodegeneration. After reviewing the literature, we identified three LMTK2-mediated mechanisms which may contribute to neurodegenerative processes: disrupted axonal transport, tau hyperphosphorylation and enhanced apoptosis. Moreover, LMTK2 gene expression is decreased in an Alzheimer’s disease mouse model. According to these features, LMTK2 might be a promising therapeutic target in near future. However, further investigations are required to clarify the exact biological functions of this unique protein.
Collapse
Affiliation(s)
- János Bencze
- Division of Neuropathology, Institute of Pathology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen, H-4032, Hungary
| | - Gábor Miklós Mórotz
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Woosung Seo
- Division of Neuropathology, Institute of Pathology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen, H-4032, Hungary
| | - Viktor Bencs
- Division of Neuropathology, Institute of Pathology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen, H-4032, Hungary
| | - János Kálmán
- Department of Psychiatry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Christopher Charles John Miller
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Tibor Hortobágyi
- Division of Neuropathology, Institute of Pathology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen, H-4032, Hungary. .,MTA-DE Cerebrovascular and Neurodegenerative Research Group, Debrecen, Hungary. .,Department of Pathology, Faculty of Medicine, University of Szeged, Szeged, Hungary. .,Department of Old Age Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
16
|
O'Loughlin T, Masters TA, Buss F. The MYO6 interactome reveals adaptor complexes coordinating early endosome and cytoskeletal dynamics. EMBO Rep 2018; 19:e44884. [PMID: 29467281 PMCID: PMC5891429 DOI: 10.15252/embr.201744884] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/17/2018] [Accepted: 01/30/2018] [Indexed: 12/15/2022] Open
Abstract
The intracellular functions of myosin motors requires a number of adaptor molecules, which control cargo attachment, but also fine-tune motor activity in time and space. These motor-adaptor-cargo interactions are often weak, transient or highly regulated. To overcome these problems, we use a proximity labelling-based proteomics strategy to map the interactome of the unique minus end-directed actin motor MYO6. Detailed biochemical and functional analysis identified several distinct MYO6-adaptor modules including two complexes containing RhoGEFs: the LIFT (LARG-Induced F-actin for Tethering) complex that controls endosome positioning and motility through RHO-driven actin polymerisation; and the DISP (DOCK7-Induced Septin disPlacement) complex, a novel regulator of the septin cytoskeleton. These complexes emphasise the role of MYO6 in coordinating endosome dynamics and cytoskeletal architecture. This study provides the first in vivo interactome of a myosin motor protein and highlights the power of this approach in uncovering dynamic and functionally diverse myosin motor complexes.
Collapse
Affiliation(s)
- Thomas O'Loughlin
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge, UK
| | - Thomas A Masters
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge, UK
| | - Folma Buss
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge, UK
| |
Collapse
|
17
|
Masters TA, Tumbarello DA, Chibalina MV, Buss F. MYO6 Regulates Spatial Organization of Signaling Endosomes Driving AKT Activation and Actin Dynamics. Cell Rep 2018; 19:2088-2101. [PMID: 28591580 PMCID: PMC5469940 DOI: 10.1016/j.celrep.2017.05.048] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/05/2017] [Accepted: 05/12/2017] [Indexed: 02/06/2023] Open
Abstract
APPL1- and RAB5-positive signaling endosomes play a crucial role in the activation of AKT in response to extracellular stimuli. Myosin VI (MYO6) and two of its cargo adaptor proteins, GIPC and TOM1/TOM1L2, localize to these peripheral endosomes and mediate endosome association with cortical actin filaments. Loss of MYO6 leads to the displacement of these endosomes from the cell cortex and accumulation in the perinuclear space. Depletion of this myosin not only affects endosome positioning, but also induces actin and lipid remodeling consistent with endosome maturation, including accumulation of F-actin and the endosomal lipid PI(3)P. These processes acutely perturb endosome function, as both AKT phosphorylation and RAC-dependent membrane ruffling were markedly reduced by depletion of either APPL1 or MYO6. These results place MYO6 and its binding partners at a central nexus in cellular signaling linking actin dynamics at the cell surface and endosomal signaling in the cell cortex.
Collapse
Affiliation(s)
- Thomas A Masters
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - David A Tumbarello
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Margarita V Chibalina
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Folma Buss
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
18
|
Kruppa AJ, Kishi-Itakura C, Masters TA, Rorbach JE, Grice GL, Kendrick-Jones J, Nathan JA, Minczuk M, Buss F. Myosin VI-Dependent Actin Cages Encapsulate Parkin-Positive Damaged Mitochondria. Dev Cell 2018; 44:484-499.e6. [PMID: 29398621 PMCID: PMC5932465 DOI: 10.1016/j.devcel.2018.01.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 10/30/2017] [Accepted: 01/08/2018] [Indexed: 01/08/2023]
Abstract
Mitochondrial quality control is essential to maintain cellular homeostasis and is achieved by removing damaged, ubiquitinated mitochondria via Parkin-mediated mitophagy. Here, we demonstrate that MYO6 (myosin VI), a unique myosin that moves toward the minus end of actin filaments, forms a complex with Parkin and is selectively recruited to damaged mitochondria via its ubiquitin-binding domain. This myosin motor initiates the assembly of F-actin cages to encapsulate damaged mitochondria by forming a physical barrier that prevents refusion with neighboring populations. Loss of MYO6 results in an accumulation of mitophagosomes and an increase in mitochondrial mass. In addition, we observe downstream mitochondrial dysfunction manifesting as reduced respiratory capacity and decreased ability to rely on oxidative phosphorylation for energy production. Our work uncovers a crucial step in mitochondrial quality control: the formation of MYO6-dependent actin cages that ensure isolation of damaged mitochondria from the network.
Collapse
Affiliation(s)
- Antonina J Kruppa
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.
| | - Chieko Kishi-Itakura
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Thomas A Masters
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Joanna E Rorbach
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Guinevere L Grice
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - John Kendrick-Jones
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - James A Nathan
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Folma Buss
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
19
|
Fili N, Hari-Gupta Y, Dos Santos Á, Cook A, Poland S, Ameer-Beg SM, Parsons M, Toseland CP. NDP52 activates nuclear myosin VI to enhance RNA polymerase II transcription. Nat Commun 2017; 8:1871. [PMID: 29187741 PMCID: PMC5707354 DOI: 10.1038/s41467-017-02050-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 10/30/2017] [Indexed: 11/09/2022] Open
Abstract
Myosin VI (MVI) has been found to be overexpressed in ovarian, breast and prostate cancers. Moreover, it has been shown to play a role in regulating cell proliferation and migration, and to interact with RNA Polymerase II (RNAPII). Here, we find that backfolding of MVI regulates its ability to bind DNA and that a putative transcription co-activator NDP52 relieves the auto-inhibition of MVI to enable DNA binding. Additionally, we show that the MVI-NDP52 complex binds RNAPII, which is critical for transcription, and that depletion of NDP52 or MVI reduces steady-state mRNA levels. Lastly, we demonstrate that MVI directly interacts with nuclear receptors to drive expression of target genes, thereby suggesting a link to cell proliferation and migration. Overall, we suggest MVI may function as an auxiliary motor to drive transcription.
Collapse
Affiliation(s)
- Natalia Fili
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Yukti Hari-Gupta
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Ália Dos Santos
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Alexander Cook
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Simon Poland
- Randall Division of Cell and Molecular Biophysics, King's College London, Guys Campus, London, SE1 1UL, UK
| | - Simon M Ameer-Beg
- Randall Division of Cell and Molecular Biophysics, King's College London, Guys Campus, London, SE1 1UL, UK
| | - Maddy Parsons
- Randall Division of Cell and Molecular Biophysics, King's College London, Guys Campus, London, SE1 1UL, UK
| | | |
Collapse
|