1
|
Van Loy B, Pujol E, Kamata K, Lee XY, Bakirtzoglou N, Van Berwaer R, Vandeput J, Mestdagh C, Persoons L, De Wijngaert B, Goovaerts Q, Noppen S, Jacquemyn M, Ahmadzadeh K, Bernaerts E, Martín-López J, Escriche C, Vanmechelen B, Krasniqi B, Singh AK, Daelemans D, Maes P, Matthys P, Dehaen W, Rozenski J, Das K, Voet A, Vázquez S, Naesens L, Stevaert A. A guanidine-based coronavirus replication inhibitor which targets the nsp15 endoribonuclease and selects for interferon-susceptible mutant viruses. PLoS Pathog 2025; 21:e1012571. [PMID: 39932973 PMCID: PMC11856660 DOI: 10.1371/journal.ppat.1012571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/25/2025] [Accepted: 01/26/2025] [Indexed: 02/13/2025] Open
Abstract
The approval of COVID-19 vaccines and antiviral drugs has been crucial to end the global health crisis caused by SARS-CoV-2. However, to prepare for future outbreaks from drug-resistant variants and novel zoonotic coronaviruses (CoVs), additional therapeutics with a distinct antiviral mechanism are needed. Here, we report a novel guanidine-substituted diphenylurea compound that suppresses CoV replication by interfering with the uridine-specific endoribonuclease (EndoU) activity of the viral non-structural protein-15 (nsp15). This compound, designated EPB-113, exhibits strong and selective cell culture activity against human coronavirus 229E (HCoV-229E) and also suppresses the replication of SARS-CoV-2. Viruses, selected under EPB-113 pressure, carried resistance sites at or near the catalytic His250 residue of the nsp15-EndoU domain. Although the best-known function of EndoU is to avoid induction of type I interferon (IFN-I) by lowering the levels of viral dsRNA, EPB-113 was found to mainly act via an IFN-independent mechanism, situated during viral RNA synthesis. Using a combination of biophysical and enzymatic assays with the recombinant nsp15 proteins from HCoV-229E and SARS-CoV-2, we discovered that EPB-113 enhances the EndoU cleavage activity of hexameric nsp15, while reducing its thermal stability. This mechanism explains why the virus escapes EPB-113 by acquiring catalytic site mutations which impair compound binding to nsp15 and abolish the EndoU activity. Since the EPB-113-resistant mutant viruses induce high levels of IFN-I and its effectors, they proved unable to replicate in human macrophages and were readily outcompeted by the wild-type virus upon co-infection of human fibroblast cells. Our findings suggest that antiviral targeting of nsp15 can be achieved with a molecule that induces a conformational change in this protein, resulting in higher EndoU activity and impairment of viral RNA synthesis. Based on the appealing mechanism and resistance profile of EPB-113, we conclude that nsp15 is a challenging but highly relevant drug target.
Collapse
Affiliation(s)
- Benjamin Van Loy
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Eugènia Pujol
- Laboratori de Química Farmacèutica (Unitat Associada al Consejo Superior de Investigaciones Científicas), Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Kenichi Kamata
- Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Xiao Yin Lee
- Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Nikolai Bakirtzoglou
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Ria Van Berwaer
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Julie Vandeput
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Cato Mestdagh
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Leentje Persoons
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Brent De Wijngaert
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Quinten Goovaerts
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sam Noppen
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Maarten Jacquemyn
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Kourosh Ahmadzadeh
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Eline Bernaerts
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Juan Martín-López
- Laboratori de Química Farmacèutica (Unitat Associada al Consejo Superior de Investigaciones Científicas), Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Celia Escriche
- Laboratori de Química Farmacèutica (Unitat Associada al Consejo Superior de Investigaciones Científicas), Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Bert Vanmechelen
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Besir Krasniqi
- Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Abhimanyu K. Singh
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Dirk Daelemans
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Piet Maes
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Wim Dehaen
- Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Jef Rozenski
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute, KU Leuven, Leuven, Belgium
| | - Kalyan Das
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Arnout Voet
- Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al Consejo Superior de Investigaciones Científicas), Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Lieve Naesens
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Annelies Stevaert
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Jumde RP, Jézéquel G, Saramago M, Frank N, Adam S, Cunha MV, Bader CD, Gunesch AP, Köhler NM, Johannsen S, Bousis S, Pietschmann T, Matos RG, Müller R, Arraiano CM, Hirsch AKH. Dynamic Combinatorial Chemistry Unveils Nsp10 Inhibitors with Antiviral Potential Against SARS-CoV-2. Chemistry 2025; 31:e202403390. [PMID: 39676060 PMCID: PMC11739841 DOI: 10.1002/chem.202403390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
The development of antiviral drugs against the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) responsible for the recent Covid-19 pandemic is crucial, as treatment options remain limited and vaccination does not prevent (re)infection. Two relatively underexplored targets of this virus are the 3'-5' exoribonuclease (ExoN) and the 2'-O-methyltransferase (2'-O-MTase), both essential for viral viability. The non-structural proteins Nsp14 and Nsp16 exhibit enzymatic activities for ExoN and 2'-O-MTase, respectively, especially when in complex with their co-factor protein Nsp10. The study focuses on the use of target-directed dynamic combinatorial chemistry (tdDCC) to identify binders of Nsp10, aiming to disturb the protein-protein interactions (PPI) involving Nsp10-Nsp14, as well as Nsp10-Nsp16. We synthesised the hits and evaluated them to assess Nsp10 affinity, ExoN and 2'-O-MTase activities inhibition, and antiviral activity in hCoV-229E and SARS-CoV-2-infected whole-cell settings. This study reports a novel class of ExoN and/or 2'-O-MTase inhibitors exhibiting antiviral activity against coronaviruses.
Collapse
Affiliation(s)
- Ravindra P. Jumde
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E 8.166123SaarbrückenGermany
- Current addressGlobal Antibiotic Research & Development Partnership (GARDP)Chemin Camille-Vidart 151202GenevaSwitzerland
| | - Gwenaëlle Jézéquel
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E 8.166123SaarbrückenGermany
| | - Margarida Saramago
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAvenida da República2780-157OeirasPortugal
| | - Nicolas Frank
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E 8.166123SaarbrückenGermany
- Saarland UniversityDepartment of PharmacyCampus E 8.166123SaarbrückenGermany
| | - Sebastian Adam
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E 8.166123SaarbrückenGermany
| | - Marta V. Cunha
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAvenida da República2780-157OeirasPortugal
| | - Chantal D. Bader
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E 8.166123SaarbrückenGermany
| | - Antonia P. Gunesch
- Institute for Experimental VirologyTwincore – Centre for Experimental and Clinical Infection ResearchFeodor-Lynen-Str. 730625HannoverGermany
| | - Natalie M. Köhler
- Institute for Experimental VirologyTwincore – Centre for Experimental and Clinical Infection ResearchFeodor-Lynen-Str. 730625HannoverGermany
| | - Sandra Johannsen
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E 8.166123SaarbrückenGermany
- Saarland UniversityDepartment of PharmacyCampus E 8.166123SaarbrückenGermany
| | - Spyridon Bousis
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E 8.166123SaarbrückenGermany
- Saarland UniversityDepartment of PharmacyCampus E 8.166123SaarbrückenGermany
| | - Thomas Pietschmann
- Institute for Experimental VirologyTwincore – Centre for Experimental and Clinical Infection ResearchFeodor-Lynen-Str. 730625HannoverGermany
- Cluster of Excellence RESIST (EXC 2155)Hannover Medical School30625HannoverGermany
- Helmholtz International Lab for Anti-infectivesCampus E 8.166123SaarbrückenGermany
| | - Rute G. Matos
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAvenida da República2780-157OeirasPortugal
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E 8.166123SaarbrückenGermany
- Saarland UniversityDepartment of PharmacyCampus E 8.166123SaarbrückenGermany
- Cluster of Excellence RESIST (EXC 2155)Hannover Medical School30625HannoverGermany
- Helmholtz International Lab for Anti-infectivesCampus E 8.166123SaarbrückenGermany
| | - Cecília M. Arraiano
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAvenida da República2780-157OeirasPortugal
| | - Anna K. H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E 8.166123SaarbrückenGermany
- Saarland UniversityDepartment of PharmacyCampus E 8.166123SaarbrückenGermany
- Cluster of Excellence RESIST (EXC 2155)Hannover Medical School30625HannoverGermany
- Helmholtz International Lab for Anti-infectivesCampus E 8.166123SaarbrückenGermany
| |
Collapse
|
3
|
Rampias T, Antoniou T, Stevaert A, Kravariti L, Van Loy B, Vandeput J, Sgrignani J, Filippidou N, Locatelli P, Samiotaki M, Tzakos EP, Cavalli A, Naesens L, Sideris DC, Tzakos AG. Exploration of isatin-based inhibitors of SARS-CoV-2 Nsp15 endoribonuclease. Eur J Med Chem 2024; 279:116886. [PMID: 39312834 DOI: 10.1016/j.ejmech.2024.116886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 09/25/2024]
Abstract
The global health crisis caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) urges the development of new antiviral agents with broad coronavirus coverage. Due to its key role in viral evasion from the host innate immune response, the coronavirus Nsp15 uridine-specific endoribonuclease (EndoU) is of high interest as a drug target. Considering that the isatin scaffold is well-known for its versatile pharmacological properties, we synthesized and evaluated a series of compounds carrying an isatin core. The initial compounds were selected on the basis of in silico predictions. After biochemical assays showed moderate inhibition of SARS-CoV-2 EndoU-mediated RNA cleavage, structural analogues were rationally designed to enhance the interaction with the target. This included the incorporation of a nitrile group since this dipole can improve ADME and facilitate polar interactions with proteins and can operate as hydroxy or carboxy surrogate. A straightforward solvent free and green, microwave-assisted synthetic process was established to achieve the development of the different target compounds. The best compound exhibited inhibitory activity in enzymatic EndoU assays, and reduced the SARS-CoV-2 viral RNA load by almost 68,000-fold in the low micromolar range similarly to the established antiviral agent GS-441524.
Collapse
Affiliation(s)
- Theodoros Rampias
- Biomedical Research Foundation Academy of Athens, 4 Soranou Efesiou, 115 27, Athens, Greece
| | - Thomas Antoniou
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, Ioannina, GR-45110, Greece
| | - Annelies Stevaert
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
| | - Lara Kravariti
- National and Kapodistrian University of Athens, Section of Biochemistry and Molecular Biology, Department of Biology, Panepistimiopolis, 15701, Athens, Greece
| | - Benjamin Van Loy
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
| | - Julie Vandeput
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
| | - Jacopo Sgrignani
- Institute for Research In Biochemistry (IRB), Universita' della Svizzera Italiana, Via Chiesa 5, Bellinzona, 6500, Switzerland
| | - Natalia Filippidou
- Biomedical Research Foundation Academy of Athens, 4 Soranou Efesiou, 115 27, Athens, Greece
| | - Patrizia Locatelli
- Institute for Research In Biochemistry (IRB), Universita' della Svizzera Italiana, Via Chiesa 5, Bellinzona, 6500, Switzerland
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming, 16672, Vari, Greece
| | - Eleftherios Paraskevas Tzakos
- National and Kapodistrian University of Athens, Section of Biochemistry and Molecular Biology, Department of Biology, Panepistimiopolis, 15701, Athens, Greece
| | - Andrea Cavalli
- Institute for Research In Biochemistry (IRB), Universita' della Svizzera Italiana, Via Chiesa 5, Bellinzona, 6500, Switzerland
| | - Lieve Naesens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
| | - Diamantis C Sideris
- National and Kapodistrian University of Athens, Section of Biochemistry and Molecular Biology, Department of Biology, Panepistimiopolis, 15701, Athens, Greece.
| | - Andreas G Tzakos
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, Ioannina, GR-45110, Greece.
| |
Collapse
|
4
|
Kalia N, Snell K, Harris M. Alternative substrate kinetics of SARS-CoV-2 Nsp15 endonuclease reveals a specificity landscape dominated by RNA structure. Nucleic Acids Res 2024; 52:13419-13433. [PMID: 39475186 PMCID: PMC11602132 DOI: 10.1093/nar/gkae939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 11/29/2024] Open
Abstract
Coronavirus endoribonuclease Nsp15 contributes to the evasion of host innate immunity by suppressing levels of viral dsRNA. Nsp15 cleaves both ssRNA and dsRNA in vitro with a strong preference for unpaired or bulged U residues, and its activity is stimulated by divalent ions. Here, we systematically quantified effects of RNA sequence and structure context that define its specificity. The results show that sequence preference for U↓A/G, observed previously, contributes only ca. 2-fold to kcat/Km. In contrast, dsRNA structure flanking a bulged U residue increases kcat/Km by an order of magnitude compared to ssRNA while base pairing in dsRNA essentially blocks cleavage. Despite enormous differences in multiple turnover kinetics, the effect of RNA structure on the cleavage step is minimal. Surprisingly, although divalent ion activation of Nsp15 is widely considered to be important for its biological function, the effect on kcat/Km is only ∼2-fold and independent of RNA structure. These results reveal a specificity landscape dominated by RNA structure and provide a quantitative framework for identifying interactions that underlie specificity, determining mechanisms of inhibition and resistance and defining targets important for coronavirus biology.
Collapse
Affiliation(s)
- Nidhi Kalia
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Kimberly C Snell
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Michael E Harris
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
5
|
Volek M, Kurfürst J, Drexler M, Svoboda M, Srb P, Veverka V, Curtis E. Aurora: a fluorescent deoxyribozyme for high-throughput screening. Nucleic Acids Res 2024; 52:9049-9061. [PMID: 38860424 PMCID: PMC11347150 DOI: 10.1093/nar/gkae467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024] Open
Abstract
Fluorescence facilitates the detection, visualization, and tracking of molecules with high sensitivity and specificity. A functional DNA molecule that generates a robust fluorescent signal would offer significant advantages for many applications compared to intrinsically fluorescent proteins, which are expensive and labor intensive to synthesize, and fluorescent RNA aptamers, which are unstable under most conditions. Here, we describe a novel deoxyriboyzme that rapidly and efficiently generates a stable fluorescent product using a readily available coumarin substrate. An engineered version can detect picomolar concentrations of ribonucleases in a simple homogenous assay, and was used to rapidly identify novel inhibitors of the SARS-CoV-2 ribonuclease Nsp15 in a high-throughput screen. Our work adds an important new component to the toolkit of functional DNA parts, and also demonstrates how catalytic DNA motifs can be used to solve real-world problems.
Collapse
Affiliation(s)
- Martin Volek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague 128 44, Czech Republic
| | - Jaroslav Kurfürst
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
- Department of Informatics and Chemistry, University of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Matúš Drexler
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Michal Svoboda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Pavel Srb
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague 128 44, Czech Republic
| | - Edward A Curtis
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| |
Collapse
|
6
|
Van Loy B, Stevaert A, Naesens L. The coronavirus nsp15 endoribonuclease: A puzzling protein and pertinent antiviral drug target. Antiviral Res 2024; 228:105921. [PMID: 38825019 DOI: 10.1016/j.antiviral.2024.105921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
The SARS-CoV-2 pandemic has bolstered unprecedented research efforts to better understand the pathogenesis of coronavirus (CoV) infections and develop effective therapeutics. We here focus on non-structural protein nsp15, a hexameric component of the viral replication-transcription complex (RTC). Nsp15 possesses uridine-specific endoribonuclease (EndoU) activity for which some specific cleavage sites were recently identified in viral RNA. By preventing accumulation of viral dsRNA, EndoU helps the virus to evade RNA sensors of the innate immune response. The immune-evading property of nsp15 was firmly established in several CoV animal models and makes it a pertinent target for antiviral therapy. The search for nsp15 inhibitors typically proceeds via compound screenings and is aided by the rapidly evolving insight in the protein structure of nsp15. In this overview, we broadly cover this fascinating protein, starting with its structure, biochemical properties and functions in CoV immune evasion. Next, we summarize the reported studies in which compound screening or a more rational method was used to identify suitable leads for nsp15 inhibitor development. In this way, we hope to raise awareness on the relevance and druggability of this unique CoV protein.
Collapse
Affiliation(s)
- Benjamin Van Loy
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
| | - Annelies Stevaert
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
| | - Lieve Naesens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium.
| |
Collapse
|
7
|
Wang R, Stevaert A, Truong TN, Li Q, Krasniqi B, Van Loy B, Voet A, Naesens L, Dehaen W. Exploration of 1,2,3-triazolo fused triterpenoids as inhibitors of human coronavirus 229E targeting the viral nsp15 protein. Arch Pharm (Weinheim) 2024; 357:e2300442. [PMID: 37840345 DOI: 10.1002/ardp.202300442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
The coronavirus disease-19 (COVID-19) pandemic has raised major interest in innovative drug concepts to suppress human coronavirus (HCoV) infections. We previously reported on a class of 1,2,3-triazolo fused betulonic acid derivatives causing strong inhibition of HCoV-229E replication via the viral nsp15 protein, which is proposedly related to compound binding at an intermonomer interface in hexameric nsp15. In the present study, we further explored the structure-activity relationship (SAR), by varying the substituent at the 1,2,3-triazolo ring as well as the triterpenoid skeleton. The 1,2,3-triazolo fused triterpenoids were synthesized by a multicomponent triazolization reaction, which has been developed in-house. Several analogs possessing a betulin, oleanolic acid, or ursolic acid core displayed favorable activity and selectivity (EC50 values for HCoV-229E: 1.6-3.5 μM), but neither of them proved as effective as the lead compound containing betulonic acid. The 18β-glycyrrhetinic acid-containing analogs had low selectivity. The antiviral findings were rationalized by in silico docking in the available structure of the HCoV-229E nsp15 protein. The new SAR insights will aid the further development of these 1,2,3-triazolo fused triterpenoid compounds as a unique type of coronavirus inhibitors.
Collapse
Affiliation(s)
- Rui Wang
- Department of Chemistry, Sustainable Chemistry for Metals and Molecules, KU Leuven, Leuven, Belgium
| | - Annelies Stevaert
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Tien Nguyen Truong
- Department of Chemistry, Biochemistry, Molecular and Structural Biology, KU Leuven, Leuven, Belgium
| | - Qifei Li
- Department of Chemistry, Sustainable Chemistry for Metals and Molecules, KU Leuven, Leuven, Belgium
| | - Besir Krasniqi
- Department of Chemistry, Sustainable Chemistry for Metals and Molecules, KU Leuven, Leuven, Belgium
| | - Benjamin Van Loy
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Arnout Voet
- Department of Chemistry, Biochemistry, Molecular and Structural Biology, KU Leuven, Leuven, Belgium
| | - Lieve Naesens
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Wim Dehaen
- Department of Chemistry, Sustainable Chemistry for Metals and Molecules, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Chen J, Farraj RA, Limonta D, Tabatabaei Dakhili SA, Kerek EM, Bhattacharya A, Reformat FM, Mabrouk OM, Brigant B, Pfeifer TA, McDermott MT, Ussher JR, Hobman TC, Glover JNM, Hubbard BP. Reversible and irreversible inhibitors of coronavirus Nsp15 endoribonuclease. J Biol Chem 2023; 299:105341. [PMID: 37832873 PMCID: PMC10656235 DOI: 10.1016/j.jbc.2023.105341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2, the causative agent of coronavirus disease 2019, has resulted in the largest pandemic in recent history. Current therapeutic strategies to mitigate this disease have focused on the development of vaccines and on drugs that inhibit the viral 3CL protease or RNA-dependent RNA polymerase enzymes. A less-explored and potentially complementary drug target is Nsp15, a uracil-specific RNA endonuclease that shields coronaviruses and other nidoviruses from mammalian innate immune defenses. Here, we perform a high-throughput screen of over 100,000 small molecules to identify Nsp15 inhibitors. We characterize the potency, mechanism, selectivity, and predicted binding mode of five lead compounds. We show that one of these, IPA-3, is an irreversible inhibitor that might act via covalent modification of Cys residues within Nsp15. Moreover, we demonstrate that three of these inhibitors (hexachlorophene, IPA-3, and CID5675221) block severe acute respiratory syndrome coronavirus 2 replication in cells at subtoxic doses. This study provides a pipeline for the identification of Nsp15 inhibitors and pinpoints lead compounds for further development against coronavirus disease 2019 and related coronavirus infections.
Collapse
Affiliation(s)
- Jerry Chen
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Rabih Abou Farraj
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel Limonta
- Department of Cell Biology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA; Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, California, USA
| | | | - Evan M Kerek
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Ashim Bhattacharya
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Filip M Reformat
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Ola M Mabrouk
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Benjamin Brigant
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tom A Pfeifer
- High Throughput Biology Facility, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark T McDermott
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Tom C Hobman
- Department of Cell Biology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Basil P Hubbard
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Borgelt L, Wu P. Targeting Ribonucleases with Small Molecules and Bifunctional Molecules. ACS Chem Biol 2023; 18:2101-2113. [PMID: 37382390 PMCID: PMC10594538 DOI: 10.1021/acschembio.3c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/06/2023] [Indexed: 06/30/2023]
Abstract
Ribonucleases (RNases) cleave and process RNAs, thereby regulating the biogenesis, metabolism, and degradation of coding and noncoding RNAs. Thus, small molecules targeting RNases have the potential to perturb RNA biology, and RNases have been studied as therapeutic targets of antibiotics, antivirals, and agents for autoimmune diseases and cancers. Additionally, the recent advances in chemically induced proximity approaches have led to the discovery of bifunctional molecules that target RNases to achieve RNA degradation or inhibit RNA processing. Here, we summarize the efforts that have been made to discover small-molecule inhibitors and activators targeting bacterial, viral, and human RNases. We also highlight the emerging examples of RNase-targeting bifunctional molecules and discuss the trends in developing such molecules for both biological and therapeutic applications.
Collapse
Affiliation(s)
- Lydia Borgelt
- Chemical Genomics Centre, Max
Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, Dortmund 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, Dortmund 44227, Germany
| | | |
Collapse
|
10
|
von Beck T, Mena Hernandez L, Zhou H, Floyd K, Suthar MS, Skolnick J, Jacob J. Atovaquone and Pibrentasvir Inhibit the SARS-CoV-2 Endoribonuclease and Restrict Infection In Vitro but Not In Vivo. Viruses 2023; 15:1841. [PMID: 37766247 PMCID: PMC10534768 DOI: 10.3390/v15091841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
The emergence of SARS-CoV-1 in 2003 followed by MERS-CoV and now SARS-CoV-2 has proven the latent threat these viruses pose to humanity. While the SARS-CoV-2 pandemic has shifted to a stage of endemicity, the threat of new coronaviruses emerging from animal reservoirs remains. To address this issue, the global community must develop small molecule drugs targeting highly conserved structures in the coronavirus proteome. Here, we characterized existing drugs for their ability to inhibit the endoribonuclease activity of the SARS-CoV-2 non-structural protein 15 (nsp15) via in silico, in vitro, and in vivo techniques. We have identified nsp15 inhibition by the drugs pibrentasvir and atovaquone which effectively inhibit SARS-CoV-2 and HCoV-OC43 at low micromolar concentrations in cell cultures. Furthermore, atovaquone, but not pibrentasvir, is observed to modulate HCoV-OC43 dsRNA and infection in a manner consistent with nsp15 inhibition. Although neither pibrentasvir nor atovaquone translate to clinical efficacy in a murine prophylaxis model of SARS-CoV-2 infection, atovaquone may serve as a basis for the design of future nsp15 inhibitors.
Collapse
Affiliation(s)
- Troy von Beck
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA; (T.v.B.); (L.M.H.); (K.F.); (M.S.S.)
| | - Luis Mena Hernandez
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA; (T.v.B.); (L.M.H.); (K.F.); (M.S.S.)
| | - Hongyi Zhou
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, GA 30332, USA; (H.Z.); (J.S.)
| | - Katharine Floyd
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA; (T.v.B.); (L.M.H.); (K.F.); (M.S.S.)
| | - Mehul S. Suthar
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA; (T.v.B.); (L.M.H.); (K.F.); (M.S.S.)
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, GA 30332, USA; (H.Z.); (J.S.)
| | - Joshy Jacob
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA; (T.v.B.); (L.M.H.); (K.F.); (M.S.S.)
| |
Collapse
|
11
|
Wu CC, Chen MS, Lee TY, Cheng YJ, Tsou HH, Huang TS, Cho DY, Chen JY. Screening and identification of emodin as an EBV DNase inhibitor to prevent its biological functions. Virol J 2023; 20:148. [PMID: 37443068 PMCID: PMC10339607 DOI: 10.1186/s12985-023-02107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND The Epstein-Barr virus (EBV) is a prevalent oncovirus associated with a variety of human illnesses. BGLF5, an EBV DNase with alkaline nuclease (AN) activity, plays important roles in the viral life cycle and progression of human malignancies and has been suggested as a possible diagnostic marker and target for cancer therapy. Methods used conventionally for the detection of AN activity, radioactivity-based nuclease activity assay and DNA digestion detection by gel electrophoresis, are not suitable for screening AN inhibitors; the former approach is unsafe, and the latter is complicated. In the present study, a fluorescence-based nuclease activity assay was used to screen several natural compounds and identify an EBV DNase inhibitor. RESULTS Fluorescence-based nuclease activity assays, in which the DNA substrate is labelled with PicoGreen dye, are cheaper, safer, and easier to perform. Herein, the results of the fluorescence-based nuclease activity assay were consistent with the results of the two conventional methods. In addition, the PicoGreen-labelling method was applied for the biochemical characterisation of viral nucleases. Using this approach, we explored EBV DNase inhibitors. After several rounds of screening, emodin, an anthraquinone derivative, was found to possess significant anti-EBV DNase activity. We verified the efficacy of emodin using the conventional DNA-cleavage assay. Furthermore, using comet assay and micronucleus formation detection, we confirmed that emodin can inhibit DNase-induced DNA damage and genomic instability. Additionally, emodin treatment inhibited EBV production. CONCLUSIONS Using a PicoGreen-mediated nuclease activity assay, we successfully demonstrated that emodin has the potential to inhibit EBV DNase nuclease activity. Emodin also inhibits EBV DNase-related biological functions, suggesting that it is a potential inhibitor of EBV DNase.
Collapse
Affiliation(s)
- Chung-Chun Wu
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, No. 2, Yude Rd., North Dist, Taichung City, 40447, Taiwan.
| | - Mei-Shu Chen
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli County, Taiwan
| | - Ting-Ying Lee
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, No. 2, Yude Rd., North Dist, Taichung City, 40447, Taiwan
| | - Yu-Jhen Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Hsiao-Hui Tsou
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Tze-Sing Huang
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli County, Taiwan
| | - Der-Yang Cho
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, No. 2, Yude Rd., North Dist, Taichung City, 40447, Taiwan
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli County, Taiwan.
| |
Collapse
|
12
|
Huang T, Snell KC, Kalia N, Gardezi S, Guo L, Harris ME. Kinetic analysis of RNA cleavage by coronavirus Nsp15 endonuclease: Evidence for acid base catalysis and substrate dependent metal ion activation. J Biol Chem 2023:104787. [PMID: 37149147 PMCID: PMC10158045 DOI: 10.1016/j.jbc.2023.104787] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023] Open
Abstract
Understanding the functional properties of SARS-CoV-2 nonstructural proteins is essential for defining their roles in the viral life cycle, developing improved therapeutics and diagnostics, and countering future variants. Coronavirus nonstructural protein Nsp15 is a hexameric U-specific endonuclease whose functions, substrate specificity, mechanism, and dynamics have not been fully defined. Previous studies report SARS-CoV-2 Nsp15 requires Mn2+ ions for optimal activity; however, the effects of divalent ions on Nsp15 reaction kinetics have not been investigated in detail. Here, we analyzed the single and multiple turnover kinetics for model single-stranded RNA substrates. Our data confirm that divalent ions are dispensable for catalysis and show that Mn2+ activates Nsp15 cleavage of two different ssRNA oligonucleotide substrates, but not a dinucleotide. Furthermore, biphasic kinetics of ssRNA substrates demonstrates that Mn2+ stabilizes alternative enzyme states that have faster substrate cleavage on the enzyme. However, we did not detect Mn2+-induced conformational changes using CD and fluorescence spectroscopy. The pH-rate profiles in the presence and absence of Mn2+ are consistent with active site ionizable groups with similar pKas of ca. 4.8-5.2. We found the Rp stereoisomer phosphorothioate modification at the scissile phosphate had minimal effect on catalysis, which supports a mechanism involving an anionic transition state. In contrast, the Sp stereoisomer is inactive due to weak binding, consistent with models that position the non-bridging phosphoryl oxygen deep in the active site. Together, these kinetic data demonstrate that Nsp15 employs a conventional acid-base catalytic mechanism passing through an anionic transition state, and that divalent ion activation is substrate-dependent.
Collapse
Affiliation(s)
- Tong Huang
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Kimberly C Snell
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Nidhi Kalia
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Shahbaz Gardezi
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Lily Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Michael E Harris
- Department of Chemistry, University of Florida, Gainesville, FL 32611.
| |
Collapse
|
13
|
Jernigan RJ, Logeswaran D, Doppler D, Nagaratnam N, Sonker M, Yang JH, Ketawala G, Martin-Garcia JM, Shelby ML, Grant TD, Mariani V, Tolstikova A, Sheikh MZ, Yung MC, Coleman MA, Zaare S, Kaschner EK, Rabbani MT, Nazari R, Zacks MA, Hayes B, Sierra RG, Hunter MS, Lisova S, Batyuk A, Kupitz C, Boutet S, Hansen DT, Kirian RA, Schmidt M, Fromme R, Frank M, Ros A, Chen JJL, Botha S, Fromme P. Room-temperature structural studies of SARS-CoV-2 protein NendoU with an X-ray free-electron laser. Structure 2023; 31:138-151.e5. [PMID: 36630960 PMCID: PMC9830665 DOI: 10.1016/j.str.2022.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/08/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023]
Abstract
NendoU from SARS-CoV-2 is responsible for the virus's ability to evade the innate immune system by cleaving the polyuridine leader sequence of antisense viral RNA. Here we report the room-temperature structure of NendoU, solved by serial femtosecond crystallography at an X-ray free-electron laser to 2.6 Å resolution. The room-temperature structure provides insight into the flexibility, dynamics, and other intrinsic properties of NendoU, with indications that the enzyme functions as an allosteric switch. Functional studies examining cleavage specificity in solution and in crystals support the uridine-purine cleavage preference, and we demonstrate that enzyme activity is fully maintained in crystal form. Optimizing the purification of NendoU and identifying suitable crystallization conditions set the benchmark for future time-resolved serial femtosecond crystallography studies. This could advance the design of antivirals with higher efficacy in treating coronaviral infections, since drugs that block allosteric conformational changes are less prone to drug resistance.
Collapse
Affiliation(s)
- Rebecca J Jernigan
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Dhenugen Logeswaran
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Diandra Doppler
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Nirupa Nagaratnam
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Mukul Sonker
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Jay-How Yang
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Gihan Ketawala
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Jose M Martin-Garcia
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Megan L Shelby
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Thomas D Grant
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, SUNY University at Buffalo, 955 Main Street, Buffalo, NY 14203, USA
| | - Valerio Mariani
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Michelle Z Sheikh
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Mimi Cho Yung
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Matthew A Coleman
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Sahba Zaare
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; Fulton School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA; Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA
| | - Emily K Kaschner
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Mohammad Towshif Rabbani
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Reza Nazari
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Michele A Zacks
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Brandon Hayes
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Raymond G Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Mark S Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Stella Lisova
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Alexander Batyuk
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Christopher Kupitz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Sebastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Debra T Hansen
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Richard A Kirian
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA
| | - Marius Schmidt
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Avenue, Milwaukee, WI 53211, USA
| | - Raimund Fromme
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Matthias Frank
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Alexandra Ros
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Julian J-L Chen
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Sabine Botha
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA.
| | - Petra Fromme
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA.
| |
Collapse
|
14
|
Yang Z, Cai X, Ye Q, Zhao Y, Li X, Zhang S, Zhang L. High-Throughput Screening for the Potential Inhibitors of SARS-CoV-2 with Essential Dynamic Behavior. Curr Drug Targets 2023; 24:532-545. [PMID: 36876836 DOI: 10.2174/1389450124666230306141725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/09/2022] [Accepted: 01/11/2023] [Indexed: 03/07/2023]
Abstract
Global health security has been challenged by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic. Due to the lengthy process of generating vaccinations, it is vital to reposition currently available drugs in order to relieve anti-epidemic tensions and accelerate the development of therapies for Coronavirus Disease 2019 (COVID-19), the public threat caused by SARS-CoV-2. High throughput screening techniques have established their roles in the evaluation of already available medications and the search for novel potential agents with desirable chemical space and more cost-effectiveness. Here, we present the architectural aspects of highthroughput screening for SARS-CoV-2 inhibitors, especially three generations of virtual screening methodologies with structural dynamics: ligand-based screening, receptor-based screening, and machine learning (ML)-based scoring functions (SFs). By outlining the benefits and drawbacks, we hope that researchers will be motivated to adopt these methods in the development of novel anti- SARS-CoV-2 agents.
Collapse
Affiliation(s)
- Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Xinhui Cai
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Qiushi Ye
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Yizhen Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| |
Collapse
|
15
|
Hu F, Wang D, Huang H, Hu Y, Yin P. Bridging the Gap between Target-Based and Cell-Based Drug Discovery with a Graph Generative Multitask Model. J Chem Inf Model 2022; 62:6046-6056. [PMID: 36401569 DOI: 10.1021/acs.jcim.2c01180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of new drugs is crucial for protecting humans from disease. In the past several decades, target-based screening has been one of the most popular methods for developing new drugs. This method efficiently screens potential inhibitors of a target protein in vitro, but it frequently fails in vivo due to insufficient activity of the selected drugs. There is a need for accurate computational methods to bridge this gap. Here, we present a novel graph multi-task deep learning model to identify compounds with both target inhibitory and cell active (MATIC) properties. On a carefully curated SARS-CoV-2 data set, the proposed MATIC model shows advantages compared with the traditional method in screening effective compounds in vivo. Following this, we investigated the interpretability of the model and discovered that the learned features for target inhibition (in vitro) or cell active (in vivo) tasks are different with molecular property correlations and atom functional attention. Based on these findings, we utilized a Monte Carlo-based reinforcement learning generative model to generate novel multiproperty compounds with both in vitro and in vivo efficacy, thus bridging the gap between target-based and cell-based drug discovery. The tool is freely accessible at https://github.com/SIAT-code/MATIC.
Collapse
Affiliation(s)
- Fan Hu
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Dongqi Wang
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Huazhen Huang
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Yishen Hu
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Peng Yin
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| |
Collapse
|
16
|
Novel ciprofloxacin and norfloxacin-tetrazole hybrids as potential antibacterial and antiviral agents: targeting S. aureus topoisomerase and SARS-CoV-2-MPro. J Mol Struct 2022; 1274:134507. [PMID: 36406777 PMCID: PMC9640164 DOI: 10.1016/j.molstruc.2022.134507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
Abstract
This study was designed to synthesize hybridizing molecules from ciprofloxacin and norfloxacin by enhancing their biological activity with tetrazoles. The synthesized compounds were investigated in the interaction with the target enzyme of fluoroquinolones (DNA gyrase) and COVID-19 main protease using molecular similarity, molecular docking, and QSAR studies. A QSAR study was carried out to explore the antibacterial activity of our compounds over Staphylococcus aureus a QSAR study, using descriptors obtained from the docking with DNA gyrase, in combination with steric type descriptors, was done obtaining suitable statistical parameters (R2=87.00, QLMO2=71.67, and QEXT2=73.49) to support our results. The binding interaction of our compounds with CoV-2-Mpro was done by molecular docking and were compared with different covalent and non-covalent inhibitors of this enzyme. For the docking studies we used several crystallographic structures of the CoV-2-Mpro. The interaction energy values and binding mode with several key residues, by our compounds, support the capability of them to be CoV-2-Mpro inhibitors. The characterization of the compounds was completed using FT-IR, 1H-NMR, 13C-NMR, 19F-NMR and HRMS spectroscopic methods. The results showed that compounds 1, 4, 5, 10 and 12 had the potential to be further studied as new antibacterial and antiviral compounds
Collapse
|
17
|
Frazier MN, Riccio AA, Wilson IM, Copeland WC, Stanley RE. Recent insights into the structure and function of coronavirus ribonucleases. FEBS Open Bio 2022; 12:1567-1583. [PMID: 35445579 PMCID: PMC9110870 DOI: 10.1002/2211-5463.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 11/10/2022] Open
Abstract
Coronaviruses use approximately two-thirds of their 30-kb genomes to encode nonstructural proteins (nsps) with diverse functions that assist in viral replication and transcription, and evasion of the host immune response. The SARS-CoV-2 pandemic has led to renewed interest in the molecular mechanisms used by coronaviruses to infect cells and replicate. Among the 16 Nsps involved in replication and transcription, coronaviruses encode two ribonucleases that process the viral RNA-an exonuclease (Nsp14) and an endonuclease (Nsp15). In this review, we discuss recent structural and biochemical studies of these nucleases and the implications for drug discovery.
Collapse
Affiliation(s)
- Meredith N. Frazier
- Signal Transduction LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| | - Amanda A. Riccio
- Genome Integrity and Structural Biology LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| | - Isha M. Wilson
- Signal Transduction LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| | - William C. Copeland
- Genome Integrity and Structural Biology LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| | - Robin E. Stanley
- Signal Transduction LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| |
Collapse
|
18
|
Identification of SARS-CoV-2 inhibitors through phylogenetics and drug repurposing. Struct Chem 2022; 33:1789-1797. [PMID: 35910782 PMCID: PMC9315090 DOI: 10.1007/s11224-022-02019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022]
Abstract
The novel coronavirus that has affected the whole world is declared a pandemic by the World Health Organization. Since the emergence of this virus, researchers worldwide have searched for potential antivirals against it. Being an RNA virus, it shows a high rate of mutability and variability in its genome. In the present study, all the reported SARS-CoV-2 genomes isolated from diverse regions of the world available in the GISAID database have been considered for phylogenetic analysis. The strain identified at the root is subjected to phylogenetic analysis with genomes of other known human viruses obtained from NCBI for identifying the nearest viral neighbor. Furthermore, the phylogenetic relationship between various human viruses was used to repurpose the known antiviral drugs towards coronavirus using in silico docking approach. The phylogeny reveals the link of the COVID virus with adenovirus. The known drugs against adenovirus are considered in the present study for drug repurposing through molecular docking analysis. The reference inhibitors of the respective targets were also considered in the docking study. The protein targets, namely protease, endoribonuclease, methyltransferase, phosphatase, and spike protein, are considered for screening with the known drug of adenovirus. Ribavirin, known to treat adenoviral infection, shows the best docking score, suggesting its use as a repurposed drug to treat SARS-CoV-2. Furthermore, the potency of the ribavirin drug is analyzed using molecular dynamics studies.
Collapse
|
19
|
Wright LR, Wright DL, Weller SK. Viral Nucleases from Herpesviruses and Coronavirus in Recombination and Proofreading: Potential Targets for Antiviral Drug Discovery. Viruses 2022; 14:1557. [PMID: 35891537 PMCID: PMC9324378 DOI: 10.3390/v14071557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
In this review, we explore recombination in two very different virus families that have become major threats to human health. The Herpesviridae are a large family of pathogenic double-stranded DNA viruses involved in a range of diseases affecting both people and animals. Coronaviridae are positive-strand RNA viruses (CoVs) that have also become major threats to global health and economic stability, especially in the last two decades. Despite many differences, such as the make-up of their genetic material (DNA vs. RNA) and overall mechanisms of genome replication, both human herpes viruses (HHVs) and CoVs have evolved to rely heavily on recombination for viral genome replication, adaptation to new hosts and evasion of host immune regulation. In this review, we will focus on the roles of three viral exonucleases: two HHV exonucleases (alkaline nuclease and PolExo) and one CoV exonuclease (ExoN). We will review the roles of these three nucleases in their respective life cycles and discuss the state of drug discovery efforts against these targets.
Collapse
Affiliation(s)
- Lee R. Wright
- Department of Pharmaceutical Sciences, University of Connecticut School of Pharmacy, Storrs, CT 06269, USA; (L.R.W.); (D.L.W.)
| | - Dennis L. Wright
- Department of Pharmaceutical Sciences, University of Connecticut School of Pharmacy, Storrs, CT 06269, USA; (L.R.W.); (D.L.W.)
| | - Sandra K. Weller
- Department of Molecular Biology and Biophysics, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| |
Collapse
|
20
|
Wang P, Wang X, Liu X, Sun M, Liang X, Bai J, Jiang P. Natural Compound ZINC12899676 Reduces Porcine Epidemic Diarrhea Virus Replication by Inhibiting the Viral NTPase Activity. Front Pharmacol 2022; 13:879733. [PMID: 35600889 PMCID: PMC9114645 DOI: 10.3389/fphar.2022.879733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is an alphacoronavirus (α-CoV) that causes high mortality in suckling piglets, leading to severe economic losses worldwide. No effective vaccine or commercial antiviral drug is readily available. Several replicative enzymes are responsible for coronavirus replication. In this study, the potential candidates targeting replicative enzymes (PLP2, 3CLpro, RdRp, NTPase, and NendoU) were screened from 187,119 compounds in ZINC natural products library, and seven compounds had high binding potential to NTPase and showed drug-like property. Among them, ZINC12899676 was identified to significantly inhibit the NTPase activity of PEDV by targeting its active pocket and causing its conformational change, and ZINC12899676 significantly inhibited PEDV replication in IPEC-J2 cells. It first demonstrated that ZINC12899676 inhibits PEDV replication by targeting NTPase, and then, NTPase may serve as a novel target for anti-PEDV.
Collapse
Affiliation(s)
- Pengcheng Wang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xianwei Wang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xing Liu
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Meng Sun
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiao Liang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Juan Bai
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ping Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- *Correspondence: Ping Jiang,
| |
Collapse
|
21
|
Fu YS, Ho WY, Kang N, Tsai MJ, Wu J, Huang L, Weng CF. Pharmaceutical Prospects of Curcuminoids for the Remedy of COVID-19: Truth or Myth. Front Pharmacol 2022; 13:863082. [PMID: 35496320 PMCID: PMC9047796 DOI: 10.3389/fphar.2022.863082] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/01/2022] [Indexed: 01/09/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is a positive-strand RNA virus, and has rapidly spread worldwide as a pandemic. The vaccines, repurposed drugs, and specific treatments have led to a surge of novel therapies and guidelines nowadays; however, the epidemic of COVID-19 is not yet fully combated and is still in a vital crisis. In repositioning drugs, natural products are gaining attention because of the large therapeutic window and potent antiviral, immunomodulatory, anti-inflammatory, and antioxidant properties. Of note, the predominant curcumoid extracted from turmeric (Curcuma longa L.) including phenolic curcumin influences multiple signaling pathways and has demonstrated to possess anti-inflammatory, antioxidant, antimicrobial, hypoglycemic, wound healing, chemopreventive, chemosensitizing, and radiosensitizing spectrums. In this review, all pieces of current information related to curcumin-used for the treatment and prevention of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection through in vitro, in vivo, and in silico studies, clinical trials, and new formulation designs are retrieved to re-evaluate the applications based on the pharmaceutical efficacy of clinical therapy and to provide deep insights into knowledge and strategy about the curcumin's role as an immune booster, inflammatory modulator, and therapeutic agent against COVID-19. Moreover, this study will also afford a favorable application or approach with evidence based on the drug discovery and development, pharmacology, functional foods, and nutraceuticals for effectively fighting the COVID-19 pandemic.
Collapse
Affiliation(s)
- Yaw-Syan Fu
- Department of Basic Medical Science, Anatomy and Functional Physiology Section, Xiamen Medical College, Xiamen, China,Department of Basic Medical Science, Institute of Respiratory Disease, Xiamen Medical College, Xiamen, China
| | - Wan-Yi Ho
- Department of Anatomy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ning Kang
- Department of Otorhinolaryngology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - May-Jywan Tsai
- Department of Neurosurgery, Neurological Institute, Neurological Institute, Taipei, Taiwan
| | - Jingyi Wu
- Department of Basic Medical Science, Anatomy and Functional Physiology Section, Xiamen Medical College, Xiamen, China
| | - Liyue Huang
- Department of Basic Medical Science, Anatomy and Functional Physiology Section, Xiamen Medical College, Xiamen, China
| | - Ching-Feng Weng
- Department of Basic Medical Science, Anatomy and Functional Physiology Section, Xiamen Medical College, Xiamen, China,Department of Basic Medical Science, Institute of Respiratory Disease, Xiamen Medical College, Xiamen, China,*Correspondence: Ching-Feng Weng, ,
| |
Collapse
|
22
|
Konkolova E, Krejčová K, Eyer L, Hodek J, Zgarbová M, Fořtová A, Jirasek M, Teply F, Reyes-Gutierrez PE, Růžek D, Weber J, Boura E. A Helquat-like Compound as a Potent Inhibitor of Flaviviral and Coronaviral Polymerases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061894. [PMID: 35335258 PMCID: PMC8953834 DOI: 10.3390/molecules27061894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022]
Abstract
Positive-sense single-stranded RNA (+RNA) viruses have proven to be important pathogens that are able to threaten and deeply damage modern societies, as illustrated by the ongoing COVID-19 pandemic. Therefore, compounds active against most or many +RNA viruses are urgently needed. Here, we present PR673, a helquat-like compound that is able to inhibit the replication of SARS-CoV-2 and tick-borne encephalitis virus in cell culture. Using in vitro polymerase assays, we demonstrate that PR673 inhibits RNA synthesis by viral RNA-dependent RNA polymerases (RdRps). Our results illustrate that the development of broad-spectrum non-nucleoside inhibitors of RdRps is feasible.
Collapse
Affiliation(s)
- Eva Konkolova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague, Czech Republic; (E.K.); (K.K.); (J.H.); (M.Z.); (M.J.); (F.T.); (P.E.R.-G.); (J.W.)
| | - Kateřina Krejčová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague, Czech Republic; (E.K.); (K.K.); (J.H.); (M.Z.); (M.J.); (F.T.); (P.E.R.-G.); (J.W.)
| | - Luděk Eyer
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic; (L.E.); (A.F.); (D.R.)
| | - Jan Hodek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague, Czech Republic; (E.K.); (K.K.); (J.H.); (M.Z.); (M.J.); (F.T.); (P.E.R.-G.); (J.W.)
| | - Michala Zgarbová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague, Czech Republic; (E.K.); (K.K.); (J.H.); (M.Z.); (M.J.); (F.T.); (P.E.R.-G.); (J.W.)
| | - Andrea Fořtová
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic; (L.E.); (A.F.); (D.R.)
| | - Michael Jirasek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague, Czech Republic; (E.K.); (K.K.); (J.H.); (M.Z.); (M.J.); (F.T.); (P.E.R.-G.); (J.W.)
| | - Filip Teply
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague, Czech Republic; (E.K.); (K.K.); (J.H.); (M.Z.); (M.J.); (F.T.); (P.E.R.-G.); (J.W.)
| | - Paul E. Reyes-Gutierrez
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague, Czech Republic; (E.K.); (K.K.); (J.H.); (M.Z.); (M.J.); (F.T.); (P.E.R.-G.); (J.W.)
| | - Daniel Růžek
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic; (L.E.); (A.F.); (D.R.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 37005 Ceske Budejovice, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague, Czech Republic; (E.K.); (K.K.); (J.H.); (M.Z.); (M.J.); (F.T.); (P.E.R.-G.); (J.W.)
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague, Czech Republic; (E.K.); (K.K.); (J.H.); (M.Z.); (M.J.); (F.T.); (P.E.R.-G.); (J.W.)
- Correspondence:
| |
Collapse
|
23
|
Xue W, Ding C, Qian K, Liao Y. The Interplay Between Coronavirus and Type I IFN Response. Front Microbiol 2022; 12:805472. [PMID: 35317429 PMCID: PMC8934427 DOI: 10.3389/fmicb.2021.805472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022] Open
Abstract
In the past few decades, newly evolved coronaviruses have posed a global threat to public health and animal breeding. To control and prevent the coronavirus-related diseases, understanding the interaction of the coronavirus and the host immune system is the top priority. Coronaviruses have evolved multiple mechanisms to evade or antagonize the host immune response to ensure their replication. As the first line and main component of innate immune response, type I IFN response is able to restrict virus in the initial infection stage; it is thus not surprising that the primary aim of the virus is to evade or antagonize the IFN response. Gaining a profound understanding of the interaction between coronaviruses and type I IFN response will shed light on vaccine development and therapeutics. In this review, we provide an update on the current knowledge on strategies employed by coronaviruses to evade type I IFN response.
Collapse
Affiliation(s)
- Wenxiang Xue
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Kun Qian
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Ying Liao,
| |
Collapse
|
24
|
Bardiot D, Vangeel L, Koukni M, Arzel P, Zwaagstra M, Lyoo H, Wanningen P, Ahmad S, Zhang L, Sun X, Delpal A, Eydoux C, Guillemot JC, Lescrinier E, Klaassen H, Leyssen P, Jochmans D, Castermans K, Hilgenfeld R, Robinson C, Decroly E, Canard B, Snijder EJ, van Hemert MJ, van Kuppeveld F, Chaltin P, Neyts J, De Jonghe S, Marchand A. Synthesis, Structure–Activity Relationships, and Antiviral Profiling of 1-Heteroaryl-2-Alkoxyphenyl Analogs As Inhibitors of SARS-CoV-2 Replication. Molecules 2022; 27:molecules27031052. [PMID: 35164317 PMCID: PMC8840742 DOI: 10.3390/molecules27031052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, has led to a pandemic, that continues to be a huge public health burden. Despite the availability of vaccines, there is still a need for small-molecule antiviral drugs. In an effort to identify novel and drug-like hit matter that can be used for subsequent hit-to-lead optimization campaigns, we conducted a high-throughput screening of a 160 K compound library against SARS-CoV-2, yielding a 1-heteroaryl-2-alkoxyphenyl analog as a promising hit. Antiviral profiling revealed this compound was active against various beta-coronaviruses and preliminary mode-of-action experiments demonstrated that it interfered with viral entry. A systematic structure–activity relationship (SAR) study demonstrated that a 3- or 4-pyridyl moiety on the oxadiazole moiety is optimal, whereas the oxadiazole can be replaced by various other heteroaromatic cycles. In addition, the alkoxy group tolerates some structural diversity.
Collapse
Affiliation(s)
- Dorothée Bardiot
- Centre for Innovation and Stimulation of Drug Discovery (CISTIM), Gaston Geenslaan 2, 3001 Leuven, Belgium; (D.B.); (M.K.); (P.A.); (H.K.); (K.C.); (P.C.)
| | - Laura Vangeel
- Laboratory of Virology and Chemotherapy, KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Herestraat 49, 3000 Leuven, Belgium; (L.V.); (P.L.); (D.J.); (J.N.)
| | - Mohamed Koukni
- Centre for Innovation and Stimulation of Drug Discovery (CISTIM), Gaston Geenslaan 2, 3001 Leuven, Belgium; (D.B.); (M.K.); (P.A.); (H.K.); (K.C.); (P.C.)
| | - Philippe Arzel
- Centre for Innovation and Stimulation of Drug Discovery (CISTIM), Gaston Geenslaan 2, 3001 Leuven, Belgium; (D.B.); (M.K.); (P.A.); (H.K.); (K.C.); (P.C.)
| | - Marleen Zwaagstra
- Virology Section, Infectious Disease and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (M.Z.); (H.L.); (F.v.K.)
| | - Heyrhyoung Lyoo
- Virology Section, Infectious Disease and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (M.Z.); (H.L.); (F.v.K.)
| | - Patrick Wanningen
- Department of Medical Microbiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (P.W.); (E.J.S.); (M.J.v.H.)
| | - Shamshad Ahmad
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee DDI 5EH, UK; (S.A.); (C.R.)
| | - Linlin Zhang
- Institute of Molecular Medicine, University of Lübeck, 23562 Lübeck, Germany; (L.Z.); (X.S.); (R.H.)
| | - Xinyuanyuan Sun
- Institute of Molecular Medicine, University of Lübeck, 23562 Lübeck, Germany; (L.Z.); (X.S.); (R.H.)
| | - Adrien Delpal
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, CEDEX 9, 13288 Marseille, France; (A.D.); (C.E.); (J.-C.G.); (E.D.); (B.C.)
| | - Cecilia Eydoux
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, CEDEX 9, 13288 Marseille, France; (A.D.); (C.E.); (J.-C.G.); (E.D.); (B.C.)
| | - Jean-Claude Guillemot
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, CEDEX 9, 13288 Marseille, France; (A.D.); (C.E.); (J.-C.G.); (E.D.); (B.C.)
| | - Eveline Lescrinier
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;
| | - Hugo Klaassen
- Centre for Innovation and Stimulation of Drug Discovery (CISTIM), Gaston Geenslaan 2, 3001 Leuven, Belgium; (D.B.); (M.K.); (P.A.); (H.K.); (K.C.); (P.C.)
| | - Pieter Leyssen
- Laboratory of Virology and Chemotherapy, KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Herestraat 49, 3000 Leuven, Belgium; (L.V.); (P.L.); (D.J.); (J.N.)
| | - Dirk Jochmans
- Laboratory of Virology and Chemotherapy, KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Herestraat 49, 3000 Leuven, Belgium; (L.V.); (P.L.); (D.J.); (J.N.)
| | - Karolien Castermans
- Centre for Innovation and Stimulation of Drug Discovery (CISTIM), Gaston Geenslaan 2, 3001 Leuven, Belgium; (D.B.); (M.K.); (P.A.); (H.K.); (K.C.); (P.C.)
| | - Rolf Hilgenfeld
- Institute of Molecular Medicine, University of Lübeck, 23562 Lübeck, Germany; (L.Z.); (X.S.); (R.H.)
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, University of Lübeck, 23562 Lübeck, Germany
| | - Colin Robinson
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee DDI 5EH, UK; (S.A.); (C.R.)
| | - Etienne Decroly
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, CEDEX 9, 13288 Marseille, France; (A.D.); (C.E.); (J.-C.G.); (E.D.); (B.C.)
| | - Bruno Canard
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, CEDEX 9, 13288 Marseille, France; (A.D.); (C.E.); (J.-C.G.); (E.D.); (B.C.)
| | - Eric J. Snijder
- Department of Medical Microbiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (P.W.); (E.J.S.); (M.J.v.H.)
| | - Martijn J. van Hemert
- Department of Medical Microbiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (P.W.); (E.J.S.); (M.J.v.H.)
| | - Frank van Kuppeveld
- Virology Section, Infectious Disease and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (M.Z.); (H.L.); (F.v.K.)
| | - Patrick Chaltin
- Centre for Innovation and Stimulation of Drug Discovery (CISTIM), Gaston Geenslaan 2, 3001 Leuven, Belgium; (D.B.); (M.K.); (P.A.); (H.K.); (K.C.); (P.C.)
- Center for Drug Design and Development (CD3), KU Leuven R&D, Waaistraat 6, 3000 Leuven, Belgium
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Herestraat 49, 3000 Leuven, Belgium; (L.V.); (P.L.); (D.J.); (J.N.)
| | - Steven De Jonghe
- Laboratory of Virology and Chemotherapy, KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Herestraat 49, 3000 Leuven, Belgium; (L.V.); (P.L.); (D.J.); (J.N.)
- Correspondence: (S.D.J.); (A.M.)
| | - Arnaud Marchand
- Centre for Innovation and Stimulation of Drug Discovery (CISTIM), Gaston Geenslaan 2, 3001 Leuven, Belgium; (D.B.); (M.K.); (P.A.); (H.K.); (K.C.); (P.C.)
- Correspondence: (S.D.J.); (A.M.)
| |
Collapse
|
25
|
Yan W, Zheng Y, Zeng X, He B, Cheng W. Structural biology of SARS-CoV-2: open the door for novel therapies. Signal Transduct Target Ther 2022; 7:26. [PMID: 35087058 PMCID: PMC8793099 DOI: 10.1038/s41392-022-00884-5] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/08/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the causative agent of the pandemic disease COVID-19, which is so far without efficacious treatment. The discovery of therapy reagents for treating COVID-19 are urgently needed, and the structures of the potential drug-target proteins in the viral life cycle are particularly important. SARS-CoV-2, a member of the Orthocoronavirinae subfamily containing the largest RNA genome, encodes 29 proteins including nonstructural, structural and accessory proteins which are involved in viral adsorption, entry and uncoating, nucleic acid replication and transcription, assembly and release, etc. These proteins individually act as a partner of the replication machinery or involved in forming the complexes with host cellular factors to participate in the essential physiological activities. This review summarizes the representative structures and typically potential therapy agents that target SARS-CoV-2 or some critical proteins for viral pathogenesis, providing insights into the mechanisms underlying viral infection, prevention of infection, and treatment. Indeed, these studies open the door for COVID therapies, leading to ways to prevent and treat COVID-19, especially, treatment of the disease caused by the viral variants are imperative.
Collapse
Affiliation(s)
- Weizhu Yan
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Yanhui Zheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Xiaotao Zeng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Bin He
- Department of Emergency Medicine, West China Hospital of Sichuan University, 610041, Chengdu, China.
- The First People's Hospital of Longquanyi District Chengdu, 610100, Chengdu, China.
| | - Wei Cheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
26
|
Horrell S, Santoni G, Thorn A. Structural biology of SARS-CoV-2 endoribonuclease NendoU (nsp15). CRYSTALLOGR REV 2022. [DOI: 10.1080/0889311x.2022.2065270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | | | - Andrea Thorn
- Institut für Nanostruktur und Festkörperphysik, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
27
|
Hijikata A, Shionyu C, Nakae S, Shionyu M, Ota M, Kanaya S, Shirai T. Current status of structure-based drug repurposing against COVID-19 by targeting SARS-CoV-2 proteins. Biophys Physicobiol 2021; 18:226-240. [PMID: 34745807 PMCID: PMC8550875 DOI: 10.2142/biophysico.bppb-v18.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/30/2021] [Indexed: 01/31/2023] Open
Abstract
More than one and half years have passed, as of August 2021, since the COVID-19 caused by the novel coronavirus named SARS-CoV-2 emerged in 2019. While the recent success of vaccine developments likely reduces the severe cases, there is still a strong requirement of safety and effective therapeutic drugs for overcoming the unprecedented situation. Here we review the recent progress and the status of the drug discovery against COVID-19 with emphasizing a structure-based perspective. Structural data regarding the SARS-CoV-2 proteome has been rapidly accumulated in the Protein Data Bank, and up to 68% of the total amino acid residues encoded in the genome were covered by the structural data. Despite a global effort of in silico and in vitro screenings for drug repurposing, there is only a limited number of drugs had been successfully authorized by drug regulation organizations. Although many approved drugs and natural compounds, which exhibited antiviral activity in vitro, were considered potential drugs against COVID-19, a further multidisciplinary investigation is required for understanding the mechanisms underlying the antiviral effects of the drugs.
Collapse
Affiliation(s)
- Atsushi Hijikata
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Clara Shionyu
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Setsu Nakae
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Masafumi Shionyu
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Motonori Ota
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Shigehiko Kanaya
- Computational Biology Lab. Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Tsuyoshi Shirai
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| |
Collapse
|
28
|
Frazier MN, Dillard LB, Krahn JM, Perera L, Williams JG, Wilson IM, Stewart ZD, Pillon MC, Deterding LJ, Borgnia MJ, Stanley RE. Characterization of SARS2 Nsp15 nuclease activity reveals it's mad about U. Nucleic Acids Res 2021; 49:10136-10149. [PMID: 34403466 PMCID: PMC8385992 DOI: 10.1093/nar/gkab719] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Nsp15 is a uridine specific endoribonuclease that coronaviruses employ to cleave viral RNA and evade host immune defense systems. Previous structures of Nsp15 from across Coronaviridae revealed that Nsp15 assembles into a homo-hexamer and has a conserved active site similar to RNase A. Beyond a preference for cleaving RNA 3′ of uridines, it is unknown if Nsp15 has any additional substrate preferences. Here, we used cryo-EM to capture structures of Nsp15 bound to RNA in pre- and post-cleavage states. The structures along with molecular dynamics and biochemical assays revealed critical residues involved in substrate specificity, nuclease activity, and oligomerization. Moreover, we determined how the sequence of the RNA substrate dictates cleavage and found that outside of polyU tracts, Nsp15 has a strong preference for purines 3′ of the cleaved uridine. This work advances our understanding of how Nsp15 recognizes and processes viral RNA, and will aid in the development of new anti-viral therapeutics.
Collapse
Affiliation(s)
- Meredith N Frazier
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Lucas B Dillard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Juno M Krahn
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Jason G Williams
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Isha M Wilson
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Zachary D Stewart
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Monica C Pillon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Leesa J Deterding
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
29
|
Canal B, Fujisawa R, McClure AW, Deegan TD, Wu M, Ulferts R, Weissmann F, Drury LS, Bertolin AP, Zeng J, Beale R, Howell M, Labib K, Diffley JF. Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp15 endoribonuclease. Biochem J 2021; 478:2465-2479. [PMID: 34198324 PMCID: PMC8286823 DOI: 10.1042/bcj20210199] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 is responsible for COVID-19, a human disease that has caused over 2 million deaths, stretched health systems to near-breaking point and endangered economies of countries and families around the world. Antiviral treatments to combat COVID-19 are currently lacking. Remdesivir, the only antiviral drug approved for the treatment of COVID-19, can affect disease severity, but better treatments are needed. SARS-CoV-2 encodes 16 non-structural proteins (nsp) that possess different enzymatic activities with important roles in viral genome replication, transcription and host immune evasion. One key aspect of host immune evasion is performed by the uridine-directed endoribonuclease activity of nsp15. Here we describe the expression and purification of nsp15 recombinant protein. We have developed biochemical assays to follow its activity, and we have found evidence for allosteric behaviour. We screened a custom chemical library of over 5000 compounds to identify nsp15 endoribonuclease inhibitors, and we identified and validated NSC95397 as an inhibitor of nsp15 endoribonuclease in vitro. Although NSC95397 did not inhibit SARS-CoV-2 growth in VERO E6 cells, further studies will be required to determine the effect of nsp15 inhibition on host immune evasion.
Collapse
Affiliation(s)
- Berta Canal
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Ryo Fujisawa
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Allison W. McClure
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Tom D. Deegan
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Mary Wu
- High Throughput Screening, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Rachel Ulferts
- Cell Biology of Infection Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Florian Weissmann
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Lucy S. Drury
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Agustina P. Bertolin
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Jingkun Zeng
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Rupert Beale
- Cell Biology of Infection Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Michael Howell
- High Throughput Screening, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Karim Labib
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - John F.X. Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| |
Collapse
|
30
|
Canal B, McClure AW, Curran JF, Wu M, Ulferts R, Weissmann F, Zeng J, Bertolin AP, Milligan JC, Basu S, Drury LS, Deegan TD, Fujisawa R, Roberts EL, Basier C, Labib K, Beale R, Howell M, Diffley JF. Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp14/nsp10 exoribonuclease. Biochem J 2021; 478:2445-2464. [PMID: 34198326 PMCID: PMC8286829 DOI: 10.1042/bcj20210198] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 01/18/2023]
Abstract
SARS-CoV-2 is a coronavirus that emerged in 2019 and rapidly spread across the world causing a deadly pandemic with tremendous social and economic costs. Healthcare systems worldwide are under great pressure, and there is an urgent need for effective antiviral treatments. The only currently approved antiviral treatment for COVID-19 is remdesivir, an inhibitor of viral genome replication. SARS-CoV-2 proliferation relies on the enzymatic activities of the non-structural proteins (nsp), which makes them interesting targets for the development of new antiviral treatments. With the aim to identify novel SARS-CoV-2 antivirals, we have purified the exoribonuclease/methyltransferase (nsp14) and its cofactor (nsp10) and developed biochemical assays compatible with high-throughput approaches to screen for exoribonuclease inhibitors. We have screened a library of over 5000 commercial compounds and identified patulin and aurintricarboxylic acid (ATA) as inhibitors of nsp14 exoribonuclease in vitro. We found that patulin and ATA inhibit replication of SARS-CoV-2 in a VERO E6 cell-culture model. These two new antiviral compounds will be valuable tools for further coronavirus research as well as potentially contributing to new therapeutic opportunities for COVID-19.
Collapse
Affiliation(s)
- Berta Canal
- Chromosome Replication Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Allison W. McClure
- Chromosome Replication Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Joseph F. Curran
- Cell Cycle Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Mary Wu
- High Throughput Screening, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Rachel Ulferts
- Cell Biology of Infection Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Florian Weissmann
- Chromosome Replication Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Jingkun Zeng
- Chromosome Replication Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Agustina P. Bertolin
- Chromosome Replication Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Jennifer C. Milligan
- Chromosome Replication Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Souradeep Basu
- Cell Cycle Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Lucy S. Drury
- Chromosome Replication Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Tom D. Deegan
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Ryo Fujisawa
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Emma L. Roberts
- Cell Cycle Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Clovis Basier
- Cell Cycle Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Karim Labib
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Rupert Beale
- Cell Biology of Infection Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Michael Howell
- High Throughput Screening, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - John F.X. Diffley
- Chromosome Replication Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| |
Collapse
|
31
|
Basu S, Mak T, Ulferts R, Wu M, Deegan T, Fujisawa R, Tan KW, Lim CT, Basier C, Canal B, Curran JF, Drury LS, McClure AW, Roberts EL, Weissmann F, Zeisner TU, Beale R, Cowling VH, Howell M, Labib K, Diffley JFX. Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of Nsp14 RNA cap methyltransferase. Biochem J 2021; 478:2481-2497. [PMID: 34198328 PMCID: PMC8286817 DOI: 10.1042/bcj20210219] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic has presented itself as one of the most critical public health challenges of the century, with SARS-CoV-2 being the third member of the Coronaviridae family to cause a fatal disease in humans. There is currently only one antiviral compound, remdesivir, that can be used for the treatment of COVID-19. To identify additional potential therapeutics, we investigated the enzymatic proteins encoded in the SARS-CoV-2 genome. In this study, we focussed on the viral RNA cap methyltransferases, which play key roles in enabling viral protein translation and facilitating viral escape from the immune system. We expressed and purified both the guanine-N7 methyltransferase nsp14, and the nsp16 2'-O-methyltransferase with its activating cofactor, nsp10. We performed an in vitro high-throughput screen for inhibitors of nsp14 using a custom compound library of over 5000 pharmaceutical compounds that have previously been characterised in either clinical or basic research. We identified four compounds as potential inhibitors of nsp14, all of which also showed antiviral capacity in a cell-based model of SARS-CoV-2 infection. Three of the four compounds also exhibited synergistic effects on viral replication with remdesivir.
Collapse
Affiliation(s)
- Souradeep Basu
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Tiffany Mak
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Rachel Ulferts
- Cell Biology of Infection Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Mary Wu
- High Throughput Screening, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Tom Deegan
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Ryo Fujisawa
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Kang Wei Tan
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Chew Theng Lim
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Clovis Basier
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Berta Canal
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Joseph F Curran
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Lucy S Drury
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Allison W McClure
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Emma L Roberts
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Florian Weissmann
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Theresa U Zeisner
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Rupert Beale
- Cell Biology of Infection Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Victoria H Cowling
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Michael Howell
- High Throughput Screening, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Karim Labib
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - John F X Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| |
Collapse
|
32
|
Hay RT. An all-out assault on SARS-CoV-2 replication. Biochem J 2021; 478:2399-2403. [PMID: 34198321 PMCID: PMC8286832 DOI: 10.1042/bcj20210256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 01/18/2023]
Abstract
The coronavirus pandemic has had a huge impact on public health with over 165 million people infected, 3.4 million deaths and a hugely deleterious effect on most economies. While vaccination effectively protects against the disease it is likely that viruses will evolve that can replicate in hosts immunised with the present vaccines. Thus, there is a great unmet need for effective antivirals that can block the development of serious disease in infected patients. The seven papers published in this issue of the Biochemical Journal address this need by expressing and purifying components required for viral replication, developing biochemical assays for these components and using the assays to screen a library of pre-existing pharmaceuticals for drugs that inhibited the target in vitro and inhibited viral replication in cell culture. The candidate drugs obtained are potential antivirals that may protect against SARS-CoV-2 infection. While not all the antiviral candidates will make it through to the clinic, they will be useful tool compounds and can act as the starting point for further drug discovery programmes.
Collapse
Affiliation(s)
- Ronald T. Hay
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| |
Collapse
|
33
|
Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp12/7/8 RNA-dependent RNA polymerase. Biochem J 2021; 478:2425-2443. [PMID: 34198323 PMCID: PMC8286815 DOI: 10.1042/bcj20210200] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
The coronavirus disease 2019 (COVID-19) global pandemic has turned into the largest public health and economic crisis in recent history impacting virtually all sectors of society. There is a need for effective therapeutics to battle the ongoing pandemic. Repurposing existing drugs with known pharmacological safety profiles is a fast and cost-effective approach to identify novel treatments. The COVID-19 etiologic agent is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a single-stranded positive-sense RNA virus. Coronaviruses rely on the enzymatic activity of the replication–transcription complex (RTC) to multiply inside host cells. The RTC core catalytic component is the RNA-dependent RNA polymerase (RdRp) holoenzyme. The RdRp is one of the key druggable targets for CoVs due to its essential role in viral replication, high degree of sequence and structural conservation and the lack of homologues in human cells. Here, we have expressed, purified and biochemically characterised active SARS-CoV-2 RdRp complexes. We developed a novel fluorescence resonance energy transfer-based strand displacement assay for monitoring SARS-CoV-2 RdRp activity suitable for a high-throughput format. As part of a larger research project to identify inhibitors for all the enzymatic activities encoded by SARS-CoV-2, we used this assay to screen a custom chemical library of over 5000 approved and investigational compounds for novel SARS-CoV-2 RdRp inhibitors. We identified three novel compounds (GSK-650394, C646 and BH3I-1) and confirmed suramin and suramin-like compounds as in vitro SARS-CoV-2 RdRp activity inhibitors. We also characterised the antiviral efficacy of these drugs in cell-based assays that we developed to monitor SARS-CoV-2 growth.
Collapse
|
34
|
Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp13 helicase. Biochem J 2021; 478:2405-2423. [PMID: 34198322 PMCID: PMC8286831 DOI: 10.1042/bcj20210201] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global public health challenge. While the efficacy of vaccines against emerging and future virus variants remains unclear, there is a need for therapeutics. Repurposing existing drugs represents a promising and potentially rapid opportunity to find novel antivirals against SARS-CoV-2. The virus encodes at least nine enzymatic activities that are potential drug targets. Here, we have expressed, purified and developed enzymatic assays for SARS-CoV-2 nsp13 helicase, a viral replication protein that is essential for the coronavirus life cycle. We screened a custom chemical library of over 5000 previously characterized pharmaceuticals for nsp13 inhibitors using a fluorescence resonance energy transfer-based high-throughput screening approach. From this, we have identified FPA-124 and several suramin-related compounds as novel inhibitors of nsp13 helicase activity in vitro. We describe the efficacy of these drugs using assays we developed to monitor SARS-CoV-2 growth in Vero E6 cells.
Collapse
|