1
|
Ho WS, Yogarajah T, Mohameed JBH, Fong DY, Cheong DHJ, Wong YH, Chu JJH, Chai CLL. Mutagenesis-Guided Target Identification Reveals the Protein-Binding Domain of Nsp14 in Coronaviruses as the Target of a Labdane-Oxindole Compound. ACS Infect Dis 2025; 11:1153-1166. [PMID: 40207883 DOI: 10.1021/acsinfecdis.4c00965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The non-structural protein (nsp) 14 of coronaviruses plays an important role in maintaining the genomic stability of the virus during viral replication. This had garnered significant interest towards the identification and development of inhibitors against nsp14, specifically its exoribonuclease (ExoN) domain. However, no inhibitors have been successfully developed to date. The bioactivity of the nsp14-ExoN is governed through a complex formation with its co-factor nsp10. This provides opportunities to target the protein assembly as an antiviral modality. In this study, a labdane-oxindole compound (OX18) was identified as a promising new antiviral agent against coronaviruses. Through a combination of FRET- and BRET-based approaches, OX18 was found to target the nsp10-binding domain of nsp14. A key escape mutation to OX18 in nsp14 was also identified in our study, albeit compromising its exoribonuclease activity. To our knowledge, OX18 is the first small molecule to target the nsp14/10 protein assembly. As such, our work paves the way for the development of future inhibitors of the nsp14-ExoN with increased potency and complexity.
Collapse
Affiliation(s)
- Wei Shen Ho
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Thinesshwary Yogarajah
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, MD4 Level 5, 5 Science Drive 2, Singapore 117597, Singapore
| | - Jasmaadiyah Binte Habib Mohameed
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, MD4 Level 5, 5 Science Drive 2, Singapore 117597, Singapore
| | - Deborah Yuhui Fong
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, MD4 Level 5, 5 Science Drive 2, Singapore 117597, Singapore
| | - Dorothy Hui Juan Cheong
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, MD4 Level 5, 5 Science Drive 2, Singapore 117597, Singapore
- Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- NUSMed Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Yi Hao Wong
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, MD4 Level 5, 5 Science Drive 2, Singapore 117597, Singapore
- Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- NUSMed Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, MD4 Level 5, 5 Science Drive 2, Singapore 117597, Singapore
- Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- NUSMed Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos #06-05, Singapore 138673, Singapore
| | - Christina Li Lin Chai
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| |
Collapse
|
2
|
Tripathi DK, Naidu G, Nagar N, Pramanik SD, Roy P, Kumar D, Poluri KM. Deciphering the molecular interactions between monocyte chemoattractant protein and its potential inhibitor suramin. Int J Biol Macromol 2025; 307:141903. [PMID: 40064271 DOI: 10.1016/j.ijbiomac.2025.141903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
Chemokines, in coordination with glycosaminoglycans (GAGs) and G protein-coupled receptors (GPCRs), play a critical role in regulating inflammatory responses. Among these, monocyte chemoattractant protein-1, also known as CCL2 stands out for its role in coordinating with other immune molecules to direct macrophage migration, infiltration, and recruitment to inflamed tissues, highlighting this pathway as a promising target for therapeutic intervention. In the present study, suramin, a polysulfonated napthylurea compound, having structure similarity with heparin, initially developed therapeutic for treating Human African Trypanosomas [HAT] was analyzed for its repressive action against CCL2 arbitrated macrophage migration. The study delves into the binding interaction between suramin (SUR) and CCL2 monomer, elucidating the molecular and biophysical underpinnings of their interaction through various techniques, including isothermal calorimetry, fluorescence spectroscopy, fluorescence lifetime studies, CD spectroscopy, and 2D NMR spectroscopy. Additionally, in-silico mechanistic studies employing molecular dynamic simulations, MMPBSA, and decomposition analysis unravel the intricacies of CCL2-SUR interactions. The molecule is observed to be attenuating the migration of macrophages by interacting with nanomolar affinity (119 ± 11 nM) on the CCL2 with the region overlapping with the CCR2/GAG binding pocket. Thus, this study comprehensively identified suramin, as a possible GAG mimetic for scheming structure-based drug molecules exhibiting anti-inflammatory action by aiming the CCL2-CCR2-GAG axis.
Collapse
Affiliation(s)
- Deepak Kumar Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Goutami Naidu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Nupur Nagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Siddhartha Das Pramanik
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Dinesh Kumar
- Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS) Campus, Lucknow 226014, Uttar Pradesh, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
3
|
Lundrigan E, Uguccioni S, Hum C, Ahmed N, Pezacki JP. SARS-CoV-2 Nsp13 helicase modulates miR-146a-mediated signaling pathways. Virology 2025; 606:110493. [PMID: 40073498 DOI: 10.1016/j.virol.2025.110493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/18/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Despite the successful development of vaccines and antiviral therapeutics against SARS-CoV-2, its tendency to mutate rapidly has emphasized the need for continued research to better understand this virus's mechanism of pathogenesis and interactions with host signaling pathways. In this study, we sought to explore how the SARS-CoV-2 non-structural protein 13 (Nsp13) helicase, a highly conserved coronavirus protein that is essential for viral replication, influences host biological and cellular processes. Global transcriptomic analyses of Nsp13-transfected A549 cells identified changes in pathways involved in post-transcriptional gene silencing and translational repression by RNA, such as microRNAs (miRNAs). Upon further bioinformatic analyses, we identified miR-146a-mediated signaling pathways to be of interest as this miRNA has been previously linked to the regulation of host inflammation and innate immune responses. We found that miR-146a was induced in Nsp13-transfected cells and observed a corresponding decrease in the gene expression of two miR-146a targets, TRAF6 and IRAK1, which are important upstream regulators of NF-kB activation and IFN signaling. These results suggest that Nsp13-induced miR-146a signaling cascades, namely NF-kB activation and SMAD4 signaling, may provide valuable insight for the development of novel antiviral therapeutics against COVID-19 variants.
Collapse
Affiliation(s)
- Eryn Lundrigan
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Spencer Uguccioni
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Christine Hum
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Nadine Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada; University of California Santa Barbara, Santa Barbara, CA, 90117, USA.
| |
Collapse
|
4
|
Lundrigan E, Hum C, Ahmed N, Pezacki JP. Monitoring SARS-CoV-2 Nsp13 helicase binding activity using expanded genetic code techniques. RSC Chem Biol 2025:d4cb00230j. [PMID: 40309067 PMCID: PMC12038430 DOI: 10.1039/d4cb00230j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/18/2025] [Indexed: 05/02/2025] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) non-structural protein 13 (Nsp13) helicase is a multi-functional protein that can unwind dsDNA and dsRNA in an NTP-dependent manner. Given that this viral helicase is essential for viral replication and highly conserved among coronaviruses, a thorough understanding of the helicase's unwinding and binding activity may allow for the development of more effective pan-coronavirus therapeutics. Herein, we describe the use of genetic code expansion techniques to site-specifically incorporate the non-canonical amino acid (ncAA) p-azido-l-phenylalanine (AzF) into Nsp13 for fluorescent labelling of the enzyme with a conjugated Cy5 fluorophore. This Cy5-labelled Nsp13-AzF can then be used in Förster resonance energy transfer (FRET) experiments to investigate the dynamics of enzyme translocation on its substrate during binding and unwinding. Five sites (F81, F90, Y205, Y246, and Y253) were identified for AzF incorporation in Nsp13 and assessed for fluorescent labelling efficiency. The incorporation of AzF was confirmed to not interfere with the unwinding activity of the helicase. Subsequently, FRET-based binding assays were conducted to monitor the binding of Cy5-labelled Nsp13-AzF constructs to a series of fluorescently-labelled nucleic acid substrates in a distance-dependent manner. Overall, this approach not only allows for the direct monitoring of Nsp13's binding activity on its substrate, it may also introduce a novel method to screen for compounds that can inhibit this essential enzymatic activity during viral replication.
Collapse
Affiliation(s)
- Eryn Lundrigan
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Christine Hum
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Nadine Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
5
|
Chen Q, Yu M, Guo J, Qiu J, Liu F, Shan Y. Repurposing Vancomycin as a Potential Antiviral Agent Against PEDV via nsp13 Helicase Inhibition. Animals (Basel) 2025; 15:923. [PMID: 40218318 PMCID: PMC11987754 DOI: 10.3390/ani15070923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes a highly contagious intestinal disease with severe economic impacts on the global swine industry. The non-structural protein 13 (nsp13), a viral helicase, is essential for viral replication, making it a promising target for antiviral drug development. In this study, through virtual screening and molecular dynamics simulations, Vancomycin, a small-molecule drug also clinically used as an antibacterial agent, was identified to exhibit a stable binding affinity for PEDV nsp13. The NTPase and ATP-dependent RNA helicase activities of PEDV nsp13 were confirmed in vitro, and the optimal biochemical reaction conditions for its dsRNA unwinding activity were established. Further experiments demonstrated that Vancomycin effectively inhibited the dual enzymatic activities of PEDV nsp13 and reduced PEDV infections in vitro. This research highlights Vancomycin as a novel inhibitor of PEDV nsp13, providing valuable mechanistic insights and serving as a model for antiviral drug discovery. While this study suggests its potential for repurposing as a therapeutic agent against PEDV, further investigations are required to evaluate its feasibility in vivo, particularly in terms of safety, efficacy, and practical applicability.
Collapse
Affiliation(s)
- Qiao Chen
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China; (Q.C.); (M.Y.); (J.G.); (J.Q.)
- Single Molecule Biochemistry & Biomedicine Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, China
| | - Mengqi Yu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China; (Q.C.); (M.Y.); (J.G.); (J.Q.)
- Single Molecule Biochemistry & Biomedicine Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, China
| | - Jiajing Guo
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China; (Q.C.); (M.Y.); (J.G.); (J.Q.)
- Single Molecule Biochemistry & Biomedicine Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, China
| | - Jingqi Qiu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China; (Q.C.); (M.Y.); (J.G.); (J.Q.)
- Single Molecule Biochemistry & Biomedicine Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Liu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China; (Q.C.); (M.Y.); (J.G.); (J.Q.)
- Single Molecule Biochemistry & Biomedicine Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, China
| | - Yanke Shan
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China; (Q.C.); (M.Y.); (J.G.); (J.Q.)
- Single Molecule Biochemistry & Biomedicine Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Frick DN, Bavisotto RV, Hopper NC, Tysoe WT. Analogs of NIH Molecular Probe ML283 Are Potent SARS-CoV-2 Helicase Inhibitors. ACS Chem Biol 2025; 20:281-296. [PMID: 39910979 DOI: 10.1021/acschembio.4c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
The National Institutes of Health molecular probe ML283 was synthesized as a potent, selective inhibitor of the helicase encoded by the hepatitis C virus. Because modeling with AutoDock Vina predicted that ML283 might bind the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nonstructural protein 13 (nsp13) helicase, the effects of a collection of ML283 analogs and other hepatitis C virus (HCV) helicase inhibitors on the SARS-CoV-2 helicase were analyzed. Only modest impacts on nsp13-catalyzed ATP hydrolyses were observed with some compounds, most of which were analogs of the drug ebselen, not ML283. In contrast, a new molecular-beacon-based helicase assay revealed that ML283 and many ML283 analogs are potent SARS-CoV-2 helicase inhibitors. Analog potencies correlate with the binding energies predicted by modeling, which suggests that a pocket surrounded by the carboxy-terminal nsp13 RecA-like helicase motor domain might be exploitable for antiviral drug development.
Collapse
Affiliation(s)
- David N Frick
- Department of Chemistry & Biochemistry, The University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53217, United States
| | - Robert V Bavisotto
- Department of Chemistry & Biochemistry, The University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53217, United States
| | - Nicholas C Hopper
- Department of Chemistry & Biochemistry, The University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53217, United States
| | - Wilfred T Tysoe
- Department of Chemistry & Biochemistry, The University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53217, United States
| |
Collapse
|
7
|
Llanos S, Di Geronimo B, Casajús E, Blanco-Romero E, Fernández-Leiro R, Méndez J. Interference of small compounds and Mg 2+ with dsRNA-binding fluorophores compromises the identification of SARS-CoV-2 RdRp inhibitors. Sci Rep 2024; 14:28250. [PMID: 39548173 PMCID: PMC11568178 DOI: 10.1038/s41598-024-78354-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
The COVID-19 pandemic highlighted the need for the rapid development of antiviral therapies. Viral RNA-dependent RNA polymerases (RdRp) are promising targets, and numerous virtual screenings for potential inhibitors were conducted without validation of the identified hits. Here we have tested a set of presumed RdRp inhibitors in biochemical assays based on fluorometric detection of RdRp activity or on the electrophoretic separation or RdRp products. We find that fluorometric detection of RdRp activity is unreliable as a screening method because many small compounds interfere with fluorophore binding to dsRNA, and this effect is enhanced by the Mg2+ metal ions used by nucleic acid polymerases. The fact that fluorimetric detection of RdRp activity leads to false-positive hits underscores the requirement for independent validation methods. We also show that suramin, one of the proposed RdRp inhibitors that could be validated biochemically, is a multi-polymerase inhibitor. While this does not hinder its potential as an antiviral agent, it cannot be considered an specific inhibitor of SARS-CoV-2 RdRp.
Collapse
Affiliation(s)
- Susana Llanos
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 3 Melchor Fernandez Almagro, 28029, Madrid, Spain.
| | - Bruno Di Geronimo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA, 30332-0400, USA
| | - Ester Casajús
- Genome Integrity and Structural Biology Group, Structural Biology Programme, Spanish National Cancer Research Center (CNIO), 3 Melchor Fernandez Almagro, 28029, Madrid, Spain
| | - Elena Blanco-Romero
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 3 Melchor Fernandez Almagro, 28029, Madrid, Spain
- Genome Integrity and Structural Biology Group, Structural Biology Programme, Spanish National Cancer Research Center (CNIO), 3 Melchor Fernandez Almagro, 28029, Madrid, Spain
| | - Rafael Fernández-Leiro
- Genome Integrity and Structural Biology Group, Structural Biology Programme, Spanish National Cancer Research Center (CNIO), 3 Melchor Fernandez Almagro, 28029, Madrid, Spain
| | - Juan Méndez
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 3 Melchor Fernandez Almagro, 28029, Madrid, Spain.
| |
Collapse
|
8
|
Rahmani D, Jafari A, Kesharwani P, Sahebkar A. Molecular targets in SARS-CoV-2 infection: An update on repurposed drug candidates. Pathol Res Pract 2024; 263:155589. [PMID: 39276508 DOI: 10.1016/j.prp.2024.155589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
The 2019 widespread contagion of the human coronavirus novel type (SARS-CoV-2) led to a pandemic declaration by the World Health Organization. A daily increase in patient numbers has formed an urgent necessity to find suitable targets and treatment options for the novel coronavirus (COVID-19). Despite scientists' struggles to discover quick treatment solutions, few effective specific drugs are approved to control SARS-CoV-2 infections thoroughly. Drug repositioning or Drug repurposing and target-based approaches are promising strategies for facilitating the drug discovery process. Here, we review current in silico, in vitro, in vivo, and clinical updates regarding proposed drugs for prospective treatment options for COVID-19. Drug targets that can direct pharmaceutical sciences efforts to discover new drugs against SARS-CoV-2 are divided into two categories: Virus-based targets, for example, Spike glycoprotein and Nucleocapsid Protein, and host-based targets, for instance, inflammatory cytokines and cell receptors through which the virus infects the cell. A broad spectrum of drugs has been found to show anti-SARS-CoV-2 potential, including antiviral drugs and monoclonal antibodies, statins, anti-inflammatory agents, and herbal products.
Collapse
Affiliation(s)
- Dibachehr Rahmani
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Soper N, Yardumian I, Chen E, Yang C, Ciervo S, Oom AL, Desvignes L, Mulligan MJ, Zhang Y, Lupoli TJ. A Repurposed Drug Interferes with Nucleic Acid to Inhibit the Dual Activities of Coronavirus Nsp13. ACS Chem Biol 2024; 19:1593-1603. [PMID: 38980755 PMCID: PMC11267572 DOI: 10.1021/acschembio.4c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024]
Abstract
The recent pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlighted a critical need to discover more effective antivirals. While therapeutics for SARS-CoV-2 exist, its nonstructural protein 13 (Nsp13) remains a clinically untapped target. Nsp13 is a helicase responsible for unwinding double-stranded RNA during viral replication and is essential for propagation. Like other helicases, Nsp13 has two active sites: a nucleotide binding site that hydrolyzes nucleoside triphosphates (NTPs) and a nucleic acid binding channel that unwinds double-stranded RNA or DNA. Targeting viral helicases with small molecules, as well as the identification of ligand binding pockets, have been ongoing challenges, partly due to the flexible nature of these proteins. Here, we use a virtual screen to identify ligands of Nsp13 from a collection of clinically used drugs. We find that a known ion channel inhibitor, IOWH-032, inhibits the dual ATPase and helicase activities of SARS-CoV-2 Nsp13 at low micromolar concentrations. Kinetic and binding assays, along with computational and mutational analyses, indicate that IOWH-032 interacts with the RNA binding interface, leading to displacement of nucleic acid substrate, but not bound ATP. Evaluation of IOWH-032 with microbial helicases from other superfamilies reveals that it is selective for coronavirus Nsp13. Furthermore, it remains active against mutants representative of observed SARS-CoV-2 variants. Overall, this work provides a new inhibitor for Nsp13 and provides a rationale for a recent observation that IOWH-032 lowers SARS-CoV-2 viral loads in human cells, setting the stage for the discovery of other potent viral helicase modulators.
Collapse
Affiliation(s)
- Nathan Soper
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Isabelle Yardumian
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Eric Chen
- Department
of Chemistry, New York University, New York, New York 10003, United States
- Simons
Center for Computational Physical Chemistry at New York University, New York, New York 10003, United States
| | - Chao Yang
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Samantha Ciervo
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Aaron L. Oom
- NYU
Langone Vaccine Center, Department of Medicine, New York University Grossman School of Medicine, New York, New York 10016, United States
| | - Ludovic Desvignes
- NYU
Langone Vaccine Center, Department of Medicine, New York University Grossman School of Medicine, New York, New York 10016, United States
- High
Containment Laboratories, Office of Science and Research, NYU Langone Health, New York, New York 10016, United States
| | - Mark J. Mulligan
- NYU
Langone Vaccine Center, Department of Medicine, New York University Grossman School of Medicine, New York, New York 10016, United States
| | - Yingkai Zhang
- Department
of Chemistry, New York University, New York, New York 10003, United States
- Simons
Center for Computational Physical Chemistry at New York University, New York, New York 10003, United States
| | - Tania J. Lupoli
- Department
of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
10
|
Wei X, Chan CL, Zhou Y, Tang K, Chen J, Wang S, Chan JFW, Yuan S, Li H, Sun H. Mechanistic insights into bismuth(iii) inhibition of SARS-CoV-2 helicase. Chem Sci 2024; 15:10065-10072. [PMID: 38966375 PMCID: PMC11220592 DOI: 10.1039/d3sc06961c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/03/2024] [Indexed: 07/06/2024] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 resulted in a global public health crisis. In addition to vaccines, the development of effective therapy is highly desirable. Targeting a protein that plays a critical role in virus replication may allow pan-spectrum antiviral drugs to be developed. Among SARS-CoV-2 proteins, helicase (i.e., non-structural protein 13) is considered as a promising antiviral drug target due to its highly conserved sequence, unique structure and function. Herein, we demonstrate SARS-CoV-2 helicase as a target of bismuth-based antivirals in virus-infected mammalian cells by a metal-tagged antibody approach. To search for more potent bismuth-based antivirals, we further screened a panel of bismuth compounds towards inhibition of ATPase and DNA unwinding activity of nsp13 and identified a highly potent bismuth compound Bi(5-aminotropolonate)3, namely Bi(Tro-NH2)3 with an IC50 of 30 nM for ATPase. We show that bismuth-based compounds inhibited nsp13 unwinding activity via disrupting the binding of ATP and the DNA substrate to viral helicase. Binding of Bi(iii) to nsp13 also abolished the interaction between nsp12 and nsp13 as evidenced by immunofluorescence and co-immunoprecipitation assays. Finally, we validate our in vitro data in SARS-CoV-2 infected mammalian cells. Notably, Bi(6-TG)3 exhibited an EC50 of 1.18 ± 0.09 μM with a selective index of 847 in VeroE6-TMPRSS2 infected cells. This study highlights the important role of helicase for the development of more effective antiviral drugs to combat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xueying Wei
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Heath and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
- Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Chun-Lung Chan
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Heath and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Ying Zhou
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Heath and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Kaiming Tang
- Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Jingxin Chen
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Heath and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Suyu Wang
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Heath and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Jasper Fuk-Woo Chan
- Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Shuofeng Yuan
- Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Hongyan Li
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Heath and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Hongzhe Sun
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Heath and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| |
Collapse
|
11
|
Chan JFW, Yuan S, Chu H, Sridhar S, Yuen KY. COVID-19 drug discovery and treatment options. Nat Rev Microbiol 2024; 22:391-407. [PMID: 38622352 DOI: 10.1038/s41579-024-01036-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 04/17/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused substantial morbidity and mortality, and serious social and economic disruptions worldwide. Unvaccinated or incompletely vaccinated older individuals with underlying diseases are especially prone to severe disease. In patients with non-fatal disease, long COVID affecting multiple body systems may persist for months. Unlike SARS-CoV and Middle East respiratory syndrome coronavirus, which have either been mitigated or remained geographically restricted, SARS-CoV-2 has disseminated globally and is likely to continue circulating in humans with possible emergence of new variants that may render vaccines less effective. Thus, safe, effective and readily available COVID-19 therapeutics are urgently needed. In this Review, we summarize the major drug discovery approaches, preclinical antiviral evaluation models, representative virus-targeting and host-targeting therapeutic options, and key therapeutics currently in clinical use for COVID-19. Preparedness against future coronavirus pandemics relies not only on effective vaccines but also on broad-spectrum antivirals targeting conserved viral components or universal host targets, and new therapeutics that can precisely modulate the immune response during infection.
Collapse
Affiliation(s)
- Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China
| | - Siddharth Sridhar
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China.
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China.
| |
Collapse
|
12
|
Zhang C, Yu J, Deng M, Zhang Q, Jin F, Chen L, Li Y, He B. Development of a Fluorescent Assay and Imidazole-Containing Inhibitors by Targeting SARS-CoV-2 Nsp13 Helicase. Molecules 2024; 29:2301. [PMID: 38792162 PMCID: PMC11124022 DOI: 10.3390/molecules29102301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Nsp13, a non-structural protein belonging to the coronavirus family 1B (SF1B) helicase, exhibits 5'-3' polarity-dependent DNA or RNA unwinding using NTPs. Crucially, it serves as a key component of the viral replication-transcription complex (RTC), playing an indispensable role in the coronavirus life cycle and thereby making it a promising target for broad-spectrum antiviral therapies. The imidazole scaffold, known for its antiviral potential, has been proposed as a potential scaffold. In this study, a fluorescence-based assay was designed by labeling dsDNA substrates with a commercial fluorophore and monitoring signal changes upon Nsp13 helicase activity. Optimization and high-throughput screening validated the feasibility of this approach. In accordance with the structural characteristics of ADP, we employed a structural-based design strategy to synthesize three classes of imidazole-based compounds through substitution reaction. Through in vitro activity research, pharmacokinetic parameter analysis, and molecular docking simulation, we identified compounds A16 (IC50 = 1.25 μM) and B3 (IC50 = 0.98 μM) as potential lead antiviral compounds for further targeted drug research.
Collapse
Affiliation(s)
- Chuang Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Junhui Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Mingzhenlong Deng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Qingqing Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Fei Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Yan Li
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
13
|
Kuzikov M, Reinshagen J, Wycisk K, Corona A, Esposito F, Malune P, Manelfi C, Iaconis D, Beccari A, Tramontano E, Nowotny M, Windshügel B, Gribbon P, Zaliani A. Drug repurposing screen to identify inhibitors of the RNA polymerase (nsp12) and helicase (nsp13) from SARS-CoV-2 replication and transcription complex. Virus Res 2024; 343:199356. [PMID: 38490582 PMCID: PMC10958470 DOI: 10.1016/j.virusres.2024.199356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 03/17/2024]
Abstract
Coronaviruses contain one of the largest genomes among the RNA viruses, coding for 14-16 non-structural proteins (nsp) that are involved in proteolytic processing, genome replication and transcription, and four structural proteins that build the core of the mature virion. Due to conservation across coronaviruses, nsps form a group of promising drug targets as their inhibition directly affects viral replication and, therefore, progression of infection. A minimal but fully functional replication and transcription complex was shown to be formed by one RNA-dependent RNA polymerase (nsp12), one nsp7, two nsp8 accessory subunits, and two helicase (nsp13) enzymes. Our approach involved, targeting nsp12 and nsp13 to allow multiple starting point to interfere with virus infection progression. Here we report a combined in-vitro repurposing screening approach, identifying new and confirming reported SARS-CoV-2 nsp12 and nsp13 inhibitors.
Collapse
Affiliation(s)
- Maria Kuzikov
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP) and Fraunhofer Cluster of Excellence for Immune mediated diseases (CIMD), Schnackenburgallee 114, 22525 Hamburg, and Theodor Stern Kai 7, 60590 Frankfurt, Germany; Constructor University, School of Science, Campus Ring 1, 28759 Bremen, Germany.
| | - Jeanette Reinshagen
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP) and Fraunhofer Cluster of Excellence for Immune mediated diseases (CIMD), Schnackenburgallee 114, 22525 Hamburg, and Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Krzysztof Wycisk
- Laboratory of Protein Structure - International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | - Angela Corona
- Dipartimento di Scienze della vita e dell'ambiente, Cittadella Universitaria di Monserrato, SS-554, Monserrato, Cagliari, Italy
| | - Francesca Esposito
- Dipartimento di Scienze della vita e dell'ambiente, Cittadella Universitaria di Monserrato, SS-554, Monserrato, Cagliari, Italy
| | - Paolo Malune
- Dipartimento di Scienze della vita e dell'ambiente, Cittadella Universitaria di Monserrato, SS-554, Monserrato, Cagliari, Italy
| | - Candida Manelfi
- EXSCALATE, Dompé farmaceutici S.p.A., Via Tommaso De Amicis, 95, Napoli, 80131, Italy
| | - Daniela Iaconis
- EXSCALATE, Dompé farmaceutici S.p.A., Via Tommaso De Amicis, 95, Napoli, 80131, Italy
| | - Andrea Beccari
- EXSCALATE, Dompé farmaceutici S.p.A., Via Tommaso De Amicis, 95, Napoli, 80131, Italy
| | - Enzo Tramontano
- Dipartimento di Scienze della vita e dell'ambiente, Cittadella Universitaria di Monserrato, SS-554, Monserrato, Cagliari, Italy
| | - Marcin Nowotny
- Laboratory of Protein Structure - International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | - Björn Windshügel
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP) and Fraunhofer Cluster of Excellence for Immune mediated diseases (CIMD), Schnackenburgallee 114, 22525 Hamburg, and Theodor Stern Kai 7, 60590 Frankfurt, Germany; Constructor University, School of Science, Campus Ring 1, 28759 Bremen, Germany
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP) and Fraunhofer Cluster of Excellence for Immune mediated diseases (CIMD), Schnackenburgallee 114, 22525 Hamburg, and Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Andrea Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP) and Fraunhofer Cluster of Excellence for Immune mediated diseases (CIMD), Schnackenburgallee 114, 22525 Hamburg, and Theodor Stern Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
14
|
Inniss NL, Rzhetskaya M, Ling-Hu T, Lorenzo-Redondo R, Bachta KE, Satchell KJF, Hultquist JF. Activity and inhibition of the SARS-CoV-2 Omicron nsp13 R392C variant using RNA duplex unwinding assays. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100145. [PMID: 38301954 PMCID: PMC11160173 DOI: 10.1016/j.slasd.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
SARS-CoV-2 nsp13 helicase is an essential enzyme for viral replication and a promising target for antiviral drug development. This study compares the double-stranded RNA (dsRNA) unwinding activity of nsp13 and the Omicron nsp13R392C variant, which is predominant in currently circulating lineages. Using in vitro gel- and fluorescence-based assays, we found that both nsp13 and nsp13R392C have dsRNA unwinding activity with equivalent kinetics. Furthermore, the R392C mutation had no effect on the efficiency of the nsp13-specific helicase inhibitor SSYA10-001. We additionally confirmed the activity of several other helicase inhibitors against nsp13, including punicalagin that inhibited dsRNA unwinding at nanomolar concentrations. Overall, this study reveals the utility of using dsRNA unwinding assays to screen small molecules for antiviral activity against nsp13 and the Omicron nsp13R392C variant. Continual monitoring of newly emergent variants will be essential for considering resistance profiles of lead compounds as they are advanced towards next-generation therapeutic development.
Collapse
Affiliation(s)
- Nicole L Inniss
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Margarita Rzhetskaya
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Ted Ling-Hu
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Ramon Lorenzo-Redondo
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Kelly E Bachta
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA.
| | - Judd F Hultquist
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA.
| |
Collapse
|
15
|
Utgés JS, MacGowan SA, Ives CM, Barton GJ. Classification of likely functional class for ligand binding sites identified from fragment screening. Commun Biol 2024; 7:320. [PMID: 38480979 PMCID: PMC10937669 DOI: 10.1038/s42003-024-05970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
Fragment screening is used to identify binding sites and leads in drug discovery, but it is often unclear which binding sites are functionally important. Here, data from 37 experiments, and 1309 protein structures binding to 1601 ligands were analysed. A method to group ligands by binding sites is introduced and sites clustered according to profiles of relative solvent accessibility. This identified 293 unique ligand binding sites, grouped into four clusters (C1-4). C1 includes larger, buried, conserved, and population missense-depleted sites, enriched in known functional sites. C4 comprises smaller, accessible, divergent, missense-enriched sites, depleted in functional sites. A site in C1 is 28 times more likely to be functional than one in C4. Seventeen sites, which to the best of our knowledge are novel, in 13 proteins are identified as likely to be functionally important with examples from human tenascin and 5-aminolevulinate synthase highlighted. A multi-layer perceptron, and K-nearest neighbours model are presented to predict cluster labels for ligand binding sites with an accuracy of 96% and 100%, respectively, so allowing functional classification of sites for proteins not in this set. Our findings will be of interest to those studying protein-ligand interactions and developing new drugs or function modulators.
Collapse
Affiliation(s)
- Javier S Utgés
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Stuart A MacGowan
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Callum M Ives
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
- Department of Chemistry and Hamilton Institute, Maynooth University, Maynooth, Ireland
| | - Geoffrey J Barton
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, UK.
| |
Collapse
|
16
|
Deng M, Zhang C, Yan W, Chen L, He B, Li Y. Development of Fluorescence-Based Assays for Key Viral Proteins in the SARS-CoV-2 Infection Process and Lifecycle. Int J Mol Sci 2024; 25:2850. [PMID: 38474097 DOI: 10.3390/ijms25052850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/09/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Since the appearance of SARS-CoV-2 in 2019, the ensuing COVID-19 (Corona Virus Disease 2019) pandemic has posed a significant threat to the global public health system, human health, life, and economic well-being. Researchers worldwide have devoted considerable efforts to curb its spread and development. The latest studies have identified five viral proteins, spike protein (Spike), viral main protease (3CLpro), papain-like protease (PLpro), RNA-dependent RNA polymerase (RdRp), and viral helicase (Helicase), which play crucial roles in the invasion of SARS-CoV-2 into the human body and its lifecycle. The development of novel anti-SARS-CoV-2 drugs targeting these five viral proteins holds immense promise. Therefore, the development of efficient, high-throughput screening methodologies specifically designed for these viral proteins is of utmost importance. Currently, a plethora of screening techniques exists, with fluorescence-based assays emerging as predominant contenders. In this review, we elucidate the foundational principles and methodologies underpinning fluorescence-based screening approaches directed at these pivotal viral targets, hoping to guide researchers in the judicious selection and refinement of screening strategies, thereby facilitating the discovery and development of lead compounds for anti-SARS-CoV-2 pharmaceuticals.
Collapse
Affiliation(s)
- Mingzhenlong Deng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Chuang Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Wanli Yan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Yan Li
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
17
|
Li W, Ding T, Chang H, Peng Y, Li J, Liang X, Ma H, Li F, Ren M, Wang W. Plant-derived strategies to fight against severe acute respiratory syndrome coronavirus 2. Eur J Med Chem 2024; 264:116000. [PMID: 38056300 DOI: 10.1016/j.ejmech.2023.116000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused an unprecedented crisis, which has been exacerbated because specific drugs and treatments have not yet been developed. In the post-pandemic era, humans and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) will remain in equilibrium for a long time. Therefore, we still need to be vigilant against mutated SARS-CoV-2 variants and other emerging human viruses. Plant-derived products are increasingly important in the fight against the pandemic, but a comprehensive review is lacking. This review describes plant-based strategies centered on key biological processes, such as SARS-CoV-2 transmission, entry, replication, and immune interference. We highlight the mechanisms and effects of these plant-derived products and their feasibility and limitations for the treatment and prevention of COVID-19. The development of emerging technologies is driving plants to become production platforms for various antiviral products, improving their medicinal potential. We believe that plant-based strategies will be an important part of the solutions for future pandemics.
Collapse
Affiliation(s)
- Wenkang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Tianze Ding
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Huimin Chang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yuanchang Peng
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jun Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xin Liang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572000, China
| | - Huixin Ma
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fuguang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572000, China
| | - Maozhi Ren
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610000, China
| | - Wenjing Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572000, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572000, China.
| |
Collapse
|
18
|
Ramsey JR, Shelton PM, Heiss TK, Olinares PDB, Vostal LE, Soileau H, Grasso M, Casebeer SW, Adaniya S, Miller M, Sun S, Huggins DJ, Myers RW, Chait BT, Vinogradova EV, Kapoor TM. Using a Function-First "Scout Fragment"-Based Approach to Develop Allosteric Covalent Inhibitors of Conformationally Dynamic Helicase Mechanoenzymes. J Am Chem Soc 2024; 146:62-67. [PMID: 38134034 PMCID: PMC10958666 DOI: 10.1021/jacs.3c10581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Helicases, classified into six superfamilies, are mechanoenzymes that utilize energy derived from ATP hydrolysis to remodel DNA and RNA substrates. These enzymes have key roles in diverse cellular processes, such as translation, ribosome assembly, and genome maintenance. Helicases with essential functions in certain cancer cells have been identified, and helicases expressed by many viruses are required for their pathogenicity. Therefore, helicases are important targets for chemical probes and therapeutics. However, it has been very challenging to develop chemical inhibitors for helicases, enzymes with high conformational dynamics. We envisioned that electrophilic "scout fragments", which have been used in chemical proteomic studies, could be leveraged to develop covalent inhibitors of helicases. We adopted a function-first approach, combining enzymatic assays with enantiomeric probe pairs and mass spectrometry, to develop a covalent inhibitor that selectively targets an allosteric site in SARS-CoV-2 nsp13, a superfamily-1 helicase. Further, we demonstrate that scout fragments inhibit the activity of two human superfamily-2 helicases, BLM and WRN, involved in genome maintenance. Together, our findings suggest an approach to discover covalent inhibitor starting points and druggable allosteric sites in conformationally dynamic mechanoenzymes.
Collapse
Affiliation(s)
- Jared R. Ramsey
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10021, United States
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, United States
| | - Patrick M.M Shelton
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, United States
| | - Tyler K. Heiss
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, United States
| | - Paul Dominic B. Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, United States
| | - Lauren E. Vostal
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10021, United States
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, United States
| | - Heather Soileau
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10021, United States
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, United States
| | - Michael Grasso
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, United States
| | - Sara W. Casebeer
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, United States
| | - Stephanie Adaniya
- Laboratory of Chemical Immunology and Proteomics, The Rockefeller University, New York, NY 10065, United States
| | - Michael Miller
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, NY 10065, United States
| | - Shan Sun
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, NY 10065, United States
| | - David J. Huggins
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, NY 10065, United States
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, United States
| | - Robert W. Myers
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, NY 10065, United States
| | - Brian T. Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, United States
| | - Ekaterina V. Vinogradova
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10021, United States
- Laboratory of Chemical Immunology and Proteomics, The Rockefeller University, New York, NY 10065, United States
| | - Tarun M. Kapoor
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10021, United States
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, United States
| |
Collapse
|
19
|
Raubenolt B, Blankenberg D. Generalized open-source workflows for atomistic molecular dynamics simulations of viral helicases. Gigascience 2024; 13:giae026. [PMID: 38869150 PMCID: PMC11170216 DOI: 10.1093/gigascience/giae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 06/14/2024] Open
Abstract
Viral helicases are promising targets for the development of antiviral therapies. Given their vital function of unwinding double-stranded nucleic acids, inhibiting them blocks the viral replication cycle. Previous studies have elucidated key structural details of these helicases, including the location of substrate binding sites, flexible domains, and the discovery of potential inhibitors. Here we present a series of new Galaxy tools and workflows for performing and analyzing molecular dynamics simulations of viral helicases. We first validate them by demonstrating recapitulation of data from previous simulations of Zika (NS3) and SARS-CoV-2 (NSP13) helicases in apo and complex with inhibitors. We further demonstrate the utility and generalizability of these Galaxy workflows by applying them to new cases, proving their usefulness as a widely accessible method for exploring antiviral activity.
Collapse
Affiliation(s)
- Bryan Raubenolt
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniel Blankenberg
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Computational Life Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
20
|
Albisetti A, Hälg S, Zoltner M, Mäser P, Wiedemar N. Suramin action in African trypanosomes involves a RuvB-like DNA helicase. Int J Parasitol Drugs Drug Resist 2023; 23:44-53. [PMID: 37757728 PMCID: PMC10520940 DOI: 10.1016/j.ijpddr.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Suramin is one of the oldest drugs in use today. It is still the treatment of choice for the hemolymphatic stage of African sleeping sickness caused by Trypanosoma brucei rhodesiense, and it is also used for surra in camels caused by Trypanosoma evansi. Yet despite one hundred years of use, suramin's mode of action is not fully understood. Suramin is a polypharmacological molecule that inhibits diverse proteins. Here we demonstrate that a DNA helicase of the pontin/ruvB-like 1 family, termed T. brucei RuvBL1, is involved in suramin resistance in African trypanosomes. Bloodstream-form T. b. rhodesiense under long-term selection for suramin resistance acquired a homozygous point mutation, isoleucine-312 to valine, close to the ATP binding site of T. brucei RuvBL1. The introduction of this missense mutation, by reverse genetics, into drug-sensitive trypanosomes significantly decreased their sensitivity to suramin. Intriguingly, the corresponding residue of T. evansi RuvBL1 was found mutated in a suramin-resistant field isolate, in that case to a leucine. RuvBL1 (Tb927.4.1270) is predicted to build a heterohexameric complex with RuvBL2 (Tb927.4.2000). RNAi-mediated silencing of gene expression of either T. brucei RuvBL1 or RuvBL2 caused cell death within 72 h. At 36 h after induction of RNAi, bloodstream-form trypanosomes exhibited a cytokinesis defect resulting in the accumulation of cells with two nuclei and two or more kinetoplasts. Taken together, these data indicate that RuvBL1 DNA helicase is involved in suramin action in African trypanosomes.
Collapse
Affiliation(s)
- Anna Albisetti
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland; University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Silvan Hälg
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland; University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Martin Zoltner
- Department of Parasitology, Faculty of Science, Charles University in Prague, Biocev, Vestec, Czech Republic
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland; University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Natalie Wiedemar
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland; University of Basel, Petersplatz 1, 4001, Basel, Switzerland.
| |
Collapse
|
21
|
Boniardi I, Corona A, Basquin J, Basquin C, Milia J, Nagy I, Tramontano E, Zinzula L. Suramin inhibits SARS-CoV-2 nucleocapsid phosphoprotein genome packaging function. Virus Res 2023; 336:199221. [PMID: 37704176 PMCID: PMC10514558 DOI: 10.1016/j.virusres.2023.199221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is fading, however its etiologic agent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues posing - despite the availability of licensed vaccines - a global health threat, due to the potential emergence of vaccine-resistant SARS-CoV-2 variants. This makes the development of new drugs against COVID-19 a persistent urgency and sets as research priority the validation of novel therapeutic targets within the SARS-CoV-2 proteome. Among these, a promising one is the SARS-CoV-2 nucleocapsid (N) phosphoprotein, a major structural component of the virion with indispensable role in packaging the viral genome into a ribonucleoprotein (RNP) complex, which also contributes to SARS-CoV-2 innate immune evasion by inhibiting the host cell type-I interferon (IFN-I) response. By combining miniaturized differential scanning fluorimetry with microscale thermophoresis, we found that the 100-year-old drug Suramin interacts with SARS-CoV-2 N-terminal domain (NTD) and C-terminal domain (CTD), thereby inhibiting their single-stranded RNA (ssRNA) binding function with low-micromolar Kd and IC50 values. Molecular docking suggests that Suramin interacts with basic NTD cleft and CTD dimer interface groove, highlighting three potentially druggable ssRNA binding sites. Electron microscopy shows that Suramin inhibits the formation in vitro of RNP complex-like condensates by SARS-CoV-2 N with a synthetic ssRNA. In a dose-dependent manner, Suramin also reduced SARS-CoV-2-induced cytopathic effect on Vero E6 and Calu-3 cells, partially reverting the SARS-CoV-2 N-inhibited IFN-I production in 293T cells. Our findings indicate that Suramin inhibits SARS-CoV-2 replication by hampering viral genome packaging, thereby representing a starting model for design of new COVID-19 antivirals.
Collapse
Affiliation(s)
- Irene Boniardi
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato 09042, Italy
| | - Jerome Basquin
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Claire Basquin
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Jessica Milia
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato 09042, Italy
| | - István Nagy
- Center of Research and Development, Eszterházy Károly Catholic University, Eger 3300, Hungary
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato 09042, Italy.
| | - Luca Zinzula
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany.
| |
Collapse
|
22
|
Ramsey JR, Shelton PMM, Heiss TK, Olinares PDB, Vostal LE, Soileau H, Grasso M, Warrington S, Adaniya S, Miller M, Sun S, Huggins DJ, Myers RW, Chait BT, Vinogradova EV, Kapoor TM. Using a function-first 'scout fragment'-based approach to develop allosteric covalent inhibitors of conformationally dynamic helicase mechanoenzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559391. [PMID: 37808863 PMCID: PMC10557574 DOI: 10.1101/2023.09.25.559391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Helicases, classified into six superfamilies, are mechanoenzymes that utilize energy derived from ATP hydrolysis to remodel DNA and RNA substrates. These enzymes have key roles in diverse cellular processes, such as genome replication and maintenance, ribosome assembly and translation. Helicases with essential functions only in certain cancer cells have been identified and helicases expressed by certain viruses are required for their pathogenicity. As a result, helicases are important targets for chemical probes and therapeutics. However, it has been very challenging to develop selective chemical inhibitors for helicases, enzymes with highly dynamic conformations. We envisioned that electrophilic 'scout fragments', which have been used for chemical proteomic based profiling, could be leveraged to develop covalent inhibitors of helicases. We adopted a function-first approach, combining enzymatic assays with enantiomeric probe pairs and mass spectrometry, to develop a covalent inhibitor that selectively targets an allosteric site in SARS-CoV-2 nsp13, a superfamily-1 helicase. Further, we demonstrate that scout fragments inhibit the activity of two human superfamily-2 helicases, BLM and WRN, involved in genome maintenance. Together, our findings suggest a covalent inhibitor discovery approach to target helicases and potentially other conformationally dynamic mechanoenzymes.
Collapse
|
23
|
Corona A, Madia VN, De Santis R, Manelfi C, Emmolo R, Ialongo D, Patacchini E, Messore A, Amatore D, Faggioni G, Artico M, Iaconis D, Talarico C, Di Santo R, Lista F, Costi R, Tramontano E. Diketo acid inhibitors of nsp13 of SARS-CoV-2 block viral replication. Antiviral Res 2023; 217:105697. [PMID: 37562607 DOI: 10.1016/j.antiviral.2023.105697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
For RNA viruses, RNA helicases have long been recognized to play critical roles during virus replication cycles, facilitating proper folding and replication of viral RNAs, therefore representing an ideal target for drug discovery. SARS-CoV-2 helicase, the non-structural protein 13 (nsp13) is a highly conserved protein among all known coronaviruses, and, at the moment, is one of the most explored viral targets to identify new possible antiviral agents. In the present study, we present six diketo acids (DKAs) as nsp13 inhibitors able to block both SARS-CoV-2 nsp13 enzymatic functions. Among them four compounds were able to inhibit viral replication in the low micromolar range, being active also on other human coronaviruses such as HCoV229E and MERS CoV. The experimental investigation of the binding mode revealed ATP-non-competitive kinetics of inhibition, not affected by substrate-displacement effect, suggesting an allosteric binding mode that was further supported by molecular modelling calculations predicting the binding into an allosteric conserved site located in the RecA2 domain.
Collapse
Affiliation(s)
- Angela Corona
- Dipartimento di Scienze della vita e dell'ambiente. Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, SS-554, Monserrato, Cagliari, Italy
| | - Valentina Noemi Madia
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci-Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy
| | - Riccardo De Santis
- Defense Institute for Biomedical Sciences, Via Santo Stefano Rotondo 4, 00184, Rome, Italy
| | - Candida Manelfi
- EXSCALATE - Dompé Farmaceutici SpA, via Tommaso De Amicis 95, 80131, Napoli, Italy
| | - Roberta Emmolo
- Dipartimento di Scienze della vita e dell'ambiente. Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, SS-554, Monserrato, Cagliari, Italy
| | - Davide Ialongo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci-Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy
| | - Elisa Patacchini
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci-Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy
| | - Antonella Messore
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci-Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy
| | - Donatella Amatore
- Defense Institute for Biomedical Sciences, Via Santo Stefano Rotondo 4, 00184, Rome, Italy
| | - Giovanni Faggioni
- Defense Institute for Biomedical Sciences, Via Santo Stefano Rotondo 4, 00184, Rome, Italy
| | - Marco Artico
- Department of Sensory Organs, "Sapienza" Università di Roma, V.le Regina Elena 324, I-00161, Rome, Italy
| | - Daniela Iaconis
- EXSCALATE - Dompé Farmaceutici SpA, via Tommaso De Amicis 95, 80131, Napoli, Italy
| | - Carmine Talarico
- EXSCALATE - Dompé Farmaceutici SpA, via Tommaso De Amicis 95, 80131, Napoli, Italy
| | - Roberto Di Santo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci-Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy
| | - Florigio Lista
- Defense Institute for Biomedical Sciences, Via Santo Stefano Rotondo 4, 00184, Rome, Italy
| | - Roberta Costi
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci-Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy.
| | - Enzo Tramontano
- Dipartimento di Scienze della vita e dell'ambiente. Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, SS-554, Monserrato, Cagliari, Italy.
| |
Collapse
|
24
|
Mehyar N. Coronaviruses SARS-CoV, MERS-CoV, and SARS-CoV-2 helicase inhibitors: A systematic review of in vitro studies. J Virus Erad 2023:100327. [PMID: 37363132 PMCID: PMC10214743 DOI: 10.1016/j.jve.2023.100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction The recent outbreak of SARS-CoV-2 significantly increased the need to find inhibitors that target the essential enzymes for virus replication in the host cells. This systematic review was conducted to identify potential inhibitors of SARS-CoV, MERS-CoV, and SARS-CoV-2 helicases that have been tested by in vitro methods. The inhibition mechanisms of these compounds were discussed in this review, in addition to their cytotoxic and viral infection protection properties. Methods The databases PUBMED/MEDLINE, EMBASE, SCOPUS, and Web of Science were searched using different combinations of the keywords "helicase", "nsp13", "inhibitors", "coronaviridae", "coronaviruses", "virus replication", "replication", and "antagonists and inhibitors". Results By the end of this search, a total of 6854 articles had been identified. Thirty-one articles were included in this review. These studies reported the inhibitory effects of 309 compounds on SARS-CoV, MERS-CoV, and SARS-CoV-2 helicase activities measured by in vitro methods. Helicase inhibitors were categorized according to the type of coronavirus and the type of tested enzymatic activity, nature, approval, inhibition level, cytotoxicity, and viral infection protection effects. These inhibitors are classified according to the site of their interaction with the coronavirus helicases into four types: zinc-binding site inhibitors, nucleic acid binding site inhibitors, nucleotide-binding site inhibitors, and inhibitors with no clear interaction site. Conclusion Evidence from in vitro studies suggests that helicase inhibitors have a high potential as antiviral agents. Several helicase inhibitors tested in vitro showed good antiviral activities while maintaining moderate cytotoxicity. These inhibitors should be clinically investigated to determine their efficiency in treating different coronavirus infections, particularly COVID-19.
Collapse
Affiliation(s)
- Nimer Mehyar
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
25
|
Kandwal S, Fayne D. Genetic conservation across SARS-CoV-2 non-structural proteins - Insights into possible targets for treatment of future viral outbreaks. Virology 2023; 581:97-115. [PMID: 36940641 PMCID: PMC9999249 DOI: 10.1016/j.virol.2023.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023]
Abstract
The majority of SARS-CoV-2 therapeutic development work has focussed on targeting the spike protein, viral polymerase and proteases. As the pandemic progressed, many studies reported that these proteins are prone to high levels of mutation and can become drug resistant. Thus, it is necessary to not only target other viral proteins such as the non-structural proteins (NSPs) but to also target the most conserved residues of these proteins. In order to understand the level of conservation among these viruses, in this review, we have focussed on the conservation across RNA viruses, conservation across the coronaviruses and then narrowed our focus to conservation of NSPs across coronaviruses. We have also discussed the various treatment options for SARS-CoV-2 infection. A synergistic melding of bioinformatics, computer-aided drug-design and in vitro/vivo studies can feed into better understanding of the virus and therefore help in the development of small molecule inhibitors against the viral proteins.
Collapse
Affiliation(s)
- Shubhangi Kandwal
- Molecular Design Group, School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, 2, Ireland
| | - Darren Fayne
- Molecular Design Group, School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, 2, Ireland.
| |
Collapse
|
26
|
Mohammad TSH, Gupta Y, Reidl CT, Nicolaescu V, Gula H, Durvasula R, Kempaiah P, Becker DP. In Silico Binding of 2-Aminocyclobutanones to SARS-CoV-2 Nsp13 Helicase and Demonstration of Antiviral Activity. Int J Mol Sci 2023; 24:5120. [PMID: 36982188 PMCID: PMC10049026 DOI: 10.3390/ijms24065120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/10/2023] Open
Abstract
The landscape of viral strains and lineages of SARS-CoV-2 keeps changing and is currently dominated by Delta and Omicron variants. Members of the latest Omicron variants, including BA.1, are showing a high level of immune evasion, and Omicron has become a prominent variant circulating globally. In our search for versatile medicinal chemistry scaffolds, we prepared a library of substituted ɑ-aminocyclobutanones from an ɑ-aminocyclobutanone synthon (11). We performed an in silico screen of this actual chemical library as well as other virtual 2-aminocyclobutanone analogs against seven SARS-CoV-2 nonstructural proteins to identify potential drug leads against SARS-CoV-2, and more broadly against coronavirus antiviral targets. Several of these analogs were initially identified as in silico hits against SARS-CoV-2 nonstructural protein 13 (Nsp13) helicase through molecular docking and dynamics simulations. Antiviral activity of the original hits as well as ɑ-aminocyclobutanone analogs that were predicted to bind more tightly to SARS-CoV-2 Nsp13 helicase are reported. We now report cyclobutanone derivatives that exhibit anti-SARS-CoV-2 activity. Furthermore, the Nsp13 helicase enzyme has been the target of relatively few target-based drug discovery efforts, in part due to a very late release of a high-resolution structure accompanied by a limited understanding of its protein biochemistry. In general, antiviral agents initially efficacious against wild-type SARS-CoV-2 strains have lower activities against variants due to heavy viral loads and greater turnover rates, but the inhibitors we are reporting have higher activities against the later variants than the wild-type (10-20X). We speculate this could be due to Nsp13 helicase being a critical bottleneck in faster replication rates of the new variants, so targeting this enzyme affects these variants to an even greater extent. This work calls attention to cyclobutanones as a useful medicinal chemistry scaffold, and the need for additional focus on the discovery of Nsp13 helicase inhibitors to combat the aggressive and immune-evading variants of concern (VOCs).
Collapse
Affiliation(s)
| | - Yash Gupta
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Cory T. Reidl
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, USA
| | - Vlad Nicolaescu
- Howard T. Ricketts Laboratory, Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Haley Gula
- Howard T. Ricketts Laboratory, Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Ravi Durvasula
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Prakasha Kempaiah
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Daniel P. Becker
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, USA
| |
Collapse
|
27
|
An immunoinformatics approach to study the epitopes of SARS-CoV-2 helicase, Nsp13. VACUNAS 2023. [PMCID: PMC9977615 DOI: 10.1016/j.vacun.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Introduction and objective. Vaccines are administered worldwide to control on-going coronavirus disease-19 (COVID-19) pandemic caused by SARS-CoV-2. Vaccine efficacy is largely contributed by the epitopes present on the viral proteins and their alteration might help emerging variants to escape host immune surveillance. Therefore, this study was designed to study SARS-CoV-2 Nsp13 protein, its epitopes and evolution. Methods Clustal Omega was used to identify mutations in Nsp13 protein. Secondary structure and disorder score was predicted by CFSSP and PONDR-VSL2 webservers. Protein stability was predicted by DynaMut webserver. B cell epitopes were predicted by IEDB DiscoTope 2.0 tools and their 3D structures were represented by discovery studio. Antigenicity and allergenicity of epitopes were predicted by Vaxijen2.0 and AllergenFPv.1.0. Physiochemical properties of epitopes were predicted by Toxinpred, HLP webserver tool. Results Our data revealed 182 mutations in Nsp13 among Indian SARS-CoV-2 isolates, which were characterised by secondary structure and per-residue disorderness, stability and dynamicity predictions. To correlate the functional impact of these mutations, we characterised the most prominent B cell and T cell epitopes contributed by Nsp13. Our data revealed twenty-one epitopes, which exhibited antigenicity, stability and interactions with MHC class-I and class-II molecules. Subsequently, the physiochemical properties of these epitopes were analysed. Furthermore, eighteen mutations reside in these Nsp13 epitopes. Conclusions We report appearance of eighteen mutations in the predicted twenty-one epitopes of Nsp13. Among these, at least seven epitopes closely matches with the functionally validated epitopes. Altogether, our study shows the pattern of evolution of Nsp13 epitopes and their probable implications.
Collapse
|
28
|
Yang T, Wang SC, Ye L, Maimaitiyiming Y, Naranmandura H. Targeting viral proteins for restraining SARS-CoV-2: focusing lens on viral proteins beyond spike for discovering new drug targets. Expert Opin Drug Discov 2023; 18:247-268. [PMID: 36723288 DOI: 10.1080/17460441.2023.2175812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Emergence of highly infectious SARS-CoV-2 variants are reducing protection provided by current vaccines, requiring constant updates in antiviral approaches. The virus encodes four structural and sixteen nonstructural proteins which play important roles in viral genome replication and transcription, virion assembly, release , entry into cells, and compromising host cellular defenses. As alien proteins to host cells, many viral proteins represent potential targets for combating the SARS-CoV-2. AREAS COVERED Based on literature from PubMed and Web of Science databases, the authors summarize the typical characteristics of SARS-CoV-2 from the whole viral particle to the individual viral proteins and their corresponding functions in virus life cycle. The authors also discuss the potential and emerging targeted interventions to curb virus replication and spread in detail to provide unique insights into SARS-CoV-2 infection and countermeasures against it. EXPERT OPINION Our comprehensive analysis highlights the rationale to focus on non-spike viral proteins that are less mutated but have important functions. Examples of this include: structural proteins (e.g. nucleocapsid protein, envelope protein) and extensively-concerned nonstructural proteins (e.g. NSP3, NSP5, NSP12) along with the ones with relatively less attention (e.g. NSP1, NSP10, NSP14 and NSP16), for developing novel drugs to overcome resistance of SARS-CoV-2 variants to preexisting vaccines and antibody-based treatments.
Collapse
Affiliation(s)
- Tao Yang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Si Chun Wang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Linyan Ye
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yasen Maimaitiyiming
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang Province Key Laboratory of Haematology Oncology Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hua Naranmandura
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang Province Key Laboratory of Haematology Oncology Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
29
|
Sommers JA, Loftus LN, Jones MP, Lee RA, Haren CE, Dumm AJ, Brosh RM. Biochemical analysis of SARS-CoV-2 Nsp13 helicase implicated in COVID-19 and factors that regulate its catalytic functions. J Biol Chem 2023; 299:102980. [PMID: 36739951 PMCID: PMC9897874 DOI: 10.1016/j.jbc.2023.102980] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Replication of the 30-kilobase genome of SARS-CoV-2, responsible for COVID-19, is a key step in the coronavirus life cycle that requires a set of virally encoded nonstructural proteins such as the highly conserved Nsp13 helicase. However, the features that contribute to catalytic properties of Nsp13 are not well established. Here, we biochemically characterized the purified recombinant SARS-CoV-2 Nsp13 helicase protein, focusing on its catalytic functions, nucleic acid substrate specificity, nucleotide/metal cofactor requirements, and displacement of proteins from RNA molecules proposed to be important for its proofreading role during coronavirus replication. We determined that Nsp13 preferentially interacts with single-stranded DNA compared with single-stranded RNA to unwind a partial duplex helicase substrate. We present evidence for functional cooperativity as a function of Nsp13 concentration, which suggests that oligomerization is important for optimal activity. In addition, under single-turnover conditions, Nsp13 unwound partial duplex RNA substrates of increasing double-stranded regions (16-30 base pairs) with similar efficiency, suggesting the enzyme unwinds processively in this range. We also show Nsp13-catalyzed RNA unwinding is abolished by a site-specific neutralizing linkage in the sugar-phosphate backbone, demonstrating continuity in the helicase-translocating strand is essential for unwinding the partial duplex substrate. Taken together, we demonstrate for the first time that coronavirus helicase Nsp13 disrupts a high-affinity RNA-protein interaction in a unidirectional and ATP-dependent manner. Furthermore, sensitivity of Nsp13 catalytic functions to Mg2+ concentration suggests a regulatory mechanism for ATP hydrolysis, duplex unwinding, and RNA protein remodeling, processes implicated in SARS-CoV-2 replication and proofreading.
Collapse
Affiliation(s)
- Joshua A Sommers
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, Maryland, USA
| | - Lorin N Loftus
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, Maryland, USA
| | - Martin P Jones
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, Maryland, USA
| | - Rebecca A Lee
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, Maryland, USA
| | - Caitlin E Haren
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, Maryland, USA
| | - Adaira J Dumm
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, Maryland, USA
| | - Robert M Brosh
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, Maryland, USA.
| |
Collapse
|
30
|
Yang Z, Cai X, Ye Q, Zhao Y, Li X, Zhang S, Zhang L. High-Throughput Screening for the Potential Inhibitors of SARS-CoV-2 with Essential Dynamic Behavior. Curr Drug Targets 2023; 24:532-545. [PMID: 36876836 DOI: 10.2174/1389450124666230306141725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/09/2022] [Accepted: 01/11/2023] [Indexed: 03/07/2023]
Abstract
Global health security has been challenged by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic. Due to the lengthy process of generating vaccinations, it is vital to reposition currently available drugs in order to relieve anti-epidemic tensions and accelerate the development of therapies for Coronavirus Disease 2019 (COVID-19), the public threat caused by SARS-CoV-2. High throughput screening techniques have established their roles in the evaluation of already available medications and the search for novel potential agents with desirable chemical space and more cost-effectiveness. Here, we present the architectural aspects of highthroughput screening for SARS-CoV-2 inhibitors, especially three generations of virtual screening methodologies with structural dynamics: ligand-based screening, receptor-based screening, and machine learning (ML)-based scoring functions (SFs). By outlining the benefits and drawbacks, we hope that researchers will be motivated to adopt these methods in the development of novel anti- SARS-CoV-2 agents.
Collapse
Affiliation(s)
- Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Xinhui Cai
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Qiushi Ye
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Yizhen Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| |
Collapse
|
31
|
Jahirul Islam M, Nawal Islam N, Siddik Alom M, Kabir M, Halim MA. A review on structural, non-structural, and accessory proteins of SARS-CoV-2: Highlighting drug target sites. Immunobiology 2023; 228:152302. [PMID: 36434912 PMCID: PMC9663145 DOI: 10.1016/j.imbio.2022.152302] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 10/30/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, is a highly transmittable and pathogenic human coronavirus that first emerged in China in December 2019. The unprecedented outbreak of SARS-CoV-2 devastated human health within a short time leading to a global public health emergency. A detailed understanding of the viral proteins including their structural characteristics and virulence mechanism on human health is very crucial for developing vaccines and therapeutics. To date, over 1800 structures of non-structural, structural, and accessory proteins of SARS-CoV-2 are determined by cryo-electron microscopy, X-ray crystallography, and NMR spectroscopy. Designing therapeutics to target the viral proteins has several benefits since they could be highly specific against the virus while maintaining minimal detrimental effects on humans. However, for ongoing and future research on SARS-CoV-2, summarizing all the viral proteins and their detailed structural information is crucial. In this review, we compile comprehensive information on viral structural, non-structural, and accessory proteins structures with their binding and catalytic sites, different domain and motifs, and potential drug target sites to assist chemists, biologists, and clinicians finding necessary details for fundamental and therapeutic research.
Collapse
Affiliation(s)
- Md Jahirul Islam
- Division of Infectious Diseases and Division of Computer Aided Drug Design, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka 1215, Bangladesh
| | - Nafisa Nawal Islam
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Md Siddik Alom
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Mahmuda Kabir
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohammad A Halim
- Department of Chemistry and Biochemistry, Kennesaw State University, 370 Paulding Avenue NW, Kennesaw, GA 30144, USA
| |
Collapse
|
32
|
Halma MTJ, Wever MJA, Abeln S, Roche D, Wuite GJL. Therapeutic potential of compounds targeting SARS-CoV-2 helicase. Front Chem 2022; 10:1062352. [PMID: 36561139 PMCID: PMC9763700 DOI: 10.3389/fchem.2022.1062352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
The economical and societal impact of COVID-19 has made the development of vaccines and drugs to combat SARS-CoV-2 infection a priority. While the SARS-CoV-2 spike protein has been widely explored as a drug target, the SARS-CoV-2 helicase (nsp13) does not have any approved medication. The helicase shares 99.8% similarity with its SARS-CoV-1 homolog and was shown to be essential for viral replication. This review summarizes and builds on existing research on inhibitors of SARS-CoV-1 and SARS-CoV-2 helicases. Our analysis on the toxicity and specificity of these compounds, set the road going forward for the repurposing of existing drugs and the development of new SARS-CoV-2 helicase inhibitors.
Collapse
Affiliation(s)
- Matthew T. J. Halma
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- LUMICKS B. V., Amsterdam, Netherlands
| | - Mark J. A. Wever
- DCM, University of Grenoble Alpes, Grenoble, France
- Edelris, Lyon, France
| | - Sanne Abeln
- Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Gijs J. L. Wuite
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
33
|
Azali MA, Mohamed S, Harun A, Hussain FA, Shamsuddin S, Johan MF. Application of Baculovirus Expression Vector system (BEV) for COVID-19 diagnostics and therapeutics: a review. J Genet Eng Biotechnol 2022; 20:98. [PMID: 35792966 PMCID: PMC9259773 DOI: 10.1186/s43141-022-00368-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/20/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND The baculovirus expression vector system has been developed for expressing a wide range of proteins, including enzymes, glycoproteins, recombinant viruses, and vaccines. The availability of the SARS-CoV-2 genome sequence has enabled the synthesis of SARS-CoV2 proteins in a baculovirus-insect cell platform for various applications. The most cloned SARS-CoV-2 protein is the spike protein, which plays a critical role in SARS-CoV-2 infection. It is available in its whole length or as subunits like S1 or the receptor-binding domain (RBD). Non-structural proteins (Nsps), another recombinant SARS-CoV-2 protein generated by the baculovirus expression vector system (BEV), are used in the identification of new medications or the repurposing of existing therapies for the treatment of COVID-19. Non-SARS-CoV-2 proteins generated by BEV for SARS-CoV-2 diagnosis or treatment include moloney murine leukemia virus reverse transcriptase (MMLVRT), angiotensin converting enzyme 2 (ACE2), therapeutic proteins, and recombinant antibodies. The recombinant proteins were modified to boost the yield or to stabilize the protein. CONCLUSION This review covers the wide application of the recombinant protein produced using the baculovirus expression technology for COVID-19 research. A lot of improvements have been made to produce functional proteins with high yields. However, there is still room for improvement and there are parts of this field of research that have not been investigated yet.
Collapse
Affiliation(s)
- Muhammad Azharuddin Azali
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, 22200, Besut, Terengganu, Malaysia
| | - Salmah Mohamed
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, 22200, Besut, Terengganu, Malaysia
| | - Azian Harun
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Faezahtul Arbaeyah Hussain
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
34
|
Corona A, Wycisk K, Talarico C, Manelfi C, Milia J, Cannalire R, Esposito F, Gribbon P, Zaliani A, Iaconis D, Beccari AR, Summa V, Nowotny M, Tramontano E. Natural Compounds Inhibit SARS-CoV-2 nsp13 Unwinding and ATPase Enzyme Activities. ACS Pharmacol Transl Sci 2022; 5:226-239. [PMID: 35434533 PMCID: PMC9003574 DOI: 10.1021/acsptsci.1c00253] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Indexed: 12/27/2022]
Abstract
![]()
SARS-CoV-2 infection
is still spreading worldwide, and new antiviral
therapies are an urgent need to complement the approved vaccine preparations.
SARS-CoV-2 nps13 helicase is a validated drug target participating
in the viral replication complex and possessing two associated activities:
RNA unwinding and 5′-triphosphatase. In the search of SARS-CoV-2
direct antiviral agents, we established biochemical assays for both
SARS-CoV-2 nps13-associated enzyme activities and screened both in silico and in vitro a small in-house
library of natural compounds. Myricetin, quercetin, kaempferol, and
flavanone were found to inhibit the SARS-CoV-2 nps13 unwinding activity
at nanomolar concentrations, while licoflavone C was shown to block
both SARS-CoV-2 nps13 activities at micromolar concentrations. Mode
of action studies showed that all compounds are nsp13 noncompetitive
inhibitors versus ATP, while computational studies suggested that
they can bind both nucleotide and 5′-RNA nsp13 binding sites,
with licoflavone C showing a unique pattern of interaction with nsp13
amino acid residues. Overall, we report for the first time natural
flavonoids as selective inhibitors of SARS-CoV-2 nps13 helicase with
low micromolar activity.
Collapse
Affiliation(s)
- Angela Corona
- Dipartimento di Scienze della vita e dell'ambiente, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, SS-554, 09042 Monserrato, Cagliari, Italy
| | - Krzysztof Wycisk
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, Warsaw 02-109, Poland
| | - Carmine Talarico
- Dompé Farmaceutici SpA, via Campo di Pile, 67100 L'Aquila, Italy
| | - Candida Manelfi
- Dompé Farmaceutici SpA, via Campo di Pile, 67100 L'Aquila, Italy
| | - Jessica Milia
- Dipartimento di Scienze della vita e dell'ambiente, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, SS-554, 09042 Monserrato, Cagliari, Italy
| | - Rolando Cannalire
- Department of Pharmacy, University of Napoli "Federico II", via D. Montesano 49, Napoli 80131, Italy
| | - Francesca Esposito
- Dipartimento di Scienze della vita e dell'ambiente, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, SS-554, 09042 Monserrato, Cagliari, Italy
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany.,Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Andrea Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany.,Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Daniela Iaconis
- Dompé Farmaceutici SpA, via Campo di Pile, 67100 L'Aquila, Italy
| | - Andrea R Beccari
- Dompé Farmaceutici SpA, via Campo di Pile, 67100 L'Aquila, Italy
| | - Vincenzo Summa
- Department of Pharmacy, University of Napoli "Federico II", via D. Montesano 49, Napoli 80131, Italy
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, Warsaw 02-109, Poland
| | - Enzo Tramontano
- Dipartimento di Scienze della vita e dell'ambiente, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, SS-554, 09042 Monserrato, Cagliari, Italy
| |
Collapse
|
35
|
Pinto AL, Rai RK, Brown JC, Griffin P, Edgar JR, Shah A, Singanayagam A, Hogg C, Barclay WS, Futter CE, Burgoyne T. Ultrastructural insight into SARS-CoV-2 entry and budding in human airway epithelium. Nat Commun 2022; 13:1609. [PMID: 35338134 PMCID: PMC8956608 DOI: 10.1038/s41467-022-29255-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/03/2022] [Indexed: 12/30/2022] Open
Abstract
Ultrastructural studies of SARS-CoV-2 infected cells are crucial to better understand the mechanisms of viral entry and budding within host cells. Here, we examined human airway epithelium infected with three different isolates of SARS-CoV-2 including the B.1.1.7 variant by transmission electron microscopy and tomography. For all isolates, the virus infected ciliated but not goblet epithelial cells. Key SARS-CoV-2 entry molecules, ACE2 and TMPRSS2, were found to be localised to the plasma membrane including microvilli but excluded from cilia. Consistently, extracellular virions were seen associated with microvilli and the apical plasma membrane but rarely with ciliary membranes. Profiles indicative of viral fusion where tomography showed that the viral membrane was continuous with the apical plasma membrane and the nucleocapsids diluted, compared with unfused virus, demonstrate that the plasma membrane is one site of entry where direct fusion releasing the nucleoprotein-encapsidated genome occurs. Intact intracellular virions were found within ciliated cells in compartments with a single membrane bearing S glycoprotein. Tomography showed concentration of nucleocapsids round the periphery of profiles strongly suggestive of viral budding into these compartments and this may explain how virions gain their S glycoprotein containing envelope.
Collapse
Affiliation(s)
- Andreia L Pinto
- Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, SW3 6NP, UK
| | - Ranjit K Rai
- Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, SW3 6NP, UK
| | - Jonathan C Brown
- Department of Infectious Disease, Imperial College London, London, W2 1PG, UK
| | - Paul Griffin
- Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, SW3 6NP, UK
| | - James R Edgar
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Anand Shah
- Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, SW3 6NP, UK
- MRC Centre of Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, W2 1PG, UK
| | - Aran Singanayagam
- Department of Infectious Disease, Imperial College London, London, W2 1PG, UK
- Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2DD, UK
| | - Claire Hogg
- Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, SW3 6NP, UK
- Academic Health Sciences Centre, Imperial College, London, London, SW3 6LY, UK
| | - Wendy S Barclay
- Department of Infectious Disease, Imperial College London, London, W2 1PG, UK
| | - Clare E Futter
- UCL Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - Thomas Burgoyne
- Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, SW3 6NP, UK.
- UCL Institute of Ophthalmology, University College London, London, EC1V 9EL, UK.
| |
Collapse
|
36
|
Ricci F, Gitto R, Pitasi G, De Luca L. In Silico Insights towards the Identification of SARS-CoV-2 NSP13 Helicase Druggable Pockets. Biomolecules 2022; 12:biom12040482. [PMID: 35454070 PMCID: PMC9029846 DOI: 10.3390/biom12040482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
The merging of distinct computational approaches has become a powerful strategy for discovering new biologically active compounds. By using molecular modeling, significant efforts have recently resulted in the development of new molecules, demonstrating high efficiency in reducing the replication of severe acute respiratory coronavirus 2 (SARS-CoV-2), the agent responsible for the COVID-19 pandemic. We have focused our interest on non-structural protein Nsp13 (NTPase/helicase), as a crucial protein, embedded in the replication–transcription complex (RTC), that controls the virus life cycle. To assist in the identification of the most druggable surfaces of Nsps13, we applied a combination of four computational tools: FTMap, SiteMap, Fpocket and LigandScout. These software packages explored the binding sites for different three-dimensional structures of RTC complexes (PDB codes: 6XEZ, 7CXM, 7CXN), thus, detecting several hot spots, that were clustered to obtain ensemble consensus sites, through a combination of four different approaches. The comparison of data provided new insights about putative druggable sites that might be employed for further docking simulations on druggable surfaces of Nsps13, in a scenario of repurposing drugs.
Collapse
|
37
|
Fung SY, Siu KL, Lin H, Chan CP, Yeung ML, Jin DY. SARS-CoV-2 NSP13 helicase suppresses interferon signaling by perturbing JAK1 phosphorylation of STAT1. Cell Biosci 2022; 12:36. [PMID: 35317858 PMCID: PMC8939493 DOI: 10.1186/s13578-022-00770-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/02/2022] [Indexed: 12/15/2022] Open
Abstract
Background SARS-CoV-2 is the causative agent of COVID-19. Overproduction and release of proinflammatory cytokines are the underlying cause of severe COVID-19. Treatment of this condition with JAK inhibitors is a double-edged sword, which might result in the suppression of proinflammatory cytokine storm and the concurrent enhancement of viral infection, since JAK signaling is essential for host antiviral response. Improving the current JAK inhibitor therapy requires a detailed molecular analysis on how SARS-CoV-2 modulates interferon (IFN)-induced activation of JAK-STAT signaling. Results In this study, we focused on the molecular mechanism by which SARS-CoV-2 NSP13 helicase suppresses IFN signaling. Expression of SARS-CoV-2 NSP13 alleviated transcriptional activity driven by type I and type II IFN-responsive enhancer elements. It also prevented nuclear translocation of STAT1 and STAT2. The suppression of NSP13 on IFN signaling occurred at the step of STAT1 phosphorylation. Nucleic acid binding-defective mutant K345A K347A and NTPase-deficient mutant E375A of NSP13 were found to have largely lost the ability to suppress IFN-β-induced STAT1 phosphorylation and transcriptional activation, indicating the requirement of the helicase activity for NSP13-mediated inhibition of STAT1 phosphorylation. NSP13 did not interact with JAK1 nor prevent STAT1-JAK1 complex formation. Mechanistically, NSP13 interacted with STAT1 to prevent JAK1 kinase from phosphorylating STAT1. Conclusion SARS-CoV-2 NSP13 helicase broadly suppresses IFN signaling by targeting JAK1 phosphorylation of STAT1.
Collapse
Affiliation(s)
- Sin-Yee Fung
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Kam-Leung Siu
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Huayue Lin
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Ching-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Man Lung Yeung
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China.,Department of Microbiology, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China. .,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China.
| |
Collapse
|
38
|
Konkolova E, Krejčová K, Eyer L, Hodek J, Zgarbová M, Fořtová A, Jirasek M, Teply F, Reyes-Gutierrez PE, Růžek D, Weber J, Boura E. A Helquat-like Compound as a Potent Inhibitor of Flaviviral and Coronaviral Polymerases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061894. [PMID: 35335258 PMCID: PMC8953834 DOI: 10.3390/molecules27061894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022]
Abstract
Positive-sense single-stranded RNA (+RNA) viruses have proven to be important pathogens that are able to threaten and deeply damage modern societies, as illustrated by the ongoing COVID-19 pandemic. Therefore, compounds active against most or many +RNA viruses are urgently needed. Here, we present PR673, a helquat-like compound that is able to inhibit the replication of SARS-CoV-2 and tick-borne encephalitis virus in cell culture. Using in vitro polymerase assays, we demonstrate that PR673 inhibits RNA synthesis by viral RNA-dependent RNA polymerases (RdRps). Our results illustrate that the development of broad-spectrum non-nucleoside inhibitors of RdRps is feasible.
Collapse
Affiliation(s)
- Eva Konkolova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague, Czech Republic; (E.K.); (K.K.); (J.H.); (M.Z.); (M.J.); (F.T.); (P.E.R.-G.); (J.W.)
| | - Kateřina Krejčová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague, Czech Republic; (E.K.); (K.K.); (J.H.); (M.Z.); (M.J.); (F.T.); (P.E.R.-G.); (J.W.)
| | - Luděk Eyer
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic; (L.E.); (A.F.); (D.R.)
| | - Jan Hodek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague, Czech Republic; (E.K.); (K.K.); (J.H.); (M.Z.); (M.J.); (F.T.); (P.E.R.-G.); (J.W.)
| | - Michala Zgarbová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague, Czech Republic; (E.K.); (K.K.); (J.H.); (M.Z.); (M.J.); (F.T.); (P.E.R.-G.); (J.W.)
| | - Andrea Fořtová
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic; (L.E.); (A.F.); (D.R.)
| | - Michael Jirasek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague, Czech Republic; (E.K.); (K.K.); (J.H.); (M.Z.); (M.J.); (F.T.); (P.E.R.-G.); (J.W.)
| | - Filip Teply
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague, Czech Republic; (E.K.); (K.K.); (J.H.); (M.Z.); (M.J.); (F.T.); (P.E.R.-G.); (J.W.)
| | - Paul E. Reyes-Gutierrez
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague, Czech Republic; (E.K.); (K.K.); (J.H.); (M.Z.); (M.J.); (F.T.); (P.E.R.-G.); (J.W.)
| | - Daniel Růžek
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic; (L.E.); (A.F.); (D.R.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 37005 Ceske Budejovice, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague, Czech Republic; (E.K.); (K.K.); (J.H.); (M.Z.); (M.J.); (F.T.); (P.E.R.-G.); (J.W.)
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague, Czech Republic; (E.K.); (K.K.); (J.H.); (M.Z.); (M.J.); (F.T.); (P.E.R.-G.); (J.W.)
- Correspondence:
| |
Collapse
|
39
|
Piplani S, Singh P, Petrovsky N, Winkler DA. Computational Repurposing of Drugs and Natural Products Against SARS-CoV-2 Main Protease (Mpro) as Potential COVID-19 Therapies. Front Mol Biosci 2022; 9:781039. [PMID: 35359601 PMCID: PMC8964187 DOI: 10.3389/fmolb.2022.781039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/28/2022] [Indexed: 12/18/2022] Open
Abstract
We urgently need to identify drugs to treat patients suffering from COVID-19 infection. Drugs rarely act at single molecular targets. Off-target effects are responsible for undesirable side effects and beneficial synergy between targets for specific illnesses. They have provided blockbuster drugs, e.g., Viagra for erectile dysfunction and Minoxidil for male pattern baldness. Existing drugs, those in clinical trials, and approved natural products constitute a rich resource of therapeutic agents that can be quickly repurposed, as they have already been assessed for safety in man. A key question is how to screen such compounds rapidly and efficiently for activity against new pandemic pathogens such as SARS-CoV-2. Here, we show how a fast and robust computational process can be used to screen large libraries of drugs and natural compounds to identify those that may inhibit the main protease of SARS-CoV-2. We show that the shortlist of 84 candidates with the strongest predicted binding affinities is highly enriched (≥25%) in compounds experimentally validated in vivo or in vitro to have activity in SARS-CoV-2. The top candidates also include drugs and natural products not previously identified as having COVID-19 activity, thereby providing leads for experimental validation. This predictive in silico screening pipeline will be valuable for repurposing existing drugs and discovering new drug candidates against other medically important pathogens relevant to future pandemics.
Collapse
Affiliation(s)
- Sakshi Piplani
- College of Medicine and Public Health, Flinders University, Bedford, SA, Australia
- Vaxine Pty Ltd., Warradale, SA, Australia
| | - Puneet Singh
- College of Medicine and Public Health, Flinders University, Bedford, SA, Australia
- Vaxine Pty Ltd., Warradale, SA, Australia
| | - Nikolai Petrovsky
- College of Medicine and Public Health, Flinders University, Bedford, SA, Australia
- Vaxine Pty Ltd., Warradale, SA, Australia
- *Correspondence: Nikolai Petrovsky, ; David A. Winkler,
| | - David A. Winkler
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Nikolai Petrovsky, ; David A. Winkler,
| |
Collapse
|
40
|
Mehyar N, Mashhour A, Islam I, Alhadrami HA, Tolah AM, Alghanem B, Alkhaldi S, Somaie BA, Al Ghobain M, Alobaida Y, Alaskar AS, Boudjelal M. Discovery of Zafirlukast as a novel SARS-CoV-2 helicase inhibitor using in silico modelling and a FRET-based assay. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:963-983. [PMID: 34818959 DOI: 10.1080/1062936x.2021.1993995] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
The coronavirus helicase is an essential enzyme required for viral replication/transcription pathways. Structural studies revealed a sulphate moiety that interacts with key residues within the nucleotide-binding site of the helicase. Compounds with a sulphoxide or a sulphone moiety could interfere with these interactions and consequently inhibit the enzyme. The molecular operating environment (MOE) was used to dock 189 sulphoxide and sulphone-containing FDA-approved compounds to the nucleotide-binding site. Zafirlukast, a leukotriene receptor antagonist used to treat chronic asthma, achieved the lowest docking score at -8.75 kcals/mol. The inhibitory effect of the compounds on the SARS-CoV-2 helicase dsDNA unwinding activity was tested by a FRET-based assay. Zafirlukast was the only compound to inhibit the enzyme (IC50 = 16.3 µM). The treatment of Vero E6 cells with 25 µM zafirlukast prior to SARS-CoV-2 infection decreased the cytopathic effects of SARS-CoV-2 significantly. These results suggest that zafirlukast alleviates SARS-CoV-2 pathogenicity by inhibiting the viral helicase and impairing the viral replication/transcription pathway. Zafirlukast could be clinically developed as a new antiviral treatment for SARS-CoV-2 and other coronavirus diseases. This discovery is based on molecular modelling, in vitro inhibition of the SARS-CoV helicase activity and cell-based SARS-CoV-2 viral replication.
Collapse
Affiliation(s)
- N Mehyar
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - A Mashhour
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - I Islam
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - H A Alhadrami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Rabigh, Saudi Arabia
- Molecular Diagnostic Laboratory, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - A M Tolah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Rabigh, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - B Alghanem
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - S Alkhaldi
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - B A Somaie
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - M Al Ghobain
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Y Alobaida
- Sudair Pharmaceutical Co, Riyadh, Saudi Arabia
| | - A S Alaskar
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - M Boudjelal
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
41
|
Hijikata A, Shionyu C, Nakae S, Shionyu M, Ota M, Kanaya S, Shirai T. Current status of structure-based drug repurposing against COVID-19 by targeting SARS-CoV-2 proteins. Biophys Physicobiol 2021; 18:226-240. [PMID: 34745807 PMCID: PMC8550875 DOI: 10.2142/biophysico.bppb-v18.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/30/2021] [Indexed: 01/31/2023] Open
Abstract
More than one and half years have passed, as of August 2021, since the COVID-19 caused by the novel coronavirus named SARS-CoV-2 emerged in 2019. While the recent success of vaccine developments likely reduces the severe cases, there is still a strong requirement of safety and effective therapeutic drugs for overcoming the unprecedented situation. Here we review the recent progress and the status of the drug discovery against COVID-19 with emphasizing a structure-based perspective. Structural data regarding the SARS-CoV-2 proteome has been rapidly accumulated in the Protein Data Bank, and up to 68% of the total amino acid residues encoded in the genome were covered by the structural data. Despite a global effort of in silico and in vitro screenings for drug repurposing, there is only a limited number of drugs had been successfully authorized by drug regulation organizations. Although many approved drugs and natural compounds, which exhibited antiviral activity in vitro, were considered potential drugs against COVID-19, a further multidisciplinary investigation is required for understanding the mechanisms underlying the antiviral effects of the drugs.
Collapse
Affiliation(s)
- Atsushi Hijikata
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Clara Shionyu
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Setsu Nakae
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Masafumi Shionyu
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Motonori Ota
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Shigehiko Kanaya
- Computational Biology Lab. Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Tsuyoshi Shirai
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| |
Collapse
|
42
|
Canal B, Fujisawa R, McClure AW, Deegan TD, Wu M, Ulferts R, Weissmann F, Drury LS, Bertolin AP, Zeng J, Beale R, Howell M, Labib K, Diffley JF. Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp15 endoribonuclease. Biochem J 2021; 478:2465-2479. [PMID: 34198324 PMCID: PMC8286823 DOI: 10.1042/bcj20210199] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 is responsible for COVID-19, a human disease that has caused over 2 million deaths, stretched health systems to near-breaking point and endangered economies of countries and families around the world. Antiviral treatments to combat COVID-19 are currently lacking. Remdesivir, the only antiviral drug approved for the treatment of COVID-19, can affect disease severity, but better treatments are needed. SARS-CoV-2 encodes 16 non-structural proteins (nsp) that possess different enzymatic activities with important roles in viral genome replication, transcription and host immune evasion. One key aspect of host immune evasion is performed by the uridine-directed endoribonuclease activity of nsp15. Here we describe the expression and purification of nsp15 recombinant protein. We have developed biochemical assays to follow its activity, and we have found evidence for allosteric behaviour. We screened a custom chemical library of over 5000 compounds to identify nsp15 endoribonuclease inhibitors, and we identified and validated NSC95397 as an inhibitor of nsp15 endoribonuclease in vitro. Although NSC95397 did not inhibit SARS-CoV-2 growth in VERO E6 cells, further studies will be required to determine the effect of nsp15 inhibition on host immune evasion.
Collapse
Affiliation(s)
- Berta Canal
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Ryo Fujisawa
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Allison W. McClure
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Tom D. Deegan
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Mary Wu
- High Throughput Screening, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Rachel Ulferts
- Cell Biology of Infection Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Florian Weissmann
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Lucy S. Drury
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Agustina P. Bertolin
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Jingkun Zeng
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Rupert Beale
- Cell Biology of Infection Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Michael Howell
- High Throughput Screening, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Karim Labib
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - John F.X. Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| |
Collapse
|
43
|
Canal B, McClure AW, Curran JF, Wu M, Ulferts R, Weissmann F, Zeng J, Bertolin AP, Milligan JC, Basu S, Drury LS, Deegan TD, Fujisawa R, Roberts EL, Basier C, Labib K, Beale R, Howell M, Diffley JF. Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp14/nsp10 exoribonuclease. Biochem J 2021; 478:2445-2464. [PMID: 34198326 PMCID: PMC8286829 DOI: 10.1042/bcj20210198] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 01/18/2023]
Abstract
SARS-CoV-2 is a coronavirus that emerged in 2019 and rapidly spread across the world causing a deadly pandemic with tremendous social and economic costs. Healthcare systems worldwide are under great pressure, and there is an urgent need for effective antiviral treatments. The only currently approved antiviral treatment for COVID-19 is remdesivir, an inhibitor of viral genome replication. SARS-CoV-2 proliferation relies on the enzymatic activities of the non-structural proteins (nsp), which makes them interesting targets for the development of new antiviral treatments. With the aim to identify novel SARS-CoV-2 antivirals, we have purified the exoribonuclease/methyltransferase (nsp14) and its cofactor (nsp10) and developed biochemical assays compatible with high-throughput approaches to screen for exoribonuclease inhibitors. We have screened a library of over 5000 commercial compounds and identified patulin and aurintricarboxylic acid (ATA) as inhibitors of nsp14 exoribonuclease in vitro. We found that patulin and ATA inhibit replication of SARS-CoV-2 in a VERO E6 cell-culture model. These two new antiviral compounds will be valuable tools for further coronavirus research as well as potentially contributing to new therapeutic opportunities for COVID-19.
Collapse
Affiliation(s)
- Berta Canal
- Chromosome Replication Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Allison W. McClure
- Chromosome Replication Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Joseph F. Curran
- Cell Cycle Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Mary Wu
- High Throughput Screening, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Rachel Ulferts
- Cell Biology of Infection Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Florian Weissmann
- Chromosome Replication Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Jingkun Zeng
- Chromosome Replication Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Agustina P. Bertolin
- Chromosome Replication Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Jennifer C. Milligan
- Chromosome Replication Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Souradeep Basu
- Cell Cycle Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Lucy S. Drury
- Chromosome Replication Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Tom D. Deegan
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Ryo Fujisawa
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Emma L. Roberts
- Cell Cycle Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Clovis Basier
- Cell Cycle Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Karim Labib
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Rupert Beale
- Cell Biology of Infection Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Michael Howell
- High Throughput Screening, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - John F.X. Diffley
- Chromosome Replication Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| |
Collapse
|
44
|
Basu S, Mak T, Ulferts R, Wu M, Deegan T, Fujisawa R, Tan KW, Lim CT, Basier C, Canal B, Curran JF, Drury LS, McClure AW, Roberts EL, Weissmann F, Zeisner TU, Beale R, Cowling VH, Howell M, Labib K, Diffley JFX. Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of Nsp14 RNA cap methyltransferase. Biochem J 2021; 478:2481-2497. [PMID: 34198328 PMCID: PMC8286817 DOI: 10.1042/bcj20210219] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic has presented itself as one of the most critical public health challenges of the century, with SARS-CoV-2 being the third member of the Coronaviridae family to cause a fatal disease in humans. There is currently only one antiviral compound, remdesivir, that can be used for the treatment of COVID-19. To identify additional potential therapeutics, we investigated the enzymatic proteins encoded in the SARS-CoV-2 genome. In this study, we focussed on the viral RNA cap methyltransferases, which play key roles in enabling viral protein translation and facilitating viral escape from the immune system. We expressed and purified both the guanine-N7 methyltransferase nsp14, and the nsp16 2'-O-methyltransferase with its activating cofactor, nsp10. We performed an in vitro high-throughput screen for inhibitors of nsp14 using a custom compound library of over 5000 pharmaceutical compounds that have previously been characterised in either clinical or basic research. We identified four compounds as potential inhibitors of nsp14, all of which also showed antiviral capacity in a cell-based model of SARS-CoV-2 infection. Three of the four compounds also exhibited synergistic effects on viral replication with remdesivir.
Collapse
Affiliation(s)
- Souradeep Basu
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Tiffany Mak
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Rachel Ulferts
- Cell Biology of Infection Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Mary Wu
- High Throughput Screening, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Tom Deegan
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Ryo Fujisawa
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Kang Wei Tan
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Chew Theng Lim
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Clovis Basier
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Berta Canal
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Joseph F Curran
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Lucy S Drury
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Allison W McClure
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Emma L Roberts
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Florian Weissmann
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Theresa U Zeisner
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Rupert Beale
- Cell Biology of Infection Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Victoria H Cowling
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Michael Howell
- High Throughput Screening, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Karim Labib
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - John F X Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| |
Collapse
|
45
|
Hay RT. An all-out assault on SARS-CoV-2 replication. Biochem J 2021; 478:2399-2403. [PMID: 34198321 PMCID: PMC8286832 DOI: 10.1042/bcj20210256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 01/18/2023]
Abstract
The coronavirus pandemic has had a huge impact on public health with over 165 million people infected, 3.4 million deaths and a hugely deleterious effect on most economies. While vaccination effectively protects against the disease it is likely that viruses will evolve that can replicate in hosts immunised with the present vaccines. Thus, there is a great unmet need for effective antivirals that can block the development of serious disease in infected patients. The seven papers published in this issue of the Biochemical Journal address this need by expressing and purifying components required for viral replication, developing biochemical assays for these components and using the assays to screen a library of pre-existing pharmaceuticals for drugs that inhibited the target in vitro and inhibited viral replication in cell culture. The candidate drugs obtained are potential antivirals that may protect against SARS-CoV-2 infection. While not all the antiviral candidates will make it through to the clinic, they will be useful tool compounds and can act as the starting point for further drug discovery programmes.
Collapse
Affiliation(s)
- Ronald T. Hay
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| |
Collapse
|
46
|
Milligan JC, Zeisner TU, Papageorgiou G, Joshi D, Soudy C, Ulferts R, Wu M, Lim CT, Tan KW, Weissmann F, Canal B, Fujisawa R, Deegan T, Nagaraj H, Bineva-Todd G, Basier C, Curran JF, Howell M, Beale R, Labib K, O'Reilly N, Diffley JF. Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of Nsp5 main protease. Biochem J 2021; 478:2499-2515. [PMID: 34198327 PMCID: PMC8286836 DOI: 10.1042/bcj20210197] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
The coronavirus 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), spread around the world with unprecedented health and socio-economic effects for the global population. While different vaccines are now being made available, very few antiviral drugs have been approved. The main viral protease (nsp5) of SARS-CoV-2 provides an excellent target for antivirals, due to its essential and conserved function in the viral replication cycle. We have expressed, purified and developed assays for nsp5 protease activity. We screened the nsp5 protease against a custom chemical library of over 5000 characterised pharmaceuticals. We identified calpain inhibitor I and three different peptidyl fluoromethylketones (FMK) as inhibitors of nsp5 activity in vitro, with IC50 values in the low micromolar range. By altering the sequence of our peptidomimetic FMK inhibitors to better mimic the substrate sequence of nsp5, we generated an inhibitor with a subnanomolar IC50. Calpain inhibitor I inhibited viral infection in monkey-derived Vero E6 cells, with an EC50 in the low micromolar range. The most potent and commercially available peptidyl-FMK compound inhibited viral growth in Vero E6 cells to some extent, while our custom peptidyl FMK inhibitor offered a marked antiviral improvement.
Collapse
Affiliation(s)
- Jennifer C. Milligan
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Theresa U. Zeisner
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - George Papageorgiou
- Peptide Chemistry STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Dhira Joshi
- Peptide Chemistry STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Christelle Soudy
- Peptide Chemistry STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Rachel Ulferts
- Cell Biology of Infection Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Mary Wu
- High Throughput Screening STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Chew Theng Lim
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Kang Wei Tan
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Florian Weissmann
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Berta Canal
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Ryo Fujisawa
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Tom Deegan
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Hema Nagaraj
- Peptide Chemistry STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Ganka Bineva-Todd
- Peptide Chemistry STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Clovis Basier
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Joseph F. Curran
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Michael Howell
- High Throughput Screening STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Rupert Beale
- Cell Biology of Infection Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Karim Labib
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Nicola O'Reilly
- Peptide Chemistry STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - John F.X. Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| |
Collapse
|
47
|
Lim CT, Tan KW, Wu M, Ulferts R, Armstrong LA, Ozono E, Drury LS, Milligan JC, Zeisner TU, Zeng J, Weissmann F, Canal B, Bineva-Todd G, Howell M, O'Reilly N, Beale R, Kulathu Y, Labib K, Diffley JF. Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of Nsp3 papain-like protease. Biochem J 2021; 478:2517-2531. [PMID: 34198325 PMCID: PMC8286840 DOI: 10.1042/bcj20210244] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/05/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023]
Abstract
The COVID-19 pandemic has emerged as the biggest life-threatening disease of this century. Whilst vaccination should provide a long-term solution, this is pitted against the constant threat of mutations in the virus rendering the current vaccines less effective. Consequently, small molecule antiviral agents would be extremely useful to complement the vaccination program. The causative agent of COVID-19 is a novel coronavirus, SARS-CoV-2, which encodes at least nine enzymatic activities that all have drug targeting potential. The papain-like protease (PLpro) contained in the nsp3 protein generates viral non-structural proteins from a polyprotein precursor, and cleaves ubiquitin and ISG protein conjugates. Here we describe the expression and purification of PLpro. We developed a protease assay that was used to screen a custom compound library from which we identified dihydrotanshinone I and Ro 08-2750 as compounds that inhibit PLpro in protease and isopeptidase assays and also inhibit viral replication in cell culture-based assays.
Collapse
Affiliation(s)
- Chew Theng Lim
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Kang Wei Tan
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Mary Wu
- High-Throughput Screening, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Rachel Ulferts
- Cell Biology of Infection Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Lee A. Armstrong
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - Eiko Ozono
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Lucy S. Drury
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Jennifer C. Milligan
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Theresa U. Zeisner
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Jingkun Zeng
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Florian Weissmann
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Berta Canal
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Ganka Bineva-Todd
- Peptide Chemistry STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Michael Howell
- High-Throughput Screening, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Nicola O'Reilly
- Peptide Chemistry STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Rupert Beale
- Cell Biology of Infection Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Yogesh Kulathu
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - Karim Labib
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - John F.X. Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| |
Collapse
|
48
|
Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp12/7/8 RNA-dependent RNA polymerase. Biochem J 2021; 478:2425-2443. [PMID: 34198323 PMCID: PMC8286815 DOI: 10.1042/bcj20210200] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
The coronavirus disease 2019 (COVID-19) global pandemic has turned into the largest public health and economic crisis in recent history impacting virtually all sectors of society. There is a need for effective therapeutics to battle the ongoing pandemic. Repurposing existing drugs with known pharmacological safety profiles is a fast and cost-effective approach to identify novel treatments. The COVID-19 etiologic agent is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a single-stranded positive-sense RNA virus. Coronaviruses rely on the enzymatic activity of the replication–transcription complex (RTC) to multiply inside host cells. The RTC core catalytic component is the RNA-dependent RNA polymerase (RdRp) holoenzyme. The RdRp is one of the key druggable targets for CoVs due to its essential role in viral replication, high degree of sequence and structural conservation and the lack of homologues in human cells. Here, we have expressed, purified and biochemically characterised active SARS-CoV-2 RdRp complexes. We developed a novel fluorescence resonance energy transfer-based strand displacement assay for monitoring SARS-CoV-2 RdRp activity suitable for a high-throughput format. As part of a larger research project to identify inhibitors for all the enzymatic activities encoded by SARS-CoV-2, we used this assay to screen a custom chemical library of over 5000 approved and investigational compounds for novel SARS-CoV-2 RdRp inhibitors. We identified three novel compounds (GSK-650394, C646 and BH3I-1) and confirmed suramin and suramin-like compounds as in vitro SARS-CoV-2 RdRp activity inhibitors. We also characterised the antiviral efficacy of these drugs in cell-based assays that we developed to monitor SARS-CoV-2 growth.
Collapse
|