1
|
Sahoo K, Sundararajan V. IL-1β and associated molecules as prognostic biomarkers linked with immune cell infiltration in colorectal cancer: an integrated statistical and machine learning approach. Discov Oncol 2025; 16:252. [PMID: 40019680 PMCID: PMC11871282 DOI: 10.1007/s12672-025-01989-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 02/17/2025] [Indexed: 03/01/2025] Open
Abstract
PURPOSE Colorectal cancer (CRC) is the third most common cancer globally, necessitating novel biomarkers for early diagnosis and treatment. This study proposes an efficient pipeline leveraging an integrated bioinformatics and machine learning framework to enhance the identification of diagnostic and prognostic biomarkers for CRC. METHODS A selection of methylated differentially expressed genes (MeDEGs) and features (genes) was made using both statistical and Machine learning (ML) approaches from publically available datasets. These genes were subjected to STRING network construction and hub genes estimation, separately. Also, essential miRNAs (micro-RNAs) and TFs (Transcription factors) as regulatory elements were revealed and findings were validated through scRNA-seq analysis, promoter methylation, gene expression levels correlated with pathological stage, and interaction with tumor-infiltrating immune cells. RESULTS Through an integrated analysis pipeline, we identified 27 hub genes, among which CTNNB1, GSK3B, IL-1β, MYC, PXDN, TP53, EGFR, SRC, COL1A1, and TGBF1 showed better diagnostic behaviour. Machine learning approach includes the development of K-Nearest Neighbors (KNN), Artificial Neural Networks (ANN), and Random Forest (RF) models using TCGA datasets, achieving an accuracy range between 99 and 100%. The Area Under the Curve (AUC) value for each model is 1.00, signifying good classification performance. The high expression of some diagnostic genes was associated with poor prognosis, concluding IL-1β as both a prognostic and diagnostic biomarker. Additionally, the NF-κB and microRNAs (miR-548d-3p, miR-548-ac) and TFs (NFκB and STAT5A) play a major role in the comprehensive regulatory network for CRC. Furthermore, hub genes such as IL-1β, TGFB1, and COL1A1 were significantly correlated with immune infiltrates, suggesting their potential role in CRC progression. CONCLUSION Overall, the elevated expression of IL-1β coupled with abnormal DNA methylation, and its consequent effect on the PI3K/Akt signaling pathway are relevant prognostic and therapeutic marker in CRC. Additional molecular candidates reveal insights into the epigenetic regulatory targets of CRC and their association with immune cell infiltration.
Collapse
Affiliation(s)
- Karishma Sahoo
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Vino Sundararajan
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
2
|
Fasouli ES, Katsantoni E. Age-associated myeloid malignancies - the role of STAT3 and STAT5 in myelodysplastic syndrome and acute myeloid leukemia. FEBS Lett 2024; 598:2809-2828. [PMID: 39048534 PMCID: PMC11586607 DOI: 10.1002/1873-3468.14985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
In the last few decades, the increasing human life expectancy has led to the inflation of the elderly population and consequently the escalation of age-related disorders. Biological aging has been associated with the accumulation of somatic mutations in the Hematopoietic Stem Cell (HSC) compartment, providing a fitness advantage to the HSCs leading to clonal hematopoiesis, that includes non-malignant and malignant conditions (i.e. Clonal Hematopoiesis of Indeterminate Potential, Myelodysplastic Syndrome and Acute Myeloid Leukemia). The Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway is a key player in both normal and malignant hematopoiesis. STATs, particularly STAT3 and STAT5, are greatly implicated in normal hematopoiesis, immunity, inflammation, leukemia, and aging. Here, the pleiotropic functions of JAK-STAT pathway in age-associated hematopoietic defects and of STAT3 and STAT5 in normal hematopoiesis, leukemia, and inflammaging are reviewed. Even though great progress has been made in deciphering the role of STATs, further research is required to provide a deeper understanding of the molecular mechanisms of leukemogenesis, as well as novel biomarkers and therapeutic targets for improved management of age-related disorders.
Collapse
Affiliation(s)
- Eirini Sofia Fasouli
- Biomedical Research FoundationAcademy of Athens, Basic Research CenterAthensGreece
| | - Eleni Katsantoni
- Biomedical Research FoundationAcademy of Athens, Basic Research CenterAthensGreece
| |
Collapse
|
3
|
Loreto Palacio P, Pan X, Jones D, Otero JJ. Exploring a distinct FGFR2::DLG5 rearrangement in a low-grade neuroepithelial tumor: A case report and mini-review of protein fusions in brain tumors. J Neuropathol Exp Neurol 2024; 83:567-578. [PMID: 38833313 DOI: 10.1093/jnen/nlae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
We report the novel clinical presentation of a primary brain neoplasm in a 30-year-old man with a mass-like area in the anteromedial temporal lobe. Histopathological analysis revealed a low-grade neuroepithelial tumor with cytologically abnormal neurons and atypical glial cells within the cerebral cortex. Molecular analysis showed a previously undescribed FGFR2::DLG5 rearrangement. We discuss the clinical significance and molecular implications of this fusion event, shedding light on its potential impact on tumor development and patient prognosis. Additionally, an extensive review places the finding in this case in the context of protein fusions in brain tumors in general and highlights their diverse manifestations, underlying molecular mechanisms, and therapeutic implications.
Collapse
Affiliation(s)
- Paola Loreto Palacio
- Abigail Wexner Center Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Xiaokang Pan
- James Molecular Laboratory, James Cancer Hospital, Columbus, Ohio, USA
| | - Dan Jones
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - José Javier Otero
- Neuropathology Division, Pathology Department, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
4
|
Montero-Vergara J, Plachetta K, Kinch L, Bernhardt S, Kashyap K, Levine B, Thukral L, Vetter M, Thomssen C, Wiemann S, Peña-Llopis S, Jendrossek V, Vega-Rubin-de-Celis S. GRB2 is a BECN1 interacting protein that regulates autophagy. Cell Death Dis 2024; 15:14. [PMID: 38182563 PMCID: PMC10770341 DOI: 10.1038/s41419-023-06387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024]
Abstract
GRB2 is an adaptor protein of HER2 (and several other tyrosine kinases), which we identified as a novel BECN1 (Beclin 1) interacting partner. GRB2 co-immunoprecipitated with BECN1 in several breast cancer cell lines and regulates autophagy through a mechanism involving the modulation of the class III PI3Kinase VPS34 activity. In ovo studies in a CAM (Chicken Chorioallantoic Membrane) model indicated that GRB2 knockdown, as well as overexpression of GRB2 loss-of-function mutants (Y52A and S86A-R88A) compromised tumor growth. These differences in tumor growth correlated with differential autophagy activity, indicating that autophagy effects might be related to the effects on tumorigenesis. Our data highlight a novel function of GRB2 as a BECN1 binding protein and a regulator of autophagy.
Collapse
Affiliation(s)
- Jetsy Montero-Vergara
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Virchowstrasse 173, D-45122, Essen, Germany
| | - Kira Plachetta
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Virchowstrasse 173, D-45122, Essen, Germany
| | - Lisa Kinch
- University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Stephan Bernhardt
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
| | - Kriti Kashyap
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, Delhi, 110025, India
| | - Beth Levine
- University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Lipi Thukral
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Martina Vetter
- Department of Gynaecology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, D-06120, Halle (Saale), Germany
| | - Christoph Thomssen
- Department of Gynaecology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, D-06120, Halle (Saale), Germany
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
| | - Samuel Peña-Llopis
- Translational Genomics. Department of Ophthalmology, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Virchowstrasse 173, D-45122, Essen, Germany
| | - Silvia Vega-Rubin-de-Celis
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Virchowstrasse 173, D-45122, Essen, Germany.
| |
Collapse
|
5
|
Saettini F, Guerra F, Fazio G, Bugarin C, McMillan HJ, Ohtake A, Ardissone A, Itoh M, Giglio S, Cappuccio G, Giardino G, Romano R, Quadri M, Gasperini S, Moratto D, Chiarini M, Akira I, Fukuhara Y, Hayakawa I, Okazaki Y, Mauri M, Piazza R, Cazzaniga G, Biondi A. Antibody Deficiency in Patients with Biallelic KARS1 Mutations. J Clin Immunol 2023; 43:2115-2125. [PMID: 37770806 DOI: 10.1007/s10875-023-01584-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023]
Abstract
Biallelic KARS1 mutations cause KARS-related diseases, a rare syndromic condition encompassing central and peripheral nervous system impairment, heart and liver disease, and deafness. KARS1 encodes the t-RNA synthase of lysine, an aminoacyl-tRNA synthetase, involved in different physiological mechanisms (such as angiogenesis, post-translational modifications, translation initiation, autophagy and mitochondrial function). Although patients with immune-hematological abnormalities have been individually described, results have not been collectively discussed and functional studies investigating how KARS1 mutations affect B cells have not been performed. Here, we describe one patient with severe developmental delay, sensoneurinal deafness, acute disseminated encephalomyelitis, hypogammaglobulinemia and recurrent infections. Pathogenic biallelic KARS1 variants (Phe291Val/ Pro499Leu) were associated with impaired B cell metabolism (decreased mitochondrial numbers and activity). All published cases of KARS-related diseases were identified. The corresponding authors and researchers involved in the diagnosis of inborn errors of immunity or genetic syndromes were contacted to obtain up-to-date clinical and immunological information. Seventeen patients with KARS-related diseases were identified. Recurrent/severe infections (9/17) and B cell abnormalities (either B cell lymphopenia [3/9], hypogammaglobulinemia [either IgG, IgA or IgM; 6/15] or impaired vaccine responses [4/7]) were frequently reported. Immunoglobulin replacement therapy was given in five patients. Full immunological assessment is warranted in these patients, who may require detailed investigation and specific supportive treatment.
Collapse
Affiliation(s)
- Francesco Saettini
- Centro Tettamanti, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy.
| | - Fabiola Guerra
- Pediatria, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Dipartimento Di Medicina E Chirurgia, Università Degli Studi Milano-Bicocca, Milan, Italy
| | - Grazia Fazio
- Centro Tettamanti, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Cristina Bugarin
- Centro Tettamanti, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Hugh J McMillan
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Akira Ohtake
- Department of Clinical Genomics & Pediatrics, Saitama Medical University, Moroyama, Saitama, Japan
| | - Anna Ardissone
- Child Neurology, "Fondazione IRCCS IstitutoNeurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Masayuki Itoh
- Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Sabrina Giglio
- Unit of Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Gerarda Cappuccio
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University of Naples, Naples, Italy
- Current address: Baylor College of Medicine, Houston, TX, USA
| | - Giuliana Giardino
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University of Naples, Naples, Italy
| | - Roberta Romano
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University of Naples, Naples, Italy
| | - Manuel Quadri
- Centro Tettamanti, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Serena Gasperini
- Pediatria, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Daniele Moratto
- Flow Cytometry Unit, Clinical ChemistryLaboratory, ASST Spedali Civili, Brescia, Italy
| | - Marco Chiarini
- Flow Cytometry Unit, Clinical ChemistryLaboratory, ASST Spedali Civili, Brescia, Italy
| | - Ishiguro Akira
- Center for Postgraduate Education and Training, National Center for Child Health and Development (NCCHD), Tokyo, Japan
- Division of Hematology, National Center for Child Health and Development (NCCHD), Tokyo, Japan
| | - Yasuyuki Fukuhara
- Division of Medical Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Itaru Hayakawa
- Division of Neurology, National Center for Child Health and Development (NCCHD), Tokyo, Japan
| | - Yasushi Okazaki
- Division of Neurology, National Center for Child Health and Development (NCCHD), Tokyo, Japan
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Mario Mauri
- Dipartimento Di Medicina E Chirurgia, Università Degli Studi Milano-Bicocca, Milan, Italy
| | - Rocco Piazza
- Ematologia, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Gianni Cazzaniga
- Centro Tettamanti, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Dipartimento Di Medicina E Chirurgia, Università Degli Studi Milano-Bicocca, Milan, Italy
| | - Andrea Biondi
- Centro Tettamanti, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Pediatria, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Dipartimento Di Medicina E Chirurgia, Università Degli Studi Milano-Bicocca, Milan, Italy
| |
Collapse
|
6
|
Kinnunen M, Liu X, Niemelä E, Öhman T, Gawriyski L, Salokas K, Keskitalo S, Varjosalo M. The Impact of ETV6-NTRK3 Oncogenic Gene Fusions on Molecular and Signaling Pathway Alterations. Cancers (Basel) 2023; 15:4246. [PMID: 37686522 PMCID: PMC10486691 DOI: 10.3390/cancers15174246] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Chromosomal translocations creating fusion genes are common cancer drivers. The oncogenic ETV6-NTRK3 (EN) gene fusion joins the sterile alpha domain of the ETV6 transcription factor with the tyrosine kinase domain of the neurotrophin-3 receptor NTRK3. Four EN variants with alternating break points have since been detected in a wide range of human cancers. To provide molecular level insight into EN oncogenesis, we employed a proximity labeling mass spectrometry approach to define the molecular context of the fusions. We identify in total 237 high-confidence interactors, which link EN fusions to several key signaling pathways, including ERBB, insulin and JAK/STAT. We then assessed the effects of EN variants on these pathways, and showed that the pan NTRK inhibitor Selitrectinib (LOXO-195) inhibits the oncogenic activity of EN2, the most common variant. This systems-level analysis defines the molecular framework in which EN oncofusions operate to promote cancer and provides some mechanisms for therapeutics.
Collapse
Affiliation(s)
- Matias Kinnunen
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Xiaonan Liu
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Elina Niemelä
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Tiina Öhman
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Lisa Gawriyski
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Kari Salokas
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Salla Keskitalo
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
7
|
Cattani-Cavalieri I, Li Y, Margolis J, Bogard A, Roosan MR, Ostrom RS. Quantitative phosphoproteomic analysis reveals unique cAMP signaling pools emanating from AC2 and AC6 in human airway smooth muscle cells. Front Physiol 2023; 14:1149063. [PMID: 36926196 PMCID: PMC10011497 DOI: 10.3389/fphys.2023.1149063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Human airway smooth muscle (HASM) is the primary target of ßAR agonists used to control airway hypercontractility in asthma and chronic obstructive pulmonary disease (COPD). ßAR agonists induce the production of cAMP by adenylyl cyclases (ACs), activate PKA and cause bronchodilation. Several other G-protein coupled receptors (GPCR) expressed in human airway smooth muscle cells transduce extracellular signals through cAMP but these receptors elicit different cellular responses. Some G-protein coupled receptors couple to distinct adenylyl cyclases isoforms with different localization, partly explaining this compartmentation, but little is known about the downstream networks that result. We used quantitative phosphoproteomics to define the downstream signaling networks emanating from cAMP produced by two adenylyl cyclases isoforms with contrasting localization in uman airway smooth muscle. After a short stimulus of adenylyl cyclases activity using forskolin, phosphopeptides were analyzed by LC-MS/MS and differences between cells overexpressing AC2 (localized in non-raft membranes) or AC6 (localized in lipid raft membranes) were compared to control human airway smooth muscle. The degree of AC2 and AC6 overexpression was titrated to generate roughly equal forskolin-stimulated cAMP production. 14 Differentially phosphorylated proteins (DPPs) resulted from AC2 activity and 34 differentially phosphorylated proteins resulted from AC6 activity. Analysis of these hits with the STRING protein interaction tool showed that AC2 signaling is more associated with modifications in RNA/DNA binding proteins and microtubule/spindle body proteins while AC6 signaling is associated with proteins regulating autophagy, calcium-calmodulin (Ca2+/CaM) signaling, Rho GTPases and cytoskeletal regulation. One protein, OFD1, was regulated in opposite directions, with serine 899 phosphorylation increased in the AC6 condition 1.5-fold but decreased to 0.46-fold by AC2. In conclusion, quantitative phosphoproteomics is a powerful tool for deciphering the complex signaling networks resulting from discreet signaling events that occur in cAMP compartments. Our data show key differences in the cAMP pools generated from AC2 and AC6 activity and imply that distinct cellular responses are regulated by these two compartments.
Collapse
Affiliation(s)
- Isabella Cattani-Cavalieri
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Yue Li
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Jordyn Margolis
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Amy Bogard
- AB Research LLC, Cincinnati, OH, United States
| | - Moom R. Roosan
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Rennolds S. Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| |
Collapse
|
8
|
Anhê GF, Bordin S. The adaptation of maternal energy metabolism to lactation and its underlying mechanisms. Mol Cell Endocrinol 2022; 553:111697. [PMID: 35690287 DOI: 10.1016/j.mce.2022.111697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/15/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022]
Abstract
Maternal energy metabolism undergoes a singular adaptation during lactation that allows for the caloric enrichment of milk. Changes in the mammary gland, changes in the white adipose tissue, brown adipose tissue, liver, skeletal muscles and endocrine pancreas are pivotal for this adaptation. The present review details the landmark studies describing the enzymatic modulation and the endocrine signals behind these metabolic changes. We will also update this perspective with data from recent studies showing transcriptional and post-transcriptional mechanisms that mediate the adaptation of the maternal metabolism to lactation. The present text will also bring experimental and observational data that describe the long-term consequences that short periods of lactation impose to maternal metabolism.
Collapse
Affiliation(s)
- Gabriel Forato Anhê
- Department of Translational Medicine, School of Medical Sciences, State University of Campinas, Campinas, Brazil.
| | - Silvana Bordin
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
9
|
Jiang Y, Tao Y, Zhang X, Wei X, Li M, He X, Zhou B, Guo W, Yin H, Cheng S. Loss of STAT5A promotes glucose metabolism and tumor growth through miRNA-23a-AKT signaling in hepatocellular carcinoma. Mol Oncol 2020; 15:710-724. [PMID: 33155364 PMCID: PMC7858139 DOI: 10.1002/1878-0261.12846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Here, we identified that increased miR‐23a expression in HCC tissues was associated with worse survival. More importantly, we found that STAT5A was a target of miR‐23a, whose levels significantly decreased in tumor tissues. Stable expression of STAT5A in Huh7 cells suppressed glucose metabolism and tumor growth. Finally, this study showed that increased miR‐23a negatively regulated STAT5A, which further activated AKT signaling to enable rapid metabolism for accelerated tumor growth in HCC. Taken together, our results demonstrated that the miR‐23a‐STAT5A‐AKT signaling pathway is critical to alter glucose metabolism in HCC and may offer new opportunities for effective therapy.
Collapse
Affiliation(s)
- Yabo Jiang
- The Six Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yongzhen Tao
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health (SINH), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Xiuping Zhang
- Department of Hepatobiliary and Pancreatic Surgical Oncology, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Xubiao Wei
- The Six Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Min Li
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health (SINH), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Xuxiao He
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health (SINH), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Bin Zhou
- The Six Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Weixing Guo
- The Six Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Huiyong Yin
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health (SINH), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Shuqun Cheng
- The Six Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
10
|
Tian M, Qi Y, Zhang X, Wu Z, Chen J, Chen F, Guan W, Zhang S. Regulation of the JAK2-STAT5 Pathway by Signaling Molecules in the Mammary Gland. Front Cell Dev Biol 2020; 8:604896. [PMID: 33282878 PMCID: PMC7705115 DOI: 10.3389/fcell.2020.604896] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
Janus kinase 2 (JAK2) and signal transducers and activators of transcription 5 (STAT5) are involved in the proliferation, differentiation, and survival of mammary gland epithelial cells. Dysregulation of JAK2-STAT5 activity invariably leads to mammary gland developmental defects and/or diseases, including breast cancer. Proper functioning of the JAK2-STAT5 signaling pathway relies on crosstalk with other signaling pathways (synergistically or antagonistically), which leads to normal biological performance. This review highlights recent progress regarding the critical components of the JAK2-STAT5 pathway and its crosstalk with G-protein coupled receptor (GPCR) signaling, PI3K-Akt signaling, growth factors, inflammatory cytokines, hormone receptors, and cell adhesion.
Collapse
Affiliation(s)
- Min Tian
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yingao Qi
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaoli Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhihui Wu
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiaming Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fang Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Qiao XR, Zhang X, Mu L, Tian J, Du Y. GRB2-associated binding protein 2 regulates multiple pathways associated with the development of prostate cancer. Oncol Lett 2020; 20:99. [PMID: 32831918 PMCID: PMC7439102 DOI: 10.3892/ol.2020.11960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 05/18/2020] [Indexed: 12/24/2022] Open
Abstract
The development of prostate cancer is complicated and involves a number of tumor-associated gene expression level abnormalities. Gene chip technology is a high-throughput method that can detect gene expression levels in different tissues and cells on a large scale. In the present study, gene chip technology was used to screen differentially expressed genes in PC-3 human prostate cancer cells following GRB-associated binding protein 2 (GAB2) gene knockdown, and the corresponding biological information was analyzed to investigate the role of GAB2 in prostate cancer. The PC-3 human prostate cancer cell GAB2 gene was knocked out and gene chip hybridization and bioinformatics methods were used to analyze the classical pathway and predict upstream regulatory molecules, disease and function associations and genetic interaction networks. According to the screening conditions |fold change|>1 and P<0.05, 1,242 differential genes were screened; 665 genes were upregulated, and 577 genes were downregulated. Ingenuity Pathway Analysis software demonstrated that GAB2 regulates pathways, such as the superpathway of cholesterol biosynthesis and p53 signaling in cells, and serves a role in diseases and functions such as 'non-melanoma solid tumors', 'viral infections' and 'morbidity or mortality'. In the occurrence and development of prostate cancer, factors such as the activation of genes involved in the proliferative cycle, abnormalities in metabolism-associated enzyme gene activities and viral infection play key roles. The present study provides novel research directions and therapeutic targets for prostate cancer.
Collapse
Affiliation(s)
- Xiang-Rui Qiao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China.,Key Laboratory of Molecular Cardiology, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, P.R. China
| | - Xinwei Zhang
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, P.R. China.,Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lijun Mu
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, P.R. China
| | - Juanhua Tian
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, P.R. China
| | - Yuefeng Du
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, P.R. China.,Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
12
|
The cytokine platelet factor 4 successfully replaces bovine serum albumin for the in vitro culture of porcine embryos. Theriogenology 2019; 148:201-207. [PMID: 31748174 DOI: 10.1016/j.theriogenology.2019.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/29/2019] [Accepted: 11/09/2019] [Indexed: 01/30/2023]
Abstract
The cytokine platelet factor 4 (PF4) enhances differentiation and cell viability of different stem cells lines in vitro. This study investigated whether PF4 addition to customary pig embryo semi-defined culture media can improve their developmental outcome (Experiment 1) and ultimately replace the need for bovine serum albumin (BSA, Experiment 2). Experiment 1 added PF4 (100-1000 ng/mL, 0 = control) to NCSU-23 with 0.4 mg/mL BSA culturing 3430 presumptive zygotes. Experiment 2 added PF4 (100-1000 ng/mL, 0 = Control-PVA) to a BSA-free medium (NCSU-23 with 0.3 mg/mL PVA) culturing 3820 presumptive zygotes. Zygote culture in NCSU-23 with 0.4 mg/mL BSA was used as overall control. All groups of Experiment 1 displayed similar rates of day 2-cleavage (range: 65.0 ± 10.9 to 70.0 ± 5.8%); of day 7-blastocyst rates (range: 46.6 ± 10.0 to 56.4 ± 8.2%) and of total day 7-blastocyst efficiency (range: 32.3 ± 8.3 to 37.2 ± 7.3%). Addition of PF4 did not affect total cell numbers of day 7 blastocysts (range: 44.1 ± 23.2 to 50.5 ± 26.4). In Experiment 2, PF4 accelerated embryo development, increasing (P < 0.01) blastocyst yield compared to 0-PF4, and blastocyst formation by day 5 adding PF4 100-500 ng/mL (range: 29.9 ± 7.8 to 31.8 ± 5.5%; P < 0.05) compared with BSA-control (17.2 ± 8.2%) and PF4 1000 ng/mL (15.5 ± 7.9%); showing similar blastocyst rates (range: 42.0 ± 11.5 to 49.3 ± 10.0%), total efficiency (28.0 ± 8.2 to 32.3 ± 7.1%) total cell numbers (range: 42.6 ± 19.3 to 45.7 ± 23.9) as BSA-controls. In conclusion, although PF4 did not show additive improvement under usual semi-defined, BSA-supplemented embryo media, it successfully replaced BSA sustaining porcine blastocyst production in chemically defined conditions.
Collapse
|
13
|
Wang D, Zhou W, Chen J, Wei W. Upstream regulators of phosphoinositide 3-kinase and their role in diseases. J Cell Physiol 2019; 234:14460-14472. [PMID: 30710358 DOI: 10.1002/jcp.28215] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/15/2019] [Indexed: 01/24/2023]
Abstract
Phosphoinositide 3-kinase (PI3K), a crucial signaling molecule, is regulated by various upstream regulators. Traditionally, receptor tyrosine kinases and G protein-coupled receptor are regarded as its principle upstream regulators; however, recent reports have indicated that spleen tyrosine kinase, β-arrestin2, Janus kinase, and RAS can also perform this role. Dysregulation of PI3K is common in the progression of various diseases, including, but not limited to, tumors, Alzheimer's disease, Parkinson's disease, rheumatoid arthritis, and acute myelogenous leukemia. The aim of this review is to provide a perspective on PI3K-related diseases examining both the classical and nonclassical upstream regulators of PI3K in detail.
Collapse
Affiliation(s)
- Dandan Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Weijie Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Jingyu Chen
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China.,Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China.,Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| |
Collapse
|
14
|
Kirk SE, Grattan DR, Bunn SJ. The median eminence detects and responds to circulating prolactin in the male mouse. J Neuroendocrinol 2019; 31:e12733. [PMID: 31077470 DOI: 10.1111/jne.12733] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/07/2019] [Accepted: 05/08/2019] [Indexed: 11/27/2022]
Abstract
In addition to its established lactational roles, prolactin acts on multiple target tissues and its circulating levels are responsive to a range of physiological stimuli. The present study used immunohistochemistry to demonstrate that systemic administration of prolactin activates target cells in the arcuate nucleus and median eminence of the male mouse. Prolactin receptor stimulation results in the phosphorylation and thus activation of the signal transducer and activator of transcription (STAT)5 pathway. Interestingly, although, in the arcuate nucleus, this response was localised to cell nuclei, the median eminence displayed both nuclear and diffuse, non-nuclear, phospho-STAT5 (pSTAT5) staining. Dual-label immunostaining demonstrated that, although the majority of nuclear pSTAT5 within the median eminence was located within vimentin-positive tanycytes, the non-nuclear staining occurred primarily in neuronal (βIII tubulin immunoreactive) elements. This conclusion was supported by the marked reduction of this signal in prolactin-treated mice lacking neuronal prolactin receptors. A smaller reduction was also seen in animals lacking prolactin receptors on GABAergic but not glutamatergic neurones. These findings identify a new prolactin target tissue and, in doing so, support the proposal that the median eminence has a sensory role in addition to its established secretory function. The physiological significance of this prolactin response is unknown, although its rapidity (maximum within 2 minutes of i.p. injection) suggests that it may enable the early detection of an increase in circulating prolactin. It is also possibile that non-nuclear prolactin-generated pSTAT5 in the median eminence may have a local, non-transcriptional, action. To this end, we used Evans Blue dye to demonstrate that elevated prolactin appears to reduce median eminence permeability and also that this effect is lost in animals lacking neuronal prolactin receptors.
Collapse
Affiliation(s)
- Siobhan E Kirk
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - David R Grattan
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Stephen J Bunn
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
Gupta R, Li W, Yan XJ, Barrientos J, Kolitz JE, Allen SL, Rai K, Chiorazzi N, Mongini PKA. Mechanism for IL-15-Driven B Cell Chronic Lymphocytic Leukemia Cycling: Roles for AKT and STAT5 in Modulating Cyclin D2 and DNA Damage Response Proteins. THE JOURNAL OF IMMUNOLOGY 2019; 202:2924-2944. [PMID: 30988120 DOI: 10.4049/jimmunol.1801142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 03/13/2019] [Indexed: 12/25/2022]
Abstract
Clonal expansion of B cell chronic lymphocytic leukemia (B-CLL) occurs within lymphoid tissue pseudofollicles. IL-15, a stromal cell-associated cytokine found within spleens and lymph nodes of B-CLL patients, significantly boosts in vitro cycling of blood-derived B-CLL cells following CpG DNA priming. Both IL-15 and CpG DNA are elevated in microbe-draining lymphatic tissues, and unraveling the basis for IL-15-driven B-CLL growth could illuminate new therapeutic targets. Using CpG DNA-primed human B-CLL clones and approaches involving both immunofluorescent staining and pharmacologic inhibitors, we show that both PI3K/AKT and JAK/STAT5 pathways are activated and functionally important for IL-15→CD122/ɣc signaling in ODN-primed cells expressing activated pSTAT3. Furthermore, STAT5 activity must be sustained for continued cycling of CFSE-labeled B-CLL cells. Quantitative RT-PCR experiments with inhibitors of PI3K and STAT5 show that both contribute to IL-15-driven upregulation of mRNA for cyclin D2 and suppression of mRNA for DNA damage response mediators ATM, 53BP1, and MDC1. Furthermore, protein levels of these DNA damage response molecules are reduced by IL-15, as indicated by Western blotting and immunofluorescent staining. Bioinformatics analysis of ENCODE chromatin immunoprecipitation sequencing data from cell lines provides insight into possible mechanisms for STAT5-mediated repression. Finally, pharmacologic inhibitors of JAKs and STAT5 significantly curtailed B-CLL cycling when added either early or late in a growth response. We discuss how the IL-15-induced changes in gene expression lead to rapid cycling and possibly enhanced mutagenesis. STAT5 inhibitors might be an effective modality for blocking B-CLL growth in patients.
Collapse
Affiliation(s)
- Rashmi Gupta
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Wentian Li
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Xiao J Yan
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030
| | | | - Jonathan E Kolitz
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030.,Department of Medicine, Northwell Health, Manhasset, NY 11030.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549; and
| | - Steven L Allen
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030.,Department of Medicine, Northwell Health, Manhasset, NY 11030.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549; and
| | - Kanti Rai
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549; and.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549; and.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549
| | - Patricia K A Mongini
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030; .,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549
| |
Collapse
|
16
|
Kimura A, Ishida Y, Furuta M, Nosaka M, Kuninaka Y, Taruya A, Mukaida N, Kondo T. Protective Roles of Interferon-γ in Cardiac Hypertrophy Induced by Sustained Pressure Overload. J Am Heart Assoc 2018; 7:e008145. [PMID: 29555642 PMCID: PMC5907566 DOI: 10.1161/jaha.117.008145] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/14/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND A clear understanding of the molecular mechanisms underlying hemodynamic stress-initiated cardiac hypertrophy is important for preventing heart failure. Interferon-γ (IFN-γ) has been suggested to play crucial roles in various diseases other than immunological disorders by modulating the expression of myriad genes. However, the involvement of IFN-γ in the pathogenesis of cardiac hypertrophy still remains unclear. METHODS AND RESULTS In order to elucidate the roles of IFN-γ in pressure overload-induced cardiac pathology, we subjected Balb/c wild-type (WT) or IFN-γ-deficient (Ifng-/-) mice to transverse aortic constriction (TAC). Three weeks after TAC, Ifng-/- mice developed more severe cardiac hypertrophy, fibrosis, and dysfunction than WT mice. Bone marrow-derived immune cells including macrophages were a source of IFN-γ in hearts after TAC. The activation of PI3K/Akt signaling, a key signaling pathway in compensatory hypertrophy, was detected 3 days after TAC in the left ventricles of WT mice and was markedly attenuated in Ifng-/- mice. The administration of a neutralizing anti-IFN-γ antibody abrogated PI3K/Akt signal activation in WT mice during compensatory hypertrophy, while that of IFN-γ activated PI3K/Akt signaling in Ifng-/- mice. TAC also induced the phosphorylation of Stat5, but not Stat1 in the left ventricles of WT mice 3 days after TAC. Furthermore, IFN-γ induced Stat5 and Akt phosphorylation in rat cardiomyocytes cultured under stretch conditions. A Stat5 inhibitor significantly suppressed PI3K/Akt signaling activation in the left ventricles of WT mice, and aggravated pressure overload-induced cardiac hypertrophy. CONCLUSIONS The IFN-γ/Stat5 axis may be protective against persistent pressure overload-induced cardiac hypertrophy by activating the PI3K/Akt pathway.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Disease Models, Animal
- Fibrosis
- Heart Ventricles/metabolism
- Heart Ventricles/physiopathology
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/prevention & control
- Interferon-gamma/deficiency
- Interferon-gamma/genetics
- Interferon-gamma/metabolism
- Male
- Mice, Inbred BALB C
- Mice, Knockout
- Myocytes, Cardiac/metabolism
- Phosphatidylinositol 3-Kinase/metabolism
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Rats, Sprague-Dawley
- Receptors, Interferon/genetics
- Receptors, Interferon/metabolism
- STAT5 Transcription Factor/metabolism
- Signal Transduction
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/prevention & control
- Ventricular Function, Left
- Ventricular Remodeling
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Akihiko Kimura
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yuko Ishida
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Machi Furuta
- Department of Clinical Laboratory Medicine, Wakayama Medical University, Wakayama, Japan
| | - Mizuho Nosaka
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yumi Kuninaka
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Akira Taruya
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute Kanazawa University, Kanazawa, Japan
| | - Toshikazu Kondo
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
17
|
Lee S, Lee SO, Kim GL, Rhee DK. Estrogen receptor-β of microglia underlies sexual differentiation of neuronal protection via ginsenosides in mice brain. CNS Neurosci Ther 2018. [PMID: 29524300 DOI: 10.1111/cns.12842] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AIMS Streptococcus pneumoniae infection in acute bacterial meningitis can lead to widespread brain damage and mortality. Inflammatory responses by immune cells in the brain are thought to determine the degree of brain injury. Yet, the mechanisms underlying host responses to pneumococcal meningitis are largely unknown. To explore host responses as a potential therapeutic target for preventing brain injury after pneumococcal meningitis. METHODS We evaluated signaling mechanisms that minimize neuronal damage caused by pneumococcal infection; specifically, we assessed pathways related to neuronal survival after enhancing estrogen receptor-β (ER-β) expression using a natural therapeutic substance known as ginsenoside Rb1 and Rg3 enhanced ginseng. RESULTS Tissue damage caused by bacterial infection was reduced in Rb1/Rg3-treated mice as a result of microglial activation and the inhibition of apoptosis. Furthermore, Rb1 upregulated the expression of brain-derived neurotrophic factor (BDNF) as well as anti-apoptotic factors including Bcl-2 and Bcl-xL. Using BV2 microglial cells in vitro, Rb1 treatment inhibited microglial apoptosis in a manner associated with JAK2/STAT5 phosphorylation. CONCLUSION After S. pneumoniae infection in mice, particularly in female mice, Rb1-containing ginseng increased bacterial clearance and survival. These findings inform our understanding of the host immune response to pneumococcal meningitis.
Collapse
Affiliation(s)
- Seungyeop Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Si-On Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Gyu-Lee Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
18
|
Wang H, He H, Meng H, Cui Y, Wang W. Effects of Grb2-associated binding protein 2-specific siRNA on the migration and invasion of MG-63 osteosarcoma cells. Oncol Lett 2018; 15:926-930. [PMID: 29422967 PMCID: PMC5772958 DOI: 10.3892/ol.2017.7375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 04/13/2017] [Indexed: 12/19/2022] Open
Abstract
To investigate the association between the expression of growth factor receptor binding protein 2-associated binding protein 2 (Gab2) in human osteosarcoma as well as the effects of Gab2 on invasion and metastasis, human MG-63 osteosarcoma cells were transfected with small interfering (si)RNA plasmid. Gab2 protein and mRNA expression levels were detected using western blotting and reverse transcription-polymerase chain reaction, respectively. The cell migration and invasion abilities were detected using in vitro chemotaxis and invasion assays, respectively, following siRNA vector expression. Gab2 was markedly expressed in MG-63 cells. The Gab2 protein and mRNA expression levels of the cells transfected with Gab2 siRNA (siGab2/MG-63) were reduced compared with those of the cells transfected with scrambled siRNA (Scr/MG-63). The chemotaxis assay demonstrated that the migration capacity of siGab2/MG-63 cells induced by 10 µg/l epidermal growth factor, was significantly reduced compared with that of the MG-63 and Scr/MG-63 cells (P<0.01). In comparison with Scr/MG-63 and MG-63 cells, a reduced number of siGab2/MG-63 cells invaded the Matrigel matrix, demonstrating that the in vitro invasion capacity was significantly decreased (P<0.01). Decreasing Gab2 expression levels using siRNA interference inhibited the migration and invasion ability of human MG-63 osteosarcoma cells.
Collapse
Affiliation(s)
- Huan Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Hui He
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Hongmei Meng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yang Cui
- Department of Orthopedic Surgery, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161000, P.R. China
| | - Wenbo Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
19
|
Rädler PD, Wehde BL, Wagner KU. Crosstalk between STAT5 activation and PI3K/AKT functions in normal and transformed mammary epithelial cells. Mol Cell Endocrinol 2017; 451:31-39. [PMID: 28495456 PMCID: PMC5515553 DOI: 10.1016/j.mce.2017.04.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 01/01/2023]
Abstract
Janus kinases (JAKs) and signal transducers and activators of transcription (STATs) have been shown to function downstream of several peptide hormones and cytokines that are required for postnatal development and secretory function of the mammary gland. As part of an extended network, these signal transducers can engage in crosstalk with other pathways to facilitate synergistic, and sometimes antagonistic, actions of different growth factors. Specifically, signaling through the JAK2/STAT5 cascade has been demonstrated to be indispensable for the specification, proliferation, differentiation, and survival of secretory mammary epithelial cells. Following a concise description of major cellular programs in mammary gland development and the role of growth factors that rely on JAK/STAT signaling to orchestrate these programs, this review highlights the significance of active STAT5 and its crosstalk with the PI3 kinase and AKT1 for mediating the proliferation of alveolar progenitors and survival of their functionally differentiated descendants in the mammary gland. Based on its ability to provide self-sufficiency in growth signals that are also capable of overriding intrinsic cell death programs, persistently active STAT5 can serve as a potent oncoprotein that contributes to the genesis of breast cancer. Recent experimental evidence demonstrated that, similar to normal developmental programs, oncogenic functions of STAT5 rely on molecular crosstalk with PI3K/AKT signaling for the initiation, and in some instances the progression, of breast cancer. The multitude by which STATs can interact with individual mediators of the PI3K/AKT signaling cascade may provide novel avenues for targeting signaling nodes within molecular networks that are crucial for the survival of cancer cells.
Collapse
Affiliation(s)
- Patrick D Rädler
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | - Barbara L Wehde
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | - Kay-Uwe Wagner
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA; Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA.
| |
Collapse
|
20
|
Ma S, Chen J, Chen C, Wei N, Xu J, Yang G, Wang N, Meng Y, Ren J, Xu Z. Erythropoietin Rescues Memory Impairment in a Rat Model of Chronic Cerebral Hypoperfusion via the EPO-R/JAK2/STAT5/PI3K/Akt/GSK-3β Pathway. Mol Neurobiol 2017; 55:3290-3299. [PMID: 28488208 DOI: 10.1007/s12035-017-0568-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 04/19/2017] [Indexed: 12/01/2022]
Abstract
Vascular dementia is the second most common cause of dementia in older people and is characterized by the sudden onset of impairments in thinking skills and behavior, which generally occur following a stroke. Unfortunately, effective therapy for vascular dementia remains inadequate. Erythropoietin (EPO) is a glycoprotein hormone that controls erythropoiesis, or red blood cell production. Recently, a prominent role for EPO has been defined in the nervous system, and there is growing interest in the potential therapeutic use of EPO for neuroprotection. However, whether it is protective from memory impairments and the underlying mechanisms of vascular dementia (VD) remains unknown. In the current study, we reported that supplements with exogenous erythropoietin (EPO) for 4 weeks could restore impaired memory in 2-vessel occlusion (2VO) rats, a well-established vascular dementia animal model. EPO also rescued impairments in dendritic spines and cholinergic dysfunctions in the hippocampus. Moreover, EPO suppressed the overactivation of GSK-3β in the hippocampus by stimulating the JAK2/STAT5/PI3K/Akt signal pathway. Furthermore, we found that genetic knockdown of the EPO receptor (EPO-R) by shRNA blocks the neuroprotection conferred by EPO on memory in VD. We hypothesized that EPO treatment is able to rescue the memory impairments in VD by stimulating the EPO-R/JAK2/STAT5/PI3K/Akt/GSK-3β pathway and suggest the potential usage of EPO in the therapy for VD.
Collapse
Affiliation(s)
- Shengli Ma
- Department of Emergency, Institute of Clinic Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China.
| | - Juwu Chen
- Department of Emergency, Institute of Clinic Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
| | - Chen Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
| | - Na Wei
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
| | - Jingjing Xu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
| | - Guohui Yang
- Department of Emergency, Institute of Clinic Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
| | - Nan Wang
- Department of Emergency, Institute of Clinic Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
| | - Yu Meng
- Department of Emergency, Institute of Clinic Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
| | - Jia Ren
- Department of Emergency, Institute of Clinic Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
| | - Zongchao Xu
- Department of Emergency, Institute of Clinic Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
| |
Collapse
|
21
|
Able AA, Burrell JA, Stephens JM. STAT5-Interacting Proteins: A Synopsis of Proteins that Regulate STAT5 Activity. BIOLOGY 2017; 6:biology6010020. [PMID: 28287479 PMCID: PMC5372013 DOI: 10.3390/biology6010020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/27/2017] [Accepted: 03/06/2017] [Indexed: 01/17/2023]
Abstract
Signal Transducers and Activators of Transcription (STATs) are key components of the JAK/STAT pathway. Of the seven STATs, STAT5A and STAT5B are of particular interest for their critical roles in cellular differentiation, adipogenesis, oncogenesis, and immune function. The interactions of STAT5A and STAT5B with cytokine/hormone receptors, nuclear receptors, transcriptional regulators, proto-oncogenes, kinases, and phosphatases all contribute to modulating STAT5 activity. Among these STAT5 interacting proteins, some serve as coactivators or corepressors to regulate STAT5 transcriptional activity and some proteins can interact with STAT5 to enhance or repress STAT5 signaling. In addition, a few STAT5 interacting proteins have been identified as positive regulators of STAT5 that alter serine and tyrosine phosphorylation of STAT5 while other proteins have been identified as negative regulators of STAT5 via dephosphorylation. This review article will discuss how STAT5 activity is modulated by proteins that physically interact with STAT5.
Collapse
Affiliation(s)
- Ashley A Able
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Jasmine A Burrell
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Jacqueline M Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
22
|
Wiśniewska-Chudy E, Szylberg Ł, Dworacki G, Mizera-Nyczak E, Marszałek A. pSTAT5 and ERK exhibit different expression in myeloproliferative neoplasms. Oncol Rep 2017; 37:2295-2307. [DOI: 10.3892/or.2017.5476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/02/2016] [Indexed: 11/06/2022] Open
|
23
|
Lee GA, Lai YG, Chen RJ, Liao NS. Interleukin 15 activates Akt to protect astrocytes from oxygen glucose deprivation-induced cell death. Cytokine 2017; 92:68-74. [PMID: 28110119 DOI: 10.1016/j.cyto.2017.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/31/2016] [Accepted: 01/12/2017] [Indexed: 12/11/2022]
Abstract
Astrocytes play a pivotal role in neuronal survival under the condition of post-ischemic brain inflammation, but the relevant astrocyte-derived mediators of ischemic brain injury remain to be defined. IL-15 supports survival of multiple lymphocyte lineages in the peripheral immune system, but the role of IL-15 in inflammatory disease of the central nervous system is not well defined. Recent research has shown an increase of IL-15-expressing astrocytes in the ischemic brain. Since astrocytes promote neuron survival under cerebral ischemia by buffering excess extracellular glutamate and producing growth factors, recovery of astrocyte function could be of benefit for stroke therapy. Here, we report that IL-15 is the pro-survival cytokine that prevents astrocyte death from oxygen glucose deprivation (OGD)-induced damage. Astrocytes up-regulate expression of the IL-15/IL-15Rα complex under OGD, whereas OGD down-regulates the levels of pSTAT5 and pAkt in astrocytes. IL-15 treatment ameliorates the decline of pAkt, decreases the percentage of annexin V+ cells, inhibits the activation of caspase-3, and activates the Akt pathway to promote astrocyte survival in response to OGD. We further identified that activation of Akt, but not PKCα/βI, is essential for astrocyte survival under OGD. Taken together, this study reveals the function of IL-15 in astrocyte survival via Akt phosphorylation in response to OGD-induced damage.
Collapse
Affiliation(s)
- Gilbert Aaron Lee
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan; Department of Health Healing and Health Marketing, Kainan University, Taoyuan, Taiwan
| | - Yein-Gei Lai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ray-Jade Chen
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
| | - Nan-Shih Liao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
24
|
Changes in Gab2 phosphorylation and interaction partners in response to interleukin (IL)-2 stimulation in T-lymphocytes. Sci Rep 2016; 6:23530. [PMID: 27025927 PMCID: PMC4812247 DOI: 10.1038/srep23530] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/08/2016] [Indexed: 02/07/2023] Open
Abstract
Interleukin-2 (IL-2) stimulation results in T-cell growth as a consequence of activation of highly sophisticated and fine-tuned signaling pathways. Despite lacking intrinsic enzymatic activity, scaffold proteins such as Gab2, play a pivotal role in IL-2-triggered signal transduction integrating, diversifying and amplifying the signal by serving as a platform for the assembly of effectors proteins. Traditionally, Gab2-mediated protein recruitment was believed to solely depend on cytokine-induced phosphotyrosine moieties. At present, phosphorylation on serine/threonine residues is also emerging as a key mediator of Gab2-dependent signal regulation. Despite its relevance, IL-2-triggered regulation on Gab2 phosphorylation is yet poorly understood. Combining antibody- and TiO2-based enrichment of the scaffold protein with SILAC quantitative mass spectrometry we disclose the prominent regulation IL-2 exerts on Gab2 serine/threonine phosphorylation by showing that at least 18 serines and 1 threonine, including previously non-reported ones, become phosphorylated in response to cytokine stimulation. Additionally, we decipher the interactome of the docking protein in resting and cytokine-treated T-lymphocytes and besides well-known Gab2 interactors we discover three novel cytokine-inducible Gab2-binding proteins. Thus, our data provide novel insights and a wealth of candidates for future studies that will shed light into the role of Gab2 in IL-2-initiated signal transduction.
Collapse
|
25
|
Xu LJ, Wang YC, Lan HW, Li J, Xia T. Grb2-associated binder-2 gene promotes migration of non-small cell lung cancer cells via Akt signaling pathway. Am J Transl Res 2016; 8:1208-17. [PMID: 27158407 PMCID: PMC4846964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/12/2015] [Indexed: 06/05/2023]
Abstract
Early stages of non-small cell lung cancer (NSCLC) can be successfully treated by surgical resection of the tumor, but there is still no effective treatment once it is progressed to metastatic phases. Investigation of NSCLC cancer cell migration, metastasis and development of strategies to block this process is essential to improve the disease prognosis. In the present study, we found that GRB2-associated-binding protein 2 (Gab2) is involved in the migration of NSCLC cells and demonstrated that Gab2 disruption impairs NSCLC cells migration. The requirement of Gab2 in the migration of NSCLC was further confirmed by gene silencing in vitro. In corresponding to this result, over-expression of Gab2 significantly promoted the migratory of NSCLC cells. Finally, we found that Gab2 promotes NSCLC migration through the protein kinase B (Akt) signaling pathway and up-regulation the activity of matrix metallopeptidase (MMP)-2/9. To conclude, our findings suggest a novel mechanism underlying the migration of NSCLC cells which might serve as a new intervention target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Li Jun Xu
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyNo.1095, Jiefang Avenue, Wuhan, Hubei Province, 430030, China
| | - Yu Chang Wang
- Department of Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei 430030, China
| | - Hong Wen Lan
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyNo.1095, Jiefang Avenue, Wuhan, Hubei Province, 430030, China
| | - Jun Li
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyNo.1095, Jiefang Avenue, Wuhan, Hubei Province, 430030, China
| | - Tian Xia
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyNo.1277, Jiefang Avenue, Wuhan, Hubei Province, 430030, China
| |
Collapse
|
26
|
Chen H, Kleinberger JW, Takane KK, Salim F, Fiaschi-Taesch N, Pappas K, Parsons R, Jiang J, Zhang Y, Liu H, Wang P, Bender AS, Frank SJ, Stewart AF. Augmented Stat5 Signaling Bypasses Multiple Impediments to Lactogen-Mediated Proliferation in Human β-Cells. Diabetes 2015; 64:3784-97. [PMID: 26159175 PMCID: PMC4613973 DOI: 10.2337/db15-0083] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/30/2015] [Indexed: 12/20/2022]
Abstract
Pregnancy in rodents is associated with a two- to threefold increase in β-cell mass, which is attributable to large increases in β-cell proliferation, complimented by increases in β-cell size, survival, and function and mediated mainly by the lactogenic hormones prolactin (PRL) and placental lactogens. In humans, however, β-cell mass does not increase as dramatically during pregnancy, and PRL fails to activate proliferation in human islets in vitro. To determine why, we explored the human PRL-prolactin receptor (hPRLR)-Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5)-cyclin-cdk signaling cascade in human β-cells. Surprisingly, adult human β-cells express little or no PRLR. As expected, restoration of the hPRLR in human β-cells rescued JAK2-STAT5 signaling in response to PRL. However, rescuing hPRLR-STAT5 signaling nevertheless failed to confer proliferative ability on adult human β-cells in response to PRL. Surprisingly, mouse (but not human) Stat5a overexpression led to upregulation of cyclins D1-3 and cdk4, as well as their nuclear translocation, all of which are associated with β-cell cycle entry. Collectively, the findings show that human β-cells fail to proliferate in response to PRL for multiple reasons, one of which is a paucity of functional PRL receptors, and that murine Stat5 overexpression is able to bypass these impediments.
Collapse
Affiliation(s)
- Hainan Chen
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Karen K Takane
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Fatimah Salim
- Duquesne University School of Nursing, Pittsburgh, PA
| | - Nathalie Fiaschi-Taesch
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kyrie Pappas
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ramon Parsons
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jing Jiang
- Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, AL
| | - Yue Zhang
- Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, AL
| | - Hongtao Liu
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Peng Wang
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Aaron S Bender
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Stuart J Frank
- Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, AL Endocrinology Section, Birmingham VA Medical Center, Birmingham, AL
| | - Andrew F Stewart
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
27
|
Layton Tovar CF, Mendieta Zerón H. Intracellular Signaling Pathways Involved in Childhood Acute Lymphoblastic Leukemia; Molecular Targets. Indian J Hematol Blood Transfus 2015; 32:141-53. [PMID: 27065575 DOI: 10.1007/s12288-015-0609-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 10/09/2015] [Indexed: 01/17/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a malignant disease characterized by an uncontrolled proliferation of immature lymphoid cells. ALL is the most common hematologic malignancy in early childhood, and it reaches peak incidence between the ages of 2 and 3 years. The prognosis of ALL is associated with aberrant gene expression, in addition to the presence of numerical or structural chromosomal alterations, age, race, and immunophenotype. The Relapse rate with regard to pharmacological treatment rises in childhood; thus, the expression of biomarkers associated with the activation of cell signaling pathways is crucial to establish the disease prognosis. Intracellular pathways involved in ALL are diverse, including Janus kinase/Signal transducers and transcription activators (JAK-STAT), Phosphoinositide-3-kinase-protein kinase B (PI3K-AKT), Ras mitogen-activated protein kinase (Ras-MAPK), Glycogen synthase kinase-3β (GSK-3β), Nuclear factor-kappa beta (NF-κB), and Hypoxia-inducible transcription factor 1α (HIF-1α), among others. In this review, we present several therapeutic targets, intracellular pathways, and molecular markers that are being studied extensively at present.
Collapse
Affiliation(s)
- Cristian Fabián Layton Tovar
- Facultad de Medicina, Universidad Autónoma del Estado de México (UAEMex), Paseo Tollocan esq. Jesús Carranza, Col. Moderna de la Cruz, 50180 Toluca, Estado de Mexico Mexico
| | - Hugo Mendieta Zerón
- Facultad de Medicina, Universidad Autónoma del Estado de México (UAEMex), Paseo Tollocan esq. Jesús Carranza, Col. Moderna de la Cruz, 50180 Toluca, Estado de Mexico Mexico ; Asociación Científica Latina A.C. (ASCILA) and Ciprés Grupo Médico (CGM), Felipe Villanueva sur 1209, Col. Rancho Dolores, 50170 Toluca, Estado de Mexico Mexico
| |
Collapse
|
28
|
Wang WJ, Mou K, Wu XF, Zhang JZ, Ren G, Qi JD, Xu YF, Yao X. Grb2-associated binder 2 silencing impairs growth and migration of H1975 cells via modulation of PI3K-Akt signaling. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:10575-10584. [PMID: 26617767 PMCID: PMC4637582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 08/25/2015] [Indexed: 06/05/2023]
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related death and often has a poor prognosis. Investigation of NSCLC cancer cell migration, invasion and development of strategies to block this process is essential to improve the disease prognosis. In this study, we tested our hypothesis that Grb2-associated binder 2 (Gab2) regulate NSCLC cancer cell H1975 malignant biological behaviors, and silencing Gab2 reduced H1975 cellular colony forming ability, migration and invasion. Moreover, silenced cells present defects in phosphatidylinositol 3-kinase (PI3K)-serine/threonine kinase (Akt) signaling, and reduced expression/activity of matrix metallopeptidase (MMP)-2/9. Furthermore, in Gab2 siRNA-transfected cells, we detected a decrease in signal transducer and activator of transcription 3 (STAT3) phosphorylation and nuclear translocation. In vivo, Gab2 siRNA cells inoculated subcutaneously in nude mice demonstrated decreased tumor growth and PI3K-Akt signaling inhibition. These results indicate that Gab2 is a key factor in H1975 tumor migration, invasion, suggesting that Gab2 can be a novel therapeutic target in NSCLC.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Carcinoma, Non-Small-Cell Lung/enzymology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/mortality
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Cell Size
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Lung Neoplasms/enzymology
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase 9/metabolism
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Invasiveness
- Phosphatidylinositol 3-Kinase/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- RNA Interference
- STAT3 Transcription Factor/metabolism
- Signal Transduction
- Time Factors
- Transfection
Collapse
Affiliation(s)
- Wen Jie Wang
- Department of Oncology, People’s Hospital of Laiwu CityNo. 1 Xuehu Street, Changshao Road, Laiwu, Shandong, China
| | - Kun Mou
- Department of Oncology, People’s Hospital of Laiwu CityNo. 1 Xuehu Street, Changshao Road, Laiwu, Shandong, China
| | - Xi Feng Wu
- Department of Hematology, People’s Hospital of Laiwu CityNo. 1 Xuehu Street, Changshao Road, Laiwu, Shandong, China
| | - Jin Zhong Zhang
- Department of Oncology, People’s Hospital of Laiwu CityNo. 1 Xuehu Street, Changshao Road, Laiwu, Shandong, China
| | - Gang Ren
- Department of Oncology, People’s Hospital of Laiwu CityNo. 1 Xuehu Street, Changshao Road, Laiwu, Shandong, China
| | - Jiu De Qi
- Department of Oncology, People’s Hospital of Laiwu CityNo. 1 Xuehu Street, Changshao Road, Laiwu, Shandong, China
| | - Yi-Fu Xu
- Department of Pharmacy, First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu Province, China
| | - Xin Yao
- Department of Pharmacy, First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu Province, China
| |
Collapse
|
29
|
Ruiz-Medina BE, Ross JA, Kirken RA. Interleukin-2 Receptor β Thr-450 Phosphorylation Is a Positive Regulator for Receptor Complex Stability and Activation of Signaling Molecules. J Biol Chem 2015; 290:20972-20983. [PMID: 26152718 DOI: 10.1074/jbc.m115.660654] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Indexed: 02/02/2023] Open
Abstract
T, B, and natural killer cells are required for normal immune response and are regulated by cytokines such as IL-2. These cell signals are propagated following receptor-ligand engagement, controlling recruitment and activation of effector proteins. The IL-2 receptor β subunit (IL-2Rβ) serves in this capacity and is known to be phosphorylated. Tyrosine phosphorylation of the β chain has been studied extensively. However, the identification and putative regulatory roles for serine and threonine phosphorylation sites have yet to be fully characterized. Using LC-MS/MS and phosphospecific antibodies, a novel IL-2/IL-15 inducible IL-2Rβ phosphorylation site (Thr-450) was identified. IL-2 phosphokinetic analysis revealed that phosphorylation of IL-2Rβ Thr-450 is rapid (2.5 min), transient (peaks at 15 min), and protracted compared with receptor tyrosine phosphorylation and occurs in multiple cell types, including primary human lymphocytes. Pharmacological and siRNA-mediated inhibition of various serine/threonine kinases revealed ERK1/2 as a positive regulator, whereas purified protein phosphatase 1 (PP1), dephosphorylated Thr-450 in vitro. Reconstitution assays demonstrated that Thr-450 is important for regulating IL-2R complex formation, recruitment of JAK3, and activation of AKT and ERK1/2 and a transcriptionally active STAT5. These results provide the first evidence of the identification and functional characterization for threonine phosphorylation of an interleukin receptor.
Collapse
Affiliation(s)
- Blanca E Ruiz-Medina
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas 79968
| | - Jeremy A Ross
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas 79968
| | - Robert A Kirken
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas 79968.
| |
Collapse
|
30
|
Ding CB, Yu WN, Feng JH, Luo JM. Structure and function of Gab2 and its role in cancer (Review). Mol Med Rep 2015; 12:4007-4014. [PMID: 26095858 PMCID: PMC4526075 DOI: 10.3892/mmr.2015.3951] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 05/19/2015] [Indexed: 12/30/2022] Open
Abstract
The docking proteins of the Grb-associated binder (Gab) family transduce cellular signals between receptors and intracellular downstream effectors, and provide a platform for protein-protein interactions. Gab2, a key member of the Gab family of proteins, is involved in the amplification and integration of signal transduction, evoked by a variety of extracellular stimuli, including growth factors, cytokines and antigen receptors. Gab2 protein lacks intrinsic catalytic activity; however, when phosphorylated by protein-tyrosine kinases (PTKs), Gab2 recruits several Src homology-2 (SH2) domain-containing proteins, including the SH2-containing protein tyrosine phosphatase 2 (SHP2), the p85 subunit of phosphoinositide-3 kinase (PI3K), phospholipase C-γ (PLCγ)1, Crk, and GC-GAP. Through these interactions, the Gab2 protein triggers various downstream signal effectors, including SHP2/rat sarcoma viral oncogene/RAF/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase and PI3K/AKT, involved in cell growth, differentiation, migration and apoptosis. It has been previously reported that aberrant Gab2 and/or Gab2 signaling is closely associated with human tumorigenesis, particularly in breast cancer, leukemia and melanoma. The present review aimed to focus on the structure and effector function of Gab2, its role in cancer and its potential for use as an effective therapeutic target.
Collapse
Affiliation(s)
- Chen-Bo Ding
- Department of Immunology and Immunology Innovation Base for Postgraduate Education in Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563099, P.R. China
| | - Wei-Na Yu
- Department of Immunology and Immunology Innovation Base for Postgraduate Education in Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563099, P.R. China
| | - Ji-Hong Feng
- Department of Oncology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563099, P.R. China
| | - Jun-Min Luo
- Department of Immunology and Immunology Innovation Base for Postgraduate Education in Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563099, P.R. China
| |
Collapse
|
31
|
Stewart AF, Hussain MA, García-Ocaña A, Vasavada RC, Bhushan A, Bernal-Mizrachi E, Kulkarni RN. Human β-cell proliferation and intracellular signaling: part 3. Diabetes 2015; 64:1872-85. [PMID: 25999530 PMCID: PMC4439562 DOI: 10.2337/db14-1843] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This is the third in a series of Perspectives on intracellular signaling pathways coupled to proliferation in pancreatic β-cells. We contrast the large knowledge base in rodent β-cells with the more limited human database. With the increasing incidence of type 1 diabetes and the recognition that type 2 diabetes is also due in part to a deficiency of functioning β-cells, there is great urgency to identify therapeutic approaches to expand human β-cell numbers. Therapeutic approaches might include stem cell differentiation, transdifferentiation, or expansion of cadaver islets or residual endogenous β-cells. In these Perspectives, we focus on β-cell proliferation. Past Perspectives reviewed fundamental cell cycle regulation and its upstream regulation by insulin/IGF signaling via phosphatidylinositol-3 kinase/mammalian target of rapamycin signaling, glucose, glycogen synthase kinase-3 and liver kinase B1, protein kinase Cζ, calcium-calcineurin-nuclear factor of activated T cells, epidermal growth factor/platelet-derived growth factor family members, Wnt/β-catenin, leptin, and estrogen and progesterone. Here, we emphasize Janus kinase/signal transducers and activators of transcription, Ras/Raf/extracellular signal-related kinase, cadherins and integrins, G-protein-coupled receptors, and transforming growth factor β signaling. We hope these three Perspectives will serve to introduce these pathways to new researchers and will encourage additional investigators to focus on understanding how to harness key intracellular signaling pathways for therapeutic human β-cell regeneration for diabetes.
Collapse
Affiliation(s)
- Andrew F Stewart
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mehboob A Hussain
- Departments of Medicine and Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| | - Adolfo García-Ocaña
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Rupangi C Vasavada
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anil Bhushan
- Diabetes Center, University of California, San Francisco, San Francisco, CA
| | - Ernesto Bernal-Mizrachi
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, and VA Ann Arbor Healthcare System, Ann Arbor, MI
| | - Rohit N Kulkarni
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| |
Collapse
|
32
|
Bibi S, Arslanhan MD, Langenfeld F, Jeanningros S, Cerny-Reiterer S, Hadzijusufovic E, Tchertanov L, Moriggl R, Valent P, Arock M. Co-operating STAT5 and AKT signaling pathways in chronic myeloid leukemia and mastocytosis: possible new targets of therapy. Haematologica 2015; 99:417-29. [PMID: 24598853 DOI: 10.3324/haematol.2013.098442] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chronic myeloid leukemia and systemic mastocytosis are myeloid neoplasms sharing a number of pathogenetic and clinical features. In both conditions, an aberrantly activated oncoprotein with tyrosine kinase activity, namely BCR-ABL1 in chronic myeloid leukemia, and mutant KIT, mostly KIT D816V, in systemic mastocytosis, is key to disease evolution. The appreciation of the role of such tyrosine kinases in these diseases has led to the development of improved therapies with tyrosine kinase-targeted inhibitors. However, most drugs, including new KIT D816V-blocking agents, have failed to achieve long-lasting remissions in advanced systemic mastocytosis, and there is a similar problem in chronic myeloid leukemia, where imatinib-resistant patients sometimes fail to achieve remission, even with second- or third-line BCR-ABL1 specific tyrosine kinase inhibitors. During disease progression, additional signaling pathways become activated in neoplastic cells, but most converge into major downstream networks. Among these, the AKT and STAT5 pathways appear most critical and may result in drug-resistant chronic myeloid leukemia and systemic mastocytosis. Inhibition of phosphorylation of these targets has proven their crucial role in disease-evolution in both malignancies. Together, these observations suggest that STAT5 and AKT are key drivers of oncogenesis in drug-resistant forms of the diseases, and that targeting STAT5 and AKT might be an interesting approach in these malignancies. The present article provides an overview of our current knowledge about the critical role of AKT and STAT5 in the pathophysiology of chronic myeloid leukemia and systemic mastocytosis and on their potential value as therapeutic targets in these neoplasms.
Collapse
|
33
|
Fahrenkamp D, de Leur HSV, Küster A, Chatain N, Müller-Newen G. Src family kinases interfere with dimerization of STAT5A through a phosphotyrosine-SH2 domain interaction. Cell Commun Signal 2015; 13:10. [PMID: 25885255 PMCID: PMC4350284 DOI: 10.1186/s12964-014-0081-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/30/2014] [Indexed: 11/10/2022] Open
Abstract
Background Chronic myeloid leukemia (CML) is driven by the expression of the BCR-ABL oncoprotein. STAT5 is a BCR-ABL substrate and persistently activated by tyrosine phosphorylation in CML cells. Activated STAT5 (pSTAT5) drives proliferation and survival of leukemic cells and contributes to initial transformation and maintenance of the disease. In cytokine-induced STAT5 signaling, phosphorylation of STAT5A on Y694 leads to nuclear accumulation of the transcription factor, followed by DNA-binding and gene induction. However, Src-family kinases (SFK) mediate cytoplasmic retention of pSTAT5A leading to attenuated target gene expression and colony formation in CML cells. Results In this study we show that autophosphorylation of Y416 in the highly conserved activation loop of SFK generates a potent recruitment site for the SH2 domain of STAT5A. Binding of the SH2 domain to the activation loop is required for STAT5AY694 phosphorylation by SFK, but at the same time promotes the persistent cytoplasmic localization of the transcription factor as found in BCR-ABL+ leukemia. As a consequence of the complex formation between tyrosine-phosphorylated SFK and the SH2 domain of STAT5A, the dimerization of STAT5A is impaired. We further demonstrate that constitutively active STAT5AS710F escapes from SFK-mediated cytoplasmic retention by enhancing STAT5A dimer stability. Conclusion Our results reveal important structural aspects of cytoplasmic pSTAT5A found in myeloid leukemias and will contribute to the understanding of STAT5A mediated cytoplasmic signaling.
Collapse
Affiliation(s)
- Dirk Fahrenkamp
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Hildegard Schmitz-Van de Leur
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Andrea Küster
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Nicolas Chatain
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany. .,Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Gerhard Müller-Newen
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
34
|
Ahmed MS, Byeon SE, Jeong Y, Miah MA, Salahuddin M, Lee Y, Park SS, Bae YS. Dab2, a negative regulator of DC immunogenicity, is an attractive molecular target for DC-based immunotherapy. Oncoimmunology 2015; 4:e984550. [PMID: 25949867 DOI: 10.4161/2162402x.2014.984550] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 11/02/2014] [Indexed: 12/28/2022] Open
Abstract
Dab2 is an adapter protein involved in receptor-mediated signaling, endocytosis, cell adhesion, hematopoietic cell differentiation, and angiogenesis. It plays a pivotal role in controlling cellular homeostasis. In the immune system, the Dab2 is a Foxp3 target gene and is required for regulatory T (Treg) cell function. Dab2 expression and its biological function in dendritic cells (DCs) have not been described. In this study, we found that Dab2 was significantly induced during the development of mouse bone marrow (BM)-derived DCs (BMDCs) and human monocyte-derived DCs (MoDCs). Even in a steady state, Dab2 was expressed in mouse splenic DCs (spDCs). STAT5 activation, Foxp3 expression, and hnRNPE1 activation mediated by PI3K/Akt signaling were required for Dab2 expression during GM-CSF-derived BMDC development regardless of TGF-β signaling. Dab2-silencing was accompanied by enhanced IL-12 and IL-6 expression, and an improved capacity of DC for antigen uptake, migration and T cell stimulation, which generated strong CTL in vaccinated mice. Vaccination with Dab2-silenced DCs inhibited tumor growth more effectively than did vaccination with wild type DCs. Dab2-overexpression abrogated the efficacy of the DC vaccine in DC-based tumor immunotherapy. These data strongly suggest that Dab2 might be an intrinsic negative regulator of the immunogenicity of DCs, thus might be an attractive molecular target to improve DC vaccine efficacy.
Collapse
Key Words
- BAT, blocking the TGF-β-activated translation element
- BM, bone marrow
- CFSE, 5, 6-carboxyfluorescein succinimidyl ester
- CTL, cytotoxic T lymphocyte
- DCs, dendritic cells
- Dab2
- Dab2, disabled-2 adaptor protein
- Dab2KD, Dab2-knockdown
- Foxp3, forkhead box P3
- GM-CSF, granulocyte-macrophage colony stimulating factor
- OT-1 and OT-2 mice, OVA257–264 and OVA323–339-peptide-specific T cell receptor transgenic mice
- OVA, ovalbumin
- PI3K, phosphoinositide-3 kinase
- STAT5, transducer and activator of transcription 5
- TGF-β, transforming growth factor-β
- Treg, regulatory T
- WT, wild type
- dendritic cells
- hMoDC, human monocyte-derived dendritic cell
- hnRNP E1, heterogeneous nuclear ribonucleoprotein E1
- imDC, immature DC
- immunogenicity
- mDC, mature DC
- molecular target
Collapse
Affiliation(s)
- Md Selim Ahmed
- Department of Biological Science; Sungkyunkwan University ; Suwon, Gyounggi-do, Republic of Korea
| | - Se Eun Byeon
- Department of Biological Science; Sungkyunkwan University ; Suwon, Gyounggi-do, Republic of Korea
| | - Yideul Jeong
- Department of Biological Science; Sungkyunkwan University ; Suwon, Gyounggi-do, Republic of Korea
| | - Mohammad Alam Miah
- Department of Biological Science; Sungkyunkwan University ; Suwon, Gyounggi-do, Republic of Korea
| | - Md Salahuddin
- Department of Biological Science; Sungkyunkwan University ; Suwon, Gyounggi-do, Republic of Korea
| | - Yoon Lee
- Department of Biological Science; Sungkyunkwan University ; Suwon, Gyounggi-do, Republic of Korea ; CreaGene Research Institute ; Seongnam-shi, Gyeonggi-do, Republic of Korea
| | - Sung-Soo Park
- School of Life Sciences and Biotechnology; Korea University ; Seoul, Republic of Korea
| | - Yong-Soo Bae
- Department of Biological Science; Sungkyunkwan University ; Suwon, Gyounggi-do, Republic of Korea ; CreaGene Research Institute ; Seongnam-shi, Gyeonggi-do, Republic of Korea
| |
Collapse
|
35
|
Ma R, Hu J, Huang C, Wang M, Xiang J, Li G. JAK2/STAT5/Bcl-xL signalling is essential for erythropoietin-mediated protection against apoptosis induced in PC12 cells by the amyloid β-peptide Aβ25-35. Br J Pharmacol 2015; 171:3234-45. [PMID: 24597613 DOI: 10.1111/bph.12672] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 01/31/2014] [Accepted: 02/26/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Erythropoietin (EPO) exerts neuroprotective actions in the CNS, including protection against apoptosis induced by the amyloid β-peptide Aβ25-35 . However, it remains unclear which signalling pathway activated by EPO is involved in this neuroprotection. Here, we have investigated whether JAK2/STAT5/Bcl-xL and ERK1/2 signalling pathways are essential for EPO-mediated protection against apoptosis induced by Aβ25-35 . EXPERIMENTAL APPROACH EPO was added to cultures of PC12 cells, 1 h before Aβ25-35 . For kinase inhibitor studies, AG490 and PD98059 were added to PC12 cells, 0.5 h before the addition of EPO. Transfection with siRNA was used to knockdown STAT5. Activation of JAK2/STAT5/Bcl-xL and ERK1/2 signalling pathways were investigated by Western blotting. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyl-tetrazolium bromide assay and apoptosis was detected by TUNEL and acridine orange-ethidium bromide double staining. KEY RESULTS EPO increased phosphorylation of JAK2 and STAT5 in PC12 cells treated with Aβ25-35 . Furthermore, EPO modulated the nuclear translocation of phospho-STAT5, which increased expression of Bcl-xL and decreased levels of caspase-3. These beneficial effects were blocked by the JAK2 inhibitor, AG490 or STAT5 knockdown. However, the ERK1/2 pathway did not play a crucial role in our model. CONCLUSIONS AND IMPLICATIONS EPO protected PC12 cells against Aβ25-35 -induced neurotoxicity. Activation of JAK2/STAT5/Bcl-xL pathway was important in EPO-mediated neuroprotection. EPO may serve as a novel protective agent against Aβ25-35 -induced cytotoxicity in, for instance, Alzheimer's disease.
Collapse
Affiliation(s)
- Rong Ma
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | | | | | | | | | | |
Collapse
|
36
|
Regulation of Stat5 by FAK and PAK1 in Oncogenic FLT3- and KIT-Driven Leukemogenesis. Cell Rep 2014; 9:1333-48. [PMID: 25456130 DOI: 10.1016/j.celrep.2014.10.039] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/09/2014] [Accepted: 10/15/2014] [Indexed: 12/31/2022] Open
Abstract
Oncogenic mutations of FLT3 and KIT receptors are associated with poor survival in patients with acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPNs), and currently available drugs are largely ineffective. Although Stat5 has been implicated in regulating several myeloid and lymphoid malignancies, how precisely Stat5 regulates leukemogenesis, including its nuclear translocation to induce gene transcription, is poorly understood. In leukemic cells, we show constitutive activation of focal adhesion kinase (FAK) whose inhibition represses leukemogenesis. Downstream of FAK, activation of Rac1 is regulated by RacGEF Tiam1, whose inhibition prolongs the survival of leukemic mice. Inhibition of the Rac1 effector PAK1 prolongs the survival of leukemic mice in part by inhibiting the nuclear translocation of Stat5. These results reveal a leukemic pathway involving FAK/Tiam1/Rac1/PAK1 and demonstrate an essential role for these signaling molecules in regulating the nuclear translocation of Stat5 in leukemogenesis.
Collapse
|
37
|
Doherty J, Sheehan AE, Bradshaw R, Fox AN, Lu TY, Freeman MR. PI3K signaling and Stat92E converge to modulate glial responsiveness to axonal injury. PLoS Biol 2014; 12:e1001985. [PMID: 25369313 PMCID: PMC4219656 DOI: 10.1371/journal.pbio.1001985] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 09/22/2014] [Indexed: 11/18/2022] Open
Abstract
Activation of glial cells following axon injury is mediated by a positive feedback loop downstream of the glial phagocytic receptor Draper, allowing the strength of the response to match the severity of injury. Glial cells are exquisitely sensitive to neuronal injury but mechanisms by which glia establish competence to respond to injury, continuously gauge neuronal health, and rapidly activate reactive responses remain poorly defined. Here, we show glial PI3K signaling in the uninjured brain regulates baseline levels of Draper, a receptor essential for Drosophila glia to sense and respond to axonal injury. After injury, Draper levels are up-regulated through a Stat92E-modulated, injury-responsive enhancer element within the draper gene. Surprisingly, canonical JAK/STAT signaling does not regulate draper expression. Rather, we find injury-induced draper activation is downstream of the Draper/Src42a/Shark/Rac1 engulfment signaling pathway. Thus, PI3K signaling and Stat92E are critical in vivo regulators of glial responsiveness to axonal injury. We provide evidence for a positive auto-regulatory mechanism whereby signaling through the injury-responsive Draper receptor leads to Stat92E-dependent, transcriptional activation of the draper gene. We propose that Drosophila glia use this auto-regulatory loop as a mechanism to adjust their reactive state following injury. Acute injuries of the central nervous system (CNS) trigger a robust reaction from glial cells—a non-neuronal population of cells that regulate and support neural development and physiology. Although this process occurs after all types of CNS trauma in mammals, how it is activated and its precise role in recovery remain poorly understood. Using the fruit fly Drosophila melanogaster as a model, we previously identified a cell surface receptor called Draper, which is required for the activation of glia after local axon injury (“axotomy”) and for the removal of degenerating axonal debris by phagocytosis. Here, we show that regulation of Draper protein levels and glial activation through the Draper signaling pathway are mediated by the well-conserved PI3K and signal transducer and activator of transcription (STAT) signaling cascades. We find that STAT transcriptional activity is activated in glia in response to axotomy, and identify an injury-responsive regulatory element within the draper gene that appears to be directly modulated by STAT. Interestingly, the intensity of STAT activity in glial cells after axotomy correlates tightly with the number of local severed axons, indicating that Drosophila glia are able to fine-tune their response to neuronal injury according to its severity. In summary, we propose that the initial phagocytic competence of glia is regulated by setting Draper baseline levels (via PI3K), whereas injury-activated glial phagocytic activity is modulated through a positive feedback loop that requires STAT-dependent activation of draper. We speculate that the level of activation of this cascade is determined by glial cell recognition of Draper ligands present on degenerating axon material, thereby matching the levels of glial reactivity to the amount of injured axonal material.
Collapse
Affiliation(s)
- Johnna Doherty
- Department of Neurobiology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Amy E. Sheehan
- Department of Neurobiology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Rachel Bradshaw
- Department of Neurobiology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - A. Nicole Fox
- Department of Neurobiology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Tsai-Yi Lu
- Department of Neurobiology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Marc R. Freeman
- Department of Neurobiology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
38
|
Schennink A, Trott JF, Berryhill GE, Donovan CE, Manjarin R, VanKlompenberg MK, Rowson-Hodel AR, Luis MYO, Hovey RC. Alcohol intake stimulates epithelial proliferation in an authentic model of the human breast. Reprod Toxicol 2014; 54:93-100. [PMID: 25450420 DOI: 10.1016/j.reprotox.2014.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/19/2014] [Accepted: 10/24/2014] [Indexed: 01/07/2023]
Abstract
The voluntary consumption of alcohol by humans is a modifiable lifestyle factor that has been consistently linked to a woman's risk of developing breast cancer. We have used an animal model that closely recapitulates breast development in humans to study the effect of alcohol intake on breast growth and morphology. Pubertal female pigs were fed alcohol for 4-5 weeks at 19-21% of total caloric intake, which led to average blood alcohol concentrations of 115-130mg/dL. Alongside increased liver mass, alcohol intake promoted the formation of distended ductules within lobular units in association with increased epithelial proliferation. Alcohol consumption also increased phosphorylation of the transcription factor STAT5 in the mammary epithelium, but did not lead to any evidence of precocious lactogenesis. In conclusion, feeding alcohol to female pigs having a similar physiology and mammary gland morphology to humans during a reproductive state equivalent to human adolescence leads to increased mammary gland proliferation and development of atypical lobular structures. These changes may phenocopy how alcohol intake increases the risk for developing breast cancer in humans.
Collapse
Affiliation(s)
- Anke Schennink
- Department of Animal Science, University of California Davis, One Shields Avenue, Davis, CA, USA
| | - Josephine F Trott
- Department of Animal Science, University of California Davis, One Shields Avenue, Davis, CA, USA
| | - Grace E Berryhill
- Department of Animal Science, University of California Davis, One Shields Avenue, Davis, CA, USA
| | - Caitlin E Donovan
- Department of Animal Science, University of California Davis, One Shields Avenue, Davis, CA, USA
| | - Rodrigo Manjarin
- Department of Animal Science, University of California Davis, One Shields Avenue, Davis, CA, USA
| | - Monica K VanKlompenberg
- Department of Animal Science, University of California Davis, One Shields Avenue, Davis, CA, USA
| | - Ashley R Rowson-Hodel
- Department of Animal Science, University of California Davis, One Shields Avenue, Davis, CA, USA
| | | | - Russell C Hovey
- Department of Animal Science, University of California Davis, One Shields Avenue, Davis, CA, USA.
| |
Collapse
|
39
|
Stat5 regulates the phosphatidylinositol 3-kinase/Akt1 pathway during mammary gland development and tumorigenesis. Mol Cell Biol 2014; 34:1363-77. [PMID: 24469394 DOI: 10.1128/mcb.01220-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Stat5 (signal transducer and activator of transcription 5) is an essential mediator of cytokine receptor signaling and plays important roles in the proliferation of alveolar progenitors and the survival of functionally differentiated epithelial cells in the mammary gland. A deregulated expression and activation of Stat5 leads to precocious alveolar development in the absence of pregnancy hormones, impaired mammary gland remodeling following the cessation of lactation, and mammary tumor formation. We reported previously that Stat5 induces the transcription of the Akt1 gene from a novel promoter. In this report, we provide experimental evidence that Akt1 is an essential mediator for the biological function of Stat5 as a survival factor. Additionally, Stat5 controls the expression of the regulatory and catalytic subunits of the phosphatidylinositol 3-kinase (PI3K) (p85α and p110α), thereby greatly augmenting signaling through the prosurvival PI3K/Akt pathway. In agreement with this model, we observed that the constitutive activation of Stat5 cooperates with the loss of function of the tumor suppressor PTEN by accelerating the formation of preneoplastic lesions and mammary tumors. The mammary gland-specific ablation of Stat5 is sufficient to prevent mammary carcinogenesis in a genuine mouse model for Cowden syndrome. Therefore, targeting the Jak2/Stat5 pathway might be a suitable strategy to prevent breast cancer in patients that carry a mutant PTEN allele.
Collapse
|
40
|
Koopmans SM, Schouten HC, van Marion AM. Anti-Apoptotic Pathways in Bone Marrow and Megakaryocytes in Myeloproliferative Neoplasia. Pathobiology 2014; 81:60-8. [DOI: 10.1159/000356187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 10/07/2013] [Indexed: 11/19/2022] Open
|
41
|
Li D, Shatos MA, Hodges RR, Dartt DA. Role of PKCα activation of Src, PI-3K/AKT, and ERK in EGF-stimulated proliferation of rat and human conjunctival goblet cells. Invest Ophthalmol Vis Sci 2013; 54:5661-74. [PMID: 23882690 DOI: 10.1167/iovs.13-12473] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
PURPOSE To determine the order and components of the signaling pathway utilized by epidermal growth factor (EGF) to stimulate conjunctival goblet cell proliferation. METHODS Goblet cells from rat bulbar and forniceal conjunctiva and human bulbar conjunctiva were grown in organ culture. Goblet cells (GCs) were serum starved for 24 hours and preincubated with inhibitors for 30 minutes or small interfering RNA (siRNA) for 48 hours prior to addition of EGF. Proliferation was then measured or Western blot analysis was performed using antibodies against phosphorylated protein kinase B (AKT), extracellular signal-regulated kinase 1/2 (ERK1/2), or the non-receptor tyrosine kinase Src. Rat GCs were also incubated with adenoviruses expressing dominant negative protein kinase Cα (DNPKCα) or constitutively activated protein kinase Cα (myrPKCα), and activation of AKT and ERK1/2 was determined by Western blot analysis. RESULTS Inhibitors of phosphoinositol-3 kinase (PI-3K)/AKT pathway blocked EGF-stimulated ERK1/2 activation and GC proliferation. Inhibitors of EGF-stimulated ERK1/2 activity did not inhibit AKT activation but blocked proliferation. DNPKCα blocked EGF-stimulated activation of AKT and ERK1/2 while myrPKCα increased activation of these kinases. Inhibitors of PI-3K, ERK1/2, and protein kinase C (PKC) blocked myrPKCα-stimulated GC proliferation. EGF and myrPKCα increased phosphorylation of Src, and inhibition of Src with the chemical inhibitor PP1 or siRNA inhibited EGF-stimulated GC proliferation. CONCLUSIONS We found that EGF activates a major pathway to stimulate goblet cell proliferation. This pathway consists of induction of phospholipase C (PLC)γ to activate PKCα. Active PKCα phosphorylates Src to induce PI-3K to phosphorylate AKT that subsequently activates the ERK1/2 cascade to stimulate goblet cell proliferation.
Collapse
Affiliation(s)
- Dayu Li
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | | | | | | |
Collapse
|
42
|
Bourgeais J, Gouilleux-Gruart V, Gouilleux F. Oxidative metabolism in cancer: A STAT affair? JAKSTAT 2013; 2:e25764. [PMID: 24416651 PMCID: PMC3876433 DOI: 10.4161/jkst.25764] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 12/13/2022] Open
Abstract
STAT3 and STAT5 (STAT3/5) proteins are crucial mediators of cytokine- or growth factor-induced cell survival and proliferation. These transcription factors are frequently overactivated in a variety of solid tumors and hematopoietic neoplasms and are targets of various oncogenes with tyrosine kinase activity. STAT3/5 proteins regulate expression of genes involved in survival and proliferation in the nucleus and interact with signaling pathways in the cytoplasm. Evidences for a cross-talk between STAT3/5 and oxidative metabolism have recently emerged. This review summarizes the current knowledge on the cross-regulation between STAT3/5 and oxidative metabolism in normal and cancer cells.
Collapse
Affiliation(s)
- Jérome Bourgeais
- CNRS UMR 7292; Université F. Rabelais; Faculté de Médecine; Tours, France
| | - Valérie Gouilleux-Gruart
- CNRS UMR 7292; Université F. Rabelais; Faculté de Médecine; Tours, France ; CHRU de Tours; Department of Immunology; Tours, France
| | - Fabrice Gouilleux
- CNRS UMR 7292; Université F. Rabelais; Faculté de Médecine; Tours, France
| |
Collapse
|
43
|
Cichocki F, Miller JS, Anderson SK, Bryceson YT. Epigenetic regulation of NK cell differentiation and effector functions. Front Immunol 2013; 4:55. [PMID: 23450696 PMCID: PMC3584244 DOI: 10.3389/fimmu.2013.00055] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/11/2013] [Indexed: 12/24/2022] Open
Abstract
Upon maturation, natural killer (NK) cells acquire effector functions and regulatory receptors. New insights suggest a considerable functional heterogeneity and dynamic regulation of receptor expression in mature human NK cell subsets based on different developmental axes. Such processes include acquisition of lytic granules as well as regulation of cytokine production in response to exogenous cytokine stimulation or target cell interactions. One axis is regulated by expression of inhibitory receptors for self-MHC class I molecules, whereas other axes are less well defined but likely are driven by different activating receptor engagements or cytokines. Moreover, the recent identification of long-lived NK cell subsets in mice that are able to expand and respond rapidly following a secondary viral challenge suggest previously unappreciated plasticity in the programming of NK cell differentiation. Here, we review advances in our understanding of mature NK cell development and plasticity with regards to regulation of cellular function. Furthermore, we highlight some of the major questions that remain pertaining to the epigenetic changes that underlie the differentiation and functional specialization of NK cells and the regulation of their responses.
Collapse
Affiliation(s)
- Frank Cichocki
- Department of Medicine, Center for Infectious Medicine, Karolinska Institute, Karolinska University Hospital Huddinge Stockholm, Sweden ; Adult Division of Hematology, Oncology and Transplantation, University of Minnesota Cancer Center Minneapolis, MN, USA
| | | | | | | |
Collapse
|
44
|
Fahmi A, Smart N, Punn A, Jabr R, Marber M, Heads R. p42/p44-MAPK and PI3K are sufficient for IL-6 family cytokines/gp130 to signal to hypertrophy and survival in cardiomyocytes in the absence of JAK/STAT activation. Cell Signal 2012; 25:898-909. [PMID: 23268184 PMCID: PMC3627957 DOI: 10.1016/j.cellsig.2012.12.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 12/18/2012] [Indexed: 01/24/2023]
Abstract
The effect of differential signalling by IL-6 and leukaemia inhibitory factor (LIF) which signal by gp130 homodimerisation or LIFRβ/gp130 heterodimerisation on survival and hypertrophy was studied in neonatal rat cardiomyocytes. Both LIF and IL-6 [in the absence of soluble IL-6 receptor (sIL-6Rα)] activated Erk1/2, JNK1/2, p38-MAPK and PI3K signalling peaking at 20 min and induced cytoprotection against simulated ischemia-reperfusion injury which was blocked by the MEK1/2 inhibitor PD98059 but not the p38-MAPK inhibitor SB203580. In the absence of sIL-6R, IL-6 did not induce STAT1/3 phosphorylation, whereas IL-6/sIL-6R and LIF induced STAT1 and STAT3 phosphorylation. Furthermore, IL-6/sIL-6R induced phosphorylation of STAT1 Tyr701 and STAT3 Tyr705 were enhanced by SB203580. IL-6 and pheneylephrine (PE), but not LIF, induced cardiomyocyte iNOS expression and nitric oxide (NO) production. IL-6, LIF and PE induced cardiomyocyte hypertrophy, but with phenotypic differences in ANF and SERCA2 expression and myofilament organisation with IL-6 more resembling PE than LIF. Transfection of cardiomyocytes with full length or truncated chimaeric gp130 cytoplasmic domain/Erythropoietin receptor (EpoR) extracellular domain fusion constructs showed that the membrane proximal Box 1 and Box 2 containing region of gp130 was necessary and sufficient for MAPK and PI3K activation; hypertrophy; SERCA2 expression and iNOS/NO induction in the absence of JAK/STAT activation. In conclusion, IL-6 can signal in cardiomyocytes independent of sIL-6R and STAT1/3 and furthermore, that Erk1/2 and PI3K activation by IL-6 are both necessary and sufficient for induced cardioprotection. In addition, p38-MAPK may act as a negative feedback regulator of JAK/STAT activation in cardiomyocytes.
Collapse
Affiliation(s)
- Ahmed Fahmi
- King's College London, British Heart Foundation Centre of Research Excellence, Cardiovascular Division, School of Medicine, UK
| | | | | | | | | | | |
Collapse
|
45
|
Katsantoni E. Protein Complexes and Target Genes Identification by in Vivo Biotinylation: The STAT5 ParadigmA Presentation from the European Society for Paediatric Endocrinology (ESPE) New Inroads to Child Health (NICHe) Conference on Stress Response and Child Health in Heraklion, Crete, Greece, 18 to 20 May 2012. Sci Signal 2012; 5:pt13. [DOI: 10.1126/scisignal.2003622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Eleni Katsantoni
- Hematology/Oncology Division, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
46
|
Gadd S, Beezhold P, Jennings L, George D, Leuer K, Huang CC, Huff V, Tognon C, Sorensen PHB, Triche T, Coffin CM, Perlman EJ. Mediators of receptor tyrosine kinase activation in infantile fibrosarcoma: a Children's Oncology Group study. J Pathol 2012; 228:119-30. [PMID: 22374738 DOI: 10.1002/path.4010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 01/09/2012] [Accepted: 02/20/2012] [Indexed: 12/27/2022]
Abstract
Infantile fibrosarcoma (IFS; also known as cellular congenital mesoblastic nephroma, CMN, when in the kidney) is a rare, undifferentiated tumour often characterized by the ETV6-NTRK3 fusion transcript. Our goal was to identify downstream pathways, diagnostic markers and potential therapeutic targets for IFS/CMN. Global gene expression, reverse-phase protein array and ETV6-NTRK3 fusion analyses were performed on 14 IFS/CMN and compared with 41 other paediatric renal tumours. These analyses confirm significant receptor tyrosine kinase (RTK) activation, with evidence of PI3-Akt, MAPK and SRC activation. In particular, GAB2 docking protein, STAT5-pTyr-694, STAT3-pSer-729 and YAP-pSer-127 were elevated, and TAZ-pSer-89 was decreased. This provides mRNA and proteomic evidence that GAB2, STAT activation and phosphorylation of the Hippo pathway transcription co-activators YAP and TAZ contribute to the RTK signal transduction in IFS/CMN. All IFS/CMN tumours displayed a distinctive gene expression pattern that may be diagnostically useful. Unexpectedly, abundant ETV6-NTRK3 transcript copies were present in only 7/14 IFS, with very low copy number in 3/14. An additional 4/14 were negative by RT-PCR and absence of ETV6-NTRK3 was confirmed by FISH for both ETV6 and NTRK3. Therefore, molecular mechanisms other than ETV6-NTRK3 fusion are responsible for the development of some IFS/CMNs and the absence of ETV6-NTRK3 fusion products should not exclude IFS/CMN as a diagnosis.
Collapse
Affiliation(s)
- Samantha Gadd
- Department of Pathology, Northwestern University Feinberg School of Medicine and the Robert H Lurie Comprehensive Cancer Center, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Src family kinases mediate cytoplasmic retention of activated STAT5 in BCR-ABL-positive cells. Oncogene 2012; 32:3587-97. [PMID: 22926520 DOI: 10.1038/onc.2012.369] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 06/06/2012] [Accepted: 07/09/2012] [Indexed: 12/30/2022]
Abstract
Persistent activation of the Abl tyrosine kinase in the BCR-ABL fusion protein is the major cause of chronic myeloid leukemia (CML). Among many other substrates BCR-ABL phosphorylates STAT5 and Src family kinases (SFK). Activated pSTAT5 is essential for initial transformation and maintenance of the disease. Cytokine-induced phosphorylation on tyrosine 694 typically leads to nuclear accumulation of pSTAT5 and target gene expression. We verified that in BCR-ABL-positive progenitor cells from a CML patient and in K562 cells pSTAT5 is cytoplasmic. However, upon ectopic expression of BCR-ABL p210 in non-myeloid cells, co-transfected STAT5A is phosphorylated on Y694 and localized in the nucleus arguing for an additional factor mediating cytoplasmic retention in CML cells. Expression of the SFK v-Src, Hck or Lyn together with STAT5A results in phosphorylation on Y694 and cytoplasmic retention. Upon coexpression of BCR-ABL and individual SFK the cytoplasmic retention of activated STAT5A mediated by v-Src and Hck but not Lyn is dominant over nuclear translocation induced by BCR-ABL. Cytoplasmic retention depends on the kinase activity of SFK and is mediated through the interaction of the SH2 domain of STAT5A with the SFK. Interestingly, nuclear accumulation of STAT5A as a result of activation by FLT3-ITD, an oncogene found in acute myeloid leukemia, cannot be prevented by coexpression of SFK. Importantly, inhibition of SFK in K562 cells restored nuclear accumulation of pSTAT5A, enhanced STAT5 target gene expression and increased colony formation. Thus, SFK mediate cytoplasmic retention of pSTAT5A in BCR-ABL-positive cells. Cytoplasmic pSTAT5A in CML cells might balance the controversial functions of STAT5 in cellular senescence and differentiation versus G1/S progression and survival.
Collapse
|
48
|
Zhang X, Zhang Y, Tao B, Wang D, Cheng H, Wang K, Zhou R, Xie Q, Ke Y. Docking protein Gab2 regulates mucin expression and goblet cell hyperplasia through TYK2/STAT6 pathway. FASEB J 2012; 26:4603-13. [PMID: 22859374 DOI: 10.1096/fj.12-211755] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Goblet cell hyperplasia (GCH) and mucous hypersecretion are common pathological features of chronic pulmonary diseases, including asthma, chronic obstructive pulmonary disease (COPD), lung cancer, and cystic fibrosis. Despite numerous studies, the molecular basis for this condition remains elusive. Gab2 is a member of the Dos/Gab subfamily scaffolding molecules and plays important roles in regulating growth, differentiation, and inflammation. We found that an elevated level of Gab2 correlates with up-regulated mucus in airway epithelia from patients with lung cancer or COPD, suggesting the potential involvement of Gab2 in pathological lesions in lungs. Knockdown of Gab2 in human airway epithelial cells in vitro decreases IL-13-induced expression of mucin genes. To address the in vivo role of Gab2 in lungs, Gab2-knockout (Gab2(-/-)) mice were sensitized and challenged with ovalbumin (OVA). Further analysis of lungs in an OVA-induced allergy model suggested that GCH and mucus production are remarkably reduced in Gab2(-/-) mice. Mechanistically, Gab2 positively regulates IL-13-induced activation of TYK2/STAT6 by decreasing SOCS3-mediated degradation of TYK2. Together, we define a novel role for Gab2 in mediating mucin gene expression and GCH; these findings have important implications for the pathogenesis and therapy of airway inflammatory diseases.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Pathology and Pathophysiology, Second Affiliated Hospital, Hangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Koopmans SM, Bot FJ, Schouten HC, Janssen J, van Marion AM. The involvement of Galectins in the modulation of the JAK/STAT pathway in myeloproliferative neoplasia. AMERICAN JOURNAL OF BLOOD RESEARCH 2012; 2:119-27. [PMID: 22762031 PMCID: PMC3384397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 05/21/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND In patients with myeloproliferative neoplasia (MPN) the development of fibrosis and increased vessel density correlate with poor prognosis. The JAK2(V617F) mutation constitutively activates JAK2, which phosphorylates signal transducer activator of transcription (STAT), up-regulating vascular endothelial growth factor (VEGF), which might be responsible for angiogenesis in MPN. Galectins are involved in the development of fibrosis and angiogenesis and might also be involved in activation of the JAK/STAT pathway in MPN. METHODS 106 MPN patients, 36 essential thrombocythemia (ET), 25 polycythemia vera (PV) and 45 primary myelofibrosis (PMF), were analyzed for the expression pattern of galectin-1, galectin-3, pSTAT3, pSTAT5 and MVD by immunostaining of bone marrow biopsy sections followed by automated image analysis. The JAK2 mutational status was analysed through real time PCR in blood samples. RESULTS The expression of galectin-1 was significantly higher in all MPN patients compared to normal controls. Galectin-3 was expressed more in PV patients. MVD was significantly higher in all MPN patients and correlated with galectin-1 and pSTAT5 expression. pSTAT5 expression showed a trend of higher expression in patients carrying the JAK2(V617F) mutation as well as in PV patients. PMF patients and all JAK2(V617F) positive patients showed a significantly higher pSTAT3 expression compared to control and ET patients. CONCLUSION The findings suggest the involvement of galectin-1 in MPN development, regardless of the subtype. Furthermore involvement of galectin-3 in PV development, pSTAT5 in that of PV and JAK2(V617F) positive patients and angiogenesis, as well as pSTAT3 is involved in the pathogenesis of PMF.
Collapse
|
50
|
Abstract
Abl kinases are prototypic cytoplasmic tyrosine kinases and are involved in a variety of chromosomal aberrations in different cancers. This causes the expression of Abl fusion proteins, such as Bcr-Abl, that are constitutively activated and drivers of tumorigenesis. Over the past decades, biochemical and functional studies on the molecular mechanisms of Abl regulation have gone hand in hand with progression of our structural understanding of autoinhibited and active Abl conformations. In parallel, Abl oncoproteins have become prime molecular targets for cancer therapy, using adenosine triphosphate (ATP)-competitive kinase inhibitors, such as imatinib. Abl-targeting drugs serve as a paradigm for our understanding of kinase inhibitor action, specificity, and resistance development. In this review article, I will review the molecular mechanisms that are responsible for the regulation of Abl kinase activity and how oncogenic Abl fusions signal. Furthermore, past and ongoing efforts to target Abl oncoproteins using ATP-competitive and allosteric inhibitors, as well as future possibilities using combination therapy, will be discussed.
Collapse
Affiliation(s)
- Oliver Hantschel
- École polytechnique fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| |
Collapse
|