1
|
Moura RDD, Mattos PDD, Valente PF, Hoch NC. Molecular mechanisms of cell death by parthanatos: More questions than answers. Genet Mol Biol 2024; 47Suppl 1:e20230357. [PMID: 39356140 PMCID: PMC11445734 DOI: 10.1590/1678-4685-gmb-2023-0357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/16/2024] [Indexed: 10/03/2024] Open
Abstract
Regulated cell death by a non-apoptotic pathway known as parthanatos is increasingly recognised as a central player in pathological processes, including ischaemic tissue damage and neurodegenerative diseases. Parthanatos is activated under conditions that induce high levels of DNA damage, leading to hyperactivation of the DNA damage sensor PARP1. While this strict dependence on PARP1 activation is a defining feature of parthanatos that distinguishes it from other forms of cell death, the molecular events downstream of PARP1 activation remain poorly understood. In this mini-review, we highlight a number of important questions that remain to be answered about this enigmatic form of cell death.
Collapse
Affiliation(s)
- Rafael Dias de Moura
- Universidade de São Paulo, Instituto de Química, Departamento de Bioquímica, São Paulo, SP, Brasil
| | | | | | - Nícolas Carlos Hoch
- Universidade de São Paulo, Instituto de Química, Departamento de Bioquímica, São Paulo, SP, Brasil
| |
Collapse
|
2
|
Miyazaki T, Kanatsu-Shinohara M, Ogonuki N, Matoba S, Ogura A, Yabe-Nishimura C, Zhang H, Pommier Y, Trumpp A, Shinohara T. Glutamine protects mouse spermatogonial stem cells against NOX1-derived ROS for sustaining self-renewal division in vitro. Development 2023; 150:dev201157. [PMID: 36897562 PMCID: PMC10698750 DOI: 10.1242/dev.201157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023]
Abstract
Reactive oxygen species (ROS) are generated from NADPH oxidases and mitochondria; they are generally harmful for stem cells. Spermatogonial stem cells (SSCs) are unique among tissue-stem cells because they undergo ROS-dependent self-renewal via NOX1 activation. However, the mechanism by which SSCs are protected from ROS remains unknown. Here, we demonstrate a crucial role for Gln in ROS protection using cultured SSCs derived from immature testes. Measurements of amino acids required for SSC cultures revealed the indispensable role of Gln in SSC survival. Gln induced Myc expression to drive SSC self-renewal in vitro, whereas Gln deprivation triggered Trp53-dependent apoptosis and impaired SSC activity. However, apoptosis was attenuated in cultured SSCs that lacked NOX1. In contrast, cultured SSCs lacking Top1mt mitochondria-specific topoisomerase exhibited poor mitochondrial ROS production and underwent apoptosis. Gln deprivation reduced glutathione production; supra-molar Asn supplementation allowed offspring production from SSCs cultured without Gln. Therefore, Gln ensures ROS-dependent SSC-self-renewal by providing protection against NOX1 and inducing Myc.
Collapse
Affiliation(s)
- Takehiro Miyazaki
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Narumi Ogonuki
- RIKEN, Bioresource Research Center, Tsukuba 305-0074, Japan
| | - Shogo Matoba
- RIKEN, Bioresource Research Center, Tsukuba 305-0074, Japan
| | - Atsuo Ogura
- RIKEN, Bioresource Research Center, Tsukuba 305-0074, Japan
| | - Chihiro Yabe-Nishimura
- Deparment of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto 606-8566, Japan
| | - Hongliang Zhang
- Deveopmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Yves Pommier
- Deveopmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, Deutsches Krebsforshungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
NAD Modulates DNA Methylation and Cell Differentiation. Cells 2021; 10:cells10112986. [PMID: 34831209 PMCID: PMC8616462 DOI: 10.3390/cells10112986] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/18/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
Nutritional intake impacts the human epigenome by directing epigenetic pathways in normal cell development via as yet unknown molecular mechanisms. Consequently, imbalance in the nutritional intake is able to dysregulate the epigenetic profile and drive cells towards malignant transformation. Here we present a novel epigenetic effect of the essential nutrient, NAD. We demonstrate that impairment of DNMT1 enzymatic activity by NAD-promoted ADP-ribosylation leads to demethylation and transcriptional activation of the CEBPA gene, suggesting the existence of an unknown NAD-controlled region within the locus. In addition to the molecular events, NAD- treated cells exhibit significant morphological and phenotypical changes that correspond to myeloid differentiation. Collectively, these results delineate a novel role for NAD in cell differentiation, and indicate novel nutri-epigenetic strategies to regulate and control gene expression in human cells.
Collapse
|
4
|
Han Y, Yu X, Li S, Tian Y, Liu C. New Perspectives for Resistance to PARP Inhibitors in Triple-Negative Breast Cancer. Front Oncol 2020; 10:578095. [PMID: 33324554 PMCID: PMC7724080 DOI: 10.3389/fonc.2020.578095] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors are a therapeutic milestone exerting a synthetic lethal effect in the treatment of cancer involving BRCA1/2 mutation. Theoretically, PARP inhibitors (PARPi) eliminate tumor cells by disrupting DNA damage repair through either PARylation or the homologous recombination (HR) pathway. However, resistance to PARPi greatly hinders therapeutic effectiveness in triple-negative breast cancer (TNBC). Owing to the high heterogeneity and few genetic targets in TNBC, there has been limited therapeutic progress in the past decades. In view of this, there is a need to circumvent resistance to PARPi and develop potential treatment strategies for TNBC. We present, herein, a review of the scientific progress and explore the mechanisms underlying PARPi resistance in TNBC. The complicated mechanisms of PARPi resistance, including drug exporter formation, loss of poly (ADP-ribose) glycohydrolase (PARG), HR reactivation, and restoration of replication fork stability, are discussed in detail in this review. Additionally, we also discuss new combination therapies with PARPi that can improve the clinical response in TNBC. The new perspectives for PARPi bring novel challenges and opportunities to overcome PARPi resistance in breast cancer.
Collapse
Affiliation(s)
- Ye Han
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaopeng Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuqiang Li
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Tian
- Department of Biomedical Informatics, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Caigang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Carter JJ, Gardner JM, Poling BP, Welch MM, Nemeno JGE, Houghton JE, Dix RD. Transcriptional analysis of immune response genes during pathogenesis of cytomegalovirus retinitis in mice with murine acquired immunodeficiency syndrome. PLoS Pathog 2020; 16:e1009032. [PMID: 33156834 PMCID: PMC7647057 DOI: 10.1371/journal.ppat.1009032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/04/2020] [Indexed: 12/21/2022] Open
Abstract
Human cytomegalovirus (HCMV) is an opportunistic human herpesvirus that causes a sight-threatening retinitis in immunosuppressed patients, especially those with AIDS. Using an established model of experimental murine cytomegalovirus (MCMV) retinitis in mice with retrovirus-induced immunodeficiency (MAIDS), we have been attempting to define with greater clarity the immunologic mechanisms that contribute to the progression of AIDS-related HCMV retinitis in the unique immunosuppressive setting of HIV infection. Toward this end, we provide herein a comprehensive assessment of immune response gene expression during the onset and development of MAIDS-related MCMV retinitis employing NanoString nCounter. In so doing, we analyzed and compared the intraocular expressions of 561 immune response genes within MCMV-infected eyes of groups of healthy mice, MCMV-infected mice with MAIDS of 4 weeks' (MAIDS-4) duration, and MCMV-infected eyes of mice with MAIDS of 10 weeks' (MAIDS-10) duration. These animal groups show a progression of retinal disease from absolute resistance to retinitis development in healthy mice to the development of classic full-thickness retinal necrosis in MAIDS-10 mice but through an intermediate stage of retinal disease development in MAIDS-4 mice. Our findings showed that increased susceptibility to MCMV retinitis during the progression of MAIDS is associated with robust upregulation or downregulation of a surprisingly large number of immune response genes that operate within several immune response pathways often unique to each animal group. Analysis of 14 additional immune response genes associated with programmed cell death pathways suggested involvement of necroptosis and pyroptosis during MAIDS-related MCMV retinitis pathogenesis. Use of the NanoString nCounter technology provided new and unexpected information on the immunopathogenesis of retinitis within MCMV-infected eyes of mice with retrovirus-induced immunosuppression. Our findings may provide new insights into the immunologic events that operate during the pathogenesis of AIDS-related HCMV retinitis.
Collapse
Affiliation(s)
- Jessica J. Carter
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, Georgia, United States of America
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jesse M. Gardner
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, Georgia, United States of America
| | - Brent P. Poling
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, Georgia, United States of America
| | - Madeline M. Welch
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, Georgia, United States of America
| | - Judee Grace E. Nemeno
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, Georgia, United States of America
| | - John E. Houghton
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, Georgia, United States of America
| | - Richard D. Dix
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, Georgia, United States of America
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
6
|
Harrision D, Gravells P, Thompson R, Bryant HE. Poly(ADP-Ribose) Glycohydrolase (PARG) vs. Poly(ADP-Ribose) Polymerase (PARP) - Function in Genome Maintenance and Relevance of Inhibitors for Anti-cancer Therapy. Front Mol Biosci 2020; 7:191. [PMID: 33005627 PMCID: PMC7485115 DOI: 10.3389/fmolb.2020.00191] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
Poly(ADP-ribose) polymerases (PARPs) are a family of enzymes that catalyze the addition of poly(ADP-ribose) (PAR) subunits onto themselves and other acceptor proteins. PARPs are known to function in a large range of cellular processes including DNA repair, DNA replication, transcription and modulation of chromatin structure. Inhibition of PARP holds great potential for therapy, especially in cancer. Several PARP1/2/3 inhibitors (PARPi) have had success in treating ovarian, breast and prostate tumors harboring defects in the homologous recombination (HR) DNA repair pathway, especially BRCA1/2 mutated tumors. However, treatment is limited to specific sub-groups of patients and resistance can occur, limiting the use of PARPi. Poly(ADP-ribose) glycohydrolase (PARG) reverses the action of PARP enzymes, hydrolysing the ribose-ribose bonds present in poly(ADP-ribose). Like PARPs, PARG is involved in DNA replication and repair and PARG depleted/inhibited cells show increased sensitivity to DNA damaging agents. They also display an accumulation of perturbed replication intermediates which can lead to synthetic lethality in certain contexts. In addition, PARG is thought to play an important role in preventing the accumulation of cytoplasmic PAR and therefore parthanatos, a caspase-independent PAR-mediated type of cell death. In contrast to PARP, the therapeutic potential of PARG has been largely ignored. However, several recent papers have demonstrated the exciting possibilities that inhibitors of this enzyme may have for cancer treatment, both as single agents and in combination with cytotoxic drugs and radiotherapy. This article discusses what is known about the functions of PARP and PARG and the potential future implications of pharmacological inhibition in anti-cancer therapy.
Collapse
Affiliation(s)
- Daniel Harrision
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Polly Gravells
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Ruth Thompson
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Helen E Bryant
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
7
|
Jiang N, Yu P, Fu W, Li G, Feng B, Chen T, Li H, Tao L, Fu G. Acid invertase confers heat tolerance in rice plants by maintaining energy homoeostasis of spikelets. PLANT, CELL & ENVIRONMENT 2020; 43:1273-1287. [PMID: 31994745 DOI: 10.1111/pce.13733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 05/25/2023]
Abstract
Heat stress impairs both pollen germination and pollen tube elongation, resulting in pollination failure caused by energy imbalance. Invertase plays a critical role in the maintenance of energy homoeostasis; however, few studies investigated this during heat stress. Two rice cultivars with different heat tolerance, namely, TLY83 (heat tolerant) and LLY722 (heat susceptible), were subjected to heat stress. At anthesis, heat stress significantly decreased spikelet fertility, accompanied by notable reductions in pollen germination on stigma and pollen tube elongation in ovule, especially in LLY722. Acid invertase (INV), rather than sucrose synthase, contributed to sucrose metabolism, which explains the different tolerances of both cultivars. Under heat stress, larger enhancements in NAD(H), ATP, and antioxidant capacity were found in TLY83 compared with LLY722, whereas a sharp reduction in poly(ADP-ribose) polymerase (PARP) activity was found in the former compared with the latter. Importantly, exogenous INV, 3-aminobenzamide (a PARP inhibitor), sucrose, glucose, and fructose significantly increased spikelet fertility under heat stress, where INV activity was enhanced and PARP activity was inhibited. Therefore, INV can balance the energy production and consumption to provide sufficient energy for pollen germination and pollen tube growth under heat stress.
Collapse
Affiliation(s)
- Ning Jiang
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Pinghui Yu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Weimeng Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guangyan Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Baohua Feng
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Tingting Chen
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Hubo Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Longxing Tao
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guanfu Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
8
|
Park H, Kam TI, Dawson TM, Dawson VL. Poly (ADP-ribose) (PAR)-dependent cell death in neurodegenerative diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 353:1-29. [PMID: 32381174 DOI: 10.1016/bs.ircmb.2019.12.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Disruption of cellular functions with aging-induced accumulation of neuronal stressors causes cell death which is a common feature of neurodegenerative diseases. Studies in a variety of neurodegenerative disease models demonstrate that poly (ADP-ribose) (PAR)-dependent cell death, also named parthanatos, is responsible for neuronal loss in neurological diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). Parthanatos has distinct features that differ from caspase-dependent apoptosis, necrosis or autophagic cell death. Parthanatos can be triggered by the accumulation of PAR due to overactivation of PAR polymerase-1 (PARP-1). Excess PAR, induces the mitochondrial release apoptosis-inducing factor (AIF), which binds to macrophage migration inhibitory factor (MIF) carrying MIF into the nucleus where it cleaves genomic DNA into large fragments. In this review, we will discuss the molecular mechanisms of parthanatos and their role in neurodegenerative diseases. Furthermore, we will discuss promising therapeutic interventions within the pathological PAR signaling cascade that could be designed to halt the progression of neurodegeneration.
Collapse
Affiliation(s)
- Hyejin Park
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, United States; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, United States; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
9
|
Shibui Y, Oyama T, Okazawa M, Yoshimori A, Abe H, Uchiumi F, Tanuma SI. Structural insights into the active site of poly(ADP-ribose) glycohydrolase using docking modes of 6-hydroxy-3H-xanthen-3-one derivative inhibitors. Bioorg Med Chem 2019; 28:115249. [PMID: 31879180 DOI: 10.1016/j.bmc.2019.115249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 11/24/2022]
Abstract
Poly(ADP-ribose) glycohydrolase (PARG) plays an essential role in poly(ADP-ribose) (PAR) turnover, and thereby regulating DNA transactions, such as DNA repair, replication, transcription and recombination. Here, we examined the inhibitory activities of 6-hydroxy-3H-xanthene-3-one (HXO) derivatives and analyzed their binding modes in the active site of PARG by in silico docking study. Among the derivatives, Rose Bengal was found to be the most potent inhibitor of PARG and its halogen groups were revealed to cooperatively potentiate the inhibitory activity. Importantly, the binding mode of Rose Bengal occupied the active site of PARG revealed the presence of unique "Sandwich" residues of Asn869 and Tyr792, which enable the inhibitor to bind tightly with the active pocket. This sandwich interaction could stabilize the π-π interactions of HXO scaffold with Phe902 and Tyr795. In addition, to increase the binding affinity, the iodine and chlorine atoms of this inhibitor could contribute to the inducing of favorable disorders, which promote an entropy boost on the active site of PARG for structural plasticity, and making the stable configuration of HXO scaffold in the active site, respectively, as judged by the analysis of binding free energy. These results provide new insights into the active site of PARG and an additional opportunity for designing selective PARG inhibitors.
Collapse
Affiliation(s)
- Yuto Shibui
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki Noda, Chiba 278-8510, Japan
| | - Takahiro Oyama
- Hinoki Shinyaku Co., Ltd., 9-6 Nibancho, Chiyoda-ku, Tokyo 102-0084, Japan
| | - Miwa Okazawa
- Department of Genomic Medicinal Science, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki Noda, Chiba 278-8510, Japan
| | - Atsushi Yoshimori
- Institute for Theoretical Medicine Inc., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Hideaki Abe
- Hinoki Shinyaku Co., Ltd., 9-6 Nibancho, Chiyoda-ku, Tokyo 102-0084, Japan
| | - Fumiaki Uchiumi
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki Noda, Chiba 278-8510, Japan
| | - Sei-Ichi Tanuma
- Department of Genomic Medicinal Science, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki Noda, Chiba 278-8510, Japan.
| |
Collapse
|
10
|
Oh JJ, Carter JJ, Nemeno JGE, Dix RD. Parthanatos-associated proteins are stimulated intraocularly during development of experimental murine cytomegalovirus retinitis in mice with retrovirus-induced immunosuppression. J Med Virol 2019; 92:394-398. [PMID: 31670405 DOI: 10.1002/jmv.25619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/29/2019] [Indexed: 11/07/2022]
Abstract
The mechanisms that contribute to retinal tissue destruction during the onset and progression of AIDS-related human cytomegalovirus (HCMV) retinitis remain unclear. Evidence for the stimulation of multiple cell death pathways including apoptosis, necroptosis, and pyroptosis during the pathogenesis of experimental murine cytomegalovirus (MCMV) retinitis in mice with retrovirus-induced immunosuppression (MAIDS) has been reported. Parthanatos is a caspase-independent cell death pathway mediated by rapid overactivation of poly (ADP-ribose) polymerase-1 (PARP-1) and distinct from other cell death pathways. Using the MAIDS model of MCMV retinitis, studies were performed to test the hypothesis that intraocular MCMV infection of mice with MAIDS stimulates parthanatos-associated messenger RNAs (mRNAs) and proteins within the eye during the development of retinal necrosis that takes place by 10 days after MCMV infection. MCMV-infected eyes of MAIDS mice exhibited significant stimulation of PARP-1 mRNA and proteins at 3 days after infection but declined thereafter at 6 and 10 days after infection. Additional studies showed the intraocular stimulation of mRNAs or proteins before MCMV retinitis development for two additional participants in parthanatos, polymer of ADP-ribose and poly (ADP-ribose) glycohydrolase. These results provide new evidence for a role for parthanatos during MAIDS-related MCMV retinitis that may also extend to AIDS-related HCMV retinitis.
Collapse
Affiliation(s)
- Jay J Oh
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, Georgia
| | - Jessica J Carter
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, Georgia.,Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia
| | - Judee Grace E Nemeno
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, Georgia
| | - Richard D Dix
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, Georgia.,Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
11
|
Noordermeer SM, van Attikum H. PARP Inhibitor Resistance: A Tug-of-War in BRCA-Mutated Cells. Trends Cell Biol 2019; 29:820-834. [PMID: 31421928 DOI: 10.1016/j.tcb.2019.07.008] [Citation(s) in RCA: 308] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023]
Abstract
Poly-(ADP)-ribose polymerase (PARP) inhibition is synthetic lethal with deficiency for homologous recombination (HR), a pathway essential for DNA double-strand break repair. PARP inhibitors (PARPi) therefore hold great promise for the treatment of tumors with disruptive mutations in BRCA1/2 or other HR factors. Unfortunately, PARPi resistance has proved to be a major problem in the clinic. Knowledge about PARPi resistance is expanding quickly, revealing four main mechanisms that alter drug availability, affect (de)PARylation enzymes, restore HR, or restore replication fork stability. We discuss how studies on resistance mechanisms have yielded important insights into the regulation of DNA double-strand break (DSB) repair and replication fork protection, and how these studies could pave the way for novel treatment options to target resistance mechanisms or acquired vulnerabilities.
Collapse
Affiliation(s)
- Sylvie M Noordermeer
- Leiden University Medical Center, Department of Human Genetics, Einthovenweg 20, 2333 ZC Leiden, The Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, The Netherlands.
| | - Haico van Attikum
- Leiden University Medical Center, Department of Human Genetics, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| |
Collapse
|
12
|
Tanuma SI, Shibui Y, Oyama T, Uchiumi F, Abe H. Targeting poly(ADP-ribose) glycohydrolase to draw apoptosis codes in cancer. Biochem Pharmacol 2019; 167:163-172. [PMID: 31176615 DOI: 10.1016/j.bcp.2019.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/04/2019] [Indexed: 12/30/2022]
Abstract
Poly(ADP-ribosyl)ation is a unique post-translational modification of proteins. The metabolism of poly(ADP-ribose) (PAR) is tightly regulated mainly by poly(ADP-ribose) polymerases (PARP) and poly(ADP-ribose) glycohydrolase (PARG). Accumulating evidence has suggested the biological functions of PAR metabolism in control of many cellular processes, such as cell proliferation, differentiation and death by remodeling chromatin structure and regulation of DNA transaction, including DNA repair, replication, recombination and transcription. However, the physiological roles of the catabolism of PAR catalyzed by PARG remain less understood than those of PAR synthesis by PARP. Noteworthy biochemical studies have revealed the importance of PAR catabolic pathway generating nuclear ATP via the coordinated actions of PARG and ADP-ribose pyrophosphorylase (ADPRPPL) for the driving of DNA repair and the maintenance of DNA replication apparatus while repairing DNA damage. Furthermore, genetic studies have shown the value of PARG as a therapeutic molecular target for PAR-mediated diseases, such as cancer, inflammation and many pathological conditions. In this review, we present the current knowledge of de-poly(ADP-ribosyl)ation catalyzed by PARG focusing on its role in DNA repair, replication and apoptosis. Furthermore, the induction of apoptosis code of DNA replication catastrophe by synthetic lethality of PARG inhibition and the recent progresses regarding the development of small molecule PARG inhibitors and their therapeutic potentials in cancer chemotherapy are highlighted in this review.
Collapse
Affiliation(s)
- Sei-Ichi Tanuma
- Department of Genomic Medicinal Science, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Yuto Shibui
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takahiro Oyama
- Hinoki Shinyaku Co., Ltd., 9-6 Nibancho, Chiyoda-ku, Tokyo 102-0084, Japan
| | - Fumiaki Uchiumi
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hideaki Abe
- Hinoki Shinyaku Co., Ltd., 9-6 Nibancho, Chiyoda-ku, Tokyo 102-0084, Japan
| |
Collapse
|
13
|
Adeyemi DO, Adewole OS. Hibiscus sabdariffa renews pancreatic β-cells in experimental type 1 diabetic model rats. Morphologie 2019; 103:80-93. [PMID: 31101500 DOI: 10.1016/j.morpho.2019.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 03/28/2019] [Accepted: 04/18/2019] [Indexed: 01/11/2023]
Abstract
This study evaluated the antidiabetic potentials of flavonoid-rich aqueous fraction of methanolic extract of Hibiscus sabdariffa calyx (HSCE) on the pancreatic β-cells of experimental type I diabetic model rats. Type 1 diabetes mellitus was induced in Wistar rats by a single intraperitoneal injection of 80mg/kg b/w streptozotocin (STZ) dissolved in 0.1M citrate buffer (pH 6.3). The rats were divided into five groups (n=12) including normal control group, test group I, diabetic negative control, test group II, and diabetic positive control. The test groups received 1.75g/kg b/w of HSCE by gavage for 15 days. Animals were sacrificed; the splenic portion of their pancreas and serum were evaluated for histopathological and biochemical parameters respectively. The regenerative effects of the extract on STZ-diabetes β-cells damage was evident from the results of the histopathological analysis and the biochemical parameters evaluated in the serum. Reduced levels of glutathione, catalase and superoxide dismutase in the serum of diabetic rats were significantly improved in the H. sabdariffa-treated rats (P<0.05). Histological examination of pancreatic islet sections revealed degenerative and necrotic changes (D) in the pancreatic islet of Langerhans, β-cell degranulation, pyknotic β-cell nuclei, decreased islet cellular density, and severe vacuolation (V) in the islet of STZ-diabetic negative control group. The morphology of the pancreas of HSCE-treated diabetic rats (test group II) revealed remarkable improvements in the islet of Langerhans. Stereological studies also revealed that HSCE-treatment remarkably improved volume of the pancreatic islets and the numerical density of β-cell (number of β-cells per unit area of islet) depleted by STZ diabetes. The study concluded that possible antidiabetic mechanism of Hibiscus sabdariffa in STZ diabetes is through induction of β-cell regeneration and its strong antioxidant potential.
Collapse
Affiliation(s)
- D O Adeyemi
- Department of anatomy and cell biology, faculty of basic medical sciences, college of health science, Obafemi Awolowo university, Ile-Ife, Nigeria.
| | - O S Adewole
- Department of anatomy and cell biology, faculty of basic medical sciences, college of health science, Obafemi Awolowo university, Ile-Ife, Nigeria
| |
Collapse
|
14
|
O'Sullivan J, Tedim Ferreira M, Gagné JP, Sharma AK, Hendzel MJ, Masson JY, Poirier GG. Emerging roles of eraser enzymes in the dynamic control of protein ADP-ribosylation. Nat Commun 2019; 10:1182. [PMID: 30862789 PMCID: PMC6414514 DOI: 10.1038/s41467-019-08859-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/02/2019] [Indexed: 12/21/2022] Open
Abstract
Protein ADP-ribosylation is essential for the regulation of several cellular pathways, enabling dynamic responses to diverse pathophysiological conditions. It is modulated through a dynamic interplay between ADP-ribose readers, writers and erasers. While ADP-ribose synthesis has been studied and reviewed extensively, ADP-ribose processing by erasing enzymes has received comparably less attention. However, major progress in the mass spectrometric identification of ADP-ribosylated residues and the biochemical characterization of ADP-ribose erasers has substantially expanded our knowledge of ADP-ribosylation dynamics. Herein, we describe recent insights into the biology of ADP-ribose erasers and discuss the intricately orchestrated cellular processes to switch off ADP-ribose-dependent mechanisms. ADP-ribose erasing enzymes are increasingly recognized as critical regulators of protein ADP-ribosylation dynamics in living systems. Here, the authors review recent advances in the discovery and characterization of ADP-ribose erasers and discuss their role within the cellular ADP-ribosylation machinery.
Collapse
Affiliation(s)
- Julia O'Sullivan
- Genome Stability Laboratory, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, HDQ Pavilion, Oncology Division, Québec, G1R 2J6, Canada.,Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, G1V 0A6, Canada
| | - Maria Tedim Ferreira
- Genome Stability Laboratory, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, HDQ Pavilion, Oncology Division, Québec, G1R 2J6, Canada.,Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, G1V 0A6, Canada.,Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, CHUL Pavilion, Oncology division, Québec, G1V 4G2, Canada
| | - Jean-Philippe Gagné
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, G1V 0A6, Canada.,Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, CHUL Pavilion, Oncology division, Québec, G1V 4G2, Canada
| | - Ajit K Sharma
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 1Z2, Canada
| | - Michael J Hendzel
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 1Z2, Canada.,Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2H7, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, HDQ Pavilion, Oncology Division, Québec, G1R 2J6, Canada.,Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, G1V 0A6, Canada.,Centre de Recherche sur le Cancer de l'Université Laval, Québec, G1R 3S3, Canada
| | - Guy G Poirier
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, G1V 0A6, Canada. .,Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, CHUL Pavilion, Oncology division, Québec, G1V 4G2, Canada. .,Centre de Recherche sur le Cancer de l'Université Laval, Québec, G1R 3S3, Canada.
| |
Collapse
|
15
|
Multi-targeted Effect of Nicotinamide Mononucleotide on Brain Bioenergetic Metabolism. Neurochem Res 2019; 44:2280-2287. [PMID: 30661231 DOI: 10.1007/s11064-019-02729-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/11/2019] [Indexed: 01/04/2023]
Abstract
Dysfunctions in NAD+ metabolism are associated with neurodegenerative diseases, acute brain injury, diabetes, and aging. Loss of NAD+ levels results in impairment of mitochondria function, which leads to failure of essential metabolic processes. Strategies to replenish depleted NAD+ pools can offer significant improvements of pathologic states. NAD+ levels are maintained by two opposing enzymatic reactions, one is the consumption of NAD+ while the other is the re-synthesis of NAD+. Inhibition of NAD+ degrading enzymes, poly-ADP-ribose polymerase 1 (PARP1) and ectoenzyme CD38, following brain ischemic insult can provide neuroprotection. Preservation of NAD+ pools by administration of NAD+ precursors, such as nicotinamide (Nam) or nicotinamide mononucleotide (NMN), also offers neuroprotection. However, NMN treatment demonstrates to be a promising candidate as a therapeutic approach due to its multi-targeted effect acting as PARP1 and CD38 inhibitor, sirtuins activator, mitochondrial fission inhibitor, and NAD+ supplement. Many neurodegenerative diseases or acute brain injury activate several cellular death pathways requiring a treatment strategy that will target these mechanisms. Since NMN demonstrated the ability to exert its effect on several cellular metabolic pathways involved in brain pathophysiology it seems to be one of the most promising candidates to be used for successful neuroprotection.
Collapse
|
16
|
Fan J, Dawson TM, Dawson VL. Cell Death Mechanisms of Neurodegeneration. ADVANCES IN NEUROBIOLOGY 2018; 15:403-425. [PMID: 28674991 DOI: 10.1007/978-3-319-57193-5_16] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There are common mechanisms shared by genetically or pathologically distinct neurodegenerative diseases, such as excitotoxicity, mitochondrial deficits and oxidative stress, protein misfolding and translational dysfunction, autophagy and microglia activation. This indicates that although the original cause may differ in individual diseases or even subtypes of certain disorders, these disrupted common cell functions and signaling, together with aging, may lead to final execution of cell death through similar pathways. The variable neurodegenerative disease symptoms are probably caused by the type, location, and connection of the cell populations that suffer from dysfunction and loss. Besides apoptosis, necroptosis, and autophagy, an important form of death termed parthanatos plays a prominent role in stroke and several neurodegenerative diseases, which is due to PARP-1 overactivation, PAR accumulation, nuclear translocation of the mitochondria protein AIF, and large-scale DNA cleavage. Understanding the mechanisms and interactions of cell death signaling will not only help to develop neuroprotective strategies to halt neurodegeneration, but also provide biomarkers for monitoring disease progression and recovery.
Collapse
Affiliation(s)
- Jing Fan
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
17
|
Bütepage M, Preisinger C, von Kriegsheim A, Scheufen A, Lausberg E, Li J, Kappes F, Feederle R, Ernst S, Eckei L, Krieg S, Müller-Newen G, Rossetti G, Feijs KLH, Verheugd P, Lüscher B. Nucleolar-nucleoplasmic shuttling of TARG1 and its control by DNA damage-induced poly-ADP-ribosylation and by nucleolar transcription. Sci Rep 2018; 8:6748. [PMID: 29712969 PMCID: PMC5928194 DOI: 10.1038/s41598-018-25137-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/09/2018] [Indexed: 02/06/2023] Open
Abstract
Macrodomains are conserved protein folds associated with ADP-ribose binding and turnover. ADP-ribosylation is a posttranslational modification catalyzed primarily by ARTD (aka PARP) enzymes in cells. ARTDs transfer either single or multiple ADP-ribose units to substrates, resulting in mono- or poly-ADP-ribosylation. TARG1/C6orf130 is a macrodomain protein that hydrolyzes mono-ADP-ribosylation and interacts with poly-ADP-ribose chains. Interactome analyses revealed that TARG1 binds strongly to ribosomes and proteins associated with rRNA processing and ribosomal assembly factors. TARG1 localized to transcriptionally active nucleoli, which occurred independently of ADP-ribose binding. TARG1 shuttled continuously between nucleoli and nucleoplasm. In response to DNA damage, which activates ARTD1/2 (PARP1/2) and promotes synthesis of poly-ADP-ribose chains, TARG1 re-localized to the nucleoplasm. This was dependent on the ability of TARG1 to bind to poly-ADP-ribose. These findings are consistent with the observed ability of TARG1 to competitively interact with RNA and PAR chains. We propose a nucleolar role of TARG1 in ribosome assembly or quality control that is stalled when TARG1 is re-located to sites of DNA damage.
Collapse
Affiliation(s)
- Mareike Bütepage
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Christian Preisinger
- Proteomics Facility, Interdisciplinary Centre for Clinical Research (IZKF), Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Alexander von Kriegsheim
- Systems Biology Ireland, Conway Institute, University College Dublin, Dublin 4, Ireland.,Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Anja Scheufen
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Eva Lausberg
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.,Institute of Human Genetics, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Jinyu Li
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.,College of Chemistry, Fuzhou University, 350116, Fuzhou, China
| | - Ferdinand Kappes
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.,Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, No 111, Ren Ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, 215123, P.R. China
| | - Regina Feederle
- Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, Neuherberg, Germany
| | - Sabrina Ernst
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.,Immunohistochemistry and Confocal Microscopy Facility, Interdisciplinary Centre for Clinical Research (IZKF), Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Laura Eckei
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Sarah Krieg
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Gerhard Müller-Newen
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.,Immunohistochemistry and Confocal Microscopy Facility, Interdisciplinary Centre for Clinical Research (IZKF), Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Giulia Rossetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425, Jülich, Germany.,Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425, Jülich, Germany.,Department of Oncology, Hematology and Stem Cell Transplantation, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Karla L H Feijs
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Patricia Verheugd
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
18
|
Lüscher B, Bütepage M, Eckei L, Krieg S, Verheugd P, Shilton BH. ADP-Ribosylation, a Multifaceted Posttranslational Modification Involved in the Control of Cell Physiology in Health and Disease. Chem Rev 2017; 118:1092-1136. [PMID: 29172462 DOI: 10.1021/acs.chemrev.7b00122] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Posttranslational modifications (PTMs) regulate protein functions and interactions. ADP-ribosylation is a PTM, in which ADP-ribosyltransferases use nicotinamide adenine dinucleotide (NAD+) to modify target proteins with ADP-ribose. This modification can occur as mono- or poly-ADP-ribosylation. The latter involves the synthesis of long ADP-ribose chains that have specific properties due to the nature of the polymer. ADP-Ribosylation is reversed by hydrolases that cleave the glycosidic bonds either between ADP-ribose units or between the protein proximal ADP-ribose and a given amino acid side chain. Here we discuss the properties of the different enzymes associated with ADP-ribosylation and the consequences of this PTM on substrates. Furthermore, the different domains that interpret either mono- or poly-ADP-ribosylation and the implications for cellular processes are described.
Collapse
Affiliation(s)
- Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Mareike Bütepage
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Laura Eckei
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Sarah Krieg
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Patricia Verheugd
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Brian H Shilton
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany.,Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario , Medical Sciences Building Room 332, London, Ontario Canada N6A 5C1
| |
Collapse
|
19
|
Gravells P, Neale J, Grant E, Nathubhai A, Smith KM, James DI, Bryant HE. Radiosensitization with an inhibitor of poly(ADP-ribose) glycohydrolase: A comparison with the PARP1/2/3 inhibitor olaparib. DNA Repair (Amst) 2017; 61:25-36. [PMID: 29179156 PMCID: PMC5765821 DOI: 10.1016/j.dnarep.2017.11.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 12/12/2022]
Abstract
PARG and PARP inhibition both radiosensitize. PARP and PARG inhibition both alter the DNA damage response following irradiation (IR). PARP and PARG inhibition both alter homologous recombination following IR. Only PARG inhibition induces rapid activation of non-homologous end-joining post-IR. Only inhibition of PARG causes accumulation of cells in metaphase post-IR.
Upon DNA binding the poly(ADP-ribose) polymerase family of enzymes (PARPs) add multiple ADP-ribose subunits to themselves and other acceptor proteins. Inhibitors of PARPs have become an exciting and real prospect for monotherapy and as sensitizers to ionising radiation (IR). The action of PARPs are reversed by poly(ADP-ribose) glycohydrolase (PARG). Until recently studies of PARG have been limited by the lack of an inhibitor. Here, a first in class, specific, and cell permeable PARG inhibitor, PDD00017273, is shown to radiosensitize. Further, PDD00017273 is compared with the PARP1/2/3 inhibitor olaparib. Both olaparib and PDD00017273 altered the repair of IR-induced DNA damage, resulting in delayed resolution of RAD51 foci compared with control cells. However, only PARG inhibition induced a rapid increase in IR-induced activation of PRKDC (DNA-PK) and perturbed mitotic progression. This suggests that PARG has additional functions in the cell compared with inhibition of PARP1/2/3, likely via reversal of tankyrase activity and/or that inhibiting the removal of poly(ADP-ribose) (PAR) has a different consequence to inhibiting PAR addition. Overall, our data are consistent with previous genetic findings, reveal new insights into the function of PAR metabolism following IR and demonstrate for the first time the therapeutic potential of PARG inhibitors as radiosensitizing agents.
Collapse
Affiliation(s)
- Polly Gravells
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, United Kingdom
| | - James Neale
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, United Kingdom
| | - Emma Grant
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, United Kingdom
| | - Amit Nathubhai
- Drug and Target Discovery, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, Somerset, BA2 7AY, United Kingdom
| | - Kate M Smith
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Dominic I James
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Helen E Bryant
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, United Kingdom.
| |
Collapse
|
20
|
Munoz FM, Zhang F, Islas-Robles A, Lau SS, Monks TJ. From the Cover: ROS-Induced Store-Operated Ca2+ Entry Coupled to PARP-1 Hyperactivation Is Independent of PARG Activity in Necrotic Cell Death. Toxicol Sci 2017; 158:444-453. [PMID: 28525621 PMCID: PMC5837598 DOI: 10.1093/toxsci/kfx106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
2,3,5-tris(Glutathion-S-yl)hydroquinone, a potent nephrotoxic and nephrocarcinogenic metabolite of benzene and hydroquinone, generates reactive oxygen species (ROS) causing DNA strand breaks and the subsequent activation of DNA repair enzymes, including poly(ADP-ribose) polymerase (PARP)-1. Under robust oxidative DNA damage, PARP-1 is hyperactivated, resulting in the depletion of NAD+ and ATP with accompanying elevations in intracellular calcium concentrations (iCa2+), and ultimately necrotic cell death. The role of Ca2+ during PARP-dependent necrotic cell death remains unclear. We therefore sought to determine the relationship between Ca2+ and PARP-1 during ROS-induced necrotic cell death in human renal proximal tubule epithelial cells (HK-2). Our experiments suggest that store-operated Ca2+ channel (SOC) entry contributes to the coupling of PARP-1 activation to increases in iCa2+ during ROS-induced cell death. Poly(ADP-ribose)glycohydrolase (PARG), which catalyzes the degradation of PARs to yield free ADP-ribose (ADPR), is known to activate Ca2+ channels such as TRPM2. However, siRNA knockdown of PARG did not restore cell viability, indicating that free ADPR is not responsible for SOC activation in HK-2 cells. The data indicate that PARP-1 and iCa2+ are coupled through activation of SOC mediated Ca2+ entry in an apparently ADPR-independent fashion; alternative PAR-mediated signaling likely contributes to PARP-dependent necrotic cell death, perhaps via PAR-mediated signaling proteins that regulate iCa2+ homeostasis.
Collapse
Affiliation(s)
- Frances M. Munoz
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Health Sciences Center, Tucson, Arizona 85721
| | - Fengjiao Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Health Sciences Center, Tucson, Arizona 85721
| | - Argel Islas-Robles
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Health Sciences Center, Tucson, Arizona 85721
| | - Serrine S. Lau
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Health Sciences Center, Tucson, Arizona 85721
| | - Terrence J. Monks
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Health Sciences Center, Tucson, Arizona 85721
| |
Collapse
|
21
|
Mashimo M, Moss J. Functional Role of ADP-Ribosyl-Acceptor Hydrolase 3 in poly(ADP-Ribose) Polymerase-1 Response to Oxidative Stress. Curr Protein Pept Sci 2017; 17:633-640. [PMID: 27090906 DOI: 10.2174/1389203717666160419144603] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/15/2016] [Indexed: 01/19/2023]
Abstract
Poly-ADP-ribosylation has been proposed to be a reversible protein modification, participating in diverse cellular functions including DNA repair, chromatin remodeling, genetic stability, mitosis, and cell death. Poly-ADP-ribosylation is initiated by the transfer of the ADP-ribose moiety of NAD+ primarily to the carboxyl groups of glutamate and aspartate and amino group of lysine residues in target proteins, followed by elongation of poly(ADP-ribose) (PAR) chains via α-O-glycosidic (C- 1"-C-2') ribose-ribose bonds. PAR consists of polymers of ADP-ribose (up to 200 units) with branching via α-O-glycosidic (C-1"'-C-2") ribose-ribose bonds. Further, the pyrophosphate group of each ADP-ribose has two negative charges. Therefore, in proteins modified by PAR, a complex structure with negative charges may lead to dynamic changes of functions. PAR formation is catalyzed by poly(ADP-ribose) polymerases (PARPs) and terminated by several types of enzymes with PAR-degrading activities; poly(ADP-ribose) glycohydrolase (PARG), ADP-ribosylacceptor hydrolase (ARH) 3, ARH1, and macrodomain-containing proteins. PARG has been thought to be primarily responsible for PAR degradation. In 2006, ARH3 was cloned and identified as another type of PAR-degrading protein. Although PAR-degrading activity of ARH3 is less than that of PARG, different mechanisms of PAR recognition and the cellular localization of ARH3 appear to be responsible for unique cellular roles of ARH3 involving PAR. In the present review, we focused on our findings regarding structure, biological properties, and cellular functions of ARH3. In addition, we describe the current knowledge of poly-ADP-ribosylation and cell death pathways regulated PARP1, PARG, and ARH3.
Collapse
Affiliation(s)
| | - Joel Moss
- Rm. 6D05, Bldg. 10, MSC 1590, National Institutes of Health, Bethesda, MD 20892-1590; USA.
| |
Collapse
|
22
|
Noll A, Illuzzi G, Amé JC, Dantzer F, Schreiber V. PARG deficiency is neither synthetic lethal with BRCA1 nor PTEN deficiency. Cancer Cell Int 2016; 16:53. [PMID: 27375368 PMCID: PMC4929728 DOI: 10.1186/s12935-016-0333-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 06/23/2016] [Indexed: 02/07/2023] Open
Abstract
Background Poly(ADP-ribose) polymerase (PARP) inhibitors have entered the clinics for their promising anticancer effect as adjuvant in chemo- and radiotherapy and as single agent on BRCA-mutated tumours. Poly(ADP-ribose) glycohydrolase (PARG) deficiency was also shown to potentiate the cytotoxicity of genotoxic agents and irradiation. The aim of this study is to investigate the effect of PARG deficiency on BRCA1- and/or PTEN-deficient tumour cells. Methods Since no PARG inhibitors are available for in vivo studies, PARG was depleted by siRNA in several cancer cell lines, proficient or deficient for BRCA1 and/or PTEN. The impact on cell survival was evaluated by colony formation assay and short-term viability assays. The effect of simultaneous PARG and BRCA1 depletion on homologous recombination (HR) efficacy was evaluated by immunodetection of RAD51 foci and using an in vivo HR assay. Results The BRCA1-deficient cell lines MDA-MB-436, HCC1937 and UWB1.289 showed mild sensitivity to PARG depletion, whereas no sensitivity was observed for the BRCA1-proficient MDA-MB-231, MDA-MB-468, MCF10A and U2OS cell lines. However, the BRCA1-reconstituted UWB1.289 cell lines was similarly sensitive to PARG depletion than the BRCA1-deficient UWB1.289, and the simultaneous depletion of PARG and BRCA1 and/or PTEN in MDA-MB-231 or U2OS cells was not more cytotoxic than depletion of BRCA1 or PTEN only. Conclusions Some tumour cells displayed slight sensitivity to PARG deficiency, but this sensitivity could not be correlated to BRCA1- or PTEN-deficiency. Therefore, PARG depletion cannot be considered as a strategy to kill tumours cells mutated in BRCA1 or PTEN.
Collapse
Affiliation(s)
- Aurélia Noll
- Biotechnology and Cell Signalling, UMR7242 CNRS, Université de Strasbourg, Laboratory of Excellence Medalis, ESBS, 300 Bd Sébastien Brant, CS 10413, 67412 Illkirch, France
| | - Giuditta Illuzzi
- Biotechnology and Cell Signalling, UMR7242 CNRS, Université de Strasbourg, Laboratory of Excellence Medalis, ESBS, 300 Bd Sébastien Brant, CS 10413, 67412 Illkirch, France
| | - Jean-Christophe Amé
- Biotechnology and Cell Signalling, UMR7242 CNRS, Université de Strasbourg, Laboratory of Excellence Medalis, ESBS, 300 Bd Sébastien Brant, CS 10413, 67412 Illkirch, France
| | - Françoise Dantzer
- Biotechnology and Cell Signalling, UMR7242 CNRS, Université de Strasbourg, Laboratory of Excellence Medalis, ESBS, 300 Bd Sébastien Brant, CS 10413, 67412 Illkirch, France
| | - Valérie Schreiber
- Biotechnology and Cell Signalling, UMR7242 CNRS, Université de Strasbourg, Laboratory of Excellence Medalis, ESBS, 300 Bd Sébastien Brant, CS 10413, 67412 Illkirch, France
| |
Collapse
|
23
|
James DI, Durant S, Eckersley K, Fairweather E, Griffiths LA, Hamilton N, Kelly P, O'Connor M, Shea K, Waddell ID, Ogilvie DJ. An assay to measure poly(ADP ribose) glycohydrolase (PARG) activity in cells. F1000Res 2016; 5:736. [PMID: 27610220 PMCID: PMC4995692 DOI: 10.12688/f1000research.8463.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2016] [Indexed: 01/06/2023] Open
Abstract
After a DNA damage signal multiple polymers of ADP ribose attached to poly(ADP) ribose (PAR) polymerases (PARPs) are broken down by the enzyme poly(ADP) ribose glycohydrolase (PARG). Inhibition of PARG leads to a failure of DNA repair and small molecule inhibition of PARG has been a goal for many years. To determine whether biochemical inhibitors of PARG are active in cells we have designed an immunofluorescence assay to detect nuclear PAR after DNA damage. This 384-well assay is suitable for medium throughput high-content screening and can detect cell-permeable inhibitors of PARG from nM to µM potency. In addition, the assay has been shown to work in murine cells and in a variety of human cancer cells. Furthermore, the assay is suitable for detecting the DNA damage response induced by treatment with temozolomide and methylmethane sulfonate (MMS). Lastly, the assay has been shown to be robust over a period of several years.
Collapse
Affiliation(s)
- Dominic I. James
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Stephen Durant
- Oncology iMED, AstraZeneca Pharmaceuticals, Macclesfield, UK
| | - Kay Eckersley
- Oncology iMED, AstraZeneca Pharmaceuticals, Macclesfield, UK
| | - Emma Fairweather
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Louise A. Griffiths
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Nicola Hamilton
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Paul Kelly
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Mark O'Connor
- Oncology iMED, AstraZeneca Pharmaceuticals, Macclesfield, UK
| | - Kerry Shea
- Oncology iMED, AstraZeneca Pharmaceuticals, Macclesfield, UK
| | - Ian D. Waddell
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Donald J. Ogilvie
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| |
Collapse
|
24
|
James DI, Durant S, Eckersley K, Fairweather E, Griffiths LA, Hamilton N, Kelly P, O'Connor M, Shea K, Waddell ID, Ogilvie DJ. An assay to measure poly(ADP ribose) glycohydrolase (PARG) activity in cells. F1000Res 2016; 5:736. [PMID: 27610220 PMCID: PMC4995692 DOI: 10.12688/f1000research.8463.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2016] [Indexed: 12/23/2022] Open
Abstract
After a DNA damage signal multiple polymers of ADP ribose attached to poly(ADP) ribose (PAR) polymerases (PARPs) are broken down by the enzyme poly(ADP) ribose glycohydrolase (PARG). Inhibition of PARG leads to a failure of DNA repair and small molecule inhibition of PARG has been a goal for many years. To determine whether biochemical inhibitors of PARG are active in cells we have designed an immunofluorescence assay to detect nuclear PAR after DNA damage. This 384-well assay is suitable for medium throughput high-content screening and can detect cell-permeable inhibitors of PARG from nM to µM potency. In addition, the assay has been shown to work in murine cells and in a variety of human cancer cells. Furthermore, the assay is suitable for detecting the DNA damage response induced by treatment with temozolomide and methylmethane sulfonate (MMS). Lastly, the assay has been shown to be robust over a period of several years.
Collapse
Affiliation(s)
- Dominic I. James
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Stephen Durant
- Oncology iMED, AstraZeneca Pharmaceuticals, Macclesfield, UK
| | - Kay Eckersley
- Oncology iMED, AstraZeneca Pharmaceuticals, Macclesfield, UK
| | - Emma Fairweather
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Louise A. Griffiths
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Nicola Hamilton
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Paul Kelly
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Mark O'Connor
- Oncology iMED, AstraZeneca Pharmaceuticals, Macclesfield, UK
| | - Kerry Shea
- Oncology iMED, AstraZeneca Pharmaceuticals, Macclesfield, UK
| | - Ian D. Waddell
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Donald J. Ogilvie
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| |
Collapse
|
25
|
Zhang C, Luo T, Cui S, Gu Y, Bian C, Chen Y, Yu X, Wang Z. Poly(ADP-ribose) protects vascular smooth muscle cells from oxidative DNA damage. BMB Rep 2016; 48:354-9. [PMID: 25748172 PMCID: PMC4578623 DOI: 10.5483/bmbrep.2015.48.6.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Indexed: 11/20/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) undergo death during atherosclerosis, a
widespread cardiovascular disease. Recent studies suggest that oxidative damage
occurs in VSMCs and induces atherosclerosis. Here, we analyzed oxidative damage
repair in VSMCs and found that VSMCs are hypersensitive to oxidative damage.
Further analysis showed that oxidative damage repair in VSMCs is suppressed by a
low level of poly (ADP-ribosyl)ation (PARylation), a key post-translational
modification in oxidative damage repair. The low level of PARylation is not
caused by the lack of PARP-1, the major poly(ADP-ribose) polymerase activated by
oxidative damage. Instead, the expression of poly(ADP-ribose) glycohydrolase,
PARG, the enzyme hydrolyzing poly(ADP-ribose), is significantly higher in VSMCs
than that in the control cells. Using PARG inhibitor to suppress PARG activity
facilitates oxidative damage-induced PARylation as well as DNA damage repair.
Thus, our study demonstrates a novel molecular mechanism for oxidative
damage-induced VSMCs death. This study also identifies the use of PARG
inhibitors as a potential treatment for atherosclerosis. [BMB Reports 2015;
48(6): 354-359]
Collapse
Affiliation(s)
- Chao Zhang
- Vascular Surgery Department of Xuanwu Hospital, Institute of Vascular Surgery, Capital Medical University, Beijing 100053, China
| | - Tao Luo
- Vascular Surgery Department of Xuanwu Hospital, Institute of Vascular Surgery, Capital Medical University, Beijing 100053, China
| | - Shijun Cui
- Vascular Surgery Department of Xuanwu Hospital, Institute of Vascular Surgery, Capital Medical University, Beijing 100053, China
| | - Yongquan Gu
- Vascular Surgery Department of Xuanwu Hospital, Institute of Vascular Surgery, Capital Medical University, Beijing 100053, China
| | - Chunjing Bian
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yibin Chen
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Xiaochun Yu
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Zhonggao Wang
- Vascular Surgery Department of Xuanwu Hospital, Institute of Vascular Surgery, Capital Medical University, Beijing 100053, China
| |
Collapse
|
26
|
Schlesinger M, Vilchez Larrea SC, Haikarainen T, Narwal M, Venkannagari H, Flawiá MM, Lehtiö L, Fernández Villamil SH. Disrupted ADP-ribose metabolism with nuclear Poly (ADP-ribose) accumulation leads to different cell death pathways in presence of hydrogen peroxide in procyclic Trypanosoma brucei. Parasit Vectors 2016; 9:173. [PMID: 27007296 PMCID: PMC4806436 DOI: 10.1186/s13071-016-1461-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Poly(ADP-ribose) (PAR) metabolism participates in several biological processes such as DNA damage signaling and repair, which is a thoroughly studied function. PAR is synthesized by Poly(ADP-ribose) polymerase (PARP) and hydrolyzed by Poly(ADP-ribose) glycohydrolase (PARG). In contrast to human and other higher eukaryotes, Trypanosoma brucei contains only one PARP and PARG. Up to date, the function of these enzymes has remained elusive in this parasite. The aim of this work is to unravel the role that PAR plays in genotoxic stress response. METHODS The optimal conditions for the activity of purified recombinant TbPARP were determined by using a fluorometric activity assay followed by screening of PARP inhibitors. Sensitivity to a genotoxic agent, H2O2, was assessed by counting motile parasites over the total number in a Neubauer chamber, in presence of a potent PARP inhibitor as well as in procyclic transgenic lines which either down-regulate PARP or PARG, or over-express PARP. Triplicates were carried out for each condition tested and data significance was assessed with two-way Anova followed by Bonferroni test. Finally, PAR influence was studied in cell death pathways by flow cytometry. RESULTS Abolition of a functional PARP either by using potent inhibitors present or in PARP-silenced parasites had no effect on parasite growth in culture; however, PARP-inhibited and PARP down-regulated parasites presented an increased resistance against H2O2 treatment when compared to their wild type counterparts. PARP over-expressing and PARG-silenced parasites displayed polymer accumulation in the nucleus and, as expected, showed diminished resistance when exposed to the same genotoxic stimulus. Indeed, they suffered a necrotic death pathway, while an apoptosis-like mechanism was observed in control cultures. Surprisingly, PARP migrated to the nucleus and synthesized PAR only after a genomic stress in wild type parasites while PARG occurred always in this organelle. CONCLUSIONS PARP over-expressing and PARG-silenced cells presented PAR accumulation in the nucleus, even in absence of oxidative stress. Procyclic death pathway after genotoxic damage depends on basal nuclear PAR. This evidence demonstrates that the polymer may have a toxic action by itself since the consequences of an exacerbated PARP activity cannot fully explain the increment in sensitivity observed here. Moreover, the unusual localization of PARP and PARG would reveal a novel regulatory mechanism, making them invaluable model systems.
Collapse
Affiliation(s)
- Mariana Schlesinger
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres", Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428, Ciudad Autónoma de Buenos Aires, Argentina
| | - Salomé C Vilchez Larrea
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres", Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428, Ciudad Autónoma de Buenos Aires, Argentina
| | - Teemu Haikarainen
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, P.O. Box 3000, FIN-90014, Oulu, Finland
| | - Mohit Narwal
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, P.O. Box 3000, FIN-90014, Oulu, Finland
| | - Harikanth Venkannagari
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, P.O. Box 3000, FIN-90014, Oulu, Finland
| | - Mirtha M Flawiá
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres", Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, P.O. Box 3000, FIN-90014, Oulu, Finland
| | - Silvia H Fernández Villamil
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres", Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428, Ciudad Autónoma de Buenos Aires, Argentina. .,Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1428, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
27
|
Li X, Li X, Zhu Z, Huang P, Zhuang Z, Liu J, Gao W, Liu Y, Huang H. Poly(ADP-Ribose) Glycohydrolase (PARG) Silencing Suppresses Benzo(a)pyrene Induced Cell Transformation. PLoS One 2016; 11:e0151172. [PMID: 27003318 PMCID: PMC4803271 DOI: 10.1371/journal.pone.0151172] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 02/24/2016] [Indexed: 12/31/2022] Open
Abstract
Benzo(a)pyrene (BaP) is a ubiquitously distributed environmental pollutant and known carcinogen, which can induce malignant transformation in rodent and human cells. Poly(ADP-ribose) glycohydrolase (PARG), the primary enzyme that catalyzes the degradation of poly(ADP-ribose) (PAR), has been known to play an important role in regulating DNA damage repair and maintaining genomic stability. Although PARG has been shown to be a downstream effector of BaP, the role of PARG in BaP induced carcinogenesis remains unclear. In this study, we used the PARG-deficient human bronchial epithelial cell line (shPARG) as a model to examine how PARG contributed to the carcinogenesis induced by chronic BaP exposure under various concentrations (0, 10, 20 and 40 μM). Our results showed that PARG silencing dramatically reduced DNA damages, chromosome abnormalities, and micronuclei formations in the PARG-deficient human bronchial epithelial cells compared to the control cells (16HBE cells). Meanwhile, the wound healing assay showed that PARG silencing significantly inhibited BaP-induced cell migration. Furthermore, silencing of PARG significantly reduced the volume and weight of tumors in Balb/c nude mice injected with BaP induced transformed human bronchial epithelial cells. This was the first study that reported evidences to support an oncogenic role of PARG in BaP induced carcinogenesis, which provided a new perspective for our understanding in BaP exposure induced cancer.
Collapse
Affiliation(s)
- Xuan Li
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Guangdong, China
| | - Xiyi Li
- School of Public Health, Guangxi Medical University, Guangxi, China
| | - Zhiliang Zhu
- Department of Occupational Disease Prevention, Baoan Center for Disease Control and Prevention, Guangdong, China
| | - Peiwu Huang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Guangdong, China
| | - Zhixiong Zhuang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Guangdong, China
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Guangdong, China
| | - Wei Gao
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Guangdong, China
| | - Yinpin Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Guangdong, China
| | - Haiyan Huang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Guangdong, China
- * E-mail:
| |
Collapse
|
28
|
Bartolomei G, Leutert M, Manzo M, Baubec T, Hottiger MO. Analysis of Chromatin ADP-Ribosylation at the Genome-wide Level and at Specific Loci by ADPr-ChAP. Mol Cell 2016; 61:474-485. [PMID: 26833088 DOI: 10.1016/j.molcel.2015.12.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/21/2015] [Accepted: 12/23/2015] [Indexed: 01/04/2023]
Abstract
Chromatin ADP-ribosylation regulates important cellular processes. However, the exact location and magnitude of chromatin ADP-ribosylation are largely unknown. A robust and versatile method for assessing chromatin ADP-ribosylation is therefore crucial for further understanding its function. Here, we present a chromatin affinity precipitation method based on the high specificity and avidity of two well-characterized ADP-ribose binding domains to map chromatin ADP-ribosylation at the genome-wide scale and at specific loci. Our ADPr-ChAP method revealed that in cells exposed to oxidative stress, ADP-ribosylation of chromatin scales with histone density, with highest levels at heterochromatic sites and depletion at active promoters. Furthermore, in growth factor-induced adipocyte differentiation, increased chromatin ADP-ribosylation was observed at PPARγ target genes, whose expression is ADP-ribosylation dependent. In combination with deep-sequencing and conventional chromatin immunoprecipitation, the established ADPr-ChAP provides a valuable resource for the bioinformatic comparison of ADP-ribosylation with other chromatin modifications and for addressing its role in other biologically important processes.
Collapse
Affiliation(s)
- Giody Bartolomei
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Molecular Life Science PhD Program of the Life Science Zurich Graduate School, University of Zurich, 8057 Zurich, Switzerland
| | - Mario Leutert
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Molecular Life Science PhD Program of the Life Science Zurich Graduate School, University of Zurich, 8057 Zurich, Switzerland
| | - Massimiliano Manzo
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Molecular Life Science PhD Program of the Life Science Zurich Graduate School, University of Zurich, 8057 Zurich, Switzerland
| | - Tuncay Baubec
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
29
|
Koh DW, Powell DP, Blake SD, Hoffman JL, Hopkins MM, Feng X. Enhanced cytotoxicity in triple-negative and estrogen receptor‑positive breast adenocarcinoma cells due to inhibition of the transient receptor potential melastatin-2 channel. Oncol Rep 2015; 34:1589-98. [PMID: 26178079 PMCID: PMC4735697 DOI: 10.3892/or.2015.4131] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 06/22/2015] [Indexed: 12/30/2022] Open
Abstract
We previously demonstrated a unique protective role for the transient receptor potential, melastatin-2 (TRPM2) cation channel in breast cancer cells. In the present study, we investigated the chemotherapeutic effects elicited by inhibiting this protective role in metastatic breast adenocarcinoma cells. TRPM2 inhibition led to dose-dependent increases in MDA-MB-231 breast adenocarcinoma cell death after treatment with doxorubicin or the DNA-methylating agent, N-methyl-N'-nitro-N-nitrosoguanidine. Similar results were observed after RNAi silencing of TRPM2 in these cells after doxorubicin treatment. However, TRPM2 RNAi silencing also led to increased MCF-7 breast adenocarcinoma cell death after tamoxifen treatment, yet not in non-cancerous human mammary epithelial cells. These results thus revealed that TRPM2 inhibition selectively increased cytotoxicity in a triple-negative and an estrogen receptor-positive breast cancer cell line, with minimal deleterious effects in non-cancerous breast cells. Analysis of DNA damage revealed enhanced DNA damage levels in MCF-7 cells treated with doxorubicin due to TRPM2 inhibition. Analysis of cell death demonstrated that inhibition of apoptosis, caspase-independent cell death or autophagy failed to significantly reduce cell death induced by TRPM2 inhibition and chemotherapy. These results indicate that TRPM2 inhibition activates alternative pathways of cell death in breast cancer cells. Taken together, our results provide significant evidence that TRPM2 inhibition is a potential strategy to induce triple-negative and estrogen receptor-positive breast adenocarcinoma cell death via alternative cell death pathways. This is expected to provide a basis for inhibiting TRPM2 for the improved treatment of breast cancer, which potentially includes treating breast tumors that are resistant to chemotherapy due to their evasion of apoptosis.
Collapse
Affiliation(s)
- David W Koh
- Department of Pharmaceutical and Biomedical Sciences, Ohio Northern University, Ada, OH 45810, USA
| | - Daniel P Powell
- Department of Pharmaceutical and Biomedical Sciences, Ohio Northern University, Ada, OH 45810, USA
| | - Steven D Blake
- Department of Pharmaceutical and Biomedical Sciences, Ohio Northern University, Ada, OH 45810, USA
| | - Joy L Hoffman
- Department of Pharmaceutical and Biomedical Sciences, Ohio Northern University, Ada, OH 45810, USA
| | - Mandi M Hopkins
- Department of Pharmaceutical Sciences, Washington State University, Pullman, WA 99164, USA
| | - Xiaoxing Feng
- Department of Pharmaceutical Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
30
|
El Zaoui I, Behar-Cohen F, Torriglia A. Glucocorticoids Exert Direct Toxicity on Microvasculature: Analysis of Cell Death Mechanisms. Toxicol Sci 2014; 143:441-53. [DOI: 10.1093/toxsci/kfu243] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
31
|
Abstract
Cerebrovascular disease is a leading cause of death-from-disease and of disability worldwide, affecting some 15 million people. The incidence of stroke or "brain attack" is unlikely to recede for a decade at minimum by most predictions, despite large public health initiatives in stroke prevention. It has been well established that stroke is also one of the most strikingly sex-specific diseases in its epidemiology, and in some cases, in patient outcomes. For example, women sustain lower rates of ischemic stroke relative to men, even beyond their menopausal years. In contrast, outcomes are worse in women in many clinical studies. The biological basis for this sexual dimorphism is a compelling story, and both hormone-dependent and hormone-independent factors are involved, the latter of which is the subject of this brief review. Understanding the molecular and cell-based mechanisms underlying sex differences in ischemic brain injury is an important step toward personalized medicine and effective therapeutic interventions in patients of both sexes.
Collapse
Affiliation(s)
- Paco S Herson
- Departments of Anesthesiology and Pharmacology, University of Colorado, Denver
| | | | | |
Collapse
|
32
|
Adeyemi DO, Ukwenya VO, Obuotor EM, Adewole SO. Anti-hepatotoxic activities of Hibiscus sabdariffa L. in animal model of streptozotocin diabetes-induced liver damage. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:277. [PMID: 25077880 PMCID: PMC4131030 DOI: 10.1186/1472-6882-14-277] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/21/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Flavonoid-rich aqueous fraction of methanolic extract of Hibiscus sabdariffa calyx was evaluated for its anti-hepatotoxic activities in streptozotocin-induced diabetic Wistar rats. METHODS Diabetes Mellitus was induced in Wistar rats by a single i.p injection of 80 mg/kg b.w. streptozotocin (STZ) dissolved in 0.1 M citrate buffer (pH 6.3). RESULTS The ameliorative effects of the extract on STZ-diabetes induced liver damage was evident from the histopathological analysis and the biochemical parameters evaluated in the serum and liver homogenates. Reduced levels of glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) (3.76 ± 0.38 μM, 0.42 ± 0.04 U/L, 41.08 ± 3.04 U/ml, 0.82 ± 0.04 U/L respectively) in the liver of diabetic rats were restored to a near normal level in the Hibiscus sabdariffa-treated rats (6.87 ± 0.51 μM, 0.72 ± 0.06 U/L, 87.92 ± 5.26 U/ml, 1.37 ± 0.06 U/L respectively). Elevated levels of aspartate amino transferase (AST), alanine amino transferase (ALT) and alkaline phosphatase (ALP) in the serum of diabetic rats were also restored in Hibiscus sabdariffa -treated rats. Examination of stained liver sections revealed hepatic fibrosis and excessive glycogen deposition in the diabetic rats. These pathological changes were ameliorated in the extract-treated rats. CONCLUSION The anti-hepatotoxic activity of Hibiscus sabdariffa extract in STZ diabetic rats could be partly related to its antioxidant activity and the presence of flavonnoids.
Collapse
Affiliation(s)
- David O Adeyemi
- />Department of Anatomy and Cell Biology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Victor O Ukwenya
- />Department of Anatomy, Ekiti State University, Ado Ekiti, Ekiti State Nigeria
| | - Efere M Obuotor
- />Department of Biochemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Stephen O Adewole
- />Department of Anatomy and Cell Biology, Obafemi Awolowo University, Ile-Ife, Nigeria
| |
Collapse
|
33
|
Knockout of PARG110 confers resistance to cGMP-induced toxicity in mammalian photoreceptors. Cell Death Dis 2014; 5:e1234. [PMID: 24853412 PMCID: PMC4047865 DOI: 10.1038/cddis.2014.208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/20/2014] [Accepted: 04/09/2014] [Indexed: 11/08/2022]
Abstract
Hereditary retinal degeneration (RD) relates to a heterogeneous group of blinding human diseases in which the light sensitive neurons of the retina, the photoreceptors, die. RD is currently untreatable and the underlying cellular mechanisms remain poorly understood. However, the activity of the enzyme poly-ADP-ribose polymerase-1 (PARP1) and excessive generation of poly-ADP-ribose (PAR) polymers in photoreceptor nuclei have been shown to be causally involved in RD. The activity of PARP1 is to a large extent governed by its functional antagonist, poly-ADP-glycohydrolase (PARG), which thus also may have a role in RD. To investigate this, we analyzed PARG expression in the retina of wild-type (wt) mice and in the rd1 mouse model for human RD, and detected increased PARG protein in a subset of degenerating rd1 photoreceptors. Knockout (KO) animals lacking the 110 kDa nuclear PARG isoform were furthermore analyzed, and their retinal morphology and function were indistinguishable from wild-type animals. Organotypic wt retinal explants can be experimentally treated to induce rd1-like photoreceptor death, but PARG110 KO retinal explants were unexpectedly highly resistant to such treatment. The resistance was associated with decreased PAR accumulation and low PARP activity, indicating that PARG110 may positively regulate PARP1, an event that therefore is absent in PARG110 KO tissue. Our study demonstrates a causal involvement of PARG110 in the process of photoreceptor degeneration. Contrasting its anticipated role as a functional antagonist, absence of PARG110 correlated with low PARP activity, suggesting that PARG110 and PARP1 act in a positive feedback loop, which is especially active under pathologic conditions. This in turn highlights both PARG110 and PARP1 as potential targets for neuroprotective treatments for RD.
Collapse
|
34
|
Fatokun AA, Dawson VL, Dawson TM. Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol 2014; 171:2000-16. [PMID: 24684389 PMCID: PMC3976618 DOI: 10.1111/bph.12416] [Citation(s) in RCA: 414] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 08/27/2013] [Accepted: 09/02/2013] [Indexed: 12/12/2022] Open
Abstract
Cells die by a variety of mechanisms. Terminally differentiated cells such as neurones die in a variety of disorders, in part, via parthanatos, a process dependent on the activity of poly (ADP-ribose)-polymerase (PARP). Parthanatos does not require the mediation of caspases for its execution, but is clearly mechanistically dependent on the nuclear translocation of the mitochondrial-associated apoptosis-inducing factor (AIF). The nuclear translocation of this otherwise beneficial mitochondrial protein, occasioned by poly (ADP-ribose) (PAR) produced through PARP overactivation, causes large-scale DNA fragmentation and chromatin condensation, leading to cell death. This review describes the multistep course of parthanatos and its dependence on PAR signalling and nuclear AIF translocation. The review also discusses potential targets in the parthanatos cascade as promising avenues for the development of novel, disease-modifying, therapeutic agents.
Collapse
Affiliation(s)
- Amos A Fatokun
- Institute of Cell Signalling, School of Biomedical Sciences, University of NottinghamNottingham, UK
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimore, MD, USA
| |
Collapse
|
35
|
Miskimins WK, Ahn HJ, Kim JY, Ryu S, Jung YS, Choi JY. Synergistic anti-cancer effect of phenformin and oxamate. PLoS One 2014; 9:e85576. [PMID: 24465604 PMCID: PMC3897486 DOI: 10.1371/journal.pone.0085576] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 11/29/2013] [Indexed: 11/18/2022] Open
Abstract
Phenformin (phenethylbiguanide; an anti-diabetic agent) plus oxamate [lactate dehydrogenase (LDH) inhibitor] was tested as a potential anti-cancer therapeutic combination. In in vitro studies, phenformin was more potent than metformin, another biguanide, recently recognized to have anti-cancer effects, in promoting cancer cell death in the range of 25 times to 15 million times in various cancer cell lines. The anti-cancer effect of phenformin was related to complex I inhibition in the mitochondria and subsequent overproduction of reactive oxygen species (ROS). Addition of oxamate inhibited LDH activity and lactate production by cells, which is a major side effect of biguanides, and induced more rapid cancer cell death by decreasing ATP production and accelerating ROS production. Phenformin plus oxamate was more effective than phenformin combined with LDH knockdown. In a syngeneic mouse model, phenformin with oxamate increased tumor apoptosis, reduced tumor size and (18)F-fluorodeoxyglucose (FDG) uptake on positron emission tomography/computed tomography compared to control. We conclude that phenformin is more cytotoxic towards cancer cells than metformin. Furthermore, phenformin and oxamate have synergistic anti-cancer effects through simultaneous inhibition of complex I in the mitochondria and LDH in the cytosol, respectively.
Collapse
Affiliation(s)
- W. Keith Miskimins
- Cancer Biology Research Center, Sanford Research/USD, Sioux Falls, South Dakota, United States of America
- Department of Obstetrics and Gynecology and Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Sioux Falls, South Dakota, United States of America
| | - Hyun Joo Ahn
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji Yeon Kim
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun Ryu
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yuh-Seog Jung
- Head and Neck Oncology Clinic, Center of Specific Organs Cancer, Center for Thyroid Cancer, Research Institute and Hospital, National Cancer Center, Goyang-si, Gyeonggi-do, Korea
| | - Joon Young Choi
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
36
|
Sahaboglu A, Bolz S, Löwenheim H, Paquet-Durand F. Expression of poly(ADP-ribose) glycohydrolase in wild-type and PARG-110 knock-out retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:463-9. [PMID: 24664732 DOI: 10.1007/978-1-4614-3209-8_59] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Poly(ADP-ribose) (PAR) turnover is required for many cellular processes, and highly relevant for cell death and survival. This post-translational protein modification is regulated by the synthesizing enzyme poly(ADP)ribose-polymerase (PARP) and the degrading enzyme poly(ADP-ribose) glycohydrolase (PARG). Previously, PARP activity was found to be involved in photoreceptor degeneration in the rd1 mouse and in rd1-like conditions PARP-1 was the main PARP family member contributing to photoreceptor cell death. Despite the manifest role of PARP and PAR accumulation in photoreceptor cell death, the influence of PAR degradation on photoreceptor viability was still unknown. Here, we investigated the role of PARG in photoreceptor degeneration using the PARG-110 knock out mouse and report for the first time on PARG expression in wild-type and knock-out retina.
Collapse
Affiliation(s)
- Ayse Sahaboglu
- Division of Experimental Ophthalmology, Institute for Ophthalmic Research, University Eye Clinic Tübingen, Röntgenweg 11, 72076, Tübingen, Germany,
| | | | | | | |
Collapse
|
37
|
Kulkarni A, Oza J, Yao M, Sohail H, Ginjala V, Tomas-Loba A, Horejsi Z, Tan AR, Boulton SJ, Ganesan S. Tripartite Motif-containing 33 (TRIM33) protein functions in the poly(ADP-ribose) polymerase (PARP)-dependent DNA damage response through interaction with Amplified in Liver Cancer 1 (ALC1) protein. J Biol Chem 2013; 288:32357-32369. [PMID: 23926104 PMCID: PMC3820871 DOI: 10.1074/jbc.m113.459164] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 08/06/2013] [Indexed: 12/17/2022] Open
Abstract
Activation of poly(ADP-ribose) polymerase (PARP) near sites of DNA breaks facilitates recruitment of DNA repair proteins and promotes chromatin relaxation in part through the action of chromatin-remodeling enzyme Amplified in Liver Cancer 1 (ALC1). Through proteomic analysis we find that ALC1 interacts after DNA damage with Tripartite Motif-containing 33 (TRIM33), a multifunctional protein implicated in transcriptional regulation, TGF-β signaling, and tumorigenesis. We demonstrate that TRIM33 is dynamically recruited to DNA damage sites in a PARP1- and ALC1-dependent manner. TRIM33-deficient cells show enhanced sensitivity to DNA damage and prolonged retention of ALC1 at sites of DNA breaks. Conversely, overexpression of TRIM33 alleviates the DNA repair defects conferred by ALC1 overexpression. Thus, TRIM33 plays a role in PARP-dependent DNA damage response and regulates ALC1 activity by promoting its timely removal from sites of DNA damage.
Collapse
Affiliation(s)
- Atul Kulkarni
- From the Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey 08903
| | - Jay Oza
- From the Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey 08903
| | - Ming Yao
- From the Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey 08903
| | - Honeah Sohail
- From the Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey 08903
| | - Vasudeva Ginjala
- From the Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey 08903
| | - Antonia Tomas-Loba
- the DNA Damage Response Laboratory, London Research Institute, Clare Hall, South Mimms, EN6 3LD Herts, United Kingdom
| | - Zuzana Horejsi
- the DNA Damage Response Laboratory, London Research Institute, Clare Hall, South Mimms, EN6 3LD Herts, United Kingdom
| | - Antoinette R Tan
- From the Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey 08903
| | - Simon J Boulton
- the DNA Damage Response Laboratory, London Research Institute, Clare Hall, South Mimms, EN6 3LD Herts, United Kingdom
| | - Shridar Ganesan
- From the Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey 08903.
| |
Collapse
|
38
|
ADP-ribosyl-acceptor hydrolase 3 regulates poly (ADP-ribose) degradation and cell death during oxidative stress. Proc Natl Acad Sci U S A 2013; 110:18964-9. [PMID: 24191052 DOI: 10.1073/pnas.1312783110] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Poly (ADP ribose) (PAR) formation catalyzed by PAR polymerase 1 in response to genotoxic stress mediates cell death due to necrosis and apoptosis. PAR glycohydrolase (PARG) has been thought to be the only enzyme responsible for hydrolysis of PAR in vivo. However, we show an alternative PAR-degradation pathway, resulting from action of ADP ribosyl-acceptor hydrolase (ARH) 3. PARG and ARH3, acting in tandem, regulate nuclear and cytoplasmic PAR degradation following hydrogen peroxide (H2O2) exposure. PAR is responsible for induction of parthanatos, a mechanism for caspase-independent cell death, triggered by apoptosis-inducing factor (AIF) release from mitochondria and its translocation to the nucleus, where it initiates DNA cleavage. PARG, by generating protein-free PAR from poly-ADP ribosylated protein, makes PAR translocation possible. A protective effect of ARH3 results from its lowering of PAR levels in the nucleus and the cytoplasm, thereby preventing release of AIF from mitochondria and its accumulation in the nucleus. Thus, PARG release of PAR attached to nuclear proteins, followed by ARH3 cleavage of PAR, is essential in regulating PAR-dependent AIF release from mitochondria and parthanatos.
Collapse
|
39
|
Batra V, Kislay B. Mitigation of gamma-radiation induced abasic sites in genomic DNA by dietary nicotinamide supplementation: metabolic up-regulation of NAD(+) biosynthesis. Mutat Res 2013; 749:28-38. [PMID: 23891603 DOI: 10.1016/j.mrfmmm.2013.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 06/14/2013] [Accepted: 07/09/2013] [Indexed: 01/25/2023]
Abstract
The search for non-toxic radio-protective drugs has yielded many potential agents but most of these compounds have certain amount of toxicity. The objective of the present study was to investigate dietary nicotinamide enrichment dependent adaptive response to potential cytotoxic effect of (60)Co γ-radiation. To elucidate the possible underlying mechanism(s), male Swiss mice were maintained on control diet (CD) and nicotinamide supplemented diet (NSD). After 6 weeks of CD and NSD dietary regimen, we exposed the animals to γ-radiation (2, 4 and 6Gy) and investigated the profile of downstream metabolites and activities of enzymes involved in NAD(+) biosynthesis. Increased activities of nicotinamide phosphoribosyltransferase (NAMPT) and nicotinamide mononucleotide adenylyltransferase (NMNAT) were observed up to 48h post-irradiation in NSD fed irradiated mice. Concomitant with increase in liver NAMPT and NMNAT activities, NAD(+) levels were replenished in NSD fed and irradiated animals. However, NAMPT and NMNAT-mediated NAD(+) biosynthesis and ATP levels were severely compromised in liver of CD fed irradiated mice. Another major finding of these studies revealed that under γ-radiation stress, dietary nicotinamide supplementation might induce higher and long-lasting poly(ADP)-ribose polymerase 1 (PARP1) and poly(ADP-ribose) glycohydrolase (PARG) activities in NSD fed animals compared to CD fed animals. To investigate liver DNA damage, number of apurinic/apyrimidinic sites (AP sites) and level of 8-hydroxy-2'-deoxyguanosine (8-oxo-dG) residues were quantified. A significant increase in liver DNA AP sites and 8-oxo-dG levels with concomitant increase in caspase-3 was observed in CD fed and irradiated animals compared to NSD fed and irradiated mice. In conclusion present studies show that under γ-radiation stress conditions, dietary nicotinamide supplementation restores DNA excision repair activity via prolonged activation of PARP1 and PARG activities. Present results clearly indicated that hepatic NAD(+) replenishment might be a novel and potent approach to reduce radiation injury.
Collapse
Affiliation(s)
- Vipen Batra
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | | |
Collapse
|
40
|
Vilchez Larrea SC, Schlesinger M, Kevorkian ML, Flawiá MM, Alonso GD, Fernández Villamil SH. Host cell poly(ADP-ribose) glycohydrolase is crucial for Trypanosoma cruzi infection cycle. PLoS One 2013; 8:e67356. [PMID: 23776710 PMCID: PMC3680488 DOI: 10.1371/journal.pone.0067356] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 05/16/2013] [Indexed: 12/21/2022] Open
Abstract
Trypanosoma cruzi, etiological agent of Chagas’ disease, has a complex life cycle which involves the invasion of mammalian host cells, differentiation and intracellular replication. Here we report the first insights into the biological role of a poly(ADP-ribose) glycohydrolase in a trypanosomatid (TcPARG). In silico analysis of the TcPARG gene pointed out the conservation of key residues involved in the catalytic process and, by Western blot, we demonstrated that it is expressed in a life stage-dependant manner. Indirect immunofluorescence assays and electron microscopy using an anti-TcPARG antibody showed that this enzyme is localized in the nucleus independently of the presence of DNA damage or cell cycle stage. The addition of poly(ADP-ribose) glycohydrolase inhibitors ADP-HPD (adenosine diphosphate (hydroxymethyl) pyrrolidinediol) or DEA (6,9-diamino-2-ethoxyacridine lactate monohydrate) to the culture media, both at a 1 µM concentration, reduced in vitro epimastigote growth by 35% and 37% respectively, when compared to control cultures. We also showed that ADP-HPD 1 µM can lead to an alteration in the progression of the cell cycle in hydroxyurea synchronized cultures of T. cruzi epimastigotes. Outstandingly, here we demonstrate that the lack of poly(ADP-ribose) glycohydrolase activity in Vero and A549 host cells, achieved by chemical inhibition or iRNA, produces the reduction of the percentage of infected cells as well as the number of amastigotes per cell and trypomastigotes released, leading to a nearly complete abrogation of the infection process. We conclude that both, T. cruzi and the host, poly(ADP-ribose) glycohydrolase activities are important players in the life cycle of Trypanosoma cruzi, emerging as a promising therapeutic target for the treatment of Chagas’ disease.
Collapse
Affiliation(s)
- Salomé C. Vilchez Larrea
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariana Schlesinger
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - María L. Kevorkian
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mirtha M. Flawiá
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Guillermo D. Alonso
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvia H. Fernández Villamil
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
41
|
Shirai H, Poetsch AR, Gunji A, Maeda D, Fujimori H, Fujihara H, Yoshida T, Ogino H, Masutani M. PARG dysfunction enhances DNA double strand break formation in S-phase after alkylation DNA damage and augments different cell death pathways. Cell Death Dis 2013; 4:e656. [PMID: 23744356 PMCID: PMC3698538 DOI: 10.1038/cddis.2013.133] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Poly(ADP-ribose) glycohydrolase (PARG) is the primary enzyme responsible for the degradation of poly(ADP-ribose). PARG dysfunction sensitizes cells to alkylating agents and induces cell death; however, the details of this effect have not been fully elucidated. Here, we investigated the mechanism by which PARG deficiency leads to cell death in different cell types using methylmethanesulfonate (MMS), an alkylating agent, and Parg−/− mouse ES cells and human cancer cell lines. Parg−/− mouse ES cells showed increased levels of γ-H2AX, a marker of DNA double strand breaks (DSBs), accumulation of poly(ADP-ribose), p53 network activation, and S-phase arrest. Early apoptosis was enhanced in Parg−/− mouse ES cells. Parg−/− ES cells predominantly underwent caspase-dependent apoptosis. PARG was then knocked down in a p53-defective cell line, MIAPaCa2 cells, a human pancreatic cancer cell line. MIAPaCa2 cells were sensitized to MMS by PARG knockdown. Enhanced necrotic cell death was induced in MIAPaCa2 cells after augmenting γ-H2AX levels and S-phase arrest. Taken together, these data suggest that DSB repair defect causing S-phase arrest, but p53 status was not important for sensitization to alkylation DNA damage by PARG dysfunction, whereas the cell death pathway is dependent on the cell type. This study demonstrates that functional inhibition of PARG may be useful for sensitizing at least particular cancer cells to alkylating agents.
Collapse
Affiliation(s)
- H Shirai
- Division of Genome Stability Research, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Feng X, Koh DW. Roles of poly(ADP-ribose) glycohydrolase in DNA damage and apoptosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:227-81. [PMID: 23809438 DOI: 10.1016/b978-0-12-407696-9.00005-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Poly(ADP-ribose) glycohydrolase (PARG) is the primary enzyme that catalyzes the hydrolysis of poly(ADP-ribose) (PAR), an essential biopolymer that is synthesized by poly(ADP-ribose) polymerases (PARPs) in the cell. By regulating the hydrolytic arm of poly(ADP-ribosyl)ation, PARG participates in a number of biological processes, including the repair of DNA damage, chromatin dynamics, transcriptional regulation, and cell death. Collectively, the research investigating the roles of PARG in the cell has identified the importance of PARG and its value as a therapeutic target. However, the biological role of PARG remains less understood than the role of PAR synthesis by the PARPs. Further complicating the study of PARG is the existence of multiple PARG isoforms in the cell, the lack of optimal PARG inhibitors, and the lack of viable PARG-null animals. This review will present our current knowledge of PARG, with a focus on its roles in DNA-damage repair and cell death.
Collapse
Affiliation(s)
- Xiaoxing Feng
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Pullman, Washington, USA
| | | |
Collapse
|
43
|
Tucker JA, Bennett N, Brassington C, Durant ST, Hassall G, Holdgate G, McAlister M, Nissink JWM, Truman C, Watson M. Structures of the human poly (ADP-ribose) glycohydrolase catalytic domain confirm catalytic mechanism and explain inhibition by ADP-HPD derivatives. PLoS One 2012; 7:e50889. [PMID: 23251397 PMCID: PMC3519477 DOI: 10.1371/journal.pone.0050889] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/26/2012] [Indexed: 11/18/2022] Open
Abstract
Poly(ADP-ribose) glycohydrolase (PARG) is the only enzyme known to catalyse hydrolysis of the O-glycosidic linkages of ADP-ribose polymers, thereby reversing the effects of poly(ADP-ribose) polymerases. PARG deficiency leads to cell death whilst PARG depletion causes sensitisation to certain DNA damaging agents, implicating PARG as a potential therapeutic target in several disease areas. Efforts to develop small molecule inhibitors of PARG activity have until recently been hampered by a lack of structural information on PARG. We have used a combination of bio-informatic and experimental approaches to engineer a crystallisable, catalytically active fragment of human PARG (hPARG). Here, we present high-resolution structures of the catalytic domain of hPARG in unliganded form and in complex with three inhibitors: ADP-ribose (ADPR), adenosine 5'-diphosphate (hydroxymethyl)pyrrolidinediol (ADP-HPD) and 8-n-octyl-amino-ADP-HPD. Our structures confirm conservation of overall fold amongst mammalian PARG glycohydrolase domains, whilst revealing additional flexible regions in the catalytic site. These new structures rationalise a body of published mutational data and the reported structure-activity relationship for ADP-HPD based PARG inhibitors. In addition, we have developed and used biochemical, isothermal titration calorimetry and surface plasmon resonance assays to characterise the binding of inhibitors to our PARG protein, thus providing a starting point for the design of new inhibitors.
Collapse
Affiliation(s)
- Julie A Tucker
- Innovative Medicines, AstraZeneca UK Ltd, Macclesfield, Cheshire, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
The Sound of Silence: RNAi in Poly (ADP-Ribose) Research. Genes (Basel) 2012; 3:779-805. [PMID: 24705085 PMCID: PMC3899979 DOI: 10.3390/genes3040779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/05/2012] [Accepted: 11/06/2012] [Indexed: 02/07/2023] Open
Abstract
Poly(ADP-ribosyl)-ation is a nonprotein posttranslational modification of proteins and plays an integral part in cell physiology and pathology. The metabolism of poly(ADP-ribose) (PAR) is regulated by its synthesis by poly(ADP-ribose) polymerases (PARPs) and on the catabolic side by poly(ADP-ribose) glycohydrolase (PARG). PARPs convert NAD+ molecules into PAR chains that interact covalently or noncovalently with target proteins and thereby modify their structure and functions. PAR synthesis is activated when PARP1 and PARP2 bind to DNA breaks and these two enzymes account for almost all PAR formation after genotoxic stress. PARG cleaves PAR molecules into free PAR and finally ADP-ribose (ADPR) moieties, both acting as messengers in cellular stress signaling. In this review, we discuss the potential of RNAi to manipulate the levels of PARPs and PARG, and consequently those of PAR and ADPR, and compare the results with those obtained after genetic or chemical disruption.
Collapse
|
45
|
Feng X, Zhou Y, Proctor AM, Hopkins MM, Liu M, Koh DW. Silencing of Apoptosis-Inducing factor and poly(ADP-ribose) glycohydrolase reveals novel roles in breast cancer cell death after chemotherapy. Mol Cancer 2012; 11:48. [PMID: 22839996 PMCID: PMC3494550 DOI: 10.1186/1476-4598-11-48] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/18/2012] [Indexed: 12/28/2022] Open
Abstract
Background Cell death induced by poly(ADP-ribose) (PAR) and mediated by apoptosis-inducing factor (AIF) is well-characterized in models of ischemic tissue injury, but their roles in cancer cell death after chemotherapy are less understood. Methods Here we investigated the roles of PAR and AIF by RNA interference (RNAi) in MDA-MB-231 and MCF-7 breast adenocarcinoma cells after chemotherapy. Differences in effects were statistically tested by analysis-of-variance and unpaired student’s t-test. Results Silencing of AIF by RNAi led to decreased MDA-MB-231 and MCF-7 breast cancer cell death after chemotherapy, which demonstrates a critical role for AIF. RNAi silencing of PAR glycohydrolase (PARG), the primary enzyme that catalyzes the hydrolysis of PAR, led to increased PAR levels but decreased cell death. Further investigation into the possible role of PAR in apoptosis revealed decreased caspase-3/7/8/9 activity in PARG-null cells. Interestingly, the pharmacologic inhibition of caspase activity in PARG-silenced breast cancer cells led to increased cell death after chemotherapy, which indicates that an alternative cell death pathway is activated due to elevated PAR levels and caspase inhibition. AIF silencing in these cells led to profound protection from chemotherapy, which demonstrates that the increased cell death after PARG silencing and caspase inhibition was mediated by AIF. Conclusions The results show a role for AIF in breast cancer cell death after chemotherapy, the ability of PAR to regulate caspase activity, and the ability of AIF to substitute as a primary mediator of breast cancer cell death in the absence of caspases. Thus, the induction of cell death by PAR/AIF may represent a novel strategy to optimize the eradication of breast tumors by activating an alternative cell death pathway.
Collapse
Affiliation(s)
- Xiaoxing Feng
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, P,O, Box 646534, Pullman, WA, 99164-6534, USA
| | | | | | | | | | | |
Collapse
|
46
|
Niere M, Mashimo M, Agledal L, Dölle C, Kasamatsu A, Kato J, Moss J, Ziegler M. ADP-ribosylhydrolase 3 (ARH3), not poly(ADP-ribose) glycohydrolase (PARG) isoforms, is responsible for degradation of mitochondrial matrix-associated poly(ADP-ribose). J Biol Chem 2012; 287:16088-102. [PMID: 22433848 DOI: 10.1074/jbc.m112.349183] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Important cellular processes are regulated by poly(ADP-ribosyl)ation. This protein modification is catalyzed mainly by nuclear poly(ADP-ribose) polymerase (PARP) 1 in response to DNA damage. Cytosolic PARP isoforms have been described, whereas the presence of poly(ADP-ribose) (PAR) metabolism in mitochondria is controversial. PAR is degraded by poly(ADP-ribose) glycohydrolase (PARG). Recently, ADP-ribosylhydrolase 3 (ARH3) was also shown to catalyze PAR-degradation in vitro. PARG is encoded by a single, essential gene. One nuclear and three cytosolic isoforms result from alternative splicing. The presence and origin of a mitochondrial PARG is still unresolved. We establish here the genetic background of a human mitochondrial PARG isoform and investigate the molecular basis for mitochondrial poly(ADP-ribose) degradation. In common with a cytosolic 60-kDa human PARG isoform, the mitochondrial protein did not catalyze PAR degradation because of the absence of exon 5-encoded residues. In mice, we identified a transcript encoding an inactive cytosolic 52-kDa PARG lacking the mitochondrial targeting sequence and a substantial portion of exon 5. Thus, mammalian PARG genes encode isoforms that do not catalyze PAR degradation. On the other hand, embryonic fibroblasts from ARH3(-/-) mice lack most of the mitochondrial PAR degrading activity detected in wild-type cells, demonstrating a potential involvement of ARH3 in PAR metabolism.
Collapse
Affiliation(s)
- Marc Niere
- Department of Molecular Biology, University of Bergen, Postbox 7803, 5020 Bergen, Norway
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Finch KE, Knezevic CE, Nottbohm AC, Partlow KC, Hergenrother PJ. Selective small molecule inhibition of poly(ADP-ribose) glycohydrolase (PARG). ACS Chem Biol 2012; 7:563-70. [PMID: 22220926 DOI: 10.1021/cb200506t] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The poly(ADP-ribose) (PAR) post-translational modification is essential for diverse cellular functions, including regulation of transcription, response to DNA damage, and mitosis. Cellular PAR is predominantly synthesized by the enzyme poly(ADP-ribose) polymerase-1 (PARP-1). PARP-1 is a critical node in the DNA damage response pathway, and multiple potent PARP-1 inhibitors have been described, some of which show considerable promise in the clinic for the treatment of certain cancers. Cellular PAR is efficiently degraded by poly(ADP-ribose) glycohydrolase (PARG), an enzyme for which no potent, readily accessible, and specific inhibitors exist. Herein we report the discovery of small molecules that effectively inhibit PARG in vitro and in cellular lysates. These potent PARG inhibitors can be produced in two chemical steps from commercial starting materials and have complete specificity for PARG over the other known PAR glycohydrolase (ADP-ribosylhydrolase 3, ARH3) and over PARP-1 and thus will be useful tools for studying the biochemistry of PAR signaling.
Collapse
Affiliation(s)
- Kristin E. Finch
- Department of Chemistry, University of Illinois, 600 S. Mathews, Urbana, Illinois 61801, United
States
| | - Claire E. Knezevic
- Department of Chemistry, University of Illinois, 600 S. Mathews, Urbana, Illinois 61801, United
States
| | - Amanda C. Nottbohm
- Department of Chemistry, University of Illinois, 600 S. Mathews, Urbana, Illinois 61801, United
States
| | - Kathryn C. Partlow
- Department of Chemistry, University of Illinois, 600 S. Mathews, Urbana, Illinois 61801, United
States
| | - Paul J. Hergenrother
- Department of Chemistry, University of Illinois, 600 S. Mathews, Urbana, Illinois 61801, United
States
| |
Collapse
|
48
|
Welsby I, Hutin D, Leo O. Complex roles of members of the ADP-ribosyl transferase super family in immune defences: looking beyond PARP1. Biochem Pharmacol 2012; 84:11-20. [PMID: 22402301 DOI: 10.1016/j.bcp.2012.02.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/16/2012] [Accepted: 02/20/2012] [Indexed: 12/25/2022]
Abstract
ADP ribosylation has been recently recognised as an important posttranslational modification regulating numerous cellular processes. This enzymatic activity is shared by two major families of enzymes, the extracellular ADP-ribosyl-transferases, or ecto-ARTS and the poly-ADP-ribosyltranferases, whose denomination derives from the capacity of its founding member, PARP1, to synthesise large linear or branched polymers of ADP-ribose on target proteins. This latter post-translational modification has recently attracted much interest based on its role in the cellular response to genotoxic and oxidative stress. Accordingly, a series of PARP-specific pharmacological inhibitors have demonstrated cell survival and anti-inflammatory properties in vivo, promoting a renewed interest in the potential immunoregulatory role of this gene family. More recently, the role of ADP-ribosylation in regulating several aspects of intracellular signalling and gene transcription has been uncovered, in particular within cells of the immune system, revealing the potential immunomodulatory role of several members of this family in addition to PARP1. We review herein the experimental evidence illustrating the complex role played by this gene family in regulating multiple aspects of the immune response, including cell survival, cytokine gene transcription and antiviral innate defences. In particular, the unexpected potential anti-inflammatory role of members of this family (including in particular PARP5a, 5b and PARP14) will be briefly discussed, raising some concern on the use of pan-specific PARP inhibitors to treat chronic inflammatory diseases.
Collapse
Affiliation(s)
- Iain Welsby
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles, Gosselies, Belgium
| | | | | |
Collapse
|
49
|
Role of poly(ADP-ribose) glycohydrolase in the regulation of cell fate in response to benzo(a)pyrene. Exp Cell Res 2012; 318:682-90. [PMID: 22266578 DOI: 10.1016/j.yexcr.2012.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 01/01/2012] [Accepted: 01/03/2012] [Indexed: 11/20/2022]
Abstract
Poly(ADP-ribosyl)ation is a crucial regulator of cell fate in response to genotoxic stress. Poly(ADP-ribosyl)ation plays important roles in multiple cellular processes, including DNA repair, chromosomal stability, chromatin function, apoptosis, and transcriptional regulation. Poly(ADP-ribose) (PAR) degradation is carried out mainly by poly(ADP-ribose) glycohydrolase (PARG) enzymes. Benzo(a)pyrene (BaP) is a known human carcinogen. Previous studies in our laboratory demonstrated that exposure to BaP caused a concentration-dependent DNA damage in human bronchial epithelial (16HBE) cells. The role of PARG in the regulation of DNA damage induced by BaP is still unclear. To gain insight into the function of PARG and PAR in response to BaP, we used lentiviral gene silencing to generate 16HBE cell lines with stably suppressed PARG, and determined parameters of cell death and cell cycle following BaP exposure. We found that PARG was partially dependent on PAR synthesis, PARG depletion led to PAR accumulation. BaP-induced cell death was regulated by PARG, the absence of which was beneficial for undamaged cells. Our results further suggested that PARG probably has influence on ATM/p53 pathway and metabolic activation of BaP. Experimental evidences provided from this study suggest significant preventive properties of PAR accumulation in the toxicity caused by BaP.
Collapse
|
50
|
Effects of TSG on Apoptosis of HUVECs and The Expression of Caspase-3 and PARP Induced by H 2O 2*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2011.00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|