1
|
Saha Roy D, Gupta A, Vishvakarma V, Krupa P, Li MS, Maiti S. Serotonin Promotes Vesicular Association and Fusion by Modifying Lipid Bilayers. J Phys Chem B 2024; 128:4975-4985. [PMID: 38743687 DOI: 10.1021/acs.jpcb.4c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The primary event in chemical neurotransmission involves the fusion of a membrane-limited vesicle at the plasma membrane and the subsequent release of its chemical neurotransmitter cargo. The cargo itself is not known to have any effect on the fusion event. However, amphiphilic monoamine neurotransmitters (e.g., serotonin and dopamine) are known to strongly interact with lipid bilayers and to affect their mechanical properties, which can in principle impact membrane-mediated processes. Here, we probe whether serotonin can enhance the association and fusion of artificial lipid vesicles in vitro. We employ fluorescence correlation spectroscopy and total internal reflection fluorescence microscopy to measure the attachment and fusion of vesicles whose lipid compositions mimic the major lipid components of synaptic vesicles. We find that the association between vesicles and supported lipid bilayers is strongly enhanced in a serotonin dose-dependent manner, and this drives an increase in the rate of spontaneous fusion. Molecular dynamics simulations and fluorescence spectroscopy data show that serotonin insertion increases the water content of the hydrophobic part of the bilayer. This suggests that the enhanced membrane association is likely driven by an energetically favorable drying transition. Other monoamines, such as dopamine and norepinephrine, but not other related species, such as tryptophan, show similar effects on membrane association. Our results reveal a lipid bilayer-mediated mechanism by which monoamines can themselves modulate vesicle fusion, potentially adding to the control toolbox for the tightly regulated process of neurotransmission in vivo.
Collapse
Affiliation(s)
- Debsankar Saha Roy
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Ankur Gupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Vicky Vishvakarma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Pawel Krupa
- Institute of Physics, Polish Academy of Sciences, Warsaw 02-668, Poland
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Warsaw 02-668, Poland
- Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, 729110 Ho Chi Minh City, Vietnam
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
2
|
Fabiano M, Oikawa N, Kerksiek A, Furukawa JI, Yagi H, Kato K, Schweizer U, Annaert W, Kang J, Shen J, Lütjohann D, Walter J. Presenilin Deficiency Results in Cellular Cholesterol Accumulation by Impairment of Protein Glycosylation and NPC1 Function. Int J Mol Sci 2024; 25:5417. [PMID: 38791456 PMCID: PMC11121565 DOI: 10.3390/ijms25105417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Presenilin proteins (PS1 and PS2) represent the catalytic subunit of γ-secretase and play a critical role in the generation of the amyloid β (Aβ) peptide and the pathogenesis of Alzheimer disease (AD). However, PS proteins also exert multiple functions beyond Aβ generation. In this study, we examine the individual roles of PS1 and PS2 in cellular cholesterol metabolism. Deletion of PS1 or PS2 in mouse models led to cholesterol accumulation in cerebral neurons. Cholesterol accumulation was also observed in the lysosomes of embryonic fibroblasts from Psen1-knockout (PS1-KO) and Psen2-KO (PS2-KO) mice and was associated with decreased expression of the Niemann-Pick type C1 (NPC1) protein involved in intracellular cholesterol transport in late endosomal/lysosomal compartments. Mass spectrometry and complementary biochemical analyses also revealed abnormal N-glycosylation of NPC1 and several other membrane proteins in PS1-KO and PS2-KO cells. Interestingly, pharmacological inhibition of N-glycosylation resulted in intracellular cholesterol accumulation prominently in lysosomes and decreased NPC1, thereby resembling the changes in PS1-KO and PS2-KO cells. In turn, treatment of PS1-KO and PS2-KO mouse embryonic fibroblasts (MEFs) with the chaperone inducer arimoclomol partially normalized NPC1 expression and rescued lysosomal cholesterol accumulation. Additionally, the intracellular cholesterol accumulation in PS1-KO and PS2-KO MEFs was prevented by overexpression of NPC1. Collectively, these data indicate that a loss of PS function results in impaired protein N-glycosylation, which eventually causes decreased expression of NPC1 and intracellular cholesterol accumulation. This mechanism could contribute to the neurodegeneration observed in PS KO mice and potentially to the pathogenesis of AD.
Collapse
Affiliation(s)
- Marietta Fabiano
- Department of Neurology, Universitätsklinikum Bonn, 53127 Bonn, Germany
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Naoto Oikawa
- Department of Neurology, Universitätsklinikum Bonn, 53127 Bonn, Germany
| | - Anja Kerksiek
- Institute of Clinical Chemistry and Clinical Pharmacology, Universitätsklinikum Bonn, 53127 Bonn, Germany
| | - Jun-ichi Furukawa
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
- Division of Glyco-Systems Biology, Institute for Glyco-Core Research, Tokai National Higher Education and Research System, Nagoya 466-8550, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium
- Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Jongkyun Kang
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jie Shen
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, Universitätsklinikum Bonn, 53127 Bonn, Germany
| | - Jochen Walter
- Department of Neurology, Universitätsklinikum Bonn, 53127 Bonn, Germany
| |
Collapse
|
3
|
Valenza M, Birolini G, Cattaneo E. The translational potential of cholesterol-based therapies for neurological disease. Nat Rev Neurol 2023; 19:583-598. [PMID: 37644213 DOI: 10.1038/s41582-023-00864-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
Cholesterol is an important metabolite and membrane component and is enriched in the brain owing to its role in neuronal maturation and function. In the adult brain, cholesterol is produced locally, predominantly by astrocytes. When cholesterol has been used, recycled and catabolized, the derivatives are excreted across the blood-brain barrier. Abnormalities in any of these steps can lead to neurological dysfunction. Here, we examine how precise interactions between cholesterol production and its use and catabolism in neurons ensures cholesterol homeostasis to support brain function. As an example of a neurological disease associated with cholesterol dyshomeostasis, we summarize evidence from animal models of Huntington disease (HD), which demonstrate a marked reduction in cholesterol biosynthesis with clinically relevant consequences for synaptic activity and cognition. In addition, we examine the relationship between cholesterol loss in the brain and cognitive decline in ageing. We then present emerging therapeutic strategies to restore cholesterol homeostasis, focusing on evidence from HD mouse models.
Collapse
Affiliation(s)
- Marta Valenza
- Department of Biosciences, University of Milan, Milan, Italy.
- Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy.
| | - Giulia Birolini
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Elena Cattaneo
- Department of Biosciences, University of Milan, Milan, Italy.
- Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy.
| |
Collapse
|
4
|
Min JO, Ho HA, Lee W, Jung BC, Park SJ, Kim S, Lee SJ. Statins suppress cell-to-cell propagation of α-synuclein by lowering cholesterol. Cell Death Dis 2023; 14:474. [PMID: 37500624 PMCID: PMC10374525 DOI: 10.1038/s41419-023-05977-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
Cell-to-cell propagation of protein aggregates has been implicated in the progression of neurodegenerative diseases. However, the underlying mechanism and modulators of this process are not fully understood. Here, we screened a small-molecule library in a search for agents that suppress the propagation of α-synuclein and mutant huntingtin (mHtt). These screens yielded several molecules, some of which were effective against both α-synuclein and mHtt. Among these molecules, we focused on simvastatin and pravastatin. Simvastatin administration in a transgenic model of synucleinopathy effectively ameliorated behavioral deficits and α-synuclein accumulation, whereas pravastatin had no effect. Because only simvastatin enters the brain effectively, these results suggest that inhibition of brain cholesterol synthesis is important in simvastatin effects. In cultured cells, accumulation of intracellular cholesterol, induced by genetic ablation of the NPC1 gene or by pharmacological treatment with U18666A, increased α-synuclein aggregation and secretion. In contrast, lowering cholesterol using methyl-β-cyclodextrin or statins reversed α-synuclein aggregation and secretion in NPC1-knockout cells. Consistent with these observations, feeding a high-fat diet aggravated α-synuclein pathology and behavioral deficits in the preformed fibril-injected mouse model, an effect that was also reversed by simvastatin administration. These results suggest that statins suppress propagation of protein aggregates by lowering cholesterol in the brain.
Collapse
Affiliation(s)
- Joo-Ok Min
- Department of Biomedical Sciences, Neuroscience Research Institute, Convergence Research Center for Dementia, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hoang-Anh Ho
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Wonjae Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, Convergence Research Center for Dementia, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Neuramedy Co. Ltd, Seoul, Republic of Korea
| | - Byung Chul Jung
- Department of Biomedical Sciences, Neuroscience Research Institute, Convergence Research Center for Dementia, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Sung Jun Park
- Department of Biomedical Sciences, Neuroscience Research Institute, Convergence Research Center for Dementia, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | | | - Seung-Jae Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, Convergence Research Center for Dementia, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Neuramedy Co. Ltd, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Chen RB, Wang QY, Wang YY, Wang YD, Liu JH, Liao ZZ, Xiao XH. Feeding-induced hepatokines and crosstalk with multi-organ: A novel therapeutic target for Type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1094458. [PMID: 36936164 PMCID: PMC10020511 DOI: 10.3389/fendo.2023.1094458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Hyperglycemia, which can be caused by either an insulin deficit and/or insulin resistance, is the main symptom of Type 2 diabetes, a significant endocrine metabolic illness. Conventional medications, including insulin and oral antidiabetic medicines, can alleviate the signs of diabetes but cannot restore insulin release in a physiologically normal amount. The liver detects and reacts to shifts in the nutritional condition that occur under a wide variety of metabolic situations, making it an essential organ for maintaining energy homeostasis. It also performs a crucial function in glucolipid metabolism through the secretion of hepatokines. Emerging research shows that feeding induces hepatokines release, which regulates glucose and lipid metabolism. Notably, these feeding-induced hepatokines act on multiple organs to regulate glucolipotoxicity and thus influence the development of T2DM. In this review, we focus on describing how feeding-induced cross-talk between hepatokines, including Adropin, Manf, Leap2 and Pcsk9, and metabolic organs (e.g.brain, heart, pancreas, and adipose tissue) affects metabolic disorders, thus revealing a novel approach for both controlling and managing of Type 2 diabetes as a promising medication.
Collapse
Affiliation(s)
- Rong-Bin Chen
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qi-Yu Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuan-Yuan Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ya-Di Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jiang-Hua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhe-Zhen Liao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xin-Hua Xiao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
6
|
Galli A, Arunagiri A, Dule N, Castagna M, Marciani P, Perego C. Cholesterol Redistribution in Pancreatic β-Cells: A Flexible Path to Regulate Insulin Secretion. Biomolecules 2023; 13:224. [PMID: 36830593 PMCID: PMC9953638 DOI: 10.3390/biom13020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Pancreatic β-cells, by secreting insulin, play a key role in the control of glucose homeostasis, and their dysfunction is the basis of diabetes development. The metabolic milieu created by high blood glucose and lipids is known to play a role in this process. In the last decades, cholesterol has attracted significant attention, not only because it critically controls β-cell function but also because it is the target of lipid-lowering therapies proposed for preventing the cardiovascular complications in diabetes. Despite the remarkable progress, understanding the molecular mechanisms responsible for cholesterol-mediated β-cell function remains an open and attractive area of investigation. Studies indicate that β-cells not only regulate the total cholesterol level but also its redistribution within organelles, a process mediated by vesicular and non-vesicular transport. The aim of this review is to summarize the most current view of how cholesterol homeostasis is maintained in pancreatic β-cells and to provide new insights on the mechanisms by which cholesterol is dynamically distributed among organelles to preserve their functionality. While cholesterol may affect virtually any activity of the β-cell, the intent of this review is to focus on early steps of insulin synthesis and secretion, an area still largely unexplored.
Collapse
Affiliation(s)
- Alessandra Galli
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MA 48106, USA
| | - Nevia Dule
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| | - Michela Castagna
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| | - Paola Marciani
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| | - Carla Perego
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| |
Collapse
|
7
|
Rosenhouse-Dantsker A, Gazgalis D, Logothetis DE. PI(4,5)P 2 and Cholesterol: Synthesis, Regulation, and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:3-59. [PMID: 36988876 DOI: 10.1007/978-3-031-21547-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is the most abundant membrane phosphoinositide and cholesterol is an essential component of the plasma membrane (PM). Both lipids play key roles in a variety of cellular functions including as signaling molecules and major regulators of protein function. This chapter provides an overview of these two important lipids. Starting from a brief description of their structure, synthesis, and regulation, the chapter continues to describe the primary functions and signaling processes in which PI(4,5)P2 and cholesterol are involved. While PI(4,5)P2 and cholesterol can act independently, they often act in concert or affect each other's impact. The chapters in this volume on "Cholesterol and PI(4,5)P2 in Vital Biological Functions: From Coexistence to Crosstalk" focus on the emerging relationship between cholesterol and PI(4,5)P2 in a variety of biological systems and processes. In this chapter, the next section provides examples from the ion channel field demonstrating that PI(4,5)P2 and cholesterol can act via common mechanisms. The chapter ends with a discussion of future directions.
Collapse
Affiliation(s)
| | - Dimitris Gazgalis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
8
|
Geda O, Tábi T, Lakatos PP, Szökő É. Differential Ganglioside and Cholesterol Depletion by Various Cyclodextrin Derivatives and Their Effect on Synaptosomal Glutamate Release. Int J Mol Sci 2022; 23:ijms23169460. [PMID: 36012724 PMCID: PMC9409351 DOI: 10.3390/ijms23169460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Gangliosides are glycosphingolipids of the plasma membrane and are highly enriched in the nervous system where they play a vital role in normal cell functions. Furthermore, several studies suggest their potential involvement in the pathogenesis of neurological conditions. Since cyclodextrins (CDs) can form inclusion complexes with various lipids, methylated beta-CDs are widely used in biomedical research to extract cholesterol from the membrane and study its cellular role. Despite CDs being known to interact with other membrane lipid components, their effect on gangliosides is poorly characterized. The aim of this research was to investigate the effect of dimethyl-beta-cyclodextrin (DIMEB), hydroxypropyl-beta-cyclodextrin (HPBCD), randomly methylated-alpha-cyclodextrin (RAMEA), and hydroxypropyl-alpha-cyclodextrin (HPACD) on ganglioside and cholesterol levels in rat brain synaptosomes. Their effect on membrane integrity and viability was also assessed. We examined the role of lipid depletion by CDs on the release of the major excitatory neurotransmitter, glutamate. Selective concentration range for cholesterol depletion was only found with HPBCD, but not with DIMEB. Selective depletion of gangliosides was achieved by both RAMEA and HPACD. The inhibition of stimulated glutamate release upon ganglioside depletion was found, suggesting their potential role in neurotransmission. Our study highlights the importance of the characterization of the lipid depleting capability of different CDs.
Collapse
|
9
|
Effects of Cholesterol on Lipid Vesicle Fusion Mediated by Infectious Salmon Anaemia Virus Fusion Peptides. Colloids Surf B Biointerfaces 2022; 217:112684. [DOI: 10.1016/j.colsurfb.2022.112684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022]
|
10
|
Rituper B, Guček A, Lisjak M, Gorska U, Šakanović A, Bobnar ST, Lasič E, Božić M, Abbineni PS, Jorgačevski J, Kreft M, Verkhratsky A, Platt FM, Anderluh G, Stenovec M, Božič B, Coorssen JR, Zorec R. Vesicle cholesterol controls exocytotic fusion pore. Cell Calcium 2021; 101:102503. [PMID: 34844123 DOI: 10.1016/j.ceca.2021.102503] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022]
Abstract
In some lysosomal storage diseases (LSD) cholesterol accumulates in vesicles. Whether increased vesicle cholesterol affects vesicle fusion with the plasmalemma, where the fusion pore, a channel between the vesicle lumen and the extracellular space, is formed, is unknown. Super-resolution microscopy revealed that after stimulation of exocytosis, pituitary lactotroph vesicles discharge cholesterol which transfers to the plasmalemma. Cholesterol depletion in lactotrophs and astrocytes, both exhibiting Ca2+-dependent exocytosis regulated by distinct Ca2+sources, evokes vesicle secretion. Although this treatment enhanced cytosolic levels of Ca2+ in lactotrophs but decreased it in astrocytes, this indicates that cholesterol may well directly define the fusion pore. In an attempt to explain this mechanism, a new model of cholesterol-dependent fusion pore regulation is proposed. High-resolution membrane capacitance measurements, used to monitor fusion pore conductance, a parameter related to fusion pore diameter, confirm that at resting conditions reducing cholesterol increases, while enrichment with cholesterol decreases the conductance of the fusion pore. In resting fibroblasts, lacking the Npc1 protein, a cellular model of LSD in which cholesterol accumulates in vesicles, the fusion pore conductance is smaller than in controls, showing that vesicle cholesterol controls fusion pore and is relevant for pathophysiology of LSD.
Collapse
Affiliation(s)
- Boštjan Rituper
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Alenka Guček
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Marjeta Lisjak
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Urszula Gorska
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Aleksandra Šakanović
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Saša Trkov Bobnar
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia; Celica Biomedical, 1000, Ljubljana, Slovenia
| | - Eva Lasič
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Mićo Božić
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Prabhodh S Abbineni
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109-5632, United States of America
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia; Celica Biomedical, 1000, Ljubljana, Slovenia
| | - Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia; Celica Biomedical, 1000, Ljubljana, Slovenia
| | - Alexei Verkhratsky
- Celica Biomedical, 1000, Ljubljana, Slovenia; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, United Kingdom; Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, United Kingdom
| | - Gregor Anderluh
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Matjaž Stenovec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia; Celica Biomedical, 1000, Ljubljana, Slovenia
| | - Bojan Božič
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Jens R Coorssen
- Department of Health Sciences, Faculty of Applied Health Sciences and Department of Biological Sciences, Faculty of Mathematics & Science, Brock University, St Catherine's, Ontario, Canada
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia; Celica Biomedical, 1000, Ljubljana, Slovenia.
| |
Collapse
|
11
|
Mass Spectrometric Imaging of Plasma Membrane Lipid Alteration Correlated with Amperometrically Measured Activity-Dependent Plasticity in Exocytosis. Int J Mol Sci 2020; 21:ijms21249519. [PMID: 33327662 PMCID: PMC7765135 DOI: 10.3390/ijms21249519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 11/28/2022] Open
Abstract
The mechanism of synaptic plasticity and its link to memory formation are of interest, yet relatively obscure, especially the initial chemical change in the cell membrane following transmitter release. To understand the chemical mechanism of plasticity, we studied how repetitive stimuli regulate certain membrane lipid species to enhance exocytotic release using mass spectrometric imaging. We found that increasing high-curvature lipid species and decreasing low-curvature lipids in the cell membrane favor the formation of a longer-lasting exocytotic fusion pore, resulting in higher release fraction for individual exocytotic events. The lipid changes observed following repetitive stimuli are similar to those after exposure to the cognitive enhancing drug, methylphenidate, examined in a previous study, and offer an interesting point of view regarding the link between plasticity and memory and cognition.
Collapse
|
12
|
Chowdhury HH, Zorec R. Exocytotic fusion pore under stress. Cell Stress 2020; 4:218-226. [PMID: 32908961 PMCID: PMC7453636 DOI: 10.15698/cst2020.09.230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/19/2020] [Accepted: 07/29/2020] [Indexed: 11/13/2022] Open
Abstract
Exocytosis is a universal process of eukaryotic cells, consisting of fusion between the vesicle and the plasma membranes, leading to the formation of a fusion pore, a channel through which vesicle cargo exits into the extracellular space. In 1986, Rand and Parsegian proposed several stages to explain the nature of membrane fusion. Following stimulation, it starts with focused stress destabilization of membranes in contact, followed by the coalescence of two membrane surfaces. In the next fraction of a millisecond, restabilization of fused membranes is considered to occur to maintain the cell's integrity. This view predicted that once a fusion pore is formed, it must widen abruptly, irreversibly and fully, whereby the vesicle membrane completely integrates with and collapses into the plasma membrane (full fusion exocytosis). However, recent experimental evidence has revealed that once the fusion pore opens, it may also reversibly close (transient or kiss-and-run exocytosis). Here, we present a historical perspective on understanding the mechanisms that initiate the membrane merger and fusion pore formation. Next, post-fusion mechanisms that regulate fusion pore stability are considered, reflecting the state in which the forces of widening and constriction of fusion pores are balanced. Although the mechanisms generating these forces are unclear, they may involve lipids and proteins, including SNAREs, which play a role not only in the pre-fusion but also post-fusion stages of exocytosis. How molecules stabilize the fusion pore in the open state is key for a better understanding of fusion pore physiology in health and disease.
Collapse
Affiliation(s)
- Helena Haque Chowdhury
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia
- Laboratory of Neuroendocrinology – Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Medical Faculty, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia
- Laboratory of Neuroendocrinology – Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Medical Faculty, 1000 Ljubljana, Slovenia
| |
Collapse
|
13
|
Chernonosova VS, Laktionov PP, Murashov IS, Karpenko AA, Laktionov PP. Comparative gene expression profiling of human primary endotheliocytes cultivated on polyurethane-based electrospun 3D matrices and natural decellularized vein. ACTA ACUST UNITED AC 2020; 15:045012. [PMID: 32143210 DOI: 10.1088/1748-605x/ab7d84] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The formation of a continuous layer of normally functioning endothelium on the lumen surface of small diameter vascular grafts is considered a prerequisite of their long-term functioning without stenosis. Thus, materials supporting not only endothelialization but also the normal functioning state of endotheliocytes are demanded. In this study, we have evaluated the functional state of human umbilical vein endothelial cells (HUVEC) cultivated on the surface of autologous decellularized human umbilical vein and electrospun polyurethane-based matrices by next generation sequencing gene expression profiling. Three types of matrices produced by electrospinning from hexafluoroisopropanol solutions of pure TECOFLEX™ EG-80A polyurethane, polyurethane with gelatin and polyurethane with gelatin and bivalirudin were studied. Cells cultivated on different supports were subjected to RNA-Seq profiling on an Illumina HiSeq platform. The data demonstrated that the structure of 3D matrices and the chemical composition of the fibers have a significant effect on the gene expression profiles of HUVEC. The results suggest that protein-enriched polyurethane-based 3D matrices represent a convenient surface for obtaining a normally functioning endothelial layer.
Collapse
Affiliation(s)
- Vera S Chernonosova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), pr. Lavrentieva 8, Novosibirsk 630090, Russia. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, ul. Rechkunovskaya 15, Novosibirsk 630055, Russia
| | | | | | | | | |
Collapse
|
14
|
Furber KL, Backlund PS, Yergey AL, Coorssen JR. Unbiased Thiol-Labeling and Top-Down Proteomic Analyses Implicate Multiple Proteins in the Late Steps of Regulated Secretion. Proteomes 2019; 7:proteomes7040034. [PMID: 31569819 PMCID: PMC6958363 DOI: 10.3390/proteomes7040034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
Regulated exocytosis enables temporal and spatial control over the secretion of biologically active compounds; however, the mechanism by which Ca2+ modulates different stages of exocytosis is still poorly understood. For an unbiased, top-down proteomic approach, select thiol- reactive reagents were used to investigate this process in release-ready native secretory vesicles. We previously characterized a biphasic effect of these reagents on Ca2+-triggered exocytosis: low doses potentiated Ca2+ sensitivity, whereas high doses inhibited Ca2+ sensitivity and extent of vesicle fusion. Capitalizing on this novel potentiating effect, we have now identified fluorescent thiol- reactive reagents producing the same effects: Lucifer yellow iodoacetamide, monobromobimane, and dibromobimane. Top-down proteomic analyses of fluorescently labeled proteins from total and cholesterol-enriched vesicle membrane fractions using two-dimensional gel electrophoresis coupled with mass spectrometry identified several candidate targets, some of which have been previously linked to the late steps of regulated exocytosis and some of which are novel. Initial validation studies indicate that Rab proteins are involved in the modulation of Ca2+ sensitivity, and thus the efficiency of membrane fusion, which may, in part, be linked to their previously identified upstream roles in vesicle docking.
Collapse
Affiliation(s)
- Kendra L Furber
- Northern Medical Program, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada.
| | - Peter S Backlund
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Alfred L Yergey
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jens R Coorssen
- Department of Health Sciences, Faculty of Applied Health Sciences and Department of Biological Sciences, Faculty of Mathematics & Science, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
15
|
Perego C, Da Dalt L, Pirillo A, Galli A, Catapano AL, Norata GD. Cholesterol metabolism, pancreatic β-cell function and diabetes. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2149-2156. [DOI: 10.1016/j.bbadis.2019.04.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/11/2022]
|
16
|
Arachidonic acid and lysophosphatidylcholine inhibit multiple late steps of regulated exocytosis. Biochem Biophys Res Commun 2019; 515:261-267. [PMID: 31126681 DOI: 10.1016/j.bbrc.2019.05.106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 05/15/2019] [Indexed: 02/05/2023]
Abstract
The canonical Phospholipase A2 (PLA2) metabolites lysophosphatidylcholine (LPC) and arachidonic acid (ARA) affect regulated exocytosis in a wide variety of cells and are proposed to directly influence membrane merger owing to their respective spontaneous curvatures. According to the Stalk-pore hypothesis, negative curvature ARA inhibits and promotes bilayer merger upon introduction into the distal or proximal monolayers, respectively; in contrast, with positive curvature, LPC has the opposite effects. Using fully primed, release-ready native cortical secretory vesicles (CV), well-established fusion assays and standardized lipid analyses, we show that exogenous ARA and LPC, as well as their non-metabolizable analogous, ETYA and ET-18-OCH3, inhibit the docking/priming and membrane merger steps, respectively, of regulated exocytosis.
Collapse
|
17
|
Ren L, Dowlatshahi Pour M, Malmberg P, Ewing AG. Altered Lipid Composition of Secretory Cells Following Exposure to Zinc Can Be Correlated to Changes in Exocytosis. Chemistry 2019; 25:5406-5411. [PMID: 30762272 DOI: 10.1002/chem.201900010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Indexed: 12/20/2022]
Abstract
A micromolar concentration of zinc has been shown to significantly change the dynamics of exocytosis as well as the vesicle contents in a model cell line, providing direct evidence that zinc regulates neurotransmitter release. To provide insight into how zinc modulates these exocytotic processes, neurotransmitter release and vesicle content were compared with single cell amperometry and intracellular impact vesicle cytometry with a range of zinc concentrations. Additionally, time-of-flight secondary ion mass spectrometry (ToF-SIMS) images of lipid distributions in the cell membrane after zinc treatment correlate to changes in exocytosis. By combining electrochemical techniques and mass spectrometry imaging, we proposed a mechanism by which zinc changes the fusion pore and the rate of neurotransmitter release by changing lipid distributions and results in the modulation of synaptic strength and plasticity.
Collapse
Affiliation(s)
- Lin Ren
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| | - Masoumeh Dowlatshahi Pour
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
- Chemical Imaging Infrastructure, CII, University of Gothenburg and Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| | - Per Malmberg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
- Chemical Imaging Infrastructure, CII, University of Gothenburg and Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| | - Andrew G Ewing
- Chemical Imaging Infrastructure, CII, University of Gothenburg and Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296, Gothenburg, Sweden
| |
Collapse
|
18
|
Abbineni PS, Coorssen JR. Sphingolipids modulate docking, Ca 2+ sensitivity and membrane fusion of native cortical vesicles. Int J Biochem Cell Biol 2018; 104:43-54. [PMID: 30195064 DOI: 10.1016/j.biocel.2018.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/31/2018] [Accepted: 09/01/2018] [Indexed: 12/16/2022]
Abstract
Docking, priming, and membrane fusion of secretory vesicles (i.e. regulated exocytosis) requires lipids and proteins. Sphingolipids, in particular, sphingosine and sphingosine-1-phosphate, have been implicated in the modulation of exocytosis. However, the specific exocytotic steps that sphingolipids modulate and the enzymes that regulate sphingolipid concentrations on native secretory vesicle membranes remain unknown. Here we use tightly coupled functional and molecular analyses of fusion-ready cell surface complexes and cortical vesicles isolated from oocytes to assess the role of sphingolipids in the late, Ca2+-triggered steps of exocytosis. The molecular changes resulting from treatments with sphingolipid modifying compounds coupled with immunoblotting analysis revealed the presence of sphingosine kinase on native vesicles; the presence of a sphingosine-1-phosphate phosphatase is also indicated. Changes in sphingolipid concentrations on vesicles altered their docking/priming, Ca2+-sensitivity, and ability to fuse, indicating that sphingolipid concentrations are tightly regulated and maintained at optimal levels and ratios to ensure efficient exocytosis.
Collapse
Affiliation(s)
- Prabhodh S Abbineni
- Department of Molecular Physiology, and the WSU Molecular Medicine Research Group, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Jens R Coorssen
- Department of Health Sciences, Faculty of Applied Health Sciences, Department of Biology, Faculty of Mathematics and Science, Brock University, St. Catharines, Ontario, Canada.
| |
Collapse
|
19
|
Abbineni PS, Coorssen JR. Application of High-Throughput Assays to Examine Phospho-Modulation of the Late Steps of Regulated Exocytosis. High Throughput 2017; 6:ht6040017. [PMID: 29479054 PMCID: PMC5748596 DOI: 10.3390/ht6040017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 01/19/2023] Open
Abstract
Abstract: Regulated exocytosis enables a range of physiological functions including neurotransmission, and the late steps (i.e., docking, priming and Ca2+-triggered membrane fusion) are modulated by a highly conserved set of proteins and lipids. Many of the molecular components and biochemical interactions required have been identified; the precise mechanistic steps they modulate and the biochemical interactions that need to occur across steps are still the subject of intense investigation. Particularly, although the involvement of phosphorylation in modulating exocytosis has been intensively investigated over the past three decades, it is unclear which phosphorylation events are a conserved part of the fundamental fusion mechanism and/or serve as part of the physiological fusion machine (e.g., to modulate Ca2+ sensitivity). Here, the homotypic fusion of cortical vesicles was monitored by utilizing new high-throughput, cost-effective assays to assess the influence of 17 small molecule phospho-modulators on docking/priming, Ca2+ sensitivity and membrane fusion. Specific phosphatases and casein kinase 2 are implicated in modulating the Ca2+ sensitivity of fusion, whereas sphingosine kinase is implicated in modulating the ability of vesicles to fuse. These results indicate the presence of multiple kinases and phosphatases on the vesicles and critical phosphorylation sites on vesicle membrane proteins and lipids that directly influence late steps of regulated exocytosis.
Collapse
Affiliation(s)
- Prabhodh S Abbineni
- Department of Molecular Physiology, and the WSU Molecular Medicine Research Group, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia.
| | - Jens R Coorssen
- Faculty of Applied Health Sciences and Faculty of Mathematics and Science, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
20
|
Dorninger F, Forss-Petter S, Berger J. From peroxisomal disorders to common neurodegenerative diseases - the role of ether phospholipids in the nervous system. FEBS Lett 2017; 591:2761-2788. [PMID: 28796901 DOI: 10.1002/1873-3468.12788] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/26/2017] [Accepted: 08/07/2017] [Indexed: 01/01/2023]
Abstract
The emerging diverse roles of ether (phospho)lipids in nervous system development and function in health and disease are currently attracting growing interest. Plasmalogens, a subgroup of ether lipids, are important membrane components involved in vesicle fusion and membrane raft composition. They store polyunsaturated fatty acids and may serve as antioxidants. Ether lipid metabolites act as precursors for the formation of glycosyl-phosphatidyl-inositol anchors; others, like platelet-activating factor, are implicated in signaling functions. Consolidating the available information, we attempt to provide molecular explanations for the dramatic neurological phenotype in ether lipid-deficient human patients and mice by linking individual functional properties of ether lipids with pathological features. Furthermore, recent publications have identified altered ether lipid levels in the context of many acquired neurological disorders including Alzheimer's disease (AD) and autism. Finally, current efforts to restore ether lipids in peroxisomal disorders as well as AD are critically reviewed.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Austria
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Austria
| |
Collapse
|
21
|
Abstract
Regulated exocytosis can be split into a sequence of steps ending with the formation and the dilation of a fusion pore, a neck-like connection between the vesicle and the plasma membrane. Each of these steps is precisely controlled to achieve the optimal spatial and temporal profile of the release of signalling molecules. At the level of the fusion pore, tuning of the exocytosis can be achieved by preventing its formation, by stabilizing the unproductive narrow fusion pore, by altering the speed of fusion pore expansion and by completely closing the fusion pore. The molecular structure and dynamics of fusion pores have become a major focus of cell research, especially as a promising target for therapeutic strategies. Electrophysiological, optical and electrochemical methods have been used extensively to illuminate how cells regulate secretion at the level of a single fusion pore. Here, we describe recent advances in the structure and mechanisms of the initial fusion pore formation and the progress in therapeutic strategies with the focus on exocytosis.
Collapse
|
22
|
Rabenstein M, Peter F, Joost S, Trilck M, Rolfs A, Frech MJ. Decreased calcium flux in Niemann-Pick type C1 patient-specific iPSC-derived neurons due to higher amount of calcium-impermeable AMPA receptors. Mol Cell Neurosci 2017; 83:27-36. [PMID: 28666962 DOI: 10.1016/j.mcn.2017.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/08/2017] [Accepted: 06/25/2017] [Indexed: 01/31/2023] Open
Abstract
Niemann-Pick disease type C1 (NPC1) is a rare progressive neurodegenerative disorder caused by mutations in the NPC1 gene, resulting mainly in the accumulation of cholesterol and the ganglioside GM2. Recently, we described accumulations of these lipids in neuronal differentiated cells derived from NPC1 patient-specific induced pluripotent stem cells (iPSCs). As these lipids are essential for proper cell membrane composition, we were interested in the expression and function of voltage-gated ion channels and excitatory AMPA receptors (AMPARs) in neurons derived from three patient-specific iPSC lines. By means of patch clamp recordings and microfluorimetric measurements of calcium (Ca2+), we examined the expression of voltage-gated ion channels and AMPARs. Cells of the three used cell lines carrying the c.1836A>C/c.1628delC, the c.1180T>C or the c.3182T>C mutation demonstrated a significantly reduced AMPA-induced Ca2+-influx, suggesting an altered expression profile of these receptors. RT-qPCR revealed a significant upregulation of mRNA for the AMPA receptor subunits GluA1 and GluA2 and western blot analysis showed increased protein level of GluA2. Thus, we conclude that the observed reduced Ca2+-influx is based on an increase of GluA2 containing Ca2+-impermeable AMPARs. An attenuated function of GluRs in neurons potentially contributes to the progressive neurodegeneration observed in NPC1 and might represent an objective in regard of the development of new therapeutic approaches in NPC1.
Collapse
Affiliation(s)
- Michael Rabenstein
- Albrecht-Kossel-Institute for Neuroregeneration (AKos), University Medicine Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany.
| | - Franziska Peter
- Albrecht-Kossel-Institute for Neuroregeneration (AKos), University Medicine Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany.
| | - Sarah Joost
- Albrecht-Kossel-Institute for Neuroregeneration (AKos), University Medicine Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany.
| | - Michaela Trilck
- Albrecht-Kossel-Institute for Neuroregeneration (AKos), University Medicine Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany.
| | - Arndt Rolfs
- Albrecht-Kossel-Institute for Neuroregeneration (AKos), University Medicine Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany.
| | - Moritz J Frech
- Albrecht-Kossel-Institute for Neuroregeneration (AKos), University Medicine Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany.
| |
Collapse
|
23
|
Dabral D, Coorssen JR. Phospholipase A 2: Potential roles in native membrane fusion. Int J Biochem Cell Biol 2017; 85:1-5. [PMID: 28131878 DOI: 10.1016/j.biocel.2017.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/29/2016] [Accepted: 01/22/2017] [Indexed: 12/22/2022]
Abstract
Membrane fusion is a fundamental molecular mechanism by which two apposed membrane bilayers coalesce in rapid, transient steps that enable the successive merging of the outer and inner leaflets allowing lipid intermixing and subsequent mixing of the two previously separate compartments. The actual membrane merger mechanism - fusion, by definition - is conceptualized to be protein- or lipid-centric. According to the widely vetted stalk-pore hypothesis, membrane fusion proceeds via high curvature lipid intermediates. By cleaving membrane phospholipids at the sn-2 position, Phospholipase A2 generates metabolites that exert spontaneous curvature stress (both negative and positive) on the membrane, thus influencing local membrane bending by altering the packing and conformation of lipids and proteins, respectively. Such changes could potentially modulate priming and attachment/docking steps that precede fusion, as well as the membrane merger steps per se.
Collapse
Affiliation(s)
- Deepti Dabral
- Molecular Physiology, and Molecular Medicine Research Group, School of Medicine, Western Sydney University, Campbelltown Campus, Penrith, NSW 2751, Australia
| | - Jens R Coorssen
- Faculty of Graduate Studies and the Departments of Health Sciences and Biological Sciences, Brock University,St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
24
|
High cholesterol obviates a prolonged hemifusion intermediate in fast SNARE-mediated membrane fusion. Biophys J 2016. [PMID: 26200867 DOI: 10.1016/j.bpj.2015.06.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cholesterol is essential for exocytosis in secretory cells, but the exact molecular mechanism by which it facilitates exocytosis is largely unknown. Distinguishing contributions from the lateral organization and dynamics of membrane proteins to vesicle docking and fusion and the promotion of fusion pores by negative intrinsic spontaneous curvature and other mechanical effects of cholesterol have been elusive. To shed more light on this process, we examined the effect of cholesterol on SNARE-mediated membrane fusion in a single-vesicle assay that is capable of resolving docking and elementary steps of fusion with millisecond time resolution. The effect of cholesterol on fusion pore formation between synaptobrevin-2 (VAMP-2)-containing proteoliposomes and acceptor t-SNARE complex-containing planar supported bilayers was examined using both membrane and content fluorescent markers. This approach revealed that increasing cholesterol in either the t-SNARE or the v-SNARE membrane favors a mechanism of direct fusion pore opening, whereas low cholesterol favors a mechanism leading to a long-lived (>5 s) hemifusion state. The amount of cholesterol in the target membrane had no significant effect on docking of synaptobrevin vesicles. Comparative studies with α-tocopherol (vitamin E) show that the negative intrinsic spontaneous curvature of cholesterol and its presumed promotion of a very short-lived (<50 ms) lipid stalk intermediate is the main factor that favors rapid fusion pore opening at high cholesterol. This study also shows that this single-vesicle fusion assay can distinguish between hemifusion and full fusion with only a single lipid dye, thereby freeing up a fluorescence channel for the simultaneous measurement of another parameter in fast time-resolved fusion assays.
Collapse
|
25
|
Rogasevskaia TP, Coorssen JR. The Role of Phospholipase D in Regulated Exocytosis. J Biol Chem 2015; 290:28683-96. [PMID: 26433011 DOI: 10.1074/jbc.m115.681429] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Indexed: 11/06/2022] Open
Abstract
There are a diversity of interpretations concerning the possible roles of phospholipase D and its biologically active product phosphatidic acid in the late, Ca(2+)-triggered steps of regulated exocytosis. To quantitatively address functional and molecular aspects of the involvement of phospholipase D-derived phosphatidic acid in regulated exocytosis, we used an array of phospholipase D inhibitors for ex vivo and in vitro treatments of sea urchin eggs and isolated cortices and cortical vesicles, respectively, to study late steps of exocytosis, including docking/priming and fusion. The experiments with fluorescent phosphatidylcholine reveal a low level of phospholipase D activity associated with cortical vesicles but a significantly higher activity on the plasma membrane. The effects of phospholipase D activity and its product phosphatidic acid on the Ca(2+) sensitivity and rate of fusion correlate with modulatory upstream roles in docking and priming rather than to direct effects on fusion per se.
Collapse
Affiliation(s)
| | - Jens R Coorssen
- Department of Molecular Physiology, School of Medicine and the Molecular Medicine Research Group, Western Sydney University, Penrith NSW 2751, Australia
| |
Collapse
|
26
|
Frech MJ, Rabenstein M, Bovensiepen K, Rost S, Rolfs A. Cyclodextrin Alters GABAergic Input to CA1 Pyramidal Cells in Wild-Type But Not in NPC1-Deficient Mice. Biores Open Access 2015; 4:358-62. [PMID: 26392920 PMCID: PMC4556338 DOI: 10.1089/biores.2015.0023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Niemann–Pick type C1 disease (NPC1) is a neurodegenerative disorder caused by mutations in the NPC1 gene. Actual, no causative treatment for NPC1 is available, although some drugs have been proven to be beneficial to patients, for example, 2-hydroxypropyl-β-cyclodextrin (CDX). In this study, we used the BALB/c_Nctr-Npc1m1N/-J mouse strain to study the effect of CDX, which is described to prolong the life span and to alleviate the pathogenic phenotype. By means of patch clamp recordings, we measured inhibitory postsynaptic currents (IPSCs) of CA1 pyramidal cells of CDX-treated and -untreated animals to elucidate the influence of CDX on the synaptic transmission. Surprisingly, CDX induced a significantly higher GABAergic IPSC frequency in wild-type mice than in NPC1−/− mice. Although the IPSCs were mainly GABAergic, we observed a significant reduction of the IPSC frequency in the presence of the glycine receptor antagonist strychnine. The effect of strychnine did not differ in untreated and treated animals, indicating that the effect of CDX was most likely not based on an interaction with glycinergic transmission machinery. However, the unexpected effect of CDX on the GABAergic synaptic transmission is of special interest as a disturbance plays, for example, a crucial role in epilepsy and, moreover, as CDX is currently under investigation as a treatment for NPC1 in humans.
Collapse
Affiliation(s)
- Moritz J Frech
- Albrecht-Kossel-Institute for Neuroregeneration, University of Rostock , Rostock, Germany
| | - Michael Rabenstein
- Albrecht-Kossel-Institute for Neuroregeneration, University of Rostock , Rostock, Germany
| | - Katja Bovensiepen
- Albrecht-Kossel-Institute for Neuroregeneration, University of Rostock , Rostock, Germany
| | - Sebastian Rost
- Albrecht-Kossel-Institute for Neuroregeneration, University of Rostock , Rostock, Germany
| | - Arndt Rolfs
- Albrecht-Kossel-Institute for Neuroregeneration, University of Rostock , Rostock, Germany
| |
Collapse
|
27
|
Gruba SM, Koseoglu S, Meyer AF, Meyer BM, Maurer-Jones MA, Haynes CL. Platelet membrane variations and their effects on δ-granule secretion kinetics and aggregation spreading among different species. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1848:1609-18. [PMID: 25906946 PMCID: PMC4431631 DOI: 10.1016/j.bbamem.2015.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 01/09/2023]
Abstract
Platelet exocytosis is regulated partially by the granular/cellular membrane lipids and proteins. Some platelets contain a membrane-bound tube, called an open canalicular system (OCS), which assists in granular release events and increases the membrane surface area for greater spreading. The OCS is not found in all species, and variations in membrane composition can cause changes in platelet secretion. Since platelet studies use various animal models, it is important to understand how platelets differ in both their composition and granular release to draw conclusions among various models. The relative phospholipid composition of the platelets with (mouse, rabbit) and without (cow) an OCS was quantified using UPLC-MS/MS. Cholesterol and protein composition was measured using an Amplex Red Assay and BCA Assay. TEM and dark field platelet images were gathered and analyzed with Image J. Granular release was monitored with single cell carbon fiber microelectrode amperometry. Cow platelets contained greater amounts of cholesterol and sphingomyelin. In addition, they yield greater serotonin release and longer δ granule secretion times. Finally, they showed greater spreading area with a greater range of spread. Platelets containing an OCS had more similarities in their membrane composition and secretion kinetics compared to cow platelets. However, cow platelets showed greater fusion pore stability which could be due to extra sphingomyelin and cholesterol, the primary components of lipid rafts. In addition, their greater stability may lead to many granules assisting in spreading. This study highlights fundamental membrane differences and their effects on platelet secretion.
Collapse
Affiliation(s)
- Sarah M Gruba
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA
| | - Secil Koseoglu
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA
| | - Audrey F Meyer
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA
| | - Ben M Meyer
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA
| | - Melissa A Maurer-Jones
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA
| | - Christy L Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
28
|
Trikash I, Gumenyuk V, Kuchmerovska T. Diabetes-Induced Impairments of the Exocytosis Process and the Effect of Gabapentin: The Link with Cholesterol Level in Neuronal Plasma Membranes. Neurochem Res 2015; 40:723-32. [DOI: 10.1007/s11064-015-1520-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 09/24/2014] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
|
29
|
Churchward MA, Todd KG. Statin treatment affects cytokine release and phagocytic activity in primary cultured microglia through two separable mechanisms. Mol Brain 2014; 7:85. [PMID: 25424483 PMCID: PMC4247600 DOI: 10.1186/s13041-014-0085-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/08/2014] [Indexed: 12/14/2022] Open
Abstract
Background As the primary immune cells of the central nervous system, microglia contribute to development, homeostasis, and plasticity of the central nervous system, in addition to their well characterized roles in the foreign body and inflammatory responses. Increasingly, inappropriate activation of microglia is being reported as a component of inflammation in neurodegenerative and neuropsychiatric disorders. The statin class of cholesterol-lowering drugs have been observed to have anti-inflammatory and protective effects in both neurodegenerative diseases and ischemic stroke, and are suggested to act by attenuating microglial activity. Results We sought to investigate the effects of simvastatin treatment on the secretory profile and phagocytic activity of primary cultured rat microglia, and to dissect the mechanism of action of simvastatin on microglial activity. Simvastatin treatment altered the release of cytokines and trophic factors from microglia, including interleukin-1-β, tumour necrosis factor-α, and brain derived neurotrophic factor in a cholesterol-dependent manner. Conversely, simvastatin inhibited phagocytosis in microglia in a cholesterol-independent manner. Conclusions The disparity in cholesterol dependence of cytokine release and phagocytosis suggests the two effects occur through distinct molecular mechanisms. These two pathways may provide an opportunity for further refinement of pharmacotherapies for neuroinflammatory, neurodegenerative, and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Matthew A Churchward
- Neurochemical Research Unit, University of Alberta Faculty of Medicine, Edmonton, AB, Canada, T6G 2R3. .,Department of Psychiatry, University of Alberta Faculty of Medicine, Edmonton, AB, Canada, T6G 2R3.
| | - Kathryn G Todd
- Neurochemical Research Unit, University of Alberta Faculty of Medicine, Edmonton, AB, Canada, T6G 2R3. .,Department of Psychiatry, University of Alberta Faculty of Medicine, Edmonton, AB, Canada, T6G 2R3. .,Neuroscience and Mental Health Institute, University of Alberta Faculty of Medicine, Edmonton, AB, Canada, T6G 2R3.
| |
Collapse
|
30
|
Vance JE, Karten B. Niemann-Pick C disease and mobilization of lysosomal cholesterol by cyclodextrin. J Lipid Res 2014; 55:1609-21. [PMID: 24664998 DOI: 10.1194/jlr.r047837] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Indexed: 12/31/2022] Open
Abstract
Niemann-Pick type C (NPC) disease is a lysosomal storage disease in which endocytosed cholesterol becomes sequestered in late endosomes/lysosomes (LEs/Ls) because of mutations in either the NPC1 or NPC2 gene. Mutations in either of these genes can lead to impaired functions of the NPC1 or NPC2 proteins and progressive neurodegeneration as well as liver and lung disease. NPC1 is a polytopic protein of the LE/L limiting membrane, whereas NPC2 is a soluble protein in the LE/L lumen. These two proteins act in tandem and promote the export of cholesterol from LEs/Ls. Consequently, a defect in either NPC1 or NPC2 causes cholesterol accumulation in LEs/Ls. In this review, we summarize the molecular mechanisms leading to NPC disease, particularly in the CNS. Recent exciting data on the mechanism by which the cholesterol-sequestering agent cyclodextrin can bypass the functions of NPC1 and NPC2 in the LEs/Ls, and mobilize cholesterol from LEs/Ls, will be highlighted. Moreover, the possible use of cyclodextrin as a valuable therapeutic agent for treatment of NPC patients will be considered.
Collapse
Affiliation(s)
- Jean E Vance
- The Group on Molecular and Cell Biology of Lipids and Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Barbara Karten
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
31
|
Cholesterol-mediated membrane surface area dynamics in neuroendocrine cells. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1228-38. [PMID: 24046863 DOI: 10.1016/j.bbalip.2013.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
How cholesterol, a key membrane constituent, affects membrane surface area dynamics in secretory cells is unclear. Using methyl-beta-cyclodextrin (MbetaCD) to deplete cholesterol, we imaged melanotrophs from male Wistar rats in real-time and monitored membrane capacitance (C(m)), fluctuations of which reflect exocytosis and endocytosis. Treatment with MbetaCD reduced cellular cholesterol and caused a dose-dependent attenuation of the Ca(2+)-evoked increase in C(m) (IC50 = 5.3 mM) vs. untreated cells. Cytosol dialysis of MbetaCD enhanced the attenuation of C(m) increase (IC50 = 3.3 mM), suggesting cholesterol depletion at intracellular membrane sites was involved in attenuating exocytosis. Acute extracellular application of MbetaCD resulted in an immediate C(m) decline, which correlated well with the cellular surface area decrease, indicating the involvement of cholesterol in the regulation of membrane surface area dynamics. This decline in C(m) was three-fold slower than MbetaCD-mediated fluorescent cholesterol decay, implying that exocytosis is the likely physiological means for plasma membrane cholesterol replenishment. MbetaCD had no effect on the specific C(m) and the blockade of endocytosis by Dyngo 4a, confirmed by inhibition of dextran uptake, also had no effect on the time-course of MbetaCD-induced C(m) decline. Thus acute exposure to MbetaCD evokes a C(m) decline linked to the removal of membrane cholesterol, which cannot be compensated for by exocytosis. We propose that the primary contribution of cholesterol to surface area dynamics is via its role in regulated exocytosis.
Collapse
|
32
|
Cookson EA, Conte IL, Dempster J, Hannah MJ, Carter T. Characterisation of Weibel-Palade body fusion by amperometry in endothelial cells reveals fusion pore dynamics and the effect of cholesterol on exocytosis. J Cell Sci 2013; 126:5490-9. [PMID: 24127569 PMCID: PMC3843139 DOI: 10.1242/jcs.138438] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Regulated secretion from endothelial cells is mediated by Weibel-Palade body (WPB) exocytosis. Plasma membrane cholesterol is implicated in regulating secretory granule exocytosis and fusion pore dynamics; however, its role in modulating WPB exocytosis is not clear. To address this we combined high-resolution electrochemical analysis of WPB fusion pore dynamics, by amperometry, with high-speed optical imaging of WPB exocytosis following cholesterol depletion or supplementation in human umbilical vein endothelial cells. We identified serotonin (5-HT) immunoreactivity in WPBs, and VMAT1 expression allowing detection of secreted 5-HT as discrete current spikes during exocytosis. A high proportion of spikes (∼75%) had pre-spike foot signals, indicating that WPB fusion proceeds via an initial narrow pore. Cholesterol depletion significantly reduced pre-spike foot signal duration and increased the rate of fusion pore expansion, whereas cholesterol supplementation had broadly the reverse effect. Cholesterol depletion slowed the onset of hormone-evoked WPB exocytosis, whereas its supplementation increased the rate of WPB exocytosis and hormone-evoked proregion secretion. Our results provide the first analysis of WPB fusion pore dynamics and highlight an important role for cholesterol in the regulation of WPB exocytosis.
Collapse
Affiliation(s)
- Emma A Cookson
- MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| | | | | | | | | |
Collapse
|
33
|
Abbineni PS, Hibbert JE, Coorssen JR. Critical role of cortical vesicles in dissecting regulated exocytosis: overview of insights into fundamental molecular mechanisms. THE BIOLOGICAL BULLETIN 2013; 224:200-217. [PMID: 23995744 DOI: 10.1086/bblv224n3p200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Regulated exocytosis is one of the defining features of eukaryotic cells, underlying many conserved and essential functions. Definitively assigning specific roles to proteins and lipids in this fundamental mechanism is most effectively accomplished using a model system in which distinct stages of exocytosis can be effectively separated. Here we discuss the establishment of sea urchin cortical vesicle fusion as a model to study regulated exocytosis-a system in which the docked, release-ready, and late Ca(2+)-triggered steps of exocytosis are isolated and can be quantitatively assessed using the rigorous coupling of functional and molecular assays. We provide an overview of the insights this has provided into conserved molecular mechanisms and how these have led to and integrate with findings from other regulated exocytotic cells.
Collapse
Affiliation(s)
- Prabhodh S Abbineni
- Department of Molecular Physiology, School of Medicine, University of Western Sydney, NSW, Australia
| | | | | |
Collapse
|
34
|
Rituper B, Flašker A, Guček A, Chowdhury HH, Zorec R. Cholesterol and regulated exocytosis: A requirement for unitary exocytotic events. Cell Calcium 2012; 52:250-8. [DOI: 10.1016/j.ceca.2012.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/07/2012] [Accepted: 05/15/2012] [Indexed: 11/30/2022]
|
35
|
Ormerod KG, Rogasevskaia TP, Coorssen JR, Mercier AJ. Cholesterol-independent effects of methyl-β-cyclodextrin on chemical synapses. PLoS One 2012; 7:e36395. [PMID: 22590538 PMCID: PMC3348160 DOI: 10.1371/journal.pone.0036395] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 04/05/2012] [Indexed: 01/22/2023] Open
Abstract
The cholesterol chelating agent, methyl-β-cyclodextrin (MβCD), alters synaptic function in many systems. At crayfish neuromuscular junctions, MβCD is reported to reduce excitatory junctional potentials (EJPs) by impairing impulse propagation to synaptic terminals, and to have no postsynaptic effects. We examined the degree to which physiological effects of MβCD correlate with its ability to reduce cholesterol, and used thermal acclimatization as an alternative method to modify cholesterol levels. MβCD impaired impulse propagation and decreased EJP amplitude by 40% (P<0.05) in preparations from crayfish acclimatized to 14 °C but not from those acclimatized to 21 °C. The reduction in EJP amplitude in the cold-acclimatized group was associated with a 49% reduction in quantal content (P<0.05). MβCD had no effect on input resistance in muscle fibers but decreased sensitivity to the neurotransmitter L-glutamate in both warm- and cold-acclimatized groups. This effect was less pronounced and reversible in the warm-acclimatized group (90% reduction in cold, P<0.05; 50% reduction in warm, P<0.05). MβCD reduced cholesterol in isolated nerve and muscle from cold- and warm-acclimatized groups by comparable amounts (nerve: 29% cold, 25% warm; muscle: 20% cold, 18% warm; P<0.05). This effect was reversed by cholesterol loading, but only in the warm-acclimatized group. Thus, effects of MβCD on glutamate-sensitivity correlated with its ability to reduce cholesterol, but effects on impulse propagation and resulting EJP amplitude did not. Our results indicate that MβCD can affect both presynaptic and postsynaptic properties, and that some effects of MβCD are unrelated to cholesterol chelation.
Collapse
Affiliation(s)
- Kiel G. Ormerod
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Tatiana P. Rogasevskaia
- Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jens R. Coorssen
- Department of Molecular Physiology, School of Medicine and the Molecular Medicine Research Group, University of Western Sydney, Penrith South DC, New South Wales, Australia
| | - A. Joffre Mercier
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
36
|
Fusion pore regulation in peptidergic vesicles. Cell Calcium 2012; 52:270-6. [PMID: 22571866 DOI: 10.1016/j.ceca.2012.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/02/2012] [Accepted: 04/14/2012] [Indexed: 12/19/2022]
Abstract
Regulated exocytosis, which involves fusion of secretory vesicles with the plasma membrane, is an important mode of communication between cells. In this process, signalling molecules that are stored in secretory vesicles are released into the extracellular space. During the initial stage of fusion, the interior of the vesicle is connected to the exterior of the cell with a narrow, channel-like structure: the fusion pore. It was long believed that the fusion pore is a short-lived intermediate state leading irreversibly to fusion pore dilation. However, recent results show that the diameter of the fusion pore can fluctuate, suggesting that the fusion pore is a subject of stabilization. A possible mechanism is addressed in this article, involving the local anisotropicity of membrane constituents that can stabilize the fusion pore. The molecular nature of such a stable fusion pore to predict how interacting molecules (proteins and/or lipids) mediate changes that affect the stability of the fusion pore and exocytosis is also considered. The fusion pore likely attains stability via multiple mechanisms, which include the shape of the lipid and protein membrane constituents and the interactions between them.
Collapse
|
37
|
Rogasevskaia TP, Churchward MA, Coorssen JR. Anionic lipids in Ca(2+)-triggered fusion. Cell Calcium 2012; 52:259-69. [PMID: 22516687 DOI: 10.1016/j.ceca.2012.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/20/2012] [Accepted: 03/25/2012] [Indexed: 01/30/2023]
Abstract
Anionic lipids are native membrane components that have a profound impact on many cellular processes, including regulated exocytosis. Nonetheless, the full nature of their contribution to the fast, Ca(2+)-triggered fusion pathway remains poorly defined. Here we utilize the tightly coupled quantitative molecular and functional analyses enabled by the cortical vesicle model system to elucidate the roles of specific anionic lipids in the docking, priming and fusion steps of regulated release. Studies with cholesterol sulfate established that effectively localized anionic lipids could contribute to Ca(2+)-sensing and even bind Ca(2+) directly as effectors of necessary membrane rearrangements. The data thus support a role for phosphatidylserine in Ca(2+) sensing. In contrast, phosphatidylinositol would appear to serve regulatory functions in the physiological fusion machine, contributing to priming and thus the modulation and tuning of the fusion process. We note the complexities associated with establishing the specific roles of (anionic) lipids in the native fusion mechanism, including their localization and interactions with other critical components that also remain to be more clearly and quantitatively defined.
Collapse
Affiliation(s)
- Tatiana P Rogasevskaia
- Department of Chemical & Biological Sciences, Mount Royal University, 4825 Mount Royal Gate SW, Calgary, AB, T3E 6K6 Canada
| | | | | |
Collapse
|
38
|
Tse A, Lee AK, Yan L, Tse FW. Influence of cholesterol on cellular signaling and fusion pore kinetics. J Mol Neurosci 2012; 48:395-401. [PMID: 22467040 DOI: 10.1007/s12031-012-9760-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 03/19/2012] [Indexed: 12/12/2022]
Abstract
Cholesterol is an important lipid component of cellular membranes. Recent studies have shown that changes in cellular cholesterol level can affect cellular functions. Here, we summarize our recent findings on the impact of cholesterol on the glucose-stimulated Ca(2+) signaling in rat pancreatic β cells and the fusion pore kinetics of large dense core granules in rat chromaffin cells. In mouse pancreatic β cells, pharmacological elevation of cellular cholesterol (but not cholesterol extraction) reduced the current density of the delayed rectifier K(+) channels, the ATP-dependent K(+) channels, and voltage-gated Ca(2+) channels. Importantly, cholesterol enrichment impaired glucose-stimulated Ca(2+) signaling in mouse pancreatic β cells via a suppression of voltage-gated Ca(2+) channels and a decrease in mitochondrial ATP production, which in turn led to a reduction in the glucose-evoked depolarization. In rat chromaffin cells, we found that the persistence of the semi-stable fusion pore was increased by cholesterol enrichment, and acute cholesterol extraction from the cytosolic side of the cell destabilized the semi-stable fusion pore. Overall, our findings highlight the importance of cholesterol in the regulation of cellular signaling and exocytosis.
Collapse
Affiliation(s)
- Amy Tse
- Department of Pharmacology, University of Alberta, Edmonton, Canada T6G 2H7
| | | | | | | |
Collapse
|
39
|
Mercer AJ, Szalewski RJ, Jackman SL, Van Hook MJ, Thoreson WB. Regulation of presynaptic strength by controlling Ca2+ channel mobility: effects of cholesterol depletion on release at the cone ribbon synapse. J Neurophysiol 2012; 107:3468-78. [PMID: 22442573 DOI: 10.1152/jn.00779.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Synaptic communication requires proper coupling between voltage-gated Ca(2+) (Ca(V)) channels and synaptic vesicles. In photoreceptors, L-type Ca(V) channels are clustered close to synaptic ribbon release sites. Although clustered, Ca(V) channels move continuously within a confined domain slightly larger than the base of the ribbon. We hypothesized that expanding Ca(V) channel confinement domains should increase the number of channel openings needed to trigger vesicle release. Using single-particle tracking techniques, we measured the expansion of Ca(V) channel confinement domains caused by depletion of membrane cholesterol with cholesterol oxidase or methyl-β-cyclodextrin. With paired whole cell recordings from cones and horizontal cells, we then determined the number of Ca(V) channel openings contributing to cone Ca(V) currents (I(Ca)) and the number of vesicle fusion events contributing to horizontal cell excitatory postsynaptic currents (EPSCs) following cholesterol depletion. Expansion of Ca(V) channel confinement domains reduced the peak efficiency of release, decreasing the number of vesicle fusion events accompanying opening of each Ca(V) channel. Cholesterol depletion also inhibited exocytotic capacitance increases evoked by brief depolarizing steps. Changes in efficiency were not due to changes in I(Ca) amplitude or glutamate receptor properties. Replenishing cholesterol restored Ca(V) channel domain size and release efficiency to control levels. These results indicate that cholesterol is important for organizing the cone active zone. Furthermore, the finding that cholesterol depletion impairs coupling between channel opening and vesicle release by allowing Ca(V) channels to move further from release sites shows that changes in presynaptic Ca(V) channel mobility can be a mechanism for adjusting synaptic strength.
Collapse
Affiliation(s)
- Aaron J Mercer
- Dept. of Ophthalmology and Visual Sciences, Univ. of Nebraska Medical Center, Omaha, NE 68198-5840, USA
| | | | | | | | | |
Collapse
|
40
|
Gutiérrez LM. New insights into the role of the cortical cytoskeleton in exocytosis from neuroendocrine cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:109-37. [PMID: 22449488 DOI: 10.1016/b978-0-12-394306-4.00009-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cortical cytoskeleton is a dense network of filamentous actin (F-actin) that participates in the events associated with secretion from neuroendocrine cells. This filamentous web traps secretory vesicles, acting as a retention system that blocks the access of vesicles to secretory sites during the resting state, and it mediates their active directional transport during stimulation. The changes in the cortical cytoskeleton that drive this functional transformation have been well documented, particularly in cultured chromaffin cells. At the biochemical level, alterations in F-actin are governed by the activity of molecular motors like myosins II and V and by other calcium-dependent proteins that influence the polymerization and cross-linking of F-actin structures. In addition to modulating vesicle transport, the F-actin cortical network and its associated motor proteins also influence the late phases of the secretory process, including membrane fusion and the release of active substances through the exocytotic fusion pore. Here, we discuss the potential interactions between the F-actin cortical web and proteins such as SNAREs during secretion. We also discuss the role of the cytoskeleton in organizing the molecular elements required to sustain regulated exocytosis, forming a molecular structure that foments the efficient release of neurotransmitters and hormones.
Collapse
Affiliation(s)
- Luis M Gutiérrez
- Instituto de Neurociencias, Centro Mixto Universidad Miguel Hernández-CSIC, Sant Joan d’Alacant, Alicante, Spain
| |
Collapse
|
41
|
Kruit JK, Wijesekara N, Fox JEM, Dai XQ, Brunham LR, Searle GJ, Morgan GP, Costin AJ, Tang R, Bhattacharjee A, Johnson JD, Light PE, Marsh BJ, MacDonald PE, Verchere CB, Hayden MR. Islet cholesterol accumulation due to loss of ABCA1 leads to impaired exocytosis of insulin granules. Diabetes 2011; 60:3186-96. [PMID: 21998401 PMCID: PMC3219942 DOI: 10.2337/db11-0081] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The ATP-binding cassette transporter A1 (ABCA1) is essential for normal insulin secretion from β-cells. The aim of this study was to elucidate the mechanisms underlying the impaired insulin secretion in islets lacking β-cell ABCA1. RESEARCH DESIGN AND METHODS Calcium imaging, patch clamp, and membrane capacitance were used to assess the effect of ABCA1 deficiency on calcium flux, ion channel function, and exocytosis in islet cells. Electron microscopy was used to analyze β-cell ultrastructure. The quantity and distribution of proteins involved in insulin-granule exocytosis were also investigated. RESULTS We show that a lack of β-cell ABCA1 results in impaired depolarization-induced exocytotic fusion of insulin granules. We observed disturbances in membrane microdomain organization and Golgi and insulin granule morphology in β-cells as well as elevated fasting plasma proinsulin levels in mice in the absence of β-cell ABCA1. Acute cholesterol depletion rescued the exocytotic defect in β-cells lacking ABCA1, indicating that elevated islet cholesterol accumulation directly impairs granule fusion and insulin secretion. CONCLUSIONS Our data highlight a crucial role of ABCA1 and cellular cholesterol in β-cells that is necessary for regulated insulin granule fusion events. These data suggest that abnormalities of cholesterol metabolism may contribute to the impaired β-cell function in diabetes.
Collapse
Affiliation(s)
- Janine K. Kruit
- Departments of Medical Genetics, Centre for Molecular Medicine, and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nadeeja Wijesekara
- Departments of Medical Genetics, Centre for Molecular Medicine, and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jocelyn E. Manning Fox
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Xiao-Qing Dai
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Liam R. Brunham
- Departments of Medical Genetics, Centre for Molecular Medicine, and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gavin J. Searle
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Garry P. Morgan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Adam J. Costin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Renmei Tang
- Departments of Medical Genetics, Centre for Molecular Medicine, and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alpana Bhattacharjee
- Departments of Medical Genetics, Centre for Molecular Medicine, and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - James D. Johnson
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter E. Light
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Brad J. Marsh
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Patrick E. MacDonald
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - C. Bruce Verchere
- Departments of Pathology & Laboratory Medicine and Surgery, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael R. Hayden
- Departments of Medical Genetics, Centre for Molecular Medicine, and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Corresponding author: Michael R. Hayden,
| |
Collapse
|
42
|
Affiliation(s)
- Yuqing Lin
- Department of Chemistry, University of Gothenburg, S-41296, Gothenburg, Sweden
| | | | | | | |
Collapse
|
43
|
Lanekoff I, Sjövall P, Ewing AG. Relative quantification of phospholipid accumulation in the PC12 cell plasma membrane following phospholipid incubation using TOF-SIMS imaging. Anal Chem 2011; 83:5337-43. [PMID: 21563801 DOI: 10.1021/ac200771g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Time of flight secondary ion mass spectrometry (TOF-SIMS) imaging has been used to investigate the incorporation of phospholipids into the plasma membrane of PC12 cells after incubation with phosphatidylcholine (PC) and phosphatidylethanolamine (PE). The incubations were done at concentrations previously shown to change the rate of exocytosis in model cell lines. The use of TOF-SIMS in combination with an in situ freeze fracture device enables the acquisition of ion images from the plasma membrane in single PC12 cells. By incubating cells with deuterated phospholipids and acquiring ion images at high mass resolution, specific deuterated fragment ions were used to monitor the incorporation of lipids into the plasma membrane. The concentration of incorporated phospholipids relative to the original concentration of PC was thus determined. The observed relative amounts of phospholipid accumulation in the membrane range from 0.5 to 2% following 19 h of incubation with PC at 100-300 μM and from 1 to 9% following incubation with PE at the same concentrations. Phospholipid accumulation is therefore shown to be dependent on the concentration in the surrounding media. In combination with previous exocytosis results, the present data suggests that very small changes in the plasma membrane phospholipid concentration are sufficient to produce significant effects on important cellular processes, such as exocytosis in PC12 cells.
Collapse
Affiliation(s)
- Ingela Lanekoff
- Department of Chemistry, University of Gothenburg, SE-41296 Göteborg, Sweden
| | | | | |
Collapse
|
44
|
Lateral mobility of presynaptic L-type calcium channels at photoreceptor ribbon synapses. J Neurosci 2011; 31:4397-406. [PMID: 21430141 DOI: 10.1523/jneurosci.5921-10.2011] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
At most synapses, presynaptic Ca(2+) channels are positioned near vesicle release sites, and increasing this distance reduces synaptic strength. We examined the lateral membrane mobility of presynaptic L-type Ca(2+) channels at photoreceptor ribbon synapses of the tiger salamander (Ambystoma tigrinum) retina. Movements of individual Ca(2+) channels were tracked by coupling quantum dots to an antibody against the extracellular α(2)δ(4) Ca(2+) channel subunit. α(2)δ(4) antibodies labeled photoreceptor terminals and colocalized with antibodies to synaptic vesicle glycoprotein 2 and voltage-gated Ca(2+) channel 1.4 (Ca(V)1.4) α(1) subunits. The results show that Ca(2+) channels are dynamic and move within a confined region beneath the synaptic ribbon. The size of this confinement area is regulated by actin and membrane cholesterol. Fusion of nearby synaptic vesicles caused jumps in Ca(2+) channel position, propelling them toward the outer edge of the confinement domain. Channels rebounded rapidly toward the center. Thus, although Ca(V) channels are mobile, molecular scaffolds confine them beneath the ribbon to maintain neurotransmission even at high release rates.
Collapse
|
45
|
Koseoglu S, Love SA, Haynes CL. Cholesterol effects on vesicle pools in chromaffin cells revealed by carbon-fiber microelectrode amperometry. Anal Bioanal Chem 2011; 400:2963-71. [PMID: 21523329 DOI: 10.1007/s00216-011-5002-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 03/31/2011] [Accepted: 04/08/2011] [Indexed: 11/25/2022]
Abstract
Cell-cell communication is often achieved via granular exocytosis, as in neurons during synaptic transmission or neuroendocrine cells during blood hormone control. Owing to its critical role in membrane properties and SNARE function, cholesterol is expected to play an important role in the highly conserved process of exocytosis. In this work, membrane cholesterol concentration is systematically varied in primary culture mouse chromaffin cells, and the change in secretion behavior of distinct vesicle pools as well as pool recovery following stimulation is measured using carbon-fiber microelectrode amperometry. Amperometric traces obtained from activation of the younger readily releasable and slowly releasable pool (RRP/SRP) vesicles at depleted cholesterol levels showed fewer sustained fusion pore features (6.1 ± 1.1% of spikes compared with 11.2 ± 1.0% for control), revealing that cholesterol content influences fusion pore formation and stability during exocytosis. Moreover, subsequent stimulation of RRP/SRP vesicles showed that cellular cholesterol level influences both the quantal recovery and kinetics of the later release events. Finally, diverging effects of cholesterol on RRP and the older reserve pool vesicle release suggest two different mechanisms for the release of these two vesicular pools.
Collapse
Affiliation(s)
- Secil Koseoglu
- Department of Chemistry, University of Minnesota, Minneapolis, 55455-0240, USA
| | | | | |
Collapse
|
46
|
Rogasevskaia TP, Coorssen JR. A new approach to the molecular analysis of docking, priming, and regulated membrane fusion. J Chem Biol 2011; 4:117-36. [PMID: 22315653 DOI: 10.1007/s12154-011-0056-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 12/23/2010] [Indexed: 12/12/2022] Open
Abstract
Studies using isolated sea urchin cortical vesicles have proven invaluable in dissecting mechanisms of Ca(2+)-triggered membrane fusion. However, only acute molecular manipulations are possible in vitro. Here, using selective pharmacological manipulations of sea urchin eggs ex vivo, we test the hypothesis that specific lipidic components of the membrane matrix selectively affect defined late stages of exocytosis, particularly the Ca(2+)-triggered steps of fast membrane fusion. Egg treatments with cholesterol-lowering drugs resulted in the inhibition of vesicle fusion. Exogenous cholesterol recovered fusion extent and efficiency in cholesterol-depleted membranes; α-tocopherol, a structurally dissimilar curvature analogue, selectively restored fusion extent. Inhibition of phospholipase C reduced vesicle phosphatidylethanolamine and suppressed both the extent and kinetics of fusion. Although phosphatidylinositol-3-kinase inhibition altered levels of polyphosphoinositide species and reduced all fusion parameters, sequestering polyphosphoinositides selectively inhibited fusion kinetics. Thus, cholesterol and phosphatidylethanolamine play direct roles in the fusion pathway, contributing negative curvature. Cholesterol also organizes the physiological fusion site, defining fusion efficiency. A selective influence of phosphatidylethanolamine on fusion kinetics sheds light on the local microdomain structure at the site of docking/fusion. Polyphosphoinositides have modulatory upstream roles in priming: alterations in specific polyphosphoinositides likely represent the terminal priming steps defining fully docked, release-ready vesicles. Thus, this pharmacological approach has the potential to be a robust high-throughput platform to identify molecular components of the physiological fusion machine critical to docking, priming, and triggered fusion.
Collapse
|
47
|
Štrbák V. Cell Swelling-induced Peptide Hormone Secretion. Cell Physiol Biochem 2011; 28:1155-68. [DOI: 10.1159/000335849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2011] [Indexed: 11/19/2022] Open
|
48
|
Nishizawa M, Nishizawa K. Coarse-grained simulations of branched bilayer membranes: effects of cholesterol-dependent phase separation on curvature-driven lipid sorting. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/jbpc.2011.23032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Chasserot-Golaz S, Coorssen JR, Meunier FA, Vitale N. Lipid dynamics in exocytosis. Cell Mol Neurobiol 2010; 30:1335-42. [PMID: 21080057 PMCID: PMC11498775 DOI: 10.1007/s10571-010-9577-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Accepted: 09/02/2010] [Indexed: 11/27/2022]
Abstract
Regulated exocytosis of neurotransmitter- and hormone-containing vesicles underpins neuronal and hormonal communication and relies on a well-orchestrated series of molecular interactions. This in part involves the upstream formation of a complex of SNAREs and associated proteins leading to the eventual fusion of the vesicle membrane with the plasma membrane, a process that enables content release. Although the role of lipids in exocytosis is intuitive, it has long been overlooked at least compared to the extensive work on SNAREs. Here, we will present the latest advances in this rapidly developing field revealing that lipids actually play an active role in exocytosis by focusing on cholesterol, 3'-phosphorylated phosphoinositides and phosphatidic acid.
Collapse
Affiliation(s)
- S Chasserot-Golaz
- Département Neurotransmission & Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives (UPR-3212), Centre National de Recherche Scientifique, Université de Strasbourg, 5 rue Blaise Pascal, 67084 Strasbourg, France.
| | | | | | | |
Collapse
|
50
|
Davletov B, Montecucco C. Lipid function at synapses. Curr Opin Neurobiol 2010; 20:543-9. [DOI: 10.1016/j.conb.2010.06.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 05/27/2010] [Accepted: 06/26/2010] [Indexed: 11/25/2022]
|