1
|
Liu Y, Chen Y, Li B, Jing Y, Tian S, Chen T. Revisiting Endoplasmic Reticulum Homeostasis, an Expanding Frontier Between Host Plants and Pathogens. PLANT, CELL & ENVIRONMENT 2025; 48:3281-3292. [PMID: 39722546 DOI: 10.1111/pce.15344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
The endoplasmic reticulum (ER) serves as the primary site for protein biosynthesis and processing, with ER homeostasis being essential for the survival of plant cells. Numerous studies have underscored the pivotal role of the ER as a battleground for host-pathogen interactions. Pathogens secrete effectors to subvert the host ER and manipulate ER-mediated defense responses, fostering an infection-permissive environment for their proliferation. Plants respond to these challenges by triggering ER stress responses, including the unfolded protein response (UPR), autophagy, and cell death pathways, to combat pathogens and ensure survival. Consequently, plants are faced with a life-or-death decision, directly influencing the outcomes of pathogen infection. In this review, recent advances in manipulating host ER homeostasis by pathogens are introduced, further key counteracting strategies employed by host plants to maintain ER homeostasis during infection are summarized, and finally, several pending questions the studies involving both parties in this evolving field are proposed.
Collapse
Affiliation(s)
- Yuhan Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Boqiang Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Yanping Jing
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shiping Tian
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| |
Collapse
|
2
|
Mukherjee A, Jodder J, Chowdhury S, Das H, Kundu P. A novel stress-inducible dCas9 system for solanaceous plants. Int J Biol Macromol 2025; 308:142462. [PMID: 40157661 DOI: 10.1016/j.ijbiomac.2025.142462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Conditional manipulation of gene expression is essential in plant biology, yet a simple stimuli-based inducible system for regulating any plant gene is lacking. Here, we present an innovative stress-inducible CRISPR/dCas9-based gene-regulatory toolkit tailored for intentional gene regulation in solanaceous plants. We have translationally fused the transmembrane domain of a tomato membrane-bound NAC transcription factor with dCas9 to utilize the reversible-tethering-based activation mechanism. This system sequesters dCas9 to the plasma membrane under normal conditions and allows membrane detachment in response to heat induction and NLS-mediated nuclear transfer, enabling stress-inducible gene regulation. Transient assays with tomato codon-optimized dCas9-assisted inducible CRISPR activation and interference systems confirmed their superior ability on transcriptional control, rapid induction, and reversibility after stimulus withdrawal in solanaceous plants. The transformative potential of the toolkit was exemplified by enhancing tomato immunity against bacterial speck disease under elevated temperatures by precisely regulating crucial salicylic acid signalling components, SlCBP60g and SlSARD1. Additionally, it was instrumental in engineering heat-stress tolerance in tomato plants through multiplex activation of heat-responsive transcription factors, SlNAC2 and SlHSFA6b. These findings demonstrate the unprecedented temporal control offered by this novel stress-inducible toolkit over gene-expression dynamics, paving the way for favourable manipulation of complex traits in environmentally-challenged crops.
Collapse
Affiliation(s)
- Ananya Mukherjee
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Bidhan Nagar, Kolkata 700091, West Bengal, India
| | - Jayanti Jodder
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Bidhan Nagar, Kolkata 700091, West Bengal, India.
| | - Shreya Chowdhury
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Bidhan Nagar, Kolkata 700091, West Bengal, India
| | - Himadri Das
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Bidhan Nagar, Kolkata 700091, West Bengal, India
| | - Pallob Kundu
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Bidhan Nagar, Kolkata 700091, West Bengal, India.
| |
Collapse
|
3
|
Ye Q, Zheng L, Liu P, Liu Q, Ji T, Liu J, Gao Y, Liu L, Dong J, Wang T. The S-acylation cycle of transcription factor MtNAC80 influences cold stress responses in Medicago truncatula. THE PLANT CELL 2024; 36:2629-2651. [PMID: 38552172 PMCID: PMC11218828 DOI: 10.1093/plcell/koae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/07/2024] [Indexed: 07/04/2024]
Abstract
S-acylation is a reversible post-translational modification catalyzed by protein S-acyltransferases (PATs), and acyl protein thioesterases (APTs) mediate de-S-acylation. Although many proteins are S-acylated, how the S-acylation cycle modulates specific biological functions in plants is poorly understood. In this study, we report that the S-acylation cycle of transcription factor MtNAC80 is involved in the Medicago truncatula cold stress response. Under normal conditions, MtNAC80 localized to membranes through MtPAT9-induced S-acylation. In contrast, under cold stress conditions, MtNAC80 translocated to the nucleus through de-S-acylation mediated by thioesterases such as MtAPT1. MtNAC80 functions in the nucleus by directly binding the promoter of the glutathione S-transferase gene MtGSTU1 and promoting its expression, which enables plants to survive under cold stress by removing excess malondialdehyde and H2O2. Our findings reveal an important function of the S-acylation cycle in plants and provide insight into stress response and tolerance mechanisms.
Collapse
Affiliation(s)
- Qinyi Ye
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lihua Zheng
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Peng Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qianwen Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tuo Ji
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jinling Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yajuan Gao
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Li Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangli Dong
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Guo C, Huang Z, Chen J, Yu G, Wang Y, Wang X. Identification of Novel Regulators of Leaf Senescence Using a Deep Learning Model. PLANTS (BASEL, SWITZERLAND) 2024; 13:1276. [PMID: 38732491 PMCID: PMC11085074 DOI: 10.3390/plants13091276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Deep learning has emerged as a powerful tool for investigating intricate biological processes in plants by harnessing the potential of large-scale data. Gene regulation is a complex process that transcription factors (TFs), cooperating with their target genes, participate in through various aspects of biological processes. Despite its significance, the study of gene regulation has primarily focused on a limited number of notable instances, leaving numerous aspects and interactions yet to be explored comprehensively. Here, we developed DEGRN (Deep learning on Expression for Gene Regulatory Network), an innovative deep learning model designed to decipher gene interactions by leveraging high-dimensional expression data obtained from bulk RNA-Seq and scRNA-Seq data in the model plant Arabidopsis. DEGRN exhibited a compared level of predictive power when applied to various datasets. Through the utilization of DEGRN, we successfully identified an extensive set of 3,053,363 high-quality interactions, encompassing 1430 TFs and 13,739 non-TF genes. Notably, DEGRN's predictive capabilities allowed us to uncover novel regulators involved in a range of complex biological processes, including development, metabolism, and stress responses. Using leaf senescence as an example, we revealed a complex network underpinning this process composed of diverse TF families, including bHLH, ERF, and MYB. We also identified a novel TF, named MAF5, whose expression showed a strong linear regression relation during the progression of senescence. The mutant maf5 showed early leaf decay compared to the wild type, indicating a potential role in the regulation of leaf senescence. This hypothesis was further supported by the expression patterns observed across four stages of leaf development, as well as transcriptomics analysis. Overall, the comprehensive coverage provided by DEGRN expands our understanding of gene regulatory networks and paves the way for further investigations into their functional implications.
Collapse
Affiliation(s)
| | | | | | | | | | - Xu Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (C.G.); (Z.H.); (J.C.); (G.Y.); (Y.W.)
| |
Collapse
|
5
|
Shu L, Li L, Jiang YQ, Yan J. Advances in membrane-tethered NAC transcription factors in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112034. [PMID: 38365003 DOI: 10.1016/j.plantsci.2024.112034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Transcription factors are central components in cell signal transduction networks and are critical regulators for gene expression. It is estimated that approximately 10% of all transcription factors are membrane-tethered. MTFs (membrane-bound transcription factors) are latent transcription factors that are inherently anchored in the cellular membrane in a dormant form. When plants encounter environmental stimuli, they will be released from the membrane by intramembrane proteases or by the ubiquitin proteasome pathway and then were translocated to the nucleus. The capacity to instantly activate dormant transcription factors is a critical strategy for modulating diverse cellular functions in response to external or internal signals, which provides an important transcriptional regulatory network in response to sudden stimulus and improves plant survival. NTLs (NTM1-like) are a small subset of NAC (NAM, ATAF1/2, CUC2) transcription factors, which contain a conserved NAC domain at the N-terminus and a transmembrane domain at the C-terminus. In the past two decades, several NTLs have been identified from several species, and most of them are involved in both development and stress response. In this review, we review the reports and findings on NTLs in plants and highlight the mechanism of their nuclear import as well as their functions in regulating plant growth and stress response.
Collapse
Affiliation(s)
- Lin Shu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan province 450002, China
| | - Longhui Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan province 450002, China
| | - Yuan-Qing Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi province 712100, China
| | - Jingli Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan province 450002, China.
| |
Collapse
|
6
|
Marathe S, Grotewold E, Otegui MS. Should I stay or should I go? Trafficking of plant extra-nuclear transcription factors. THE PLANT CELL 2024; 36:1524-1539. [PMID: 38163635 PMCID: PMC11062434 DOI: 10.1093/plcell/koad277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 01/03/2024]
Abstract
At the heart of all biological processes lies the control of nuclear gene expression, which is primarily achieved through the action of transcription factors (TFs) that generally contain a nuclear localization signal (NLS) to facilitate their transport into the nucleus. However, some TFs reside in the cytoplasm in a transcriptionally inactive state and only enter the nucleus in response to specific signals, which in plants include biotic or abiotic stresses. These extra-nuclear TFs can be found in the cytosol or associated with various membrane systems, including the endoplasmic reticulum and plasma membrane. They may be integral proteins with transmembrane domains or associate peripherally with the lipid bilayer via acylation or membrane-binding domains. Although over 30 plant TFs, most of them involved in stress responses, have been experimentally shown to reside outside the nucleus, computational predictions suggest that this number is much larger. Understanding how extra-nuclear TFs are trafficked into the nucleus is essential for reconstructing transcriptional regulatory networks that govern major cellular pathways in response to biotic and abiotic signals. Here, we provide a perspective on what is known on plant extranuclear-nuclear TF retention, nuclear trafficking, and the post-translational modifications that ultimately enable them to regulate gene expression upon entering the nucleus.
Collapse
Affiliation(s)
- Sarika Marathe
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
7
|
Thibault E, Brandizzi F. Post-translational modifications: emerging directors of cell-fate decisions during endoplasmic reticulum stress in Arabidopsis thaliana. Biochem Soc Trans 2024; 52:831-848. [PMID: 38600022 PMCID: PMC11088923 DOI: 10.1042/bst20231025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Homeostasis of the endoplasmic reticulum (ER) is critical for growth, development, and stress responses. Perturbations causing an imbalance in ER proteostasis lead to a potentially lethal condition known as ER stress. In ER stress situations, cell-fate decisions either activate pro-life pathways that reestablish homeostasis or initiate pro-death pathways to prevent further damage to the organism. Understanding the mechanisms underpinning cell-fate decisions in ER stress is critical for crop development and has the potential to enable translation of conserved components to ER stress-related diseases in metazoans. Post-translational modifications (PTMs) of proteins are emerging as key players in cell-fate decisions in situations of imbalanced ER proteostasis. In this review, we address PTMs orchestrating cell-fate decisions in ER stress in plants and provide evidence-based perspectives for where future studies may focus to identify additional PTMs involved in ER stress management.
Collapse
Affiliation(s)
- Ethan Thibault
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
- Department of Plant Biology, Michigan State University, East Lansing, MI, U.S.A
| | - Federica Brandizzi
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
- Department of Plant Biology, Michigan State University, East Lansing, MI, U.S.A
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
8
|
Liu J, Fan Y, Liu Y, He M, Sun Y, Zheng Q, Mi L, Liu J, Liu W, Tang N, Zhao X, Hu Z, Guo S, Yan D. APP1/NTL9-CalS8 module ensures proper phloem differentiation by stabilizing callose accumulation and symplastic communication. THE NEW PHYTOLOGIST 2024; 242:154-169. [PMID: 38375601 DOI: 10.1111/nph.19617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/04/2024] [Indexed: 02/21/2024]
Abstract
Phloem sieve elements (PSE), the primary conduits collaborating with neighboring phloem pole pericycle (PPP) cells to facilitate unloading in Arabidopsis roots, undergo a series of developmental stages before achieving maturation and functionality. However, the mechanism that maintains the proper progression of these differentiation stages remains largely unknown. We identified a gain-of-function mutant altered phloem pole pericycle 1 Dominant (app1D), producing a truncated, nuclear-localized active form of NAC with Transmembrane Motif 1-like (NTL9). This mutation leads to ectopic expression of its downstream target CALLOSE SYNTHASE 8 (CalS8), thereby inducing callose accumulation, impeding SE differentiation, impairing phloem transport, and inhibiting root growth. The app1D phenotype could be reproduced by blocking the symplastic channels of cells within APP1 expression domain in wild-type (WT) roots. The WT APP1 is primarily membrane-tethered and dormant in the root meristem cells but entries into the nucleus in several cells in PPP near the unloading region, and this import is inhibited by blocking the symplastic intercellular transport in differentiating SE. Our results suggest a potential maintenance mechanism involving an APP1-CalS8 module, which induces CalS8 expression and modulates symplastic communication, and the proper activation of this module is crucial for the successful differentiation of SE in the Arabidopsis root.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Yongxiao Fan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Yao Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Meiqing He
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Yanke Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Qi Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Lingyu Mi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Junzhong Liu
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Wencheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Ning Tang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Xiang Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Dawei Yan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| |
Collapse
|
9
|
Zhang W, Zhi W, Qiao H, Huang J, Li S, Lu Q, Wang N, Li Q, Zhou Q, Sun J, Bai Y, Zheng X, Bai M, Van Breusegem F, Xiang F. H2O2-dependent oxidation of the transcription factor GmNTL1 promotes salt tolerance in soybean. THE PLANT CELL 2023; 36:112-135. [PMID: 37770034 PMCID: PMC10734621 DOI: 10.1093/plcell/koad250] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023]
Abstract
Reactive oxygen species (ROS) play an essential role in plant growth and responses to environmental stresses. Plant cells sense and transduce ROS signaling directly via hydrogen peroxide (H2O2)-mediated posttranslational modifications (PTMs) on protein cysteine residues. Here, we show that the H2O2-mediated cysteine oxidation of NAC WITH TRANS-MEMBRANE MOTIF1-LIKE 1 (GmNTL1) in soybean (Glycine max) during salt stress promotes its release from the endoplasmic reticulum (ER) membrane and translocation to the nucleus. We further show that an oxidative posttranslational modification on GmNTL1 residue Cys-247 steers downstream amplification of ROS production by binding to and activating the promoters of RESPIRATORY BURST OXIDASE HOMOLOG B (GmRbohB) genes, thereby creating a feed-forward loop to fine-tune GmNTL1 activity. In addition, oxidation of GmNTL1 Cys-247 directly promotes the expression of CATION H+ EXCHANGER 1 (GmCHX1)/SALT TOLERANCE-ASSOCIATED GENE ON CHROMOSOME 3 (GmSALT3) and Na+/H+ Antiporter 1 (GmNHX1). Accordingly, transgenic overexpression of GmNTL1 in soybean increases the H2O2 levels and K+/Na+ ratio in the cell, promotes salt tolerance, and increases yield under salt stress, while an RNA interference-mediated knockdown of GmNTL1 elicits the opposite effects. Our results reveal that the salt-induced oxidation of GmNTL1 promotes its relocation and transcriptional activity through an H2O2-mediated posttranslational modification on cysteine that improves resilience of soybean against salt stress.
Collapse
Affiliation(s)
- Wenxiao Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, People's Republic China
| | - Wenjiao Zhi
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, People's Republic China
| | - Hong Qiao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, People's Republic China
| | - Jingjing Huang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Shuo Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, People's Republic China
| | - Qing Lu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, People's Republic China
| | - Nan Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, People's Republic China
| | - Qiang Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, People's Republic China
| | - Qian Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, People's Republic China
| | - Jiaqi Sun
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, People's Republic China
| | - Yuting Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, People's Republic China
| | - Xiaojian Zheng
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, People's Republic China
| | - Mingyi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, People's Republic China
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Fengning Xiang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, People's Republic China
| |
Collapse
|
10
|
Jung JH, Seo PJ, Oh E, Kim J. Temperature perception by plants. TRENDS IN PLANT SCIENCE 2023; 28:924-940. [PMID: 37045740 DOI: 10.1016/j.tplants.2023.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/16/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Plants constantly face fluctuating ambient temperatures and must adapt to survive under stressful conditions. Temperature affects many aspects of plant growth and development through a complex network of transcriptional responses. Although temperature sensing is a crucial primary step in initiating transcriptional responses via Ca2+ and/or reactive oxygen species signaling, an understanding of how plants perceive temperature has remained elusive. However, recent studies have yielded breakthroughs in our understanding of temperature sensors and thermosensation mechanisms. We review recent findings on potential temperature sensors and emerging thermosensation mechanisms, including biomolecular condensate formation through phase separation in plants. We also compare the temperature perception mechanisms of plants with those of other organisms to provide insights into understanding temperature sensing by plants.
Collapse
Affiliation(s)
- Jae-Hoon Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Eunkyoo Oh
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea; Department of Integrative Food, Bioscience, and Technology, Chonnam National University, Gwangju 61186, Korea.
| |
Collapse
|
11
|
Huang L, Yu J, Liu Q, Yu K, Zhang Q, Fan M, Jiang F, Han J, Wei H, Jian W, Zhao Z. Study on tillering stage cold tolerant response in overwintering cultivated rice via comparative transcriptomic. Food Energy Secur 2023. [DOI: 10.1002/fes3.450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023] Open
Affiliation(s)
- Lunxiao Huang
- College of Life Sciences, Chongqing Engineering Research Center of Specialty Crop Resources Chongqing Normal University Chongqing China
| | - Jie Yu
- College of Life Sciences, Chongqing Engineering Research Center of Specialty Crop Resources Chongqing Normal University Chongqing China
| | - Qian Liu
- College of Life Sciences, Chongqing Engineering Research Center of Specialty Crop Resources Chongqing Normal University Chongqing China
| | - Kunchi Yu
- College of Life Sciences, Chongqing Engineering Research Center of Specialty Crop Resources Chongqing Normal University Chongqing China
| | - Qiuyu Zhang
- College of Life Sciences, Chongqing Engineering Research Center of Specialty Crop Resources Chongqing Normal University Chongqing China
| | - Mao Fan
- College of Life Sciences, Chongqing Engineering Research Center of Specialty Crop Resources Chongqing Normal University Chongqing China
| | - Fei Jiang
- College of Life Sciences, Chongqing Engineering Research Center of Specialty Crop Resources Chongqing Normal University Chongqing China
| | - Jiajia Han
- College of Life Sciences, Chongqing Engineering Research Center of Specialty Crop Resources Chongqing Normal University Chongqing China
| | - Hongyu Wei
- College of Life Sciences, Chongqing Engineering Research Center of Specialty Crop Resources Chongqing Normal University Chongqing China
| | - Wei Jian
- College of Life Sciences, Chongqing Engineering Research Center of Specialty Crop Resources Chongqing Normal University Chongqing China
| | - Zhengwu Zhao
- College of Life Sciences, Chongqing Engineering Research Center of Specialty Crop Resources Chongqing Normal University Chongqing China
| |
Collapse
|
12
|
Cold-Induced Physiological and Biochemical Alternations and Proteomic Insight into the Response of Saccharum spontaneum to Low Temperature. Int J Mol Sci 2022; 23:ijms232214244. [PMID: 36430736 PMCID: PMC9692960 DOI: 10.3390/ijms232214244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Sugarcane, a cash crop, is easily affected by low temperature, which results in a decrease in yield and sugar production. Breeding a new variety with cold tolerance is an essential strategy to reduce loss from cold stress. The identification of germplasms and genes/proteins with cold tolerance is a vital step in breeding sugarcane varieties with cold tolerance via a conventional program and molecular technology. In this study, the physiological and biochemical indices of 22 genotypes of S. spontaneum were measured, and the membership function analysis method was used to comprehensively evaluate the cold tolerance ability of these genotypes. The physiological and biochemical indices of these S. spontaneum genotypes showed a sophisticated response to low temperature. On the basis of the physiological and chemical indices, the genotypes were classified into different cold tolerance groups. Then, the high-tolerance genotype 1027 and the low-tolerance genotype 3217 were selected for DIA-based proteomic analysis by subjecting them to low temperature. From the four comparison groups, 1123, 1341, 751, and 1693 differentially abundant proteins (DAPs) were identified, respectively. The DAPs based on genotypes or treatments participated in distinct metabolic pathways. Through detailed analysis of the DAPs, some proteins related to protein homeostasis, carbohydrate and energy metabolism, amino acid transport and metabolism, signal transduction, and the cytoskeleton may be involved in sugarcane tolerance to cold stress. Furthermore, five important proteins related to cold tolerance were discovered for the first time in this study. This work not only provides the germplasms and candidate target proteins for breeding sugarcane varieties with cold tolerance via a conventional program and molecular breeding, but also helps to accelerate the determination of the molecular mechanism underlying cold tolerance in sugarcane.
Collapse
|
13
|
Mondal B, Mukherjee A, Mazumder M, De A, Ghosh S, Basu D. Inducible expression of truncated NAC62 provides tolerance against Alternaria brassicicola and imparts developmental changes in Indian mustard. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111425. [PMID: 36007630 DOI: 10.1016/j.plantsci.2022.111425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/19/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Indian mustard (Brassica juncea) faces significant yield loss due to the 'Black Spot Disease,' caused by a fungus Alternaria brassicicola. In plants, NAC transcription factors (NAC TFs) are known for their roles in development and stress tolerance. One such NAC TF, NAC 62, was induced during A. brassicicola challenge in Sinapis alba, a non-host resistant plant against this fungus. Sequence analyses of BjuNAC62 from B. juncea showed that it belonged to the membrane-bound class of transcription factors. Gene expression study revealed differential protein processing of NAC62 between B. juncea and S. alba on pathogen challenge. Furthermore, NAC62 processing to 25 kDa protein was found to be unique to the resistant plant during pathogenesis. Conditional expression of BjuNAC62ΔC, which lacks its transmembrane domain, in B. juncea showed improved tolerance to A. brassicicola. BjuNAC62ΔC processing to 25 kDa product was also observed in tolerant transgenic plants. Additionally, transgenic plants showed induced expression of genes associated with defense-related phytohormone signaling pathways on pathogen challenge. Again, altered phenotypes suggest a possible developmental effect of BjuNAC62∆C in transgenic plants. The overall results suggest that the processing of BjuNAC62 might be playing a crucial role in resistance response against Black Spot disease by modulating defense-associated genes.
Collapse
Affiliation(s)
- Banani Mondal
- Division of Plant Biology, Bose Institute, P-1/12, CIT Rd, Scheme VIIM, Kolkata, West Bengal 700054, India.
| | - Amrita Mukherjee
- Division of Plant Biology, Bose Institute, P-1/12, CIT Rd, Scheme VIIM, Kolkata, West Bengal 700054, India
| | - Mrinmoy Mazumder
- Division of Plant Biology, Bose Institute, P-1/12, CIT Rd, Scheme VIIM, Kolkata, West Bengal 700054, India
| | - Aishee De
- Division of Plant Biology, Bose Institute, P-1/12, CIT Rd, Scheme VIIM, Kolkata, West Bengal 700054, India
| | - Swagata Ghosh
- Division of Plant Biology, Bose Institute, P-1/12, CIT Rd, Scheme VIIM, Kolkata, West Bengal 700054, India.
| | - Debabrata Basu
- Division of Plant Biology, Bose Institute, P-1/12, CIT Rd, Scheme VIIM, Kolkata, West Bengal 700054, India.
| |
Collapse
|
14
|
Sugimoto H, Tanaka T, Muramoto N, Kitagawa-Yogo R, Mitsukawa N. Transcription factor NTL9 negatively regulates Arabidopsis vascular cambium development during stem secondary growth. PLANT PHYSIOLOGY 2022; 190:1731-1746. [PMID: 35951755 PMCID: PMC9614505 DOI: 10.1093/plphys/kiac368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
In plant stems, secondary vascular development is established through the differentiation of cylindrical vascular cambium, producing secondary xylem (wood) and phloem (bast), which have economic importance. However, there is a dearth of knowledge on the genetic mechanism underlying this process. NAC with Transmembrane Motif 1-like transcription factor 9 (NTL9) plays a central role in abiotic and immune signaling responses. Here, we investigated the role of NTL9 in vascular cambium development in Arabidopsis (Arabidopsis thaliana) inflorescence stems by identifying and characterizing an Arabidopsis phloem circular-timing (pct) mutant. The pct mutant exhibited enhanced vascular cambium formation following secondary phloem production. In the pct mutant, although normal organization in vascular bundles was maintained, vascular cambium differentiation occurred at an early stage of stem development, which was associated with increased expression of cambium-/phloem-related genes and enhanced cambium activity. The pct mutant stem phenotype was caused by a recessive frameshift mutation that disrupts the transmembrane (TM) domain of NTL9. Our results indicate that NTL9 functions as a negative regulator of cambial activity and has a suppressive role in developmental transition to the secondary growth phase in stem vasculature, which is necessary for its precise TM domain-mediated regulation.
Collapse
Affiliation(s)
| | | | - Nobuhiko Muramoto
- Toyota Central R&D Laboratories, Inc., Nagakute, Aichi 480-1192, Japan
| | | | | |
Collapse
|
15
|
Cai J, Liu W, Li W, Zhao L, Chen G, Bai Y, Ma D, Fu C, Wang Y, Zhang X. Downregulation of miR156-Targeted PvSPL6 in Switchgrass Delays Flowering and Increases Biomass Yield. FRONTIERS IN PLANT SCIENCE 2022; 13:834431. [PMID: 35251105 PMCID: PMC8894730 DOI: 10.3389/fpls.2022.834431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
MiR156/SQUAMOSA PROMOTER BINDING-LIKEs (SPLs) module is the key regulatory hub of juvenile-to-adult phase transition as a critical flowering regulator. In this study, a miR156-targeted PvSPL6 was identified and characterized in switchgrass (Panicum virgatum L.), a dual-purpose fodder and biofuel crop. Overexpression of PvSPL6 in switchgrass promoted flowering and reduced internode length, internode number, and plant height, whereas downregulation of PvSPL6 delayed flowering and increased internode length, internode number, and plant height. Protein subcellular localization analysis revealed that PvSPL6 localizes to both the plasma membrane and nucleus. We produced transgenic switchgrass plants that overexpressed a PvSPL6-GFP fusion gene, and callus were induced from inflorescences of selected PvSPL6-GFPOE transgenic lines. We found that the PvSPL6-GFP fusion protein accumulated mainly in the nucleus in callus and was present in both the plasma membrane and nucleus in regenerating callus. However, during subsequent development, the signal of the PvSPL6-GFP fusion protein was detected only in the nucleus in the roots and leaves of plantlets. In addition, PvSPL6 protein was rapidly transported from the nucleus to the plasma membrane after exogenous GA3 application, and returned from the plasma membrane to nucleus after treated with the GA3 inhibitor (paclobutrazol). Taken together, our results demonstrate that PvSPL6 is not only an important target that can be used to develop improved cultivars of forage and biofuel crops that show delayed flowering and high biomass yields, but also has the potential to regulate plant regeneration in response to GA3.
Collapse
Affiliation(s)
- Jinjun Cai
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, China
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Wenwen Liu
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Weiqian Li
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Lijuan Zhao
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
| | - Gang Chen
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yangyang Bai
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Dongmei Ma
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
| | - Chunxiang Fu
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
| | - Yamei Wang
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Xinchang Zhang
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, China
| |
Collapse
|
16
|
Simoni EB, Oliveira CC, Fraga OT, Reis PAB, Fontes EPB. Cell Death Signaling From Endoplasmic Reticulum Stress: Plant-Specific and Conserved Features. FRONTIERS IN PLANT SCIENCE 2022; 13:835738. [PMID: 35185996 PMCID: PMC8850647 DOI: 10.3389/fpls.2022.835738] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 05/06/2023]
Abstract
The endoplasmic reticulum (ER) stress response is triggered by any condition that disrupts protein folding and promotes the accumulation of unfolded proteins in the lumen of the organelle. In eukaryotic cells, the evolutionarily conserved unfolded protein response is activated to clear unfolded proteins and restore ER homeostasis. The recovery from ER stress is accomplished by decreasing protein translation and loading into the organelle, increasing the ER protein processing capacity and ER-associated protein degradation activity. However, if the ER stress persists and cannot be reversed, the chronically prolonged stress leads to cellular dysfunction that activates cell death signaling as an ultimate attempt to survive. Accumulating evidence implicates ER stress-induced cell death signaling pathways as significant contributors for stress adaptation in plants, making modulators of ER stress pathways potentially attractive targets for stress tolerance engineering. Here, we summarize recent advances in understanding plant-specific molecular mechanisms that elicit cell death signaling from ER stress. We also highlight the conserved features of ER stress-induced cell death signaling in plants shared by eukaryotic cells.
Collapse
|
17
|
Gao Y, Fan ZQ, Zhang Q, Li HL, Liu GS, Jing Y, Zhang YP, Zhu BZ, Zhu HL, Chen JY, Grierson D, Luo YB, Zhao XD, Fu DQ. A tomato NAC transcription factor, SlNAM1, positively regulates ethylene biosynthesis and the onset of tomato fruit ripening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1317-1331. [PMID: 34580960 DOI: 10.1111/tpj.15512] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Fruit ripening in tomato (Solanum lycopersicum) is the result of selective expression of ripening-related genes, which are regulated by transcription factors (TFs). The NAC (NAM, ATAF1/2, and CUC2) TF family is one of the largest families of plant-specific TFs and members are involved in a variety of plant physiological activities, including fruit ripening. Fruit ripening-associated NAC TFs studied in tomato to date include NAC-NOR (non-ripening), SlNOR-like1 (non-ripening like1), SlNAC1, and SlNAC4. Considering the large number of NAC genes in the tomato genome, there is little information about the possible roles of other NAC members in fruit ripening, and research on their target genes is lacking. In this study, we characterize SlNAM1, a NAC TF, which positively regulates the initiation of tomato fruit ripening via its regulation of ethylene biosynthesis. The onset of fruit ripening in slnam1-deficient mutants created by CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9) technology was delayed, whereas fruit ripening in OE-SlNAM1 lines was accelerated compared with the wild type. The results of RNA-sequencing (RNA-seq) and promoter analysis suggested that SlNAM1 directly binds to the promoters of two key ethylene biosynthesis genes (1-aminocyclopropane-1-carboxylate synthase: SlACS2 and SlACS4) and activates their expression. This hypothesis was confirmed by electrophoretic mobility shift assays and dual-luciferase reporter assay. Our findings provide insights into the mechanisms of ethylene production and enrich understanding of the tomato fruit ripening regulatory network.
Collapse
Affiliation(s)
- Ying Gao
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Zhong-Qi Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiang Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215000, China
| | - Hong-Li Li
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Gang-Shuai Liu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuan Jing
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yi-Ping Zhang
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ben-Zhong Zhu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hong-Liang Zhu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Donald Grierson
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Yun-Bo Luo
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiao-Dan Zhao
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Da-Qi Fu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
18
|
Li P, Peng Z, Xu P, Tang G, Ma C, Zhu J, Shan L, Wan S. Genome-Wide Identification of NAC Transcription Factors and Their Functional Prediction of Abiotic Stress Response in Peanut. Front Genet 2021; 12:630292. [PMID: 33767732 PMCID: PMC7985091 DOI: 10.3389/fgene.2021.630292] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/08/2021] [Indexed: 11/25/2022] Open
Abstract
The NAC transcription factor (TF) is one of the most significant TFs in plants and is widely involved in plant growth, development, and responses to biotic and abiotic stresses. To date, there are no systematic studies on the NAC family in peanuts. Herein, 132 AhNACs were identified from the genome of cultivated peanut, and they were classified into eight subgroups (I–VIII) based on phylogenetic relationships with Arabidopsis NAC proteins and their conserved motifs. These genes were unevenly scattered on all 20 chromosomes, among which 116 pairs of fragment duplication events and 1 pair of tandem duplications existed. Transcriptome analysis showed that many AhNAC genes responded to drought and abscisic acid (ABA) stresses, especially most of the members in groups IV, VII, and VIII, which were expressed at larger differential levels under polyethylene glycol (PEG) and/or ABA treatment in roots or leaves. Furthermore, 20 of them selected in response to PEG and ABA treatment were evaluated by quantitative real-time polymerase chain reaction. The results showed that these genes significantly responded to drought and ABA in roots and/or leaves. This study was helpful for guiding the functional characterization and improvement of drought-resistant germplasms in peanuts.
Collapse
Affiliation(s)
- Pengxiang Li
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China.,College of Life Science, Shandong Normal University, Jinan, China
| | - Zhenying Peng
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Pingli Xu
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Guiying Tang
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Changle Ma
- College of Life Science, Shandong Normal University, Jinan, China
| | - Jieqiong Zhu
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China.,College of Life Science, Shandong Normal University, Jinan, China
| | - Lei Shan
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China.,College of Life Science, Shandong Normal University, Jinan, China
| | - Shubo Wan
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China.,College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
19
|
Allen JR, Strader LC. Nucleocytoplasmic partitioning as a mechanism to regulate Arabidopsis signaling events. Curr Opin Cell Biol 2021; 69:136-141. [PMID: 33618244 DOI: 10.1016/j.ceb.2021.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/23/2022]
Abstract
The nucleus is the site of transcription events - compartmentalization of transcription in eukaryotes allows for regulated access to chromatin. The nucleopore, a complex of many intrinsically disorder proteins, acts as the gatekeeper for nuclear entry and exit, and receptors for nuclear localization signals and nuclear export signals interact with both cargo and nucleopore components to facilitate this movement. Thus, regulated occlusion of the nuclear localization signal or nuclear export signal, tethering of proteins, or sequestration in biomolecular condensates can be used to regulate nucleocytoplasmic partitioning. In plants, regulated nucleocytoplasmic partitioning is a key mechanism to regulate signaling pathways, including those involved in various phytohormones, environmental stimuli, and pathogen responses.
Collapse
Affiliation(s)
- Jeffrey R Allen
- Department of Biology, Duke University, Durham, NC, 27708, USA; Center for Engineering MechanoBiology, Washington University, St. Louis, MO, 63130, USA; Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, MO, 63130, USA
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC, 27708, USA; Center for Engineering MechanoBiology, Washington University, St. Louis, MO, 63130, USA; Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, MO, 63130, USA.
| |
Collapse
|
20
|
Duan AQ, Yang XL, Feng K, Liu JX, Xu ZS, Xiong AS. Genome-wide analysis of NAC transcription factors and their response to abiotic stress in celery (Apium graveolens L.). Comput Biol Chem 2020; 84:107186. [DOI: 10.1016/j.compbiolchem.2019.107186] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 11/29/2022]
|
21
|
Identification of Arabis alpina genomic regions associated with climatic variables along an elevation gradient through whole genome scan. Genomics 2019; 112:729-735. [PMID: 31085222 DOI: 10.1016/j.ygeno.2019.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/24/2019] [Accepted: 05/08/2019] [Indexed: 01/23/2023]
Abstract
We performed a pooled whole-genome sequencing on samples of the alpine plant Arabis alpina, harvested in ten populations along an elevation gradient in the French Alps. A large dataset of genetic variations was produced as single nucleotide polymorphisms (SNPs). A combined genome scan approach enabled detecting genomic regions associated with a synthetic environmental variable characterizing the climate at each sampling location. Positive loci detected by two methods were retained and belong to 19 regions in the Arabis alpina genome. The most significant region harbors an ortholog of the AtNAC062 gene, encoding a membrane-bound transcription factor described as linking the cold response and pathogen resistance that may confer protection to plants under extended snow coverage at high elevations. Other genes involved in the stress response or in flowering regulation were also detected. Altogether, our results indicated that Arabis alpina represent a suitable model for studying genomic adaptation in alpine perennial plants.
Collapse
|
22
|
Zhang L, Zhao T, Sun X, Wang Y, Du C, Zhu Z, Gichuki DK, Wang Q, Li S, Xin H. Overexpression of VaWRKY12, a transcription factor from Vitis amurensis with increased nuclear localization under low temperature, enhances cold tolerance of plants. PLANT MOLECULAR BIOLOGY 2019; 100:95-110. [PMID: 0 DOI: 10.1007/s11103-019-00846-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 02/18/2019] [Indexed: 05/23/2023]
|
23
|
Liu L, Li J. Communications Between the Endoplasmic Reticulum and Other Organelles During Abiotic Stress Response in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:749. [PMID: 31249578 PMCID: PMC6582665 DOI: 10.3389/fpls.2019.00749] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/21/2019] [Indexed: 05/08/2023]
Abstract
To adapt to constantly changing environmental conditions, plants have evolved sophisticated tolerance mechanisms to integrate various stress signals and to coordinate plant growth and development. It is well known that inter-organellar communications play important roles in maintaining cellular homeostasis in response to environmental stresses. The endoplasmic reticulum (ER), extending throughout the cytoplasm of eukaryotic cells, is a central organelle involved in lipid metabolism, Ca2+ homeostasis, and synthesis and folding of secretory and transmembrane proteins crucial to perceive and transduce environmental signals. The ER communicates with the nucleus via the highly conserved unfolded protein response pathway to mitigate ER stress. Importantly, recent studies have revealed that the dynamic ER network physically interacts with other intracellular organelles and endomembrane compartments, such as the Golgi complex, mitochondria, chloroplast, peroxisome, vacuole, and the plasma membrane, through multiple membrane contact sites between closely apposed organelles. In this review, we will discuss the signaling and metabolite exchanges between the ER and other organelles during abiotic stress responses in plants as well as the ER-organelle membrane contact sites and their associated tethering complexes.
Collapse
Affiliation(s)
- Linchuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Jianming Li, ;
| |
Collapse
|
24
|
Barkla BJ, Garibay-Hernández A, Melzer M, Rupasinghe TWT, Roessner U. Single cell-type analysis of cellular lipid remodelling in response to salinity in the epidermal bladder cells of the model halophyte Mesembryanthemum crystallinum. PLANT, CELL & ENVIRONMENT 2018; 41:2390-2403. [PMID: 29813189 DOI: 10.1111/pce.13352] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 05/26/2023]
Abstract
Salt stress causes dramatic changes in the organization and dynamic properties of membranes, however, little is known about the underlying mechanisms involved. Modified trichomes, known as epidermal bladder cells (EBC), on the leaves and stems of the halophyte Mesembryanthemum crystallinum can be successfully exploited as a single-cell-type system to investigate salt-induced changes to cellular lipid composition. In this study, alterations in key molecular species from different lipid classes highlighted an increase in phospholipid species, particularly those from phosphatidylcholine and phosphatidic acid (PA), where the latter is central to the synthesis of membrane lipids. Triacylglycerol (TG) species decreased during salinity, while there was little change in plastidic galactolipids. EBC transcriptomic and proteomic data mining revealed changes in genes and proteins involved in lipid metabolism and the upregulation of transcripts for PIPKIB, PI5PII, PIPKIII, and phospholipase D delta suggested the induction of signalling processes mediated by phosphoinositides and PA. TEM and flow cytometry showed the dynamic nature of lipid droplets in these cells under salt stress. Altogether, this work indicates that the metabolism of TG might play an important role in EBC response to salinity as either an energy reserve for sodium accumulation and/or driving membrane biosynthesis for EBC expansion.
Collapse
Affiliation(s)
- Bronwyn J Barkla
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, Australia
| | - Adriana Garibay-Hernández
- Instituto de Biotecnología, UNAM, Cuernavaca, Morelos, Mexico
- Leibniz Institute of Plant Genetics and Crop Plant Research, Seeland, Germany
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research, Seeland, Germany
| | - Thusitha W T Rupasinghe
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
- Metabolomics Australia, School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Ute Roessner
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
- Metabolomics Australia, School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
25
|
Nawkar GM, Lee ES, Shelake RM, Park JH, Ryu SW, Kang CH, Lee SY. Activation of the Transducers of Unfolded Protein Response in Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:214. [PMID: 29515614 DOI: 10.3389/fpls.2018.00214/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/05/2018] [Indexed: 05/24/2023]
Abstract
Maintenance of homeostasis of the endoplasmic reticulum (ER) ensures the balance between loading of nascent proteins and their secretion. Certain developmental conditions or environmental stressors affect protein folding causing ER stress. The resultant ER stress is mitigated by upregulating a set of stress-responsive genes in the nucleus modulating the mechanism of the unfolded protein response (UPR). In plants, the UPR is mediated by two major pathways; by the proteolytic processing of bZIP17/28 and by the IRE1-mediated splicing of bZIP60 mRNA. Recent studies have shown the involvement of plant-specific NAC transcription factors in UPR regulation. The molecular mechanisms activating plant-UPR transducers are only recently being unveiled. This review focuses on important structural features involved in the activation of the UPR transducers like bZIP17/28/60, IRE1, BAG7, and NAC017/062/089/103. Also, we discuss the activation of the UPR pathways, including BAG7-bZIP28 and IRE1-bZIP60, in detail, together with the NAC-TFs, which adds a new paradigm to the plant UPR.
Collapse
Affiliation(s)
- Ganesh M Nawkar
- Division of Applied Life Sciences (BK21 Plus) and Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, South Korea
| | - Eun Seon Lee
- Division of Applied Life Sciences (BK21 Plus) and Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, South Korea
| | - Rahul M Shelake
- Division of Applied Life Sciences (BK21 Plus) and Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, South Korea
| | - Joung Hun Park
- Division of Applied Life Sciences (BK21 Plus) and Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, South Korea
| | - Seoung Woo Ryu
- Division of Applied Life Sciences (BK21 Plus) and Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, South Korea
| | - Chang Ho Kang
- Division of Applied Life Sciences (BK21 Plus) and Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, South Korea
| | - Sang Yeol Lee
- Division of Applied Life Sciences (BK21 Plus) and Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
26
|
Nawkar GM, Lee ES, Shelake RM, Park JH, Ryu SW, Kang CH, Lee SY. Activation of the Transducers of Unfolded Protein Response in Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:214. [PMID: 29515614 PMCID: PMC5826264 DOI: 10.3389/fpls.2018.00214] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/05/2018] [Indexed: 05/19/2023]
Abstract
Maintenance of homeostasis of the endoplasmic reticulum (ER) ensures the balance between loading of nascent proteins and their secretion. Certain developmental conditions or environmental stressors affect protein folding causing ER stress. The resultant ER stress is mitigated by upregulating a set of stress-responsive genes in the nucleus modulating the mechanism of the unfolded protein response (UPR). In plants, the UPR is mediated by two major pathways; by the proteolytic processing of bZIP17/28 and by the IRE1-mediated splicing of bZIP60 mRNA. Recent studies have shown the involvement of plant-specific NAC transcription factors in UPR regulation. The molecular mechanisms activating plant-UPR transducers are only recently being unveiled. This review focuses on important structural features involved in the activation of the UPR transducers like bZIP17/28/60, IRE1, BAG7, and NAC017/062/089/103. Also, we discuss the activation of the UPR pathways, including BAG7-bZIP28 and IRE1-bZIP60, in detail, together with the NAC-TFs, which adds a new paradigm to the plant UPR.
Collapse
|
27
|
Khedia J, Agarwal P, Agarwal PK. AlNAC4 Transcription Factor From Halophyte Aeluropus lagopoides Mitigates Oxidative Stress by Maintaining ROS Homeostasis in Transgenic Tobacco. FRONTIERS IN PLANT SCIENCE 2018; 9:1522. [PMID: 30420862 PMCID: PMC6215862 DOI: 10.3389/fpls.2018.01522] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 09/27/2018] [Indexed: 05/02/2023]
Abstract
NAC proteins are a large family of plant-specific transcription factors which regulate both ABA-dependent and -independent gene expression. These transcription factors participate in biotic and abiotic stress-response through intricate regulation at transcriptional, post-transcriptional and post-translational levels. In the present study, AlNAC4 transcription factor was isolated from a salt excreting halophyte Aeluropus lagopoides. The AlNAC4 has an open reading frame of 936 bp, encoding a protein of 312 amino acid, with an estimated molecular mass of 34.9 kDa. The AlNAC4 showed close homology to monocot NACs in the phylogenetic tree. In silico analysis revealed that AlNAC4 possess the characteristic A-E subdomains within the NAC domain. The AlNAC4 showed sixteen post-translational phosphorylation sites. The AlNAC4 transcript was significantly upregulated with dehydration and H2O2 treatments, showing its role in osmotic and oxidative stress, respectively. The recombinant protein showed binding to mono as well as tandem repeats of NAC recognition sequence (NACRS) of the erd1 promoter. This is the first report mentioning that overexpression of AlNAC4 improved oxidative stress tolerance in tobacco transgenics. The transgenics maintained ROS homeostasis during H2O2 treatment. The transgenics showed regulation of stress-responsive genes including CAT, SOD, LEA5, PLC3, ERD10B, THT1 and transcription factors like AP2, ZFP during oxidative stress. Key Message: The AlNAC4 transcription factor from recretohalophyte Aeluropus showed regulation with abiotic stresses and binding to NACRS elements of erd1 promoter. The AlNAC4 tobacco transgenics showed improved growth with oxidative stress.
Collapse
Affiliation(s)
- Jackson Khedia
- Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, Bhavnagar, India
- Division of Biotechnology and Phycology, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, Bhavnagar, India
| | - Parinita Agarwal
- Division of Biotechnology and Phycology, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, Bhavnagar, India
- *Correspondence: Parinita Agarwal, ; Pradeep K. Agarwal, ;
| | - Pradeep K. Agarwal
- Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, Bhavnagar, India
- Division of Biotechnology and Phycology, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, Bhavnagar, India
- *Correspondence: Parinita Agarwal, ; Pradeep K. Agarwal, ;
| |
Collapse
|
28
|
Marques DN, Reis SPD, de Souza CR. Plant NAC transcription factors responsive to abiotic stresses. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.plgene.2017.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Jin X, Ren J, Nevo E, Yin X, Sun D, Peng J. Divergent Evolutionary Patterns of NAC Transcription Factors Are Associated with Diversification and Gene Duplications in Angiosperm. FRONTIERS IN PLANT SCIENCE 2017; 8:1156. [PMID: 28713414 PMCID: PMC5492850 DOI: 10.3389/fpls.2017.01156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/15/2017] [Indexed: 05/20/2023]
Abstract
NAC (NAM/ATAF/CUC) proteins constitute one of the biggest plant-specific transcription factor (TF) families and have crucial roles in diverse developmental programs during plant growth. Phylogenetic analyses have revealed both conserved and lineage-specific NAC subfamilies, among which various origins and distinct features were observed. It is reasonable to hypothesize that there should be divergent evolutionary patterns of NAC TFs both between dicots and monocots, and among NAC subfamilies. In this study, we compared the gene duplication and loss, evolutionary rate, and selective pattern among non-lineage specific NAC subfamilies, as well as those between dicots and monocots, through genome-wide analyses of sequence and functional data in six dicot and five grass lineages. The number of genes gained in the dicot lineages was much larger than that in the grass lineages, while fewer gene losses were observed in the grass than that in the dicots. We revealed (1) uneven constitution of Clusters of Orthologous Groups (COGs) and contrasting birth/death rates among subfamilies, and (2) two distinct evolutionary scenarios of NAC TFs between dicots and grasses. Our results demonstrated that relaxed selection, resulting from concerted gene duplications, may have permitted substitutions responsible for functional divergence of NAC genes into new lineages. The underlying mechanism of distinct evolutionary fates of NAC TFs shed lights on how evolutionary divergence contributes to differences in establishing NAC gene subfamilies and thus impacts the distinct features between dicots and grasses.
Collapse
Affiliation(s)
- Xiaoli Jin
- Department of Agronomy and the Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang UniversityHangzhou, China
| | - Jing Ren
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou UniversityDezhou, China
| | - Eviatar Nevo
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of HaifaHaifa, Israel
| | - Xuegui Yin
- Department of Biotechnology, College of Agriculture, Guangdong Ocean UniversityZhanjiang, China
| | - Dongfa Sun
- Department of Agronomy, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Junhua Peng
- Department of Biotechnology, College of Agriculture, Guangdong Ocean UniversityZhanjiang, China
- Life Science & Technology Center, and the State Key Lab of Crop Breeding Technology Innovation and Integration, China National Seed Group Co., Ltd.Wuhan, China
| |
Collapse
|
30
|
Yao Y, He RJ, Xie QL, Zhao XH, Deng XM, He JB, Song L, He J, Marchant A, Chen XY, Wu AM. ETHYLENE RESPONSE FACTOR 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in Arabidopsis. THE NEW PHYTOLOGIST 2017; 213:1667-1681. [PMID: 28164334 DOI: 10.1111/nph.14278] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/15/2016] [Indexed: 05/22/2023]
Abstract
Recent studies indicate that the ETHYLENE RESPONSE FACTOR VII (ERF-VII) transcription factor is an important regulator of osmotic and hypoxic stress responses in plants. However, the molecular mechanism of ERF-VII-mediated transcriptional regulation remains unclear. Here, we investigated the role of ERF74 (a member of the ERF-VII protein family) by examining the abiotic stress tolerance of an ERF74 overexpression line and a T-DNA insertion mutant using flow cytometry, transactivation and electrophoretic mobility shift assays. 35S::ERF74 showed enhanced tolerance to drought, high light, heat and aluminum stresses, whereas the T-DNA insertion mutant erf74 and the erf74;erf75 double mutant displayed higher sensitivity. Using flow cytometry analysis, we found that erf74 and erf74;erf75 lines lack the reactive oxygen species (ROS) burst in the early stages of various stresses, as a result of the lower expression level of RESPIRATORY BURST OXIDASE HOMOLOG D (RbohD). Furthermore, ERF74 directly binds to the promoter of RbohD and activates its expression under different abiotic stresses. Moreover, induction of stress marker genes and ROS-scavenging enzyme genes under various stress conditions is dependent on the ERF74-RbohD-ROS signal pathway. We propose a pathway that involves ERF74 acting as an on-off switch controlling an RbohD-dependent mechanism in response to different stresses, subsequently maintaining hydrogen peroxide (H2 O2 ) homeostasis in Arabidopsis.
Collapse
Affiliation(s)
- Yuan Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Run Jun He
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, the First Hospital Affiliated to Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qiao Li Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xian Hai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao Mei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Bo He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Lili Song
- Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Alan Marchant
- Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Xiao-Yang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
31
|
Serrano I, Buscaill P, Audran C, Pouzet C, Jauneau A, Rivas S. A non canonical subtilase attenuates the transcriptional activation of defence responses in Arabidopsis thaliana. eLife 2016; 5. [PMID: 27685353 DOI: 10.7554/elife.19755.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 09/28/2016] [Indexed: 05/20/2023] Open
Abstract
Proteases play crucial physiological functions in all organisms by controlling the lifetime of proteins. Here, we identified an atypical protease of the subtilase family [SBT5.2(b)] that attenuates the transcriptional activation of plant defence independently of its protease activity. The SBT5.2 gene produces two distinct transcripts encoding a canonical secreted subtilase [SBT5.2(a)] and an intracellular protein [SBT5.2(b)]. Concomitant to SBT5.2(a) downregulation, SBT5.2(b) expression is induced after bacterial inoculation. SBT5.2(b) localizes to endosomes where it interacts with and retains the defence-related transcription factor MYB30. Nuclear exclusion of MYB30 results in its reduced transcriptional activation and, thus, suppressed resistance. sbt5.2 mutants, with abolished SBT5.2(a) and SBT5.2(b) expression, display enhanced defence that is suppressed in a myb30 mutant background. Moreover, overexpression of SBT5.2(b), but not SBT5.2(a), in sbt5.2 plants reverts the phenotypes displayed by sbt5.2 mutants. Overall, we uncover a regulatory mode of the transcriptional activation of defence responses previously undescribed in eukaryotes.
Collapse
Affiliation(s)
- Irene Serrano
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Pierre Buscaill
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Corinne Audran
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Cécile Pouzet
- Fédération de Recherche 3450, Plateforme Imagerie, Pôle de Biotechnologie Végétale, Castanet-Tolosan, France
| | - Alain Jauneau
- Fédération de Recherche 3450, Plateforme Imagerie, Pôle de Biotechnologie Végétale, Castanet-Tolosan, France
| | - Susana Rivas
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|
32
|
Serrano I, Buscaill P, Audran C, Pouzet C, Jauneau A, Rivas S. A non canonical subtilase attenuates the transcriptional activation of defence responses in Arabidopsis thaliana. eLife 2016; 5. [PMID: 27685353 PMCID: PMC5074803 DOI: 10.7554/elife.19755] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 09/28/2016] [Indexed: 01/06/2023] Open
Abstract
Proteases play crucial physiological functions in all organisms by controlling the lifetime of proteins. Here, we identified an atypical protease of the subtilase family [SBT5.2(b)] that attenuates the transcriptional activation of plant defence independently of its protease activity. The SBT5.2 gene produces two distinct transcripts encoding a canonical secreted subtilase [SBT5.2(a)] and an intracellular protein [SBT5.2(b)]. Concomitant to SBT5.2(a) downregulation, SBT5.2(b) expression is induced after bacterial inoculation. SBT5.2(b) localizes to endosomes where it interacts with and retains the defence-related transcription factor MYB30. Nuclear exclusion of MYB30 results in its reduced transcriptional activation and, thus, suppressed resistance. sbt5.2 mutants, with abolished SBT5.2(a) and SBT5.2(b) expression, display enhanced defence that is suppressed in a myb30 mutant background. Moreover, overexpression of SBT5.2(b), but not SBT5.2(a), in sbt5.2 plants reverts the phenotypes displayed by sbt5.2 mutants. Overall, we uncover a regulatory mode of the transcriptional activation of defence responses previously undescribed in eukaryotes. DOI:http://dx.doi.org/10.7554/eLife.19755.001 Like animals, plants have evolved numerous ways to protect themselves from disease. When a plant detects an invading microbe, it massively changes which genes it expresses to establish a defensive response. This is possible thanks to the action of a type of protein, named transcription factors, which are able to bind to DNA in the cell nucleus and regulate gene expression. However, triggering such a response comes at a cost, and so plants must keep their defensive response in check such that they can allocate resources in a balanced way. In the model plant Arabidopsis, a protein named MYB30 is one transcription factor that is able to promote disease resistance. Previous research identified some proteins that can reduce the activity of this transcription factor to avoid triggering a response when it is not needed, for example, when no infectious microbes are present. However, it was likely that other proteins were also involved in the process. Now, Serrano et al. report that an enzyme called SBT5.2 is an additional negative regulator of MYB30 activity. SBT5.2 belongs to a family of protein-degrading enzymes called subtilases, which are typically localized outside cells. As such, it was unclear how SBT5.2 could interact and regulate a transcription factor that is found inside the nucleus of plant cells. Nevertheless, Serrano et al. found that the gene that encodes SBT5.2 actually gives rise to two distinct proteins. The first is a classical subtilase that is indeed located outside of the cell, and so cannot interact with MYB30 and does not affect its activity. The second protein is an atypical subtilase that localises to bubble-like compartments called vesicles within the cell and is able to highjack MYB30 on its way to the nucleus. When the atypical subtilase interacts with MYB30 at vesicles, it stops MYB30 from entering the nucleus. As a result, MYB30 cannot bind to the DNA nor activate its target genes. This means that the defensive response that normally depends on MYB30 is weakened. The work of Serrano et al. uncovers a new way to regulate the expression of defence-related genes. Further unravelling the molecular mechanisms involved in the fine-tuning of gene expression represents a challenging task for future research. DOI:http://dx.doi.org/10.7554/eLife.19755.002
Collapse
Affiliation(s)
- Irene Serrano
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Pierre Buscaill
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Corinne Audran
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Cécile Pouzet
- Fédération de Recherche 3450, Plateforme Imagerie, Pôle de Biotechnologie Végétale, Castanet-Tolosan, France
| | - Alain Jauneau
- Fédération de Recherche 3450, Plateforme Imagerie, Pôle de Biotechnologie Végétale, Castanet-Tolosan, France
| | - Susana Rivas
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|
33
|
van Buer J, Cvetkovic J, Baier M. Cold regulation of plastid ascorbate peroxidases serves as a priming hub controlling ROS signaling in Arabidopsis thaliana. BMC PLANT BIOLOGY 2016; 16:163. [PMID: 27439459 PMCID: PMC4955218 DOI: 10.1186/s12870-016-0856-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/15/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Short cold periods comprise a challenge to plant growth and development. Series of cold stresses improve plant performance upon a future cold stress. This effect could be provoked by priming, training or acclimation dependent hardening. Here, we compared the effect of 24 h (short priming stimulus) and of 2 week long cold-pretreatment (long priming stimulus) on the response of Arabidopsis thaliana to a single 24 h cold stimulus (triggering) after a 5 day long lag-phase, to test Arabidopsis for cold primability. RESULTS Three types of pretreatment dependent responses were observed: (1) The CBF-regulon controlled gene COR15A was stronger activated only after long-term cold pretreatment. (2) The non-chloroplast specific stress markers PAL1 and CHS were more induced by cold after long-term and slightly stronger expressed after short-term cold priming. (3) The chloroplast ROS signaling marker genes ZAT10 and BAP1 were less activated by the triggering stimulus in primed plants. The effects on ZAT10 and BAP1 were more pronounced in 24 h cold-primed plants than in 14 day long cold-primed ones demonstrating independence of priming from induction and persistence of primary cold acclimation responses. Transcript and protein abundance analysis and studies in specific knock-out lines linked the priming-specific regulation of ZAT10 and BAP1 induction to the priming-induced long-term regulation of stromal and thylakoid-bound ascorbate peroxidase (sAPX and tAPX) expression. CONCLUSION The plastid antioxidant system, especially, plastid ascorbate peroxidase regulation, transmits information on a previous cold stress over time without the requirement of establishing cold-acclimation. We hypothesize that the plastid antioxidant system serves as a priming hub and that priming-dependent regulation of chloroplast-to-nucleus ROS signaling is a strategy to prepare plants under unstable environmental conditions against unpredictable stresses by supporting extra-plastidic stress protection.
Collapse
Affiliation(s)
- Jörn van Buer
- Dahlem Center of Plant Sciences, Plant Physiology, Freie Universität Berlin, Königin-Luise-Straße 12-16, 14195 Berlin, Germany
| | - Jelena Cvetkovic
- Dahlem Center of Plant Sciences, Plant Physiology, Freie Universität Berlin, Königin-Luise-Straße 12-16, 14195 Berlin, Germany
| | - Margarete Baier
- Dahlem Center of Plant Sciences, Plant Physiology, Freie Universität Berlin, Königin-Luise-Straße 12-16, 14195 Berlin, Germany
| |
Collapse
|
34
|
Abstract
Somatic embryogenesis involves a broad repertoire of genes, and complex expression patterns controlled by a concerted gene regulatory network. The present work describes this regulatory network focusing on the main aspects involved, with the aim of providing a deeper insight into understanding the total reprogramming of cells into a new organism through a somatic way. To the aim, the chromatin remodeling necessary to totipotent stem cell establishment is described, as the activity of numerous transcription factors necessary to cellular totipotency reprogramming. The eliciting effects of various plant growth regulators on the induction of somatic embryogenesis is also described and put in relation with the activity of specific transcription factors. The role of programmed cell death in the process, and the related function of specific hemoglobins as anti-stress and anti-death compounds is also described. The tools for biotechnology coming from this information is highlighted in the concluding remarks.
Collapse
|
35
|
Chen L, Fan J, Hu L, Hu Z, Xie Y, Zhang Y, Lou Y, Nevo E, Fu J. A transcriptomic analysis of bermudagrass (Cynodon dactylon) provides novel insights into the basis of low temperature tolerance. BMC PLANT BIOLOGY 2015; 15:216. [PMID: 26362029 PMCID: PMC4566850 DOI: 10.1186/s12870-015-0598-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/22/2015] [Indexed: 05/13/2023]
Abstract
BACKGROUND Cold stress is regarded as a key factor limiting widespread use for bermudagrass (Cynodon dactylon). Therefore, to improve cold tolerance for bermudagrass, it is urgent to understand molecular mechanisms of bermudagrass response to cold stress. However, our knowledge about the molecular responses of this species to cold stress is largely unknown. The objective of this study was to characterize the transcriptomic response to low temperature in bermudagrass by using RNA-Seq platform. RESULTS Ten cDNA libraries were generated from RNA samples of leaves from five different treatments in the cold-resistant (R) and the cold-sensitive (S) genotypes, including 4 °C cold acclimation (CA) for 24 h and 48 h, freezing (-5 °C) treatments for 4 h with or without prior CA, and controls. When subjected to cold acclimation, global gene expressions were initiated more quickly in the R genotype than those in the S genotype. The R genotype activated gene expression more effectively in response to freezing temperature after 48 h CA than the S genotype. The differentially expressed genes were identified as low temperature sensing and signaling-related genes, functional proteins and transcription factors, many of which were specifically or predominantly expressed in the R genotype under cold treatments, implying that these genes play important roles in the enhanced cold hardiness of bermudagrass. KEGG pathway enrichment analysis for DEGs revealed that photosynthesis, nitrogen metabolism and carbon fixation pathways play key roles in bermudagrass response to cold stress. CONCLUSIONS The results of this study may contribute to our understanding the molecular mechanism underlying the responses of bermudagrass to cold stress, and also provide important clues for further study and in-depth characterization of cold-resistance breeding candidate genes in bermudagrass.
Collapse
Affiliation(s)
- Liang Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China.
| | - Jibiao Fan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
| | - Longxing Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China.
| | - Zhengrong Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
| | - Yan Xie
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
| | - Yingzi Zhang
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Yanhong Lou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China.
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa, 31905, Israel.
| | - Jinmin Fu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China.
| |
Collapse
|
36
|
Dong X, Yi H, Lee J, Nou IS, Han CT, Hur Y. Global Gene-Expression Analysis to Identify Differentially Expressed Genes Critical for the Heat Stress Response in Brassica rapa. PLoS One 2015; 10:e0130451. [PMID: 26102990 PMCID: PMC4477974 DOI: 10.1371/journal.pone.0130451] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 05/20/2015] [Indexed: 01/08/2023] Open
Abstract
Genome-wide dissection of the heat stress response (HSR) is necessary to overcome problems in crop production caused by global warming. To identify HSR genes, we profiled gene expression in two Chinese cabbage inbred lines with different thermotolerances, Chiifu and Kenshin. Many genes exhibited >2-fold changes in expression upon exposure to 0.5– 4 h at 45°C (high temperature, HT): 5.2% (2,142 genes) in Chiifu and 3.7% (1,535 genes) in Kenshin. The most enriched GO (Gene Ontology) items included ‘response to heat’, ‘response to reactive oxygen species (ROS)’, ‘response to temperature stimulus’, ‘response to abiotic stimulus’, and ‘MAPKKK cascade’. In both lines, the genes most highly induced by HT encoded small heat shock proteins (Hsps) and heat shock factor (Hsf)-like proteins such as HsfB2A (Bra029292), whereas high-molecular weight Hsps were constitutively expressed. Other upstream HSR components were also up-regulated: ROS-scavenging genes like glutathione peroxidase 2 (BrGPX2, Bra022853), protein kinases, and phosphatases. Among heat stress (HS) marker genes in Arabidopsis, only exportin 1A (XPO1A) (Bra008580, Bra006382) can be applied to B. rapa for basal thermotolerance (BT) and short-term acquired thermotolerance (SAT) gene. CYP707A3 (Bra025083, Bra021965), which is involved in the dehydration response in Arabidopsis, was associated with membrane leakage in both lines following HS. Although many transcription factors (TF) genes, including DREB2A (Bra005852), were involved in HS tolerance in both lines, Bra024224 (MYB41) and Bra021735 (a bZIP/AIR1 [Anthocyanin-Impaired-Response-1]) were specific to Kenshin. Several candidate TFs involved in thermotolerance were confirmed as HSR genes by real-time PCR, and these assignments were further supported by promoter analysis. Although some of our findings are similar to those obtained using other plant species, clear differences in Brassica rapa reveal a distinct HSR in this species. Our data could also provide a springboard for developing molecular markers of HS and for engineering HS tolerant B. rapa.
Collapse
Affiliation(s)
- Xiangshu Dong
- Department of Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Hankuil Yi
- Department of Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Jeongyeo Lee
- Department of Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam, Republic of Korea
| | - Ching-Tack Han
- Department of Life Science, Sogang University, Seoul, Republic of Korea
- * E-mail: (YH); (CTH)
| | - Yoonkang Hur
- Department of Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
- * E-mail: (YH); (CTH)
| |
Collapse
|
37
|
Thieulin-Pardo G, Avilan L, Kojadinovic M, Gontero B. Fairy "tails": flexibility and function of intrinsically disordered extensions in the photosynthetic world. Front Mol Biosci 2015; 2:23. [PMID: 26042223 PMCID: PMC4436894 DOI: 10.3389/fmolb.2015.00023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/04/2015] [Indexed: 12/22/2022] Open
Abstract
Intrinsically Disordered Proteins (IDPs), or protein fragments also called Intrinsically Disordered Regions (IDRs), display high flexibility as the result of their amino acid composition. They can adopt multiple roles. In globular proteins, IDRs are usually found as loops and linkers between secondary structure elements. However, not all disordered fragments are loops: some proteins bear an intrinsically disordered extension at their C- or N-terminus, and this flexibility can affect the protein as a whole. In this review, we focus on the disordered N- and C-terminal extensions of globular proteins from photosynthetic organisms. Using the examples of the A2B2-GAPDH and the α Rubisco activase isoform, we show that intrinsically disordered extensions can help regulate their “host” protein in response to changes in light, thereby participating in photosynthesis regulation. As IDPs are famous for their large number of protein partners, we used the examples of the NAC, bZIP, TCP, and GRAS transcription factor families to illustrate the fact that intrinsically disordered extremities can allow a protein to have an increased number of partners, which directly affects its regulation. Finally, for proteins from the cryptochrome light receptor family, we describe how a new role for the photolyase proteins may emerge by the addition of an intrinsically disordered extension, while still allowing the protein to absorb blue light. This review has highlighted the diverse repercussions of the disordered extension on the regulation and function of their host protein and outlined possible future research avenues.
Collapse
Affiliation(s)
- Gabriel Thieulin-Pardo
- UMR 7281, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| | - Luisana Avilan
- UMR 7281, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| | - Mila Kojadinovic
- UMR 7281, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| | - Brigitte Gontero
- UMR 7281, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| |
Collapse
|
38
|
Shi Y, Ding Y, Yang S. Cold signal transduction and its interplay with phytohormones during cold acclimation. PLANT & CELL PHYSIOLOGY 2015; 56:7-15. [PMID: 25189343 DOI: 10.1093/pcp/pcu115] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cold stress is a major environmental factor that affects plant growth, development, productivity and distribution. In higher plants, the known major cold signaling pathway is the C-repeat (CRT)-binding factor/dehydration-responsive element (DRE) binding factor (CBF/DREB)-mediated transcriptional regulatory cascade, which is essential for the induction of a set of cold responsive (COR) genes. Recent studies indicate that various plant hormones are also involved in responses to cold stress. This review summarizes recent progress in cold signaling and our understanding of phytohormone signaling in the regulation of plant responses to cold stress.
Collapse
Affiliation(s)
- Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China These authors contributed equally to this work
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China These authors contributed equally to this work
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
39
|
Lee S, Lee HJ, Huh SU, Paek KH, Ha JH, Park CM. The Arabidopsis NAC transcription factor NTL4 participates in a positive feedback loop that induces programmed cell death under heat stress conditions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 227:76-83. [PMID: 25219309 DOI: 10.1016/j.plantsci.2014.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 05/18/2023]
Abstract
Programmed cell death (PCD) is an integral component of plant development and adaptation under adverse environmental conditions. Reactive oxygen species (ROS) are one of the most important players that trigger PCD in plants, and ROS-generating machinery is activated in plant cells undergoing PCD. The membrane-bound NAC transcription factor NTL4 has recently been proven to facilitate ROS production in response to drought stress in Arabidopsis. In this work, we show that NTL4 participates in a positive feedback loop that bursts ROS accumulation to modulate PCD under heat stress conditions. Heat stress induces NTL4 gene transcription and NTL4 protein processing. The level of hydrogen peroxide (H2O2) was elevated in 35S:4ΔC transgenic plants that overexpress a transcriptionally active nuclear NTL4 form but significantly reduced in NTL4-deficient ntl4 mutants under heat stress conditions. In addition, heat stress-induced cell death was accelerated in the 35S:4ΔC transgenic plants but decreased in the ntl4 mutants. Notably, H2O2 triggers NTL4 gene transcription and NTL4 protein processing under heat stress conditions. On the basis of these findings, we conclude that NTL4 modulates PCD through a ROS-mediated positive feedback control under heat stress conditions, possibly providing an adaptation strategy by which plants ensure their survival under extreme heat stress conditions.
Collapse
Affiliation(s)
- Sangmin Lee
- Department of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyo-Jun Lee
- Department of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sung Un Huh
- College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Kyung-Hee Paek
- College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Jun-Ho Ha
- Department of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
40
|
Yang ZT, Lu SJ, Wang MJ, Bi DL, Sun L, Zhou SF, Song ZT, Liu JX. A plasma membrane-tethered transcription factor, NAC062/ANAC062/NTL6, mediates the unfolded protein response in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:1033-43. [PMID: 24961665 DOI: 10.1111/tpj.12604] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/16/2014] [Accepted: 06/19/2014] [Indexed: 05/03/2023]
Abstract
The accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) triggers a well conserved pathway called the unfolded protein response (UPR) in eukaryotic cells to mitigate ER stress. Two signaling pathways, S2P-bZIP28 and IRE1-bZIP60, play important roles in transmitting ER stress signals from the ER to the nucleus in Arabidopsis (Arabidopsis thaliana). It is not known whether other components in the secretory pathway also contribute to the alleviation of ER stress. Here we report the identification of a plasma membrane-associated transcription factor, NAC062 (also known as ANAC062/NTL6), as another important UPR mediator in Arabidopsis plants. NAC062 relocates from the plasma membrane to the nucleus and regulates the expression of ER stress responsive genes in Arabidopsis. Knock-down of NAC062 in the wild-type background confers ER stress sensitivity, while inducible expression of a nucleus-localized form of NAC062, NAC062D, in the bZIP28 and bZIP60 double mutant (zip28zip60) background increases ER stress tolerance. Knock-down of NAC062 impairs ER-stress-induced expression of UPR downstream genes while over-expression of NAC062D-MYC induces the expression of UPR downstream genes under normal growth condition. CHIP-qPCR reveals that NAC062D-MYC is enriched at the promoter regions of several UPR downstream genes such as BiP2. Furthermore, NAC062 itself is also up-regulated by ER stress, which is dependent on bZIP60 but not on bZIP28. Thus, our results have uncovered an alternative UPR pathway in plants in which the membrane-associated transcription factor NAC062 relays ER stress signaling from the plasma membrane to the nucleus and plays important roles in regulating UPR downstream gene expression.
Collapse
Affiliation(s)
- Zheng-Ting Yang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Garcia-Molina A, Xing S, Huijser P. Functional characterisation of Arabidopsis SPL7 conserved protein domains suggests novel regulatory mechanisms in the Cu deficiency response. BMC PLANT BIOLOGY 2014; 14:231. [PMID: 25207797 PMCID: PMC4158090 DOI: 10.1186/s12870-014-0231-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/18/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND The Arabidopsis SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL) transcription factor SPL7 reprograms cellular gene expression to adapt plant growth and cellular metabolism to copper (Cu) limited culture conditions. Plant cells require Cu to maintain essential processes, such as photosynthesis, scavenging reactive oxygen species, cell wall lignification and hormone sensing. More specifically, SPL7 activity promotes a high-affinity Cu-uptake system and optimizes Cu (re-)distribution to essential Cu-proteins by means of specific miRNAs targeting mRNA transcripts for those dispensable. However, the functional mechanism underlying SPL7 activation is still to be elucidated. As SPL7 transcript levels are largely non-responsive to Cu availability, post-translational modification seems an obvious possibility. Previously, it was reported that the SPL7 SBP domain does not bind to DNA in vitro in the presence of Cu ions and that SPL7 interacts with a kin17 domain protein to raise SPL7-target gene expression upon Cu deprivation. Here we report how additional conserved SPL7 protein domains may contribute to the Cu deficiency response in Arabidopsis. RESULTS Cytological and biochemical approaches confirmed an operative transmembrane domain (TMD) and uncovered a dual localisation of SPL7 between the nucleus and an endomembrane system, most likely the endoplasmic reticulum (ER). This new perspective unveiled a possible link between Cu deficit and ER stress, a metabolic dysfunction found capable of inducing SPL7 targets in an SPL7-dependent manner. Moreover, in vivo protein-protein interaction assays revealed that SPL7 is able to homodimerize, probably mediated by the IRPGC domain. These observations, in combination with the constitutive activation of SPL7 targets, when ectopically expressing the N-terminal part of SPL7 including the SBP domain, shed some light on the mechanisms governing SPL7 function. CONCLUSIONS Here, we propose a revised model of SPL7 activation and regulation. According to our results, SPL7 would be initially located to endomembranes and activated during ER stress as a result of Cu deficiency. Furthermore, we added the SPL7 dimerization in the presence of Cu ions as an additional regulatory mechanism to modulate the Cu deficiency response.
Collapse
Affiliation(s)
- Antoni Garcia-Molina
- />Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829 Germany
- />Current address: Lehrstuhl für Systembiologie der Pflanzen, Technische Universität München, Emil-Ramann-Strasse 4, Freising, 85354 Germany
| | - Shuping Xing
- />Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829 Germany
- />Current address: Department of Developmental Genetics, Centre for Plant Molecular Biology, Universität Tübingen, Auf der Morgenstelle 32, Tübingen, 72076 Germany
| | - Peter Huijser
- />Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829 Germany
| |
Collapse
|
42
|
Seo PJ. Recent advances in plant membrane-bound transcription factor research: emphasis on intracellular movement. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:334-342. [PMID: 24299191 DOI: 10.1111/jipb.12139] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/25/2013] [Indexed: 06/02/2023]
Abstract
Transcription factors constitute numerous signal transduction networks and play a central role in gene expression regulation. Recent studies have shown that a limited portion of transcription factors are anchored in the cellular membrane, storing as dormant forms. Upon exposure to environmental and developmental cues, these transcription factors are released from the membrane and translocated to the nucleus, where they regulate associated target genes. As this process skips both transcriptional and translational regulations, it guarantees prompt response to external and internal signals. Membrane-bound transcription factors (MTFs) undergo several unique steps that are not involved in the action of canonical nuclear transcription factors: proteolytic processing and intracellular movement. Recently, alternative splicing has also emerged as a mechanism to liberate MTFs from the cellular membranes, establishing an additional activation scheme independent of proteolytic processing. Multiple layers of MTF regulation add complexity to transcriptional regulatory scheme and ensure elaborate action of MTFs. In this review, we provide an overview of recent findings on MTFs in plants and highlight the molecular mechanisms underlying MTF liberation from cellular membranes with an emphasis on intracellular movement.
Collapse
Affiliation(s)
- Pil Joon Seo
- Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, 561-756, Korea; Research Center of Bioactive Materials, Chonbuk National University, Jeonju, 561-756, Korea; Department of Chemistry and Research Institute of Physics and Chemistry, Chonbuk National University, Jeonju, 561-756, Korea
| |
Collapse
|
43
|
Jung SJ, Lee HG, Seo PJ. Membrane-triggered plant immunity. PLANT SIGNALING & BEHAVIOR 2014; 9:e29729. [PMID: 25763708 PMCID: PMC4205149 DOI: 10.4161/psb.29729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 06/04/2023]
Abstract
Plants have evolved sophisticated defense mechanisms to resist pathogen invasion. Upon the pathogen recognition, the host plants activate a variety of signal transduction pathways, and one of representative defense responses is systemic acquired resistance (SAR) that provides strong immunity against secondary infections in systemic tissues. Accumulating evidence has demonstrated that modulation of membrane composition contributes to establishing SAR and disease resistance in Arabidopsis, but underlying molecular mechanisms remain to be elucidated. Here, we show that a membrane-bound transcription factor (MTF) is associated with plant responses to pathogen attack. The MTF is responsive to microbe-associated molecular pattern (MAMP)-triggered membrane rigidification at the levels of transcription and proteolytic processing. The processed nuclear transcription factor possibly regulates pathogen resistance by directly regulating PATHOGENESIS-RELATED (PR) genes. Taken together, our results suggest that pathogenic microorganisms trigger changes in physico-chemical properties of cellular membrane in plants, and the MTF conveys the membrane information to the nucleus to ensure prompt establishment of plant immunity.
Collapse
Affiliation(s)
- Su-Jin Jung
- Department of Chemistry and Research Institute of Physics and Chemistry; Chonbuk National University; Jeonju, Korea
| | - Hong Gil Lee
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials; Chonbuk National University; Jeonju, Korea
| | - Pil Joon Seo
- Department of Chemistry and Research Institute of Physics and Chemistry; Chonbuk National University; Jeonju, Korea
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials; Chonbuk National University; Jeonju, Korea
| |
Collapse
|
44
|
Ng S, Ivanova A, Duncan O, Law SR, Van Aken O, De Clercq I, Wang Y, Carrie C, Xu L, Kmiec B, Walker H, Van Breusegem F, Whelan J, Giraud E. A membrane-bound NAC transcription factor, ANAC017, mediates mitochondrial retrograde signaling in Arabidopsis. THE PLANT CELL 2013; 25:3450-71. [PMID: 24045017 PMCID: PMC3809543 DOI: 10.1105/tpc.113.113985] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/04/2013] [Accepted: 08/26/2013] [Indexed: 05/18/2023]
Abstract
Plants require daily coordinated regulation of energy metabolism for optimal growth and survival and therefore need to integrate cellular responses with both mitochondrial and plastid retrograde signaling. Using a forward genetic screen to characterize regulators of alternative oxidase1a (rao) mutants, we identified RAO2/Arabidopsis NAC domain-containing protein17 (ANAC017) as a direct positive regulator of AOX1a. RAO2/ANAC017 is targeted to connections and junctions in the endoplasmic reticulum (ER) and F-actin via a C-terminal transmembrane (TM) domain. A consensus rhomboid protease cleavage site is present in ANAC017 just prior to the predicted TM domain. Furthermore, addition of the rhomboid protease inhibitor N-p-Tosyl-l-Phe chloromethyl abolishes the induction of AOX1a upon antimycin A treatment. Simultaneous fluorescent tagging of ANAC017 with N-terminal red fluorescent protein (RFP) and C-terminal green fluorescent protein (GFP) revealed that the N-terminal RFP domain migrated into the nucleus, while the C-terminal GFP tag remained in the ER. Genome-wide analysis of the transcriptional network regulated by RAO2/ANAC017 under stress treatment revealed that RAO2/ANAC017 function was necessary for >85% of the changes observed as a primary response to cytosolic hydrogen peroxide (H2O2), but only ~33% of transcriptional changes observed in response to antimycin A treatment. Plants with mutated rao2/anac017 were more stress sensitive, whereas a gain-of-function mutation resulted in plants that had lower cellular levels of H2O2 under untreated conditions.
Collapse
Affiliation(s)
- Sophia Ng
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Aneta Ivanova
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Owen Duncan
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Simon R. Law
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Olivier Van Aken
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Inge De Clercq
- Flanders Institute for Biotechnology, Department of Plant Systems Biology, Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Yan Wang
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Chris Carrie
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Lin Xu
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Beata Kmiec
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Hayden Walker
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Frank Van Breusegem
- Flanders Institute for Biotechnology, Department of Plant Systems Biology, Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
- Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Estelle Giraud
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
- Address correspondence to
| |
Collapse
|
45
|
D'Angeli S, Falasca G, Matteucci M, Altamura MM. Cold perception and gene expression differ in Olea europaea seed coat and embryo during drupe cold acclimation. THE NEW PHYTOLOGIST 2013; 197:123-138. [PMID: 23078289 DOI: 10.1111/j.1469-8137.2012.04372.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 09/05/2012] [Indexed: 06/01/2023]
Abstract
FAD2 and FAD7 desaturases are involved in cold acclimation of olive (Olea europaea) mesocarp. There is no research information available on cold acclimation of seeds during mesocarp cold acclimation or on differences in the cold response of the seed coat and embryo. How FAD2 and FAD7 affect seed coat and embryo cold responses is unknown. Osmotin positively affects cold acclimation in olive tree vegetative organs, but its role in the seeds requires investigation. OeFAD2.1, OeFAD2.2, OeFAD7 and Oeosmotin were investigated before and after mesocarp acclimation by transcriptomic, lipidomic and immunolabelling analyses, and cytosolic calcium concentration ([Ca(2+)](cyt)) signalling, F-actin changes and seed development were investigated by epifluorescence/histological analyses. Transient [Ca(2+)](cyt) rises and F-actin disassembly were found in cold-shocked protoplasts from the seed coat, but not from the embryo. The thickness of the outer endosperm cuticle increased during drupe exposure to lowering of temperature, whereas the embryo protoderm always lacked cuticle. OeFAD2 transcription increased in both the embryo and seed coat in the cold-acclimated drupe, but linoleic acid (i.e. the product of FAD2 activity) increased solely in the seed coat. Osmotin was immunodetected in the seed coat and endosperm of the cold-acclimated drupe, and not in the embryo. The results show cold responsiveness in the seed coat and cold tolerance in the embryo. We propose a role for the seed coat in maintaining embryo cold tolerance by increasing endosperm cutinization through FAD2 and osmotin activities.
Collapse
Affiliation(s)
- S D'Angeli
- Dipartimento di Biologia Ambientale, Università 'Sapienza', P.le A. Moro 5, 00185, Roma, Italy
| | - G Falasca
- Dipartimento di Biologia Ambientale, Università 'Sapienza', P.le A. Moro 5, 00185, Roma, Italy
| | - M Matteucci
- Dipartimento di Biologia Ambientale, Università 'Sapienza', P.le A. Moro 5, 00185, Roma, Italy
| | - M M Altamura
- Dipartimento di Biologia Ambientale, Università 'Sapienza', P.le A. Moro 5, 00185, Roma, Italy
| |
Collapse
|
46
|
Puranik S, Sahu PP, Srivastava PS, Prasad M. NAC proteins: regulation and role in stress tolerance. TRENDS IN PLANT SCIENCE 2012; 17:369-81. [PMID: 22445067 DOI: 10.1016/j.tplants.2012.02.004] [Citation(s) in RCA: 656] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 01/31/2012] [Accepted: 02/16/2012] [Indexed: 05/17/2023]
Abstract
The plant-specific NAC (NAM, ATAF1,2 and CUC2) proteins constitute a major transcription factor family renowned for their roles in several developmental programs. Despite their highly conserved DNA-binding domains, their remarkable diversification across plants reflects their numerous functions. Lately, they have received much attention as regulators in various stress signaling pathways which may include interplay of phytohormones. This review summarizes the recent progress in research on NACs highlighting the proteins' potential for engineering stress tolerance against various abiotic and biotic challenges. We discuss regulatory components and targets of NAC proteins in the context of their prospective role for crop improvement strategies via biotechnological intervention.
Collapse
Affiliation(s)
- Swati Puranik
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | | | | | | |
Collapse
|
47
|
Liu JX, Zheng CH, Xu Y. Extracting plants core genes responding to abiotic stresses by penalized matrix decomposition. Comput Biol Med 2012; 42:582-9. [PMID: 22364779 DOI: 10.1016/j.compbiomed.2012.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 01/28/2012] [Accepted: 02/01/2012] [Indexed: 01/22/2023]
Abstract
Sparse methods have a significant advantage to reduce the complexity of genes expression data and to make them more comprehensible and interpretable. In this paper, based on penalized matrix decomposition (PMD), a novel approach is proposed to extract plants core genes, i.e., the characteristic gene set, responding to abiotic stresses. Core genes can capture the changes of the samples. In other words, the features of samples can be caught by the core genes. The experimental results show that the proposed PMD-based method is efficient to extract the core genes closely related to the abiotic stresses.
Collapse
Affiliation(s)
- Jin-Xing Liu
- Bio-Computing Research Center, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, China.
| | | | | |
Collapse
|
48
|
Seo PJ, Hong SY, Kim SG, Park CM. Competitive inhibition of transcription factors by small interfering peptides. TRENDS IN PLANT SCIENCE 2011; 16:541-9. [PMID: 21723179 DOI: 10.1016/j.tplants.2011.06.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 06/01/2011] [Accepted: 06/06/2011] [Indexed: 05/04/2023]
Abstract
Combinatorial assortment by dynamic dimer formation diversifies gene transcriptional specificities of transcription factors. A similar but biochemically distinct mechanism is competitive inhibition in which small proteins act as negative regulators by competitively forming nonfunctional heterodimers with specific transcription factors. The most extensively studied is the negative regulation of auxin response factors by AUXIN/INDOLE-3-ACETIC ACID repressors. Similarly, Arabidopsis thaliana (Arabidopsis) little zipper and mini finger proteins act as competitive inhibitors of target transcription factors. Competitive inhibitors are also generated by alternative splicing and controlled proteolytic processing. Because they provide a way of attenuating transcription factors we propose to call them small interfering peptides (siPEPs). The siPEP-mediated strategy could be applied to deactivate specific transcription factors in crop plants.
Collapse
Affiliation(s)
- Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
49
|
Ruelland E, Zachowski A. How plants sense temperature. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2010. [PMID: 0 DOI: 10.1016/j.envexpbot.2010.05.011] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
|
50
|
Hong SY, Kim OK, Kim SG, Yang MS, Park CM. Nuclear import and DNA binding of the ZHD5 transcription factor is modulated by a competitive peptide inhibitor in Arabidopsis. J Biol Chem 2010; 286:1659-68. [PMID: 21059647 PMCID: PMC3020774 DOI: 10.1074/jbc.m110.167692] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Competitive inhibition of transcription factors by small proteins is an intriguing component of gene regulatory networks in both animals and plants. The small interfering proteins possess limited sequence homologies to specific transcription factors but lack one or more protein motifs required for transcription factor activities. They interfere with the activities of transcription factors, such as DNA binding and transcriptional activation, by forming nonfunctional heterodimers. A potential example is the Arabidopsis MIF1 (mini zinc finger 1) protein consisting of 101 residues. It has a zinc finger domain but lacks other protein motifs normally present in transcription factors. In this work, we show that MIF1 and its functional homologues physically interact with a group of zinc finger homeodomain (ZHD) transcription factors, such as ZHD5, that regulate floral architecture and leaf development. Gel mobility shift assays revealed that MIF1 blocks the DNA binding activity of ZHD5 homodimers by competitively forming MIF1-ZHD5 heterodimers. Accordingly, the transcriptional activation activity of ZHD5 was significantly suppressed by MIF1 coexpressed transiently in Arabidopsis protoplasts. Notably, MIF1 also prevents ZHD5 from nuclear localization. Although ZHD5 was localized exclusively in the nucleus, it was scattered throughout the cytoplasm when MIF1 was coexpressed. Transgenic plants overexpressing the ZHD5 gene (35S:ZHD5) exhibited accelerated growth with larger leaves. Consistent with the negative regulation of ZHD5 by MIF1, the 35S:ZHD5 phenotypes were diminished by MIF1 coexpression. These observations indicate that MIF1 regulates the ZHD5 activities in a dual step manner: nuclear import and DNA binding.
Collapse
Affiliation(s)
- Shin-Young Hong
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|