1
|
Balducci C, Orsini F, Cerovic M, Beeg M, Rocutto B, Dacomo L, Masone A, Busani E, Raimondi I, Lavigna G, Chen PT, Leva S, Colombo L, Zucchelli C, Musco G, Kanaan NM, Gobbi M, Chiesa R, Fioriti L, Forloni G. Tau oligomers impair memory and synaptic plasticity through the cellular prion protein. Acta Neuropathol Commun 2025; 13:17. [PMID: 39871396 PMCID: PMC11773831 DOI: 10.1186/s40478-025-01930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/13/2025] [Indexed: 01/29/2025] Open
Abstract
Deposition of abnormally phosphorylated tau aggregates is a central event leading to neuronal dysfunction and death in Alzheimer's disease (AD) and other tauopathies. Among tau aggregates, oligomers (TauOs) are considered the most toxic. AD brains show significant increase in TauOs compared to healthy controls, their concentration correlating with the severity of cognitive deficits and disease progression. In vitro and in vivo neuronal TauO exposure leads to synaptic and cognitive dysfunction, but their mechanisms of action are unclear. Evidence suggests that the cellular prion protein (PrPC) may act as a mediator of TauO neurotoxicity, as previously proposed for β-amyloid and α-synuclein oligomers. To investigate whether PrPC mediates TauO detrimental activities, we compared their effects on memory and synaptic plasticity in wild type (WT) and PrPC knockout (Prnp0/0) mice. Intracerebroventricular injection of TauOs significantly impaired recognition memory in WT but not in Prnp0/0 mice. Similarly, TauOs inhibited long-term potentiation in acute hippocampal slices from WT but not Prnp0/0 mice. Surface plasmon resonance indicated a high-affinity binding between TauOs and PrPC with a KD of 20-50 nM. Immunofluorescence analysis of naïve and PrPC-overexpressing HEK293 cells exposed to TauOs showed a PrPC dose-dependent association of TauOs with cells over time, and their co-localization with PrPC on the plasma membrane and in intracellular compartments, suggesting PrPC-may play a role in TauO internalization. These findings support the concept that PrPC mediates the detrimental activities of TauOs through a direct interaction, suggesting that targeting this interaction might be a promising therapeutic strategy for AD and other tauopathies.
Collapse
Affiliation(s)
- Claudia Balducci
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Franca Orsini
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Milica Cerovic
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Marten Beeg
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Beatrice Rocutto
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Letizia Dacomo
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Antonio Masone
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Eleonora Busani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Ilaria Raimondi
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Giada Lavigna
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Po-Tao Chen
- Department of Neuroscience, Zuckerman Institute, Columbia University, New York, NY, 10027, USA
| | - Susanna Leva
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Laura Colombo
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Chiara Zucchelli
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Giovanna Musco
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Nicholas M Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Marco Gobbi
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Roberto Chiesa
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy.
| | - Luana Fioriti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy.
- Department of Neuroscience, Zuckerman Institute, Columbia University, New York, NY, 10027, USA.
| | - Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy.
| |
Collapse
|
2
|
Casey C, Sleator RD. Prions: structure, function, evolution, and disease. Arch Microbiol 2024; 207:1. [PMID: 39572454 DOI: 10.1007/s00203-024-04200-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
Prions are proteinaceous infectious particles implicated in fatal neurodegenerative disorders known as prion diseases. Herein, we provide an overview of prion biology, emphasizing the structural, functional, and evolutionary aspects of prions, along with their potential applications in protein engineering. Understanding the structure-function relationships of both healthy and disease-associated prion proteins enables a deeper understanding of the mechanisms of prion-induced neurotoxicity. Furthermore, we describe how insights into prion evolution have begun to shed light on their ancient origins and evolutionary resilience, offering deeper insights into the potential roles of prions in primordial chemical processes.
Collapse
Affiliation(s)
- Clara Casey
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, T12 P928, Ireland
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Roy D Sleator
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, T12 P928, Ireland.
| |
Collapse
|
3
|
Masone A, Zucchelli C, Caruso E, Lavigna G, Eraña H, Giachin G, Tapella L, Comerio L, Restelli E, Raimondi I, Elezgarai SR, De Leo F, Quilici G, Taiarol L, Oldrati M, Lorenzo NL, García-Martínez S, Cagnotto A, Lucchetti J, Gobbi M, Vanni I, Nonno R, Di Bari MA, Tully MD, Cecatiello V, Ciossani G, Pasqualato S, Van Anken E, Salmona M, Castilla J, Requena JR, Banfi S, Musco G, Chiesa R. A tetracationic porphyrin with dual anti-prion activity. iScience 2023; 26:107480. [PMID: 37636075 PMCID: PMC10448035 DOI: 10.1016/j.isci.2023.107480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/09/2022] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Prions are deadly infectious agents made of PrPSc, a misfolded variant of the cellular prion protein (PrPC) which self-propagates by inducing misfolding of native PrPC. PrPSc can adopt different pathogenic conformations (prion strains), which can be resistant to potential drugs, or acquire drug resistance, hampering the development of effective therapies. We identified Zn(II)-BnPyP, a tetracationic porphyrin that binds to distinct domains of native PrPC, eliciting a dual anti-prion effect. Zn(II)-BnPyP binding to a C-terminal pocket destabilizes the native PrPC fold, hindering conversion to PrPSc; Zn(II)-BnPyP binding to the flexible N-terminal tail disrupts N- to C-terminal interactions, triggering PrPC endocytosis and lysosomal degradation, thus reducing the substrate for PrPSc generation. Zn(II)-BnPyP inhibits propagation of different prion strains in vitro, in neuronal cells and organotypic brain cultures. These results identify a PrPC-targeting compound with an unprecedented dual mechanism of action which might be exploited to achieve anti-prion effects without engendering drug resistance.
Collapse
Affiliation(s)
- Antonio Masone
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Chiara Zucchelli
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Enrico Caruso
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Giada Lavigna
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Hasier Eraña
- Centro de Investigación Cooperativa en Biociencias (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III National Health Institute, 28029 Madrid, Spain
| | - Gabriele Giachin
- Department of Chemical Sciences (DiSC), University of Padua, 35131 Padua, Italy
| | - Laura Tapella
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Liliana Comerio
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Elena Restelli
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Ilaria Raimondi
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Saioa R. Elezgarai
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Federica De Leo
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Giacomo Quilici
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Lorenzo Taiarol
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Marvin Oldrati
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Nuria L. Lorenzo
- CIMUS Biomedical Research Institute and Department of Medical Sciences, University of Santiago de Compostela-IDIS, 15782 Santiago de Compostela, Spain
| | - Sandra García-Martínez
- Centro de Investigación Cooperativa en Biociencias (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Alfredo Cagnotto
- Laboratory of Biochemistry and Protein Chemistry, Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Jacopo Lucchetti
- Laboratory of Pharmacodynamics and Pharmacokinetics, Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Marco Gobbi
- Laboratory of Pharmacodynamics and Pharmacokinetics, Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Ilaria Vanni
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Michele A. Di Bari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Mark D. Tully
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38000 Grenoble, France
| | - Valentina Cecatiello
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
| | - Giuseppe Ciossani
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
| | - Sebastiano Pasqualato
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
| | - Eelco Van Anken
- Protein Transport and Secretion Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Mario Salmona
- Laboratory of Biochemistry and Protein Chemistry, Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Joaquín Castilla
- Centro de Investigación Cooperativa en Biociencias (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III National Health Institute, 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Bizkaia, Spain
| | - Jesús R. Requena
- CIMUS Biomedical Research Institute and Department of Medical Sciences, University of Santiago de Compostela-IDIS, 15782 Santiago de Compostela, Spain
| | - Stefano Banfi
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Giovanna Musco
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Roberto Chiesa
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| |
Collapse
|
4
|
From molecular dynamics to quantum mechanics of misfolded proteins and amyloid-like macroaggregates applied to neurodegenerative diseases. J Mol Graph Model 2021; 110:108046. [PMID: 34736057 DOI: 10.1016/j.jmgm.2021.108046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/14/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022]
Abstract
A misfolded protein compared with its native state lacks its biological function resulting in cell dysregulations and often death. Outdated hypotheses on protein folding must be revised: More realistic molecular models, focusing not only on classical molecular dynamics (MD) but also on ab initio quantum mechanics (QM) at the molecular orbitals (MOs) scale, which is not experimentally achievable, are presented to improve our understanding of the thermodynamics of the protein-protein interactions leading to misfolding and neurodegenerative diseases for future drug design. Protein misfolding is characterized by the formation of highly reactive beta-sheets oligomers leading to fibrillar macroscopic aggregates, which are studied with the models given herein that can be useful for the development of new immunotherapies against the Alzheimer's disease and prion, e.g. The example of the prion - an intrinsically disordered protein - is studied, but the models can be generalized to other misfolding diseases. The binding free energy and interactions in a complex of a misfolded prion with a native prion are first analyzed by MD and compared to a complex of two native conformers. A conversion of residues to toxic beta-sheets is observed in the optimized misfolded complex. Then, QM is used to compute, with a much better accuracy than that of MD, the binding free energy of the hydrophobic binding site, responsible of the aggregation, between the bound misfolded and native conformers in the misfolded complex. The latter quantity is significantly negative, so that aggregation is strong and fast. The frontier MOs from QM are used for docking to determine how the first repetitive beta-sheets building blocks of the nanofibrils can be assembled from initial cleaved complexes of the native and misfolded proteins. Successive aggregation of multiple monomers leads to an amyloid-like nanofibril that grows along a principal elongation direction, as also observed experimentally.
Collapse
|
5
|
Restelli E, Capone V, Pozzoli M, Ortolan D, Quaglio E, Corbelli A, Fiordaliso F, Beznoussenko GV, Artuso V, Roiter I, Sallese M, Chiesa R. Activation of Src family kinase ameliorates secretory trafficking in mutant prion protein cells. J Biol Chem 2021; 296:100490. [PMID: 33662396 PMCID: PMC8059059 DOI: 10.1016/j.jbc.2021.100490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/04/2021] [Accepted: 02/26/2021] [Indexed: 11/25/2022] Open
Abstract
Fatal familial insomnia (FFI), genetic Creutzfeldt-Jakob disease (gCJD), and Gerstmann-Sträussler-Scheinker (GSS) syndrome are neurodegenerative disorders linked to prion protein (PrP) mutations. The pathogenic mechanisms are not known, but increasing evidence points to mutant PrP misfolding and retention in the secretory pathway. We previously found that the D178N/M129 mutation associated with FFI accumulates in the Golgi of neuronal cells, impairing post-Golgi trafficking. In this study we further characterized the trafficking defect induced by the FFI mutation and tested the 178N/V129 variant linked to gCJD and a nine-octapeptide repeat insertion associated with GSS. We used transfected HeLa cells, embryonic fibroblasts and primary neurons from transgenic mice, and fibroblasts from carriers of the FFI mutation. In all these cell types, the mutant PrPs showed abnormal intracellular localizations, accumulating in the endoplasmic reticulum (ER) and Golgi. To test the efficiency of the membrane trafficking system, we monitored the intracellular transport of the temperature-sensitive vesicular stomatite virus glycoprotein (VSV-G), a well-established cargo reporter, and of endogenous procollagen I (PC-I). We observed marked alterations in secretory trafficking, with VSV-G accumulating mainly in the Golgi complex and PC-I in the ER and Golgi. A redacted version of mutant PrP with reduced propensity to misfold did not impair VSV-G trafficking, nor did artificial ER or Golgi retention of wild-type PrP; this indicates that both misfolding and intracellular retention were required to induce the transport defect. Pharmacological activation of Src family kinase (SFK) improved intracellular transport, suggesting that mutant PrP impairs secretory trafficking through corruption of SFK-mediated signaling.
Collapse
Affiliation(s)
- Elena Restelli
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Vanessa Capone
- Department of Innovative Technologies in Medicine & Dentistry, University G. D'Annunzio, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University G. D'Annunzio, Chieti, Italy
| | - Manuela Pozzoli
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Davide Ortolan
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elena Quaglio
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Alessandro Corbelli
- Bio-Imaging Unit, Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Fabio Fiordaliso
- Bio-Imaging Unit, Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | | | - Ignazio Roiter
- ULSS 2 Marca Trevigiana, Ca' Foncello Hospital, Treviso, Italy
| | - Michele Sallese
- Department of Innovative Technologies in Medicine & Dentistry, University G. D'Annunzio, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University G. D'Annunzio, Chieti, Italy
| | - Roberto Chiesa
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| |
Collapse
|
6
|
Mutant prion proteins increase calcium permeability of AMPA receptors, exacerbating excitotoxicity. PLoS Pathog 2020; 16:e1008654. [PMID: 32673372 PMCID: PMC7365390 DOI: 10.1371/journal.ppat.1008654] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/26/2020] [Indexed: 01/26/2023] Open
Abstract
Prion protein (PrP) mutations are linked to genetic prion diseases, a class of phenotypically heterogeneous neurodegenerative disorders with invariably fatal outcome. How mutant PrP triggers neurodegeneration is not known. Synaptic dysfunction precedes neuronal loss but it is not clear whether, and through which mechanisms, disruption of synaptic activity ultimately leads to neuronal death. Here we show that mutant PrP impairs the secretory trafficking of AMPA receptors (AMPARs). Specifically, intracellular retention of the GluA2 subunit results in synaptic exposure of GluA2-lacking, calcium-permeable AMPARs, leading to increased calcium permeability and enhanced sensitivity to excitotoxic cell death. Mutant PrPs linked to different genetic prion diseases affect AMPAR trafficking and function in different ways. Our findings identify AMPARs as pathogenic targets in genetic prion diseases, and support the involvement of excitotoxicity in neurodegeneration. They also suggest a mechanistic explanation for how different mutant PrPs may cause distinct disease phenotypes. Genetic prion diseases are degenerative brain disorders caused by mutations in the gene encoding the prion protein (PrP). Different PrP mutations cause different diseases, including Creutzfeldt-Jakob disease, fatal familial insomnia and Gerstmann-Sträussler-Scheinker syndrome. How mutant PrP causes neuronal death and how different mutants encode distinct disease phenotypes is not known. Here we show that mutant PrP alters the subunit composition of glutamate AMPA receptors, promoting cell surface exposure of GluA2-lacking, calcium-permeable receptors, ultimately increasing neuronal vulnerability to excitotoxic cell death. We also demonstrate that the underlying molecular mechanism is the formation of a GluA2 subunit-PrP complex which is retained in the neuronal secretory pathway. PrP mutants associated with clinically different genetic prion diseases have distinct effects on GluA2 trafficking, depending on their tendency to misfold and aggregate in different intracellular organelles, indicating a possible contribution of this mechanism to the disease phenotype.
Collapse
|
7
|
Glynn C, Sawaya MR, Ge P, Gallagher-Jones M, Short CW, Bowman R, Apostol M, Zhou ZH, Eisenberg DS, Rodriguez JA. Cryo-EM structure of a human prion fibril with a hydrophobic, protease-resistant core. Nat Struct Mol Biol 2020; 27:417-423. [PMID: 32284600 PMCID: PMC7338044 DOI: 10.1038/s41594-020-0403-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/28/2020] [Indexed: 01/22/2023]
Abstract
Self-templating assemblies of the human prion protein are clinically associated with transmissible spongiform encephalopathies. Here we present the cryo-EM structure of a denaturant- and protease-resistant fibril formed in vitro spontaneously by a 9.7-kDa unglycosylated fragment of the human prion protein. This human prion fibril contains two protofilaments intertwined with screw symmetry and linked by a tightly packed hydrophobic interface. Each protofilament consists of an extended beta arch formed by residues 106 to 145 of the prion protein, a hydrophobic and highly fibrillogenic disease-associated segment. Such structures of prion polymorphs serve as blueprints on which to evaluate the potential impact of sequence variants on prion disease.
Collapse
Affiliation(s)
- Calina Glynn
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael R Sawaya
- Department of Biological Chemistry and Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Peng Ge
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Marcus Gallagher-Jones
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Connor W Short
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ronquiajah Bowman
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Marcin Apostol
- Department of Biological Chemistry and Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, USA
- ADRx, Thousand Oaks, CA, USA
| | - Z Hong Zhou
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
- Department of Microbiology Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - David S Eisenberg
- Department of Biological Chemistry and Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Jose A Rodriguez
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Marassi V, Beretti F, Roda B, Alessandrini A, Facci P, Maraldi T, Zattoni A, Reschiglian P, Portolani M. A new approach for the separation, characterization and testing of potential prionoid protein aggregates through hollow-fiber flow field-flow fractionation and multi-angle light scattering. Anal Chim Acta 2019; 1087:121-130. [PMID: 31585560 DOI: 10.1016/j.aca.2019.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/27/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
Abstract
Protein misfolding and aggregation are the common mechanisms in a variety of aggregation-dependent diseases. The compromised proteins often assemble into toxic, accumulating amyloid-like structures of various lengths and their toxicity can also be transferred both in vivo and in vitro a prion-like behavior. The characterization of protein interactions, degradation and conformational dynamics in biological systems still represents an analytical challenge in the prion-like protein comprehension. In our work, we investigated the nature of a transferable cytotoxic agent, presumably a misfolded protein, through the coupling of a multi-detector, non-destructive separation platform based on hollow-fiber flow field-flow fractionation with imaging and downstream in vitro tests. After purification with ion exchange chromatography, the transferable cytotoxic agentwas analyzed with Atomic Force Microscopy and statistical analysis, showing that the concentration of protein dimers and low n-oligomer forms was higher in the cytotoxic sample than in the control preparation. To assess whether the presence of these species was the actual toxic and/or self-propagating factor, we employed HF5 fractionation, with UV and Multi-Angle Light Scattering detection, to define proteins molar mass distribution and abundance, and fractionate the sample into size-homogeneous fractions. These fractions were then tested individually in vitro to investigate the direct correlation with cytotoxicity. Only the later-eluted fraction, which contains high-molar mass aggregates, proved to be toxic onto cell cultures. Moreover, it was observed that the selective transfer of toxicity also occurs for one lower-mass fraction, suggesting that two different mechanisms, acute and later induced toxicity, are in place. These results strongly encourage the efficacy of this platform to enable the identification of protein toxicants.
Collapse
Affiliation(s)
- Valentina Marassi
- Department of Chemistry G. Ciamician, University of Bologna, Via Selmi 2, 40126, Bologna, Italy; ByFlow Srl, Via dell'Arcoveggio 74, 40129, Bologna, Italy
| | - Francesca Beretti
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Via del Pozzo, 71, 41124, Modena, Italy
| | - Barbara Roda
- Department of Chemistry G. Ciamician, University of Bologna, Via Selmi 2, 40126, Bologna, Italy; ByFlow Srl, Via dell'Arcoveggio 74, 40129, Bologna, Italy.
| | - Andrea Alessandrini
- CNR-Istituto Nanoscienze, S3, Via Campi 213/A, 41125, Modena, Italy; Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A, 41125, Modena, Italy
| | - Paolo Facci
- CNR-Istituto Nanoscienze, S3, Via Campi 213/A, 41125, Modena, Italy; Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A, 41125, Modena, Italy
| | - Tullia Maraldi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Via del Pozzo, 71, 41124, Modena, Italy
| | - Andrea Zattoni
- Department of Chemistry G. Ciamician, University of Bologna, Via Selmi 2, 40126, Bologna, Italy; ByFlow Srl, Via dell'Arcoveggio 74, 40129, Bologna, Italy
| | - Pierluigi Reschiglian
- Department of Chemistry G. Ciamician, University of Bologna, Via Selmi 2, 40126, Bologna, Italy; ByFlow Srl, Via dell'Arcoveggio 74, 40129, Bologna, Italy
| | - Marinella Portolani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Via del Pozzo, 71, 41124, Modena, Italy
| |
Collapse
|
9
|
Metastable states of HYPK-UBA domain's seeds drive the dynamics of its own aggregation. Biochim Biophys Acta Gen Subj 2018; 1862:2846-2861. [DOI: 10.1016/j.bbagen.2018.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 11/21/2022]
|
10
|
Sangeetham SB, Huszár K, Bencsura P, Nyeste A, Hunyadi-Gulyás É, Fodor E, Welker E. Interrogating the Dimerization Interface of the Prion Protein Via Site-Specific Mutations to p-Benzoyl-L-Phenylalanine. J Mol Biol 2018; 430:2784-2801. [PMID: 29778603 DOI: 10.1016/j.jmb.2018.05.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 01/10/2023]
Abstract
Transmissible spongiform encephalopathies are centered on the conformational transition of the prion protein from a mainly helical, monomeric structure to a β-sheet rich ordered aggregate. Experiments indicate that the main infectious and toxic species in this process are however shorter oligomers, formation of which from the monomers is yet enigmatic. Here, we created 25 variants of the mouse prion protein site-specifically containing one genetically-incorporated para-benzoyl-phenylalanine (pBpa), a cross-linkable non-natural amino acid, in order to interrogate the interface of a prion protein-dimer, which might lie on the pathway of oligomerization. Our results reveal that the N-terminal part of the prion protein, especially regions around position 127 and 107, is integral part of the dimer interface. These together with additional pBpa-containing variants of mPrP might also facilitate to gain more structural insights into oligomeric and fibrillar prion protein species including the pathological variants.
Collapse
Affiliation(s)
- Sudheer Babu Sangeetham
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Krisztina Huszár
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Petra Bencsura
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Antal Nyeste
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary; ProteoScientia Ltd., Cserhátszentiván, Hungary
| | - Éva Hunyadi-Gulyás
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Elfrieda Fodor
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Ervin Welker
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary; Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
11
|
Chiesa R, Restelli E, Comerio L, Del Gallo F, Imeri L. Transgenic mice recapitulate the phenotypic heterogeneity of genetic prion diseases without developing prion infectivity: Role of intracellular PrP retention in neurotoxicity. Prion 2017; 10:93-102. [PMID: 26864450 PMCID: PMC4981194 DOI: 10.1080/19336896.2016.1139276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic prion diseases are degenerative brain disorders caused by mutations in the gene encoding the prion protein (PrP). Different PrP mutations cause different diseases, including Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker (GSS) syndrome and fatal familial insomnia (FFI). The reason for this variability is not known. It has been suggested that prion strains with unique self-replicating and neurotoxic properties emerge spontaneously in individuals carrying PrP mutations, dictating the phenotypic expression of disease. We generated transgenic mice expressing the FFI mutation, and found that they developed a fatal neurological illness highly reminiscent of FFI, and different from those of similarly generated mice modeling genetic CJD and GSS. Thus transgenic mice recapitulate the phenotypic differences seen in humans. The mutant PrPs expressed in these mice are misfolded but unable to self-replicate. They accumulate in different compartments of the neuronal secretory pathway, impairing the membrane delivery of ion channels essential for neuronal function. Our results indicate that conversion of mutant PrP into an infectious isoform is not required for pathogenesis, and suggest that the phenotypic variability may be due to different effects of mutant PrP on intracellular transport.
Collapse
Affiliation(s)
- Roberto Chiesa
- a Laboratory of Prion Neurobiology, Department of Neuroscience, IRCCS - "Mario Negri" Institute for Pharmacological Research , Milan , Italy
| | - Elena Restelli
- a Laboratory of Prion Neurobiology, Department of Neuroscience, IRCCS - "Mario Negri" Institute for Pharmacological Research , Milan , Italy
| | - Liliana Comerio
- a Laboratory of Prion Neurobiology, Department of Neuroscience, IRCCS - "Mario Negri" Institute for Pharmacological Research , Milan , Italy
| | - Federico Del Gallo
- b Department of Health Sciences , University of Milan Medical School , Milan , Italy
| | - Luca Imeri
- b Department of Health Sciences , University of Milan Medical School , Milan , Italy
| |
Collapse
|
12
|
Stincardini C, Massignan T, Biggi S, Elezgarai SR, Sangiovanni V, Vanni I, Pancher M, Adami V, Moreno J, Stravalaci M, Maietta G, Gobbi M, Negro A, Requena JR, Castilla J, Nonno R, Biasini E. An antipsychotic drug exerts anti-prion effects by altering the localization of the cellular prion protein. PLoS One 2017; 12:e0182589. [PMID: 28787011 PMCID: PMC5546605 DOI: 10.1371/journal.pone.0182589] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/20/2017] [Indexed: 02/01/2023] Open
Abstract
Prion diseases are neurodegenerative conditions characterized by the conformational conversion of the cellular prion protein (PrPC), an endogenous membrane glycoprotein of uncertain function, into PrPSc, a pathological isoform that replicates by imposing its abnormal folding onto PrPC molecules. A great deal of evidence supports the notion that PrPC plays at least two roles in prion diseases, by acting as a substrate for PrPSc replication, and as a mediator of its toxicity. This conclusion was recently supported by data suggesting that PrPC may transduce neurotoxic signals elicited by other disease-associated protein aggregates. Thus, PrPC may represent a convenient pharmacological target for prion diseases, and possibly other neurodegenerative conditions. Here, we sought to characterize the activity of chlorpromazine (CPZ), an antipsychotic previously shown to inhibit prion replication by directly binding to PrPC. By employing biochemical and biophysical techniques, we provide direct experimental evidence indicating that CPZ does not bind PrPC at biologically relevant concentrations. Instead, the compound exerts anti-prion effects by inducing the relocalization of PrPC from the plasma membrane. Consistent with these findings, CPZ also inhibits the cytotoxic effects delivered by a PrP mutant. Interestingly, we found that the different pharmacological effects of CPZ could be mimicked by two inhibitors of the GTPase activity of dynamins, a class of proteins involved in the scission of newly formed membrane vesicles, and recently reported as potential pharmacological targets of CPZ. Collectively, our results redefine the mechanism by which CPZ exerts anti-prion effects, and support a primary role for dynamins in the membrane recycling of PrPC, as well as in the propagation of infectious prions.
Collapse
Affiliation(s)
- Claudia Stincardini
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Tania Massignan
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Silvia Biggi
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Saioa R. Elezgarai
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Valeria Sangiovanni
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Ilaria Vanni
- Department of Food Safety and Veterinary Health, Istituto Superiore di Sanitá, Rome, Italy
| | - Michael Pancher
- HTS Core Facility, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Valentina Adami
- HTS Core Facility, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Jorge Moreno
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio
| | - Matteo Stravalaci
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Giulia Maietta
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Marco Gobbi
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Alessandro Negro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Jesús R. Requena
- CIMUS Biomedical Research Institute, University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Medical Sciences, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio
- IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Romolo Nonno
- Department of Food Safety and Veterinary Health, Istituto Superiore di Sanitá, Rome, Italy
| | - Emiliano Biasini
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
- * E-mail:
| |
Collapse
|
13
|
Bouybayoune I, Mantovani S, Del Gallo F, Bertani I, Restelli E, Comerio L, Tapella L, Baracchi F, Fernández-Borges N, Mangieri M, Bisighini C, Beznoussenko GV, Paladini A, Balducci C, Micotti E, Forloni G, Castilla J, Fiordaliso F, Tagliavini F, Imeri L, Chiesa R. Transgenic fatal familial insomnia mice indicate prion infectivity-independent mechanisms of pathogenesis and phenotypic expression of disease. PLoS Pathog 2015; 11:e1004796. [PMID: 25880443 PMCID: PMC4400166 DOI: 10.1371/journal.ppat.1004796] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/09/2015] [Indexed: 11/18/2022] Open
Abstract
Fatal familial insomnia (FFI) and a genetic form of Creutzfeldt-Jakob disease (CJD178) are clinically different prion disorders linked to the D178N prion protein (PrP) mutation. The disease phenotype is determined by the 129 M/V polymorphism on the mutant allele, which is thought to influence D178N PrP misfolding, leading to the formation of distinctive prion strains with specific neurotoxic properties. However, the mechanism by which misfolded variants of mutant PrP cause different diseases is not known. We generated transgenic (Tg) mice expressing the mouse PrP homolog of the FFI mutation. These mice synthesize a misfolded form of mutant PrP in their brains and develop a neurological illness with severe sleep disruption, highly reminiscent of FFI and different from that of analogously generated Tg(CJD) mice modeling CJD178. No prion infectivity was detectable in Tg(FFI) and Tg(CJD) brains by bioassay or protein misfolding cyclic amplification, indicating that mutant PrP has disease-encoding properties that do not depend on its ability to propagate its misfolded conformation. Tg(FFI) and Tg(CJD) neurons have different patterns of intracellular PrP accumulation associated with distinct morphological abnormalities of the endoplasmic reticulum and Golgi, suggesting that mutation-specific alterations of secretory transport may contribute to the disease phenotype. Genetic prion diseases are degenerative brain disorders caused by mutations in the gene encoding the prion protein (PrP). Different PrP mutations cause different diseases, including Creutzfeldt-Jakob disease (CJD) and fatal familial insomnia (FFI). The reason for this variability is not known, but assembly of the mutant PrPs into distinct aggregates that spread in the brain by promoting PrP aggregation may contribute to the disease phenotype. We previously generated transgenic mice modeling genetic CJD, clinically identified by dementia and motor abnormalities. We have now generated transgenic mice carrying the PrP mutation associated with FFI, and found that they develop severe sleep abnormalities and other key features of the human disorder. Thus, transgenic mice recapitulate the phenotypic differences seen in humans. The mutant PrPs in FFI and CJD mice are aggregated but unable to promote PrP aggregation. They accumulate in different intracellular compartments and cause distinct morphological abnormalities of transport organelles. These results indicate that mutant PrP has disease-encoding properties that are independent of its ability to self-propagate, and suggest that the phenotypic heterogeneity may be due to different effects of aggregated PrP on intracellular transport. Our study provides new insights into the mechanisms of selective neuronal dysfunction due to protein aggregation.
Collapse
Affiliation(s)
- Ihssane Bouybayoune
- Department of Neuroscience, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Susanna Mantovani
- Department of Neuroscience, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Federico Del Gallo
- Department of Health Sciences, University of Milan Medical School, Milan, Italy
| | - Ilaria Bertani
- Department of Neuroscience, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Elena Restelli
- Department of Neuroscience, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Liliana Comerio
- Department of Neuroscience, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Laura Tapella
- Department of Neuroscience, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Francesca Baracchi
- Department of Health Sciences, University of Milan Medical School, Milan, Italy
| | | | - Michela Mangieri
- Division of Neuropathology and Neurology, IRCCS Foundation “Carlo Besta” National Neurological Institute, Milan, Italy
| | - Cinzia Bisighini
- Bio-Imaging Unit, Department of Cardiovascular Research, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | | | - Alessandra Paladini
- Department of Neuroscience, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Claudia Balducci
- Department of Neuroscience, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Edoardo Micotti
- Department of Neuroscience, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Gianluigi Forloni
- Department of Neuroscience, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Joaquín Castilla
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Fabio Fiordaliso
- Bio-Imaging Unit, Department of Cardiovascular Research, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Fabrizio Tagliavini
- Division of Neuropathology and Neurology, IRCCS Foundation “Carlo Besta” National Neurological Institute, Milan, Italy
| | - Luca Imeri
- Department of Health Sciences, University of Milan Medical School, Milan, Italy
| | - Roberto Chiesa
- Department of Neuroscience, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
- * E-mail:
| |
Collapse
|
14
|
C-terminal sequence of amyloid-resistant type F apolipoprotein A-II inhibits amyloid fibril formation of apolipoprotein A-II in mice. Proc Natl Acad Sci U S A 2015; 112:E836-45. [PMID: 25675489 DOI: 10.1073/pnas.1416363112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In murine senile amyloidosis, misfolded serum apolipoprotein (apo) A-II deposits as amyloid fibrils (AApoAII) in a process associated with aging. Mouse strains carrying type C apoA-II (APOA2C) protein exhibit a high incidence of severe systemic amyloidosis. Previously, we showed that N- and C-terminal sequences of apoA-II protein are critical for polymerization into amyloid fibrils in vitro. Here, we demonstrate that congenic mouse strains carrying type F apoA-II (APOA2F) protein, which contains four amino acid substitutions in the amyloidogenic regions of APOA2C, were absolutely resistant to amyloidosis, even after induction of amyloidosis by injection of AApoAII. In vitro fibril formation tests showed that N- and C-terminal APOA2F peptides did not polymerize into amyloid fibrils. Moreover, a C-terminal APOA2F peptide was a strong inhibitor of nucleation and extension of amyloid fibrils during polymerization. Importantly, after the induction of amyloidosis, we succeeded in suppressing amyloid deposition in senile amyloidosis-susceptible mice by treatment with the C-terminal APOA2F peptide. We suggest that the C-terminal APOA2F peptide might inhibit further extension of amyloid fibrils by blocking the active ends of nuclei (seeds). We present a previously unidentified model system for investigating inhibitory mechanisms against amyloidosis in vivo and in vitro and believe that this system will be useful for the development of novel therapies.
Collapse
|
15
|
Pathogenic mutations within the hydrophobic domain of the prion protein lead to the formation of protease-sensitive prion species with increased lethality. J Virol 2013; 88:2690-703. [PMID: 24352465 DOI: 10.1128/jvi.02720-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED Prion diseases are a group of fatal and incurable neurodegenerative diseases affecting both humans and animals. The principal mechanism of these diseases involves the misfolding the host-encoded cellular prion protein, PrP(C), into the disease-associated isoform, PrP(Sc). Familial forms of human prion disease include those associated with the mutations G114V and A117V, which lie in the hydrophobic domain of PrP. Here we have studied the murine homologues (G113V and A116V) of these mutations using cell-based and animal models of prion infection. Under normal circumstances, the mutant forms of PrP(C) share similar processing, cellular localization, and physicochemical properties with wild-type mouse PrP (MoPrP). However, upon exposure of susceptible cell lines expressing these mutants to infectious prions, very low levels of protease-resistant aggregated PrP(Sc) are formed. Subsequent mouse bioassay revealed high levels of infectivity present in these cells. Thus, these mutations appear to limit the formation of aggregated PrP(Sc), giving rise to the accumulation of a relatively soluble, protease sensitive, prion species that is highly neurotoxic. Given that these mutations lie next to the glycine-rich region of PrP that can abrogate prion infection, these findings provide further support for small, protease-sensitive prion species having a significant role in the progression of prion disease and that the hydrophobic domain is an important determinant of PrP conversion. IMPORTANCE Prion diseases are transmissible neurodegenerative diseases associated with an infectious agent called a prion. Prions are comprised of an abnormally folded form of the prion protein (PrP) that is normally resistant to enzymes called proteases. In humans, prion disease can occur in individuals who inherited mutations in the prion protein gene. Here we have studied the effects of two of these mutations and show that they influence the properties of the prions that can be formed. We show that the mutants make highly infectious prions that are more sensitive to protease treatment. This study highlights a certain region of the prion protein as being involved in this effect and demonstrates that prions are not always resistant to protease treatment.
Collapse
|
16
|
Synaptic dysfunction in prion diseases: a trafficking problem? Int J Cell Biol 2013; 2013:543803. [PMID: 24369467 PMCID: PMC3863542 DOI: 10.1155/2013/543803] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/08/2013] [Indexed: 11/26/2022] Open
Abstract
Synaptic dysfunction is an important cause of neurological symptoms in prion diseases, a class of clinically heterogeneous neurodegenerative disorders caused by misfolding of the cellular prion protein (PrPC). Experimental data suggest that accumulation of misfolded PrPC in the endoplasmic reticulum (ER) may be crucial in synaptic failure, possibly because of the activation of the translational repression pathway of the unfolded protein response. Here, we report that this pathway is not operative in mouse models of genetic prion disease, consistent with our previous observation that ER stress is not involved. Building on our recent finding that ER retention of mutant PrPC impairs the secretory trafficking of calcium channels essential for synaptic function, we propose a model of pathogenicity in which intracellular retention of misfolded PrPC results in loss of function or gain of toxicity of PrPC-interacting proteins. This neurotoxic modality may also explain the phenotypic heterogeneity of prion diseases.
Collapse
|
17
|
Jossé L, Marchante R, Zenthon J, von der Haar T, Tuite MF. Probing the role of structural features of mouse PrP in yeast by expression as Sup35-PrP fusions. Prion 2012; 6:201-10. [PMID: 22449853 DOI: 10.4161/pri.19214] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The yeast Saccharomyces cerevisiae is a tractable model organism in which both to explore the molecular mechanisms underlying the generation of disease-associated protein misfolding and to map the cellular responses to potentially toxic misfolded proteins. Specific targets have included proteins which in certain disease states form amyloids and lead to neurodegeneration. Such studies are greatly facilitated by the extensive 'toolbox' available to the yeast researcher that provides a range of cell engineering options. Consequently, a number of assays at the cell and molecular level have been set up to report on specific protein misfolding events associated with endogenous or heterologous proteins. One major target is the mammalian prion protein PrP because we know little about what specific sequence and/or structural feature(s) of PrP are important for its conversion to the infectious prion form, PrP (Sc) . Here, using a study of the expression in yeast of fusion proteins comprising the yeast prion protein Sup35 fused to various regions of mouse PrP protein, we show how PrP sequences can direct the formation of non-transmissible amyloids and focus in particular on the role of the mouse octarepeat region. Through this study we illustrate the benefits and limitations of yeast-based models for protein misfolding disorders.
Collapse
Affiliation(s)
- Lyne Jossé
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, UK
| | | | | | | | | |
Collapse
|
18
|
Senatore A, Colleoni S, Verderio C, Restelli E, Morini R, Condliffe S, Bertani I, Mantovani S, Canovi M, Micotti E, Forloni G, Dolphin A, Matteoli M, Gobbi M, Chiesa R. Mutant PrP suppresses glutamatergic neurotransmission in cerebellar granule neurons by impairing membrane delivery of VGCC α(2)δ-1 Subunit. Neuron 2012; 74:300-13. [PMID: 22542184 PMCID: PMC3339322 DOI: 10.1016/j.neuron.2012.02.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2012] [Indexed: 01/17/2023]
Abstract
How mutant prion protein (PrP) leads to neurological dysfunction in genetic prion diseases is unknown. Tg(PG14) mice synthesize a misfolded mutant PrP which is partially retained in the neuronal endoplasmic reticulum (ER). As these mice age, they develop ataxia and massive degeneration of cerebellar granule neurons (CGNs). Here, we report that motor behavioral deficits in Tg(PG14) mice emerge before neurodegeneration and are associated with defective glutamate exocytosis from granule neurons due to impaired calcium dynamics. We found that mutant PrP interacts with the voltage-gated calcium channel α(2)δ-1 subunit, which promotes the anterograde trafficking of the channel. Owing to ER retention of mutant PrP, α(2)δ-1 accumulates intracellularly, impairing delivery of the channel complex to the cell surface. Thus, mutant PrP disrupts cerebellar glutamatergic neurotransmission by reducing the number of functional channels in CGNs. These results link intracellular PrP retention to synaptic dysfunction, indicating new modalities of neurotoxicity and potential therapeutic strategies.
Collapse
Affiliation(s)
- Assunta Senatore
- Dulbecco Telethon Institute, 20156 Milan, Italy, “Mario Negri” Institute for Pharmacological Research, 20156 Milan, Italy
- Department of Neuroscience, “Mario Negri” Institute for Pharmacological Research, 20156 Milan, Italy
| | - Simona Colleoni
- Department of Biochemistry and Molecular Pharmacology, “Mario Negri” Institute for Pharmacological Research, 20156 Milan, Italy
| | - Claudia Verderio
- Department of Medical Pharmacology and Consiglio Nazionale delle Ricerche Institute of Neuroscience, University of Milan, 20129 Milan, Italy
| | - Elena Restelli
- Dulbecco Telethon Institute, 20156 Milan, Italy, “Mario Negri” Institute for Pharmacological Research, 20156 Milan, Italy
- Department of Neuroscience, “Mario Negri” Institute for Pharmacological Research, 20156 Milan, Italy
| | - Raffaella Morini
- Department of Medical Pharmacology and Consiglio Nazionale delle Ricerche Institute of Neuroscience, University of Milan, 20129 Milan, Italy
| | - Steven B. Condliffe
- Department of Medical Pharmacology and Consiglio Nazionale delle Ricerche Institute of Neuroscience, University of Milan, 20129 Milan, Italy
| | - Ilaria Bertani
- Dulbecco Telethon Institute, 20156 Milan, Italy, “Mario Negri” Institute for Pharmacological Research, 20156 Milan, Italy
- Department of Neuroscience, “Mario Negri” Institute for Pharmacological Research, 20156 Milan, Italy
| | - Susanna Mantovani
- Dulbecco Telethon Institute, 20156 Milan, Italy, “Mario Negri” Institute for Pharmacological Research, 20156 Milan, Italy
- Department of Neuroscience, “Mario Negri” Institute for Pharmacological Research, 20156 Milan, Italy
| | - Mara Canovi
- Department of Biochemistry and Molecular Pharmacology, “Mario Negri” Institute for Pharmacological Research, 20156 Milan, Italy
| | - Edoardo Micotti
- Department of Neuroscience, “Mario Negri” Institute for Pharmacological Research, 20156 Milan, Italy
| | - Gianluigi Forloni
- Department of Neuroscience, “Mario Negri” Institute for Pharmacological Research, 20156 Milan, Italy
| | - Annette C. Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, WC1E6BT London, UK
| | - Michela Matteoli
- Department of Medical Pharmacology and Consiglio Nazionale delle Ricerche Institute of Neuroscience, University of Milan, 20129 Milan, Italy
- Istituto Clinico Humanitas IRCCS, 20089 Milan, Italy
| | - Marco Gobbi
- Department of Biochemistry and Molecular Pharmacology, “Mario Negri” Institute for Pharmacological Research, 20156 Milan, Italy
| | - Roberto Chiesa
- Dulbecco Telethon Institute, 20156 Milan, Italy, “Mario Negri” Institute for Pharmacological Research, 20156 Milan, Italy
- Department of Neuroscience, “Mario Negri” Institute for Pharmacological Research, 20156 Milan, Italy
- Corresponding author
| |
Collapse
|
19
|
Solomon IH, Khatri N, Biasini E, Massignan T, Huettner JE, Harris DA. An N-terminal polybasic domain and cell surface localization are required for mutant prion protein toxicity. J Biol Chem 2011; 286:14724-36. [PMID: 21385869 DOI: 10.1074/jbc.m110.214973] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
There is evidence that alterations in the normal physiological activity of PrP(C) contribute to prion-induced neurotoxicity. This mechanism has been difficult to investigate, however, because the normal function of PrP(C) has remained obscure, and there are no assays available to measure it. We recently reported that cells expressing PrP deleted for residues 105-125 exhibit spontaneous ionic currents and hypersensitivity to certain classes of cationic drugs. Here, we utilize cell culture assays based on these two phenomena to test how changes in PrP sequence and/or cellular localization affect the functional activity of the protein. We report that the toxic activity of Δ105-125 PrP requires localization to the plasma membrane and depends on the presence of a polybasic amino acid segment at the N terminus of PrP. Several different deletions spanning the central region as well as three disease-associated point mutations also confer toxic activity on PrP. The sequence domains identified in our study are also critical for PrP(Sc) formation, suggesting that common structural features may govern both the functional activity of PrP(C) and its conversion to PrP(Sc).
Collapse
Affiliation(s)
- Isaac H Solomon
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|