1
|
Kume H, Kazama K, Sato R, Sato Y. Possible Involvement of Lysophospholipids in Severe Asthma as Novel Lipid Mediators. Biomolecules 2025; 15:182. [PMID: 40001485 PMCID: PMC11852450 DOI: 10.3390/biom15020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 02/27/2025] Open
Abstract
In severe asthma, symptoms are unstable despite intensive treatment based on high doses of inhaled corticosteroids and on-demand use of oral corticosteroids. Although, recently, various biological agents related to Th2 cytokines have been added to intensive controller medications for severe asthma, a significant progress has not been observed in the management for symptoms (dyspnea, wheezing and cough). Medical treatment focused on Type 2 inflammation is probably insufficient to maintain good long-term management for severe asthma. Airway eosinophilia and decreased reversibility in forced expiratory volume in 1 second (FEV1) are listed as major predictors for exacerbation-prone asthma. However, it is generally considered that asthma is complex and heterogeneous. It is necessary to establish precision medicine using treatable traits based on a multidimensional approach related to asthma. Since phospholipids generate lysophospholipids and arachidonic acid by phospholipases, lysophospholipids can be associated with the pathogenesis of this disease via action on smooth muscle, endothelium, and epithelium in the airways. Lysophosphatidic acid (LPA), lysophosphatidylcholine (LPC), and sphingosine 1-phosphate (S1P) are increased in bronchoalveolar fluid after allergen challenge. LPA, LPC, and S1P recruit eosinophils to the lungs and cause β2-adrenergic desensitization. LAP and S1P cause contraction and hyperresponsiveness in airway smooth muscle. Moreover, lysophosphatidylserine and S1P are associated with the allergic reaction related to IgE/FcεRI in mast cells. Lysophospholipid action is probably comprised of corticosteroid resistance and is independent of Type 2 inflammation, and may be corelated with oxidative stress. Lysophospholipids may be a novel molecular target in advancing the management and treatment of asthma. This review discusses the clinical relevance of lysophospholipids in asthma.
Collapse
Affiliation(s)
- Hiroaki Kume
- Department of Infectious Diseases and Respiratory Medicine, Fukushima Medical University Aizu Medical Center, 21-2 Maeda, Tanisawa, Kawahigashi, Aizuwakamatsu 969-3492, Japan; (K.K.); (R.S.); (Y.S.)
| | | | | | | |
Collapse
|
2
|
Zhou Q, Chen Y, Liang Y, Sun Y. The Role of Lysophospholipid Metabolites LPC and LPA in the Pathogenesis of Chronic Obstructive Pulmonary Disease. Metabolites 2024; 14:317. [PMID: 38921452 PMCID: PMC11205356 DOI: 10.3390/metabo14060317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous lung condition characterized by persistent respiratory symptoms and airflow limitation. While there are some available treatment options, the effectiveness of treatment varies depending on individual differences and the phenotypes of the disease. Therefore, exploring or identifying potential therapeutic targets for COPD is urgently needed. In recent years, there has been growing evidence showing that lysophospholipids, namely lysophosphatidylcholine (LPC) and lysophosphatidic acid (LPA), can play a significant role in the pathogenesis of COPD. Exploring the metabolism of lysophospholipids holds promise for understanding the underlying mechanism of COPD development and developing novel strategies for COPD treatment. This review primarily concentrates on the involvement and signaling pathways of LPC and LPA in the development and progression of COPD. Furthermore, we reviewed their associations with clinical manifestations, phenotypes, and prognosis within the COPD context and discussed the potential of the pivotal signaling molecules as viable therapeutic targets for COPD treatment.
Collapse
Affiliation(s)
- Qiqiang Zhou
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China; (Q.Z.); (Y.C.); (Y.S.)
| | - Yahong Chen
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China; (Q.Z.); (Y.C.); (Y.S.)
- Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing 100191, China
| | - Ying Liang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China; (Q.Z.); (Y.C.); (Y.S.)
- Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing 100191, China
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China; (Q.Z.); (Y.C.); (Y.S.)
- Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
3
|
Stylianaki EA, Magkrioti C, Ladopoulou EM, Papavasileiou KD, Lagarias P, Melagraki G, Samiotaki M, Panayotou G, Dedos SG, Afantitis A, Aidinis V, Matralis AN. "Hit" to lead optimization and chemoinformatic studies for a new series of Autotaxin inhibitors. Eur J Med Chem 2023; 249:115130. [PMID: 36702053 DOI: 10.1016/j.ejmech.2023.115130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 01/25/2023]
Abstract
Robust experimental evidence has highlighted the role of Autotaxin (ATX)/Lysophosphatidic acid (LPA) axis not only in the pathogenesis of chronic inflammatory conditions and especially in fibroproliferative diseases but also in several types of cancer. As a result, different series of substrate-, lipid-based and small-molecule ATX inhibitors have been identified thus far by both academia and pharma. The "crowning achievement" of these drug discovery campaigns was the development and entry of the first-in-class ATX inhibitor (ziritaxestat, GLPG-1690) in advanced clinical trials against idiopathic pulmonary fibrosis. Herein, the potency optimization efforts of a new series of Autotaxin inhibitors, namely 2-substituted-2,6-dihydro-4H-thieno[3,4-c]pyrazol-1-substituted amide, is described using a previously identified novel chemical scaffold as a "hit". The mode of inhibition of the most promising ATX inhibitors was investigated, while their cellular activity, aqueous solubility and cytotoxicity were evaluated. Our pharmacological results were corroborated by chemoinformatic tools (molecular docking and molecular dynamics simulations) deployed, to provide insight into the binding mechanism of the synthesized inhibitors to ATX.
Collapse
Affiliation(s)
- Elli-Anna Stylianaki
- Bioinnovation Institute, Biomedical Sciences Research Center "Alexander Fleming, Athens, Greece
| | - Christiana Magkrioti
- Bioinnovation Institute, Biomedical Sciences Research Center "Alexander Fleming, Athens, Greece
| | - Eleni M Ladopoulou
- Bioinnovation Institute, Biomedical Sciences Research Center "Alexander Fleming, Athens, Greece; Department of Biology, National and Kapodistrian University of Athens, Zografou, Athens, Greece
| | | | | | - Georgia Melagraki
- Division of Physical Sciences and Applications, Hellenic Military Academy, Vari, Greece
| | - Martina Samiotaki
- Bioinnovation Institute, Biomedical Sciences Research Center "Alexander Fleming, Athens, Greece
| | - George Panayotou
- Bioinnovation Institute, Biomedical Sciences Research Center "Alexander Fleming, Athens, Greece
| | - Skarlatos G Dedos
- Department of Biology, National and Kapodistrian University of Athens, Zografou, Athens, Greece
| | - Antreas Afantitis
- NovaMechanics Ltd, Larnaca, Cyprus; NovaMechanics MIKE, Piraeus, Greece.
| | - Vassilis Aidinis
- Bioinnovation Institute, Biomedical Sciences Research Center "Alexander Fleming, Athens, Greece.
| | - Alexios N Matralis
- Bioinnovation Institute, Biomedical Sciences Research Center "Alexander Fleming, Athens, Greece.
| |
Collapse
|
4
|
Banerjee S, Lee S, Norman DD, Tigyi GJ. Designing Dual Inhibitors of Autotaxin-LPAR GPCR Axis. Molecules 2022; 27:5487. [PMID: 36080255 PMCID: PMC9458164 DOI: 10.3390/molecules27175487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
The ATX-LPA-LPAR1 signaling pathway plays a universal role in stimulating diverse cellular responses, including cell proliferation, migration, survival, and invasion in almost every cell type. The ATX-LPAR1 axis is linked to several metabolic and inflammatory diseases including cancer, fibrosis, and rheumatoid arthritis. Numerous selective ATX or LPAR1 inhibitors have been developed and so far, their clinical efficacy has only been evaluated in idiopathic pulmonary fibrosis. None of the ATX and LPAR1 inhibitors have advanced to clinical trials for cancer and rheumatoid arthritis. Nonetheless, several research groups, including ours, have shown considerable benefit of simultaneous ATX and LPAR1 inhibition through combination therapy. Recent research suggests that dual-targeting therapies are superior to combination therapies that use two selective inhibitors. However, limited reports are available on ATX-LPAR1 dual inhibitors, potentially due to co-expression of multiple different LPARs with close structural similarities at the same target. In this review, we discuss rational design and future directions of dual ATX-LPAR1 inhibitors.
Collapse
Affiliation(s)
- Souvik Banerjee
- Department of Chemistry, Middle Tennessee State University, 1301 E. Main Street, Murfreesboro, TN 37132, USA
- Molecular Biosciences Program, Middle Tennessee State University, 1301 E. Main Street, Murfreesboro, TN 37132, USA
| | - Suechin Lee
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Derek D. Norman
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Gabor J. Tigyi
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3 N. Dunlap Street, Memphis, TN 38163, USA
| |
Collapse
|
5
|
Bandela M, Belvitch P, Garcia JGN, Dudek SM. Cortactin in Lung Cell Function and Disease. Int J Mol Sci 2022; 23:4606. [PMID: 35562995 PMCID: PMC9101201 DOI: 10.3390/ijms23094606] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
Cortactin (CTTN) is an actin-binding and cytoskeletal protein that is found in abundance in the cell cortex and other peripheral structures of most cell types. It was initially described as a target for Src-mediated phosphorylation at several tyrosine sites within CTTN, and post-translational modifications at these tyrosine sites are a primary regulator of its function. CTTN participates in multiple cellular functions that require cytoskeletal rearrangement, including lamellipodia formation, cell migration, invasion, and various other processes dependent upon the cell type involved. The role of CTTN in vascular endothelial cells is particularly important for promoting barrier integrity and inhibiting vascular permeability and tissue edema. To mediate its functional effects, CTTN undergoes multiple post-translational modifications and interacts with numerous other proteins to alter cytoskeletal structures and signaling mechanisms. In the present review, we briefly describe CTTN structure, post-translational modifications, and protein binding partners and then focus on its role in regulating cellular processes and well-established functional mechanisms, primarily in vascular endothelial cells and disease models. We then provide insights into how CTTN function affects the pathophysiology of multiple lung disorders, including acute lung injury syndromes, COPD, and asthma.
Collapse
Affiliation(s)
- Mounica Bandela
- Department of Biomedical Engineering, College of Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Patrick Belvitch
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Joe G. N. Garcia
- Department of Medicine, University of Arizona, Tucson, AZ 85721, USA;
| | - Steven M. Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
6
|
Dacheux MA, Lee SC, Shin Y, Norman DD, Lin KH, E S, Yue J, Benyó Z, Tigyi GJ. Prometastatic Effect of ATX Derived from Alveolar Type II Pneumocytes and B16-F10 Melanoma Cells. Cancers (Basel) 2022; 14:cancers14061586. [PMID: 35326737 PMCID: PMC8946623 DOI: 10.3390/cancers14061586] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/07/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
Although metastases are the principal cause of cancer-related deaths, the molecular aspects of the role of stromal cells in the establishment of the metastatic niche remain poorly understood. One of the most prevalent sites for cancer metastasis is the lungs. According to recent research, lung stromal cells such as bronchial epithelial cells and resident macrophages secrete autotaxin (ATX), an enzyme with lysophospholipase D activity that promotes cancer progression. In fact, several studies have shown that many cell types in the lung stroma could provide a rich source of ATX in diseases. In the present study, we sought to determine whether ATX derived from alveolar type II epithelial (ATII) pneumocytes could modulate the progression of lung metastasis, which has not been evaluated previously. To accomplish this, we used the B16-F10 syngeneic melanoma model, which readily metastasizes to the lungs when injected intravenously. Because B16-F10 cells express high levels of ATX, we used the CRISPR-Cas9 technology to knock out the ATX gene in B16-F10 cells, eliminating the contribution of tumor-derived ATX in lung metastasis. Next, we used the inducible Cre/loxP system (Sftpc-CreERT2/Enpp2fl/fl) to generate conditional knockout (KO) mice in which ATX is specifically deleted in ATII cells (i.e., Sftpc-KO). Injection of ATX-KO B16-F10 cells into Sftpc-KO or Sftpc-WT control littermates allowed us to investigate the specific contribution of ATII-derived ATX in lung metastasis. We found that targeted KO of ATX in ATII cells significantly reduced the metastatic burden of ATX-KO B16-F10 cells by 30% (unpaired t-test, p = 0.028) compared to Sftpc-WT control mice, suggesting that ATX derived from ATII cells could affect the metastatic progression. We detected upregulated levels of cytokines such as IFNγ (unpaired t-test, p < 0.0001) and TNFα (unpaired t-test, p = 0.0003), which could favor the increase in infiltrating CD8+ T cells observed in the tumor regions of Sftpc-KO mice. Taken together, our results highlight the contribution of host ATII cells as a stromal source of ATX in the progression of melanoma lung metastasis.
Collapse
Affiliation(s)
- Mélanie A. Dacheux
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN 38163, USA; (M.A.D.); (S.C.L.); (Y.S.); (D.D.N.); (K.-H.L.)
| | - Sue Chin Lee
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN 38163, USA; (M.A.D.); (S.C.L.); (Y.S.); (D.D.N.); (K.-H.L.)
| | - Yoojin Shin
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN 38163, USA; (M.A.D.); (S.C.L.); (Y.S.); (D.D.N.); (K.-H.L.)
| | - Derek D. Norman
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN 38163, USA; (M.A.D.); (S.C.L.); (Y.S.); (D.D.N.); (K.-H.L.)
| | - Kuan-Hung Lin
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN 38163, USA; (M.A.D.); (S.C.L.); (Y.S.); (D.D.N.); (K.-H.L.)
| | - Shuyu E
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN 38163, USA; (S.E.); (J.Y.)
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN 38163, USA; (S.E.); (J.Y.)
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, H-1428 Budapest, Hungary;
| | - Gábor J. Tigyi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN 38163, USA; (M.A.D.); (S.C.L.); (Y.S.); (D.D.N.); (K.-H.L.)
- Correspondence: ; Tel.: +1-901-448-4793
| |
Collapse
|
7
|
Dobersalske C, Grundmann M, Timmermann A, Theisen L, Kölling F, Harris RC, Fuerstner C, Becker MS, Wunder F. Establishment of a novel, cell-based autotaxin assay. Anal Biochem 2021; 630:114322. [PMID: 34343482 DOI: 10.1016/j.ab.2021.114322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022]
Abstract
Autotaxin (ATX) plays an important role in (patho-)physiological lysophosphatidic acid (LPA) signaling. Here we describe the establishment of novel cell-based ATX assay formats. ATX-mediated LPA generation is detected by using a stable LPA receptor reporter cell line. In a first assay variant, ATX-mediated LPA generation is started in the absence of cells and the reaction mix is transferred to the reporter cells after stopping the reaction (two-tube assay). In a second assay variant, ATX is added to the reporter cells expressing the known autotaxin binding partners integrin β1, integrin β3 and the LPA receptor 1. LPA generation is started in the presence of cells and is detected in real-time (one-tube assay). Structurally diverse ATX inhibitors with different binding modes were characterized in both cell-based assay variants and were also tested in the well-established biochemical choline release assay. ATX inhibitors displayed similar potencies, regardless if the assay was performed in the absence or presence of cells, and comparable results were obtained in all three assay formats. In summary, our novel cell-based ATX assay formats are well-suited for sensitive detection of enzyme activity as well as for the characterization of ATX inhibitors in the presence and absence of cells.
Collapse
Affiliation(s)
- Celia Dobersalske
- Lead Discovery, Bayer AG, Pharma Research and Development Center, Aprather Weg 18a, D-42096, Wuppertal, Germany
| | - Manuel Grundmann
- Cardiovascular Research, Bayer AG, Pharma Research and Development Center, Aprather Weg 18a, D-42096, Wuppertal, Germany
| | - Andreas Timmermann
- Lead Discovery, Bayer AG, Pharma Research and Development Center, Aprather Weg 18a, D-42096, Wuppertal, Germany
| | - Laura Theisen
- Lead Discovery, Bayer AG, Pharma Research and Development Center, Aprather Weg 18a, D-42096, Wuppertal, Germany
| | - Florian Kölling
- Computational Molecular Design. Bayer AG, Pharma Research and Development Center, Aprather Weg 18a, D-42096, Wuppertal, Germany
| | | | - Chantal Fuerstner
- Medicinal Chemistry, Bayer AG, Pharma Research and Development Center, Aprather Weg 18a, D-42096, Wuppertal, Germany
| | - Michael S Becker
- Cardiovascular Research, Bayer AG, Pharma Research and Development Center, Aprather Weg 18a, D-42096, Wuppertal, Germany
| | - Frank Wunder
- Lead Discovery, Bayer AG, Pharma Research and Development Center, Aprather Weg 18a, D-42096, Wuppertal, Germany.
| |
Collapse
|
8
|
Lysophospholipids in Lung Inflammatory Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:373-391. [PMID: 33788203 DOI: 10.1007/978-3-030-63046-1_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The lysophospholipids (LPLs) belong to a group of bioactive lipids that play pivotal roles in several physiological and pathological processes. LPLs are derivatives of phospholipids and consist of a single hydrophobic fatty acid chain, a hydrophilic head, and a phosphate group with or without a large molecule attached. Among the LPLs, lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are the simplest, and have been shown to be involved in lung inflammatory symptoms and diseases such as acute lung injury, asthma, and chronic obstructive pulmonary diseases. G protein-coupled receptors (GPCRs) mediate LPA and S1P signaling. In this chapter, we will discuss on the role of LPA, S1P, their metabolizing enzymes, inhibitors or agonists of their receptors, and their GPCR-mediated signaling in lung inflammatory symptoms and diseases, focusing specially on acute respiratory distress syndrome, asthma, and chronic obstructive pulmonary disease.
Collapse
|
9
|
Dexamethasone Attenuates X-Ray-Induced Activation of the Autotaxin-Lysophosphatidate-Inflammatory Cycle in Breast Tissue and Subsequent Breast Fibrosis. Cancers (Basel) 2020; 12:cancers12040999. [PMID: 32325715 PMCID: PMC7226295 DOI: 10.3390/cancers12040999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
We recently showed that radiation-induced DNA damage in breast adipose tissue increases autotaxin secretion, production of lysophosphatidate (LPA) and expression of LPA1/2 receptors. We also established that dexamethasone decreases autotaxin production and LPA signaling in non-irradiated adipose tissue. In the present study, we showed that dexamethasone attenuated the radiation-induced increases in autotaxin activity and the concentrations of inflammatory mediators in cultured human adipose tissue. We also exposed a breast fat pad in mice to three daily 7.5 Gy fractions of X-rays. Dexamethasone attenuated radiation-induced increases in autotaxin activity in plasma and mammary adipose tissue and LPA1 receptor levels in adipose tissue after 48 h. DEX treatment during five daily fractions of 7.5 Gy attenuated fibrosis by ~70% in the mammary fat pad and underlying lungs at 7 weeks after radiotherapy. This was accompanied by decreases in CXCL2, active TGF-β1, CTGF and Nrf2 at 7 weeks in adipose tissue of dexamethasone-treated mice. Autotaxin was located at the sites of fibrosis in breast tissue and in the underlying lungs. Consequently, our work supports the premise that increased autotaxin production and lysophosphatidate signaling contribute to radiotherapy-induced breast fibrosis and that dexamethasone attenuated the development of fibrosis in part by blocking this process.
Collapse
|
10
|
The roles of autotaxin/lysophosphatidic acid in immune regulation and asthma. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158641. [PMID: 32004685 DOI: 10.1016/j.bbalip.2020.158641] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/26/2019] [Accepted: 01/23/2020] [Indexed: 12/18/2022]
Abstract
Lysophosphatidic acid (LPA) species are present in almost all organ systems and play diverse roles through its receptors. Asthma is an airway disease characterized by chronic allergic inflammation where various innate and adaptive immune cells participate in establishing Th2 immune response. Here, we will review the contribution of LPA and its receptors to the functions of immune cells that play a key role in establishing allergic airway inflammation and aggravation of allergic asthma.
Collapse
|
11
|
Zhao PF, Wu S, Li Y, Bao G, Pei JY, Wang YW, Ma Q, Sun HJ, Damirin A. LPA receptor1 antagonists as anticancer agents suppress human lung tumours. Eur J Pharmacol 2019; 868:172886. [PMID: 31866407 DOI: 10.1016/j.ejphar.2019.172886] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/05/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022]
Abstract
Lysophosphatidic acid (LPA), as a bioactive lipid, plays a variety of physiological and pathological roles via activating six types of G-protein-coupled LPA receptors (LPA1-6). Our preliminary study found that LPA1 is highly expressed in lung cancer tissues compared with paracancerous tissues, but the role of LPA1 in lung carcinoma is unclear. This study aimed to elucidate the association between LPA1 and lung tumour behaviour at the cellular and animal model levels. We found that LPA promoted the migration, proliferation and colony formation of a lung cancer cell line (A549). LPA1 and LPA3 are preferentially expressed in A549 cells, and both Ki16425 (LPA1 and LPA3 antagonist) and ono7300243 (LPA1 antagonist) completely blocked the LPA-induced actions. These results were further verified by experiments of the LPA1/3 overexpression and LPA1 knockdown A549 cells. Furthermore, LPA1 overexpression and knockdown A549 cells were used to assess the in vivo tumour-bearing animal model and the mechanism underlying LPA-induced actions. In the animal model, A549 cell-derived tumour volume was significantly increased by LPA1 overexpression and significantly decreased by LPA1 knockdown respectively, suggesting that LPA1 is a regulator of in vivo tumour formation. Our results also indicated that the LPA1/Gi/MAP kinase/NF-κB pathway is involved in LPA-induced oncogenic actions in A549 cells. Thus, targeting LPA1 may be a novel strategy for treating lung carcinoma.
Collapse
Affiliation(s)
- Peng-Fei Zhao
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Shuang Wu
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; Department of Internal Medicine, Tianjin Provincial Corps Hospital of Chinese People's Armed Police Forces, Tianjin, 300252, China
| | - Yan Li
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Gegentuya Bao
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Jing-Yuan Pei
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yue-Wu Wang
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; Research Center for New Drug Screening, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Qing Ma
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Hong-Ju Sun
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | | |
Collapse
|
12
|
Hypoxia Downregulates LPP3 and Promotes the Spatial Segregation of ATX and LPP1 During Cancer Cell Invasion. Cancers (Basel) 2019; 11:cancers11091403. [PMID: 31546971 PMCID: PMC6769543 DOI: 10.3390/cancers11091403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/07/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022] Open
Abstract
Hypoxia is a common characteristic of advanced solid tumors and a potent driver of tumor invasion and metastasis. Recent evidence suggests the involvement of autotaxin (ATX) and lysophosphatidic acid receptors (LPARs) in cancer cell invasion promoted by the hypoxic tumor microenvironment; however, the transcriptional and/or spatiotemporal control of this process remain unexplored. Herein, we investigated whether hypoxia promotes cell invasion by affecting the main enzymes involved in its production (ATX) and degradation (lipid phosphate phosphatases, LPP1 and LPP3). We report that hypoxia not only modulates the expression levels of lysophosphatidic acid (LPA) regulatory enzymes but also induces their significant spatial segregation in a variety of cancers. While LPP3 expression was downregulated by hypoxia, ATX and LPP1 were asymmetrically redistributed to the leading edge and to the trailing edge, respectively. This was associated with the opposing roles of ATX and LPPs in cell invasion. The regulated expression and compartmentalization of these enzymes of opposing function can provide an effective way to control the generation of an LPA gradient that drives cellular invasion and migration in the hypoxic zones of tumors.
Collapse
|
13
|
Simmons S, Erfinanda L, Bartz C, Kuebler WM. Novel mechanisms regulating endothelial barrier function in the pulmonary microcirculation. J Physiol 2018; 597:997-1021. [PMID: 30015354 DOI: 10.1113/jp276245] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/25/2018] [Indexed: 12/11/2022] Open
Abstract
The pulmonary epithelial and vascular endothelial cell layers provide two sequential physical and immunological barriers that together form a semi-permeable interface and prevent alveolar and interstitial oedema formation. In this review, we focus specifically on the continuous endothelium of the pulmonary microvascular bed that warrants strict control of the exchange of gases, fluid, solutes and circulating cells between the plasma and the interstitial space. The present review provides an overview of emerging molecular mechanisms that permit constant transcellular exchange between the vascular and interstitial compartment, and cause, prevent or reverse lung endothelial barrier failure under experimental conditions, yet with a clinical perspective. Based on recent findings and at times seemingly conflicting results we discuss emerging paradigms of permeability regulation by altered ion transport as well as shifts in the homeostasis of sphingolipids, angiopoietins and prostaglandins.
Collapse
Affiliation(s)
- Szandor Simmons
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lasti Erfinanda
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Bartz
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Departments of Surgery and Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Nelson DL, Zhao Y, Fabiilli ML, Cook KE. In vitro evaluation of lysophosphatidic acid delivery via reverse perfluorocarbon emulsions to enhance alveolar epithelial repair. Colloids Surf B Biointerfaces 2018; 169:411-417. [PMID: 29807339 DOI: 10.1016/j.colsurfb.2018.05.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Alveolar drug delivery is needed to enhance alveolar repair during acute respiratory distress syndrome. However, delivery of inhaled drugs is poor in this setting. Drug delivery via liquid perfluorocarbon emulsions could address this problem through better alveolar penetration and improved spatial distribution. Therefore, this study investigated the efficacy of the delivery of lysophosphatidic acid (LPA) growth factor to cultured alveolar epithelial cells via a perfluorocarbon emulsion. METHODS Murine alveolar epithelial cells were treated for 2 h with varying concentrations (0-10 μM) of LPA delivered via aqueous solution or PFC emulsion. Cell migration was evaluated 18 h post-treatment using a scratch assay. Barrier function was evaluated 1 h post-treatment using a permeability assay. Proliferation was evaluated 72 h post-treatment using a viability assay. RESULTS Partially due to emulsion creaming and stability, the effects of LPA were either diminished or completely hindered when delivered via emulsion versus aqueous. Migration increased significantly following treatment with the 10 μM emulsion (p < 10-3), but required twice the concentration to achieve an increase similar to aqueous LPA. Both barrier function and proliferation increased following aqueous treatment, but neither were significantly affected by the emulsion. CONCLUSIONS The availability and thus the biological effect of LPA is significantly blunted during emulsified delivery in vitro, and this attenuation depends on the specific cellular function examined. Thus, the cellular level effects of drug delivery to the lungs via PFC emulsion are likely to vary based on the drug and the effect it is intended to create.
Collapse
Affiliation(s)
- Diane L Nelson
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Scott Hall 4th Floor, Pittsburgh, PA, 15213, USA.
| | - Yutong Zhao
- Department of Medicine, University of Pittsburgh, Division of Pulmonary, Allergy and Critical Care Medicine, East 1200A Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.
| | - Mario L Fabiilli
- Department of Radiology, University of Michigan, 3226A Medical Sciences Building I, 1301 Catherine Street, Ann Arbor, MI, 48109, USA.
| | - Keith E Cook
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Scott Hall 4th Floor, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
15
|
Stuelten CH, Lee RM, Losert W, Parent CA. Lysophosphatidic acid regulates the motility of MCF10CA1a breast cancer cell sheets via two opposing signaling pathways. Cell Signal 2018; 45:1-11. [PMID: 29337044 PMCID: PMC5845779 DOI: 10.1016/j.cellsig.2018.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/22/2017] [Accepted: 01/07/2018] [Indexed: 01/31/2023]
Abstract
Aberrant cell migration leads to the dispersal of malignant cells. The ubiquitous lipid mediator lysophosphatidic acid (LPA) modulates cell migration and is implicated in tumor progression. Yet, the signaling cascades that regulate LPA's effect on cell motility remain unclear. Using time-lapse imaging and quantitative analyses, we studied the role of signaling cascades that act downstream of LPA on the motility of MCF10CA1a breast cancer cells. We found that LPA alters cell motility via two major signaling pathways. The Rho/ROCK signaling cascade is the predominant pathway that increases E-Cadherin containing cell-cell adhesions and cortical arrangement of actomyosin to promote slow, directional, spatially coherent and temporally consistent movement. In contrast, Gαi/o- and Gαq/11-dependent signaling cascades lessen directionality and support the independent movement of cells. The net effect of LPA on breast cancer cell migration therefore results from the integrated signaling activity of the Rho/ROCK and Gαi/o- and Gαq/11-dependent pathways, thus allowing for a dynamic migratory response to changes in the cellular or microenvironmental context.
Collapse
Affiliation(s)
- Christina H Stuelten
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States.
| | - Rachel M Lee
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States; Department of Physics, Physical Sciences Complex, University of Maryland, College Park, MD, United States
| | - Wolfgang Losert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States; Department of Physics, Physical Sciences Complex, University of Maryland, College Park, MD, United States
| | - Carole A Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States; Department of Pharmacology, Michigan Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI..
| |
Collapse
|
16
|
Carmona-Rosas G, Alfonzo-Méndez MA, Hernández-Espinosa DA, Romero-Ávila MT, García-Sáinz JA. A549 cells as a model to study endogenous LPA 1 receptor signaling and regulation. Eur J Pharmacol 2017; 815:258-265. [DOI: 10.1016/j.ejphar.2017.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/29/2017] [Accepted: 09/12/2017] [Indexed: 12/12/2022]
|
17
|
Mirzoyan K, Denis C, Casemayou A, Gilet M, Marsal D, Goudounéche D, Faguer S, Bascands JL, Schanstra JP, Saulnier-Blache JS. Lysophosphatidic Acid Protects Against Endotoxin-Induced Acute Kidney Injury. Inflammation 2017; 40:1707-1716. [DOI: 10.1007/s10753-017-0612-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Schmitz K, Brunkhorst R, de Bruin N, Mayer CA, Häussler A, Ferreiros N, Schiffmann S, Parnham MJ, Tunaru S, Chun J, Offermanns S, Foerch C, Scholich K, Vogt J, Wicker S, Lötsch J, Geisslinger G, Tegeder I. Dysregulation of lysophosphatidic acids in multiple sclerosis and autoimmune encephalomyelitis. Acta Neuropathol Commun 2017; 5:42. [PMID: 28578681 PMCID: PMC5457661 DOI: 10.1186/s40478-017-0446-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/21/2017] [Indexed: 01/18/2023] Open
Abstract
Abstract Bioactive lipids contribute to the pathophysiology of multiple sclerosis. Here, we show that lysophosphatidic acids (LPAs) are dysregulated in multiple sclerosis (MS) and are functionally relevant in this disease. LPAs and autotaxin, the major enzyme producing extracellular LPAs, were analyzed in serum and cerebrospinal fluid in a cross-sectional population of MS patients and were compared with respective data from mice in the experimental autoimmune encephalomyelitis (EAE) model, spontaneous EAE in TCR1640 mice, and EAE in Lpar2-/- mice. Serum LPAs were reduced in MS and EAE whereas spinal cord LPAs in TCR1640 mice increased during the ‘symptom-free’ intervals, i.e. on resolution of inflammation during recovery hence possibly pointing to positive effects of brain LPAs during remyelination as suggested in previous studies. Peripheral LPAs mildly re-raised during relapses but further dropped in refractory relapses. The peripheral loss led to a redistribution of immune cells from the spleen to the spinal cord, suggesting defects of lymphocyte homing. In support, LPAR2 positive T-cells were reduced in EAE and the disease was intensified in Lpar2 deficient mice. Further, treatment with an LPAR2 agonist reduced clinical signs of relapsing-remitting EAE suggesting that the LPAR2 agonist partially compensated the endogenous loss of LPAs and implicating LPA signaling as a novel treatment approach. Graphical abstract Graphical summary of lysophosphatidic signaling in multiple sclerosis![]() Electronic supplementary material The online version of this article (doi:10.1186/s40478-017-0446-4) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
D'Souza K, Kane DA, Touaibia M, Kershaw EE, Pulinilkunnil T, Kienesberger PC. Autotaxin Is Regulated by Glucose and Insulin in Adipocytes. Endocrinology 2017; 158:791-803. [PMID: 28324037 DOI: 10.1210/en.2017-00035] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 12/12/2022]
Abstract
Autotaxin (ATX) is an adipokine that generates the bioactive lipid, lysophosphatidic acid. Despite recent studies implicating adipose-derived ATX in metabolic disorders including obesity and insulin resistance, the nutritional and hormonal regulation of ATX in adipocytes remains unclear. The current study examined the regulation of ATX in adipocytes by glucose and insulin and the role of ATX in adipocyte metabolism. Induction of insulin resistance in adipocytes with high glucose and insulin concentrations increased ATX secretion, whereas coincubation with the insulin sensitizer, rosiglitazone, prevented this response. Moreover, glucose independently increased ATX messenger RNA (mRNA), protein, and activity in a time- and concentration-dependent manner. Glucose also acutely upregulated secreted ATX activity in subcutaneous adipose tissue explants. Insulin elicited a biphasic response. Acute insulin stimulation increased ATX activity in a PI3Kinase-dependent and mTORC1-independent manner, whereas chronic insulin stimulation decreased ATX mRNA, protein, and activity. To examine the metabolic role of ATX in 3T3-L1 adipocytes, we incubated cells with the ATX inhibitor, PF-8380, for 24 hours. Whereas ATX inhibition increased the expression of peroxisome proliferator-activated receptor-γ and its downstream targets, insulin signaling and mitochondrial respiration were unaffected. However, ATX inhibition enhanced mitochondrial H2O2 production. Taken together, this study suggests that ATX secretion from adipocytes is differentially regulated by glucose and insulin. This study also suggests that inhibition of autocrine/paracrine ATX-lysophosphatidic acid signaling does not influence insulin signaling or mitochondrial respiration, but increases reactive oxygen species production in adipocytes.
Collapse
Affiliation(s)
- Kenneth D'Souza
- Dalhousie Medicine New Brunswick, Department of Biochemistry and Molecular Biology, Dalhousie University, Saint John, New Brunswick E2L 4L5, Canada
| | - Daniel A Kane
- Department of Human Kinetics, St. Francis Xavier University, Antigonish, Nova Scotia B2G 2W5, Canada
| | - Mohamed Touaibia
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick E1A 3E9, Canada
| | - Erin E Kershaw
- Division of Endocrinology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Thomas Pulinilkunnil
- Dalhousie Medicine New Brunswick, Department of Biochemistry and Molecular Biology, Dalhousie University, Saint John, New Brunswick E2L 4L5, Canada
| | - Petra C Kienesberger
- Dalhousie Medicine New Brunswick, Department of Biochemistry and Molecular Biology, Dalhousie University, Saint John, New Brunswick E2L 4L5, Canada
| |
Collapse
|
20
|
Federico L, Jeong KJ, Vellano CP, Mills GB. Autotaxin, a lysophospholipase D with pleomorphic effects in oncogenesis and cancer progression. J Lipid Res 2016; 57:25-35. [PMID: 25977291 PMCID: PMC4689343 DOI: 10.1194/jlr.r060020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/07/2015] [Indexed: 12/18/2022] Open
Abstract
The ectonucleotide pyrophosphatase/phosphodiesterase type 2, more commonly known as autotaxin (ATX), is an ecto-lysophospholipase D encoded by the human ENNP2 gene. ATX is expressed in multiple tissues and participates in numerous key physiologic and pathologic processes, including neural development, obesity, inflammation, and oncogenesis, through the generation of the bioactive lipid, lysophosphatidic acid. Overwhelming evidence indicates that altered ATX activity leads to oncogenesis and cancer progression through the modulation of multiple hallmarks of cancer pathobiology. Here, we review the structural and catalytic characteristics of the ectoenzyme, how its expression and maturation processes are regulated, and how the systemic integration of its pleomorphic effects on cells and tissues may contribute to cancer initiation, progression, and therapy. Additionally, the up-to-date spectrum of the most frequent ATX genomic alterations from The Cancer Genome Atlas project is reported for a subset of cancers.
Collapse
Affiliation(s)
- Lorenzo Federico
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Kang Jin Jeong
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Christopher P Vellano
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Gordon B Mills
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX
| |
Collapse
|
21
|
Ryu JM, Han HJ. Autotaxin-LPA axis regulates hMSC migration by adherent junction disruption and cytoskeletal rearrangement via LPAR1/3-dependent PKC/GSK3β/β-catenin and PKC/Rho GTPase pathways. Stem Cells 2015; 33:819-32. [PMID: 25376707 DOI: 10.1002/stem.1882] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 09/30/2014] [Accepted: 10/15/2014] [Indexed: 12/29/2022]
Abstract
Bioactive molecules and stem cell-based regenerative engineering is emerging a promising approach for regenerating tissues. Autotaxin (ATX) is a key enzyme that regulates lysophosphatidic acid (LPA) levels in biological fluids, which exerts a wide range of cellular functions. However, the biological role of ATX in human umbilical cord blood-derived mesenchymal stem cells (hMSCs) migration remains to be fully elucidated. In this study, we observed that hMSCs, which were stimulated with LPA, accelerated wound healing, and LPA increased the migration of hMSCs into a wound site in a mouse skin wound healing model. In an experiment to investigate the effect of LPA on hMSC migration, ATX and LPA increased hMSC migration in a dose-dependent manner, and LPA receptor 1/3 siRNA transfections inhibited the ATX-induced cell migration. Furthermore, LPA increased Ca(2+) influx and PKC phosphorylation, which were blocked by Gαi and Gαq knockdown as well as by Ptx pretreatment. LPA increased GSK3β phosphorylation and β-catenin activation. LPA induced the cytosol to nuclear translocation of β-catenin, which was inhibited by PKC inhibitors. LPA stimulated the binding of β-catenin on the E-box located in the promoter of the CDH-1 gene and decreased CDH-1 promoter activity. In addition, the ATX and LPA-induced increase in hMSC migration was blocked by β-catenin siRNA transfection. LPA-induced PKC phosphorylation is also involved in Rac1 and CDC42 activation, and Rac1 and CDC42 knockdown abolished LPA-induced F-actin reorganization. In conclusion, ATX/LPA stimulates the migration of hMSCs through LPAR1/3-dependent E-cadherin reduction and cytoskeletal rearrangement via PKC/GSK3β/β-catenin and PKC/Rho GTPase pathways.
Collapse
Affiliation(s)
- Jung Min Ryu
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea; BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, South Korea
| | | |
Collapse
|
22
|
Nan L, Wei J, Jacko AM, Culley MK, Zhao J, Natarajan V, Ma H, Zhao Y. Cross-talk between lysophosphatidic acid receptor 1 and tropomyosin receptor kinase A promotes lung epithelial cell migration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:229-35. [PMID: 26597701 DOI: 10.1016/j.bbamcr.2015.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/28/2015] [Accepted: 11/16/2015] [Indexed: 02/02/2023]
Abstract
Lysophosphatidic acid (LPA) is a bioactive lysophospholipid, which plays a crucial role in the regulation of cell proliferation, migration, and differentiation. LPA exerts its biological effects mainly through binding to cell-surface LPA receptors (LPA1-6), which belong to the G protein-coupled receptor (GPCR) family. Recent studies suggest that cross-talk between receptor tyrosine kinases (RTKs) and GPCRs modulates GPCRs-mediated signaling. Tropomyosin receptor kinase A (TrkA) is a RTK, which mediates nerve growth factor (NGF)-induced biological functions including cell migration in neuronal and non-neuronal cells. Here, we show LPA1 transactivation of TrkA in murine lung epithelial cells (MLE12). LPA induced tyrosine phosphorylation of TrkA in both time- and dose-dependent manners. Down-regulation of LPA1 by siRNA transfection attenuated LPA-induced phosphorylation of TrkA, suggesting a cross-talk between LPA1 and TrkA. To investigate the molecular regulation of the cross-talk, we focused on the interaction between LPA1 and TrkA. We found that LPA induced interaction between LPA1 and TrkA. The LPA1/TrkA complex was localized on the plasma membrane and in the cytoplasm. The C-terminus of LPA1 was identified as the binding site for TrkA. Inhibition of TrkA attenuated LPA-induced phosphorylation of TrkA and LPA1 internalization, as well as lung epithelial cell migration. These studies provide a molecular mechanism for the transactivation of TrkA by LPA, and suggest that the cross-talk between LPA1 and TrkA regulates LPA-induced receptor internalization and lung epithelial cell migration.
Collapse
Affiliation(s)
- Ling Nan
- Department of Anesthesia, First Hospital of Jilin University, Changchun, China; Department of Medicine, Acute Lung Injury Center of Excellence, Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jianxin Wei
- Department of Medicine, Acute Lung Injury Center of Excellence, Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anastasia M Jacko
- Department of Medicine, Acute Lung Injury Center of Excellence, Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Miranda K Culley
- Department of Medicine, Acute Lung Injury Center of Excellence, Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jing Zhao
- Department of Medicine, Acute Lung Injury Center of Excellence, Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States
| | - Haichun Ma
- Department of Anesthesia, First Hospital of Jilin University, Changchun, China
| | - Yutong Zhao
- Department of Medicine, Acute Lung Injury Center of Excellence, Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
23
|
Chu X, Wei X, Lu S, He P. Autotaxin-LPA receptor axis in the pathogenesis of lung diseases. Int J Clin Exp Med 2015; 8:17117-17122. [PMID: 26770305 PMCID: PMC4694205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/05/2015] [Indexed: 06/05/2023]
Abstract
Lysophosphatidic acid (LPA) is a small lipid which mediates a variety of cellular functions via the activation of LPA receptors. LPA is generated from lysophosphatidylcholine by the extracellular enzyme, autotaxin (ATX). Elevated ATX expression, LPA production and their signaling pathways have been reported in multiple pathological conditions of lung tissue, including inflammation, fibrosis and cancer. Emerging evidence has highlighted the importance of ATX and LPA receptors in the pathogenesis of lung diseases. Here, we briefly review the current knowledge of different roles of the ATX-LPA receptor axis in lung diseases focusing on inflammation, fibrosis and cancer.
Collapse
Affiliation(s)
| | - Xiaojie Wei
- People’s Hospital of RizhaoRizhao, Shandong, China
| | - Shaolin Lu
- People’s Hospital of RizhaoRizhao, Shandong, China
| | - Peijian He
- Department of Internal Medicine, Emory UniversityAtlanta, Georgia, USA
| |
Collapse
|
24
|
Mouratis MA, Magkrioti C, Oikonomou N, Katsifa A, Prestwich GD, Kaffe E, Aidinis V. Autotaxin and Endotoxin-Induced Acute Lung Injury. PLoS One 2015. [PMID: 26196781 PMCID: PMC4509763 DOI: 10.1371/journal.pone.0133619] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Acute Lung Injury (ALI) is a life-threatening, diffuse heterogeneous lung injury characterized by acute onset, pulmonary edema and respiratory failure. Lipopolysaccharide (LPS) is a common cause of both direct and indirect lung injury and when administered to a mouse induces a lung phenotype exhibiting some of the clinical characteristics of human ALI. Here, we report that LPS inhalation in mice results in increased bronchoalveolar lavage fluid (BALF) levels of Autotaxin (ATX, Enpp2), a lysophospholipase D largely responsible for the conversion of lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA) in biological fluids and chronically inflamed sites. In agreement, gradual increases were also detected in BALF LPA levels, following inflammation and pulmonary edema. However, genetic or pharmacologic targeting of ATX had minor effects in ALI severity, suggesting no major involvement of the ATX/LPA axis in acute inflammation. Moreover, systemic, chronic exposure to increased ATX/LPA levels was shown to predispose to and/or to promote acute inflammation and ALI unlike chronic inflammatory pathophysiological situations, further suggesting a differential involvement of the ATX/LPA axis in acute versus chronic pulmonary inflammation.
Collapse
Affiliation(s)
- Marios-Angelos Mouratis
- Division of Immunology, Biomedical Sciences Research Center “Alexander Fleming”, Athens, Greece
| | - Christiana Magkrioti
- Division of Immunology, Biomedical Sciences Research Center “Alexander Fleming”, Athens, Greece
| | - Nikos Oikonomou
- Division of Immunology, Biomedical Sciences Research Center “Alexander Fleming”, Athens, Greece
| | - Aggeliki Katsifa
- Division of Immunology, Biomedical Sciences Research Center “Alexander Fleming”, Athens, Greece
| | - Glenn D. Prestwich
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Eleanna Kaffe
- Division of Immunology, Biomedical Sciences Research Center “Alexander Fleming”, Athens, Greece
| | - Vassilis Aidinis
- Division of Immunology, Biomedical Sciences Research Center “Alexander Fleming”, Athens, Greece
- * E-mail:
| |
Collapse
|
25
|
Park SJ, Jun YJ, Lee KJ, Hwang SM, Kim TH, Lee SH, Lee SH. Chronic rhinosinusitis with nasal polyps and without nasal polyps is associated with increased expression of lysophosphatidic acid-related molecules. Am J Rhinol Allergy 2015; 28:199-207. [PMID: 24980231 DOI: 10.2500/ajra.2014.28.4032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Chronic sinusitis with nasal polyps (CRSwNPs) or CRS without NPs (CRSsNPs) is associated with expression of various cytokines. Lysophosphatidic acid (LPA) generated by autotaxin (ATX), LPA-producing enzyme, initiates signaling cascade involved in the inflammatory responses and participates in diverse biological processes through LPA receptors, including cytokine production. We analyzed the expression and distribution patterns of LPA-related molecules in nasal secretion and sinus mucosa of normal controls and patients with CRSwNPs and CRSsNPs, to evaluate the possible effects of the ATX-LPA receptor axis on the pathogenesis of CRS. METHODS LPA levels in nasal secretion and the expression and distribution patterns of ATX and LPA receptors 1-3 (LPA1-3) in sinus mucosa were investigated using ELISA, real-time polymerase chain reaction, Western blot, and immunohistochemistry. We elucidated the effect of CRS-relevant cytokines on the expression of ATX and LPA receptors, using cultured sinus epithelial cells, and investigated the effect of LPA on the expression of CRS-relevant cytokines, using sinus mucosa explant culture. RESULTS LPA, ATX, and LPA1-3 levels are increased in CRSwNPs and CRSsNPs. ATX and LPA1-3 were localized to superficial epithelium, submucosal glands in normal and inflammatory mucosa, but in inflammatory mucosa, they were found in inflammatory cells. LPA1-3 were noted in endothelium. Sinus mucosa explant stimulated with LPA increasingly produced IL-4, IL-5, interferon gamma, and TNF-alpha, and in cultured epithelial cells stimulated with CRS-relevant cytokines, ATX, and LPA1-3 were differentially induced. CONCLUSION LPA in human sinus mucosa may play important roles in the pathogenesis of CRS, contributing to produce CRS-related cytokines. LPA-related molecules were increased in CRS, which may attribute to CRS-related cytokines.
Collapse
Affiliation(s)
- Se Jin Park
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Hallym University, Chuncheon, Korea
| | | | | | | | | | | | | |
Collapse
|
26
|
Barbayianni E, Kaffe E, Aidinis V, Kokotos G. Autotaxin, a secreted lysophospholipase D, as a promising therapeutic target in chronic inflammation and cancer. Prog Lipid Res 2015; 58:76-96. [DOI: 10.1016/j.plipres.2015.02.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 01/20/2015] [Accepted: 02/12/2015] [Indexed: 02/07/2023]
|
27
|
Greenman R, Gorelik A, Sapir T, Baumgart J, Zamor V, Segal-Salto M, Levin-Zaidman S, Aidinis V, Aoki J, Nitsch R, Vogt J, Reiner O. Non-cell autonomous and non-catalytic activities of ATX in the developing brain. Front Neurosci 2015; 9:53. [PMID: 25788872 PMCID: PMC4349085 DOI: 10.3389/fnins.2015.00053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/06/2015] [Indexed: 12/20/2022] Open
Abstract
The intricate formation of the cerebral cortex requires a well-coordinated series of events, which are regulated at the level of cell-autonomous and non-cell autonomous mechanisms. Whereas cell-autonomous mechanisms that regulate cortical development are well-studied, the non-cell autonomous mechanisms remain poorly understood. A non-biased screen allowed us to identify Autotaxin (ATX) as a non-cell autonomous regulator of neural stem cells. ATX (also known as ENPP2) is best known to catalyze lysophosphatidic acid (LPA) production. Our results demonstrate that ATX affects the localization and adhesion of neuronal progenitors in a cell autonomous and non-cell autonomous manner, and strikingly, this activity is independent from its catalytic activity in producing LPA.
Collapse
Affiliation(s)
- Raanan Greenman
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot, Israel
| | - Anna Gorelik
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot, Israel
| | - Tamar Sapir
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot, Israel
| | - Jan Baumgart
- University Medical Center, Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz Mainz, Germany ; Central Laboratory Animal Facility, University Medical Center, Johannes Gutenberg-University Mainz Mainz, Germany
| | - Vanessa Zamor
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot, Israel
| | - Michal Segal-Salto
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot, Israel
| | - Smadar Levin-Zaidman
- Department of Chemical Research Support, Weizmann Institute of Science Rehovot, Israel
| | - Vassilis Aidinis
- Division of Immunology, Biomedical Sciences Research Center 'Alexander Fleming' Athens, Greece
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, Tohoku University Miyagi, Japan
| | - Robert Nitsch
- University Medical Center, Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz Mainz, Germany
| | - Johannes Vogt
- University Medical Center, Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz Mainz, Germany
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot, Israel
| |
Collapse
|
28
|
Knowlden S, Georas SN. The autotaxin-LPA axis emerges as a novel regulator of lymphocyte homing and inflammation. THE JOURNAL OF IMMUNOLOGY 2014; 192:851-7. [PMID: 24443508 DOI: 10.4049/jimmunol.1302831] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lysophosphatidic acid (LPA) is a pleiotropic lipid molecule with potent effects on cell growth and motility. Major progress has been made in recent years in deciphering the mechanisms of LPA generation and how it acts on target cells. Most research has been conducted in other disciplines, but emerging data indicate that LPA has an important role to play in immunity. A key discovery was that autotaxin (ATX), an enzyme previously implicated in cancer cell motility, generates extracellular LPA from the precursor lysophosphatidylcholine. Steady-state ATX is expressed by only a few tissues, including high endothelial venules in lymph nodes, but inflammatory signals can upregulate ATX expression in different tissues. In this article, we review current thinking about the ATX/LPA axis in lymphocyte homing, as well as in models of allergic airway inflammation and asthma. New insights into the role of LPA in regulating immune responses should be forthcoming in the near future.
Collapse
Affiliation(s)
- Sara Knowlden
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642
| | | |
Collapse
|
29
|
Magkrioti C, Aidinis V. Autotaxin and lysophosphatidic acid signalling in lung pathophysiology. World J Respirol 2013; 3:77-103. [DOI: 10.5320/wjr.v3.i3.77] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/03/2013] [Accepted: 11/19/2013] [Indexed: 02/06/2023] Open
Abstract
Autotaxin (ATX or ENPP2) is a secreted glycoprotein widely present in biological fluids. ATX primarily functions as a plasma lysophospholipase D and is largely responsible for the bulk of lysophosphatidic acid (LPA) production in the plasma and at inflamed and/or malignant sites. LPA is a phospholipid mediator produced in various conditions both in cells and in biological fluids, and it evokes growth-factor-like responses, including cell growth, survival, differentiation and motility, in almost all cell types. The large variety of LPA effector functions is attributed to at least six G-protein coupled LPA receptors (LPARs) with overlapping specificities and widespread distribution. Increased ATX/LPA/LPAR levels have been detected in a large variety of cancers and transformed cell lines, as well as in non-malignant inflamed tissues, suggesting a possible involvement of ATX in chronic inflammatory disorders and cancer. In this review, we focus exclusively on the role of the ATX/LPA axis in pulmonary pathophysiology, analysing the effects of ATX/LPA on pulmonary cells and leukocytes in vitro and in the context of pulmonary pathophysiological situations in vivo and in human diseases.
Collapse
|
30
|
Masuda K, Haruta S, Orino K, Kawaminami M, Kurusu S. Autotaxin as a novel, tissue-remodeling-related factor in regressing corpora lutea of cycling rats. FEBS J 2013; 280:6600-12. [DOI: 10.1111/febs.12565] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 10/02/2013] [Accepted: 10/07/2013] [Indexed: 12/24/2022]
Affiliation(s)
- Kanako Masuda
- Laboratory of Veterinary Physiology; School of Veterinary Medicine, Kitasato University; Towada Japan
| | - Satoru Haruta
- Laboratory of Veterinary Physiology; School of Veterinary Medicine, Kitasato University; Towada Japan
| | - Koichi Orino
- Laboratory of Veterinary Biochemistry; School of Veterinary Medicine, Kitasato University; Towada Japan
| | - Mitsumori Kawaminami
- Laboratory of Veterinary Physiology; School of Veterinary Medicine, Kitasato University; Towada Japan
| | - Shiro Kurusu
- Laboratory of Veterinary Physiology; School of Veterinary Medicine, Kitasato University; Towada Japan
| |
Collapse
|
31
|
Zhao J, Mialki RK, Wei J, Coon TA, Zou C, Chen BB, Mallampalli RK, Zhao Y. SCF E3 ligase F-box protein complex SCF(FBXL19) regulates cell migration by mediating Rac1 ubiquitination and degradation. FASEB J 2013; 27:2611-9. [PMID: 23512198 DOI: 10.1096/fj.12-223099] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Rac1, a member of the Rho family of GTPases, regulates diverse cellular functions, including cytoskeleton reorganization and cell migration. F-box proteins are major subunits within the Skp1-Cul1-F-box (SCF) E3 ubiquitin ligases that recognize specific substrates for ubiquitination. The role of F-box proteins in regulating Rac1 stability has not been studied. Mouse lung epithelial (MLE12) cells were used to investigate Rac1 stability and cell migration. Screening of an F-box protein library and in vitro ubiquitination assays identified FBXL19, a relatively new member of the F-box protein family that targets Rac1 for its polyubiquitination and proteasomal degradation. Overexpression of FBXL19 decreased both Rac1 active and inactive forms and significantly reduced cellular migration. Protein kinase AKT-mediated phosphorylation of Rac1 at serine(71) was essential for FBXL19-mediated Rac1 ubiquitination and depletion. Lysine(166) within Rac1 was identified as a polyubiquitination acceptor site. Rac1(S71A) and Rac1(K166R) mutant proteins were resistant to FBXL19-mediated ubiquitination and degradation. Further, ectopically expressed FBXL19 reduced cell migration in Rac1-overexpressing cells (P<0.01, Rac1 cells vs. FBXL19+Rac1 cells), but not in Rac1 lysine(166) mutant-overexpressing cells. FBXL19 diminished formation of the migratory leading edge. Thus, SCF(FBXL19) targets Rac1 for its disposal, a process regulated by AKT. These findings provide the first evidence of an F-box protein targeting a small G protein for ubiquitination and degradation to modulate cell migration.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Ave., Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Lysoglycerophospholipids in chronic inflammatory disorders: The PLA2/LPC and ATX/LPA axes. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:42-60. [DOI: 10.1016/j.bbalip.2012.07.019] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/20/2012] [Accepted: 07/24/2012] [Indexed: 02/08/2023]
|
33
|
Zhang Y, Chen YCM, Krummel MF, Rosen SD. Autotaxin through lysophosphatidic acid stimulates polarization, motility, and transendothelial migration of naive T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:3914-24. [PMID: 22962684 PMCID: PMC3509168 DOI: 10.4049/jimmunol.1201604] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Blood-borne lymphocytes home to lymph nodes by interacting with and crossing high endothelial venules (HEVs). The transendothelial migration (TEM) step is poorly understood. Autotaxin (ATX) is an ectoenzyme that catalyzes the conversion of lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), a bioactive lipid and a close relative of sphingosine 1-phosphate. HEVs produce and secrete ATX into the blood. A prior study implicated ATX in the overall homing process, but the step in which it functions and its mechanism of action have not been defined. In this article, we show that HA130, an inhibitor of the enzymatic activity of ATX, slows T cell migration across lymph node HEVs in vivo. Ex vivo, ATX plus LPC or LPA itself induces the polarization of mouse naive T cells and stimulates their motility on an ICAM-1 substratum. Under physiologic shear conditions in a flow chamber, LPA or ATX/LPC strongly enhances TEM of integrin-arrested T cells across an endothelial monolayer. HA130 blunts the TEM-promoting activity of ATX, paralleling its in vivo effects. T cells possess Mn(+2)-activatable receptors for ATX, which are localized at the leading edge of polarized cells. ATX must bind to these receptors to elicit a maximal TEM response, providing a mechanism to focus the action of LPA onto arrested lymphocytes in flowing blood. Our results indicate that LPA produced via ATX facilitates T cell entry into lymph nodes by stimulating TEM, substantiating an additional step in the homing cascade. This entry role for LPA complements the efflux function of sphingosine 1-phosphate.
Collapse
Affiliation(s)
- Yafeng Zhang
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
34
|
Zhao Y, Natarajan V. Lysophosphatidic acid (LPA) and its receptors: role in airway inflammation and remodeling. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:86-92. [PMID: 22809994 DOI: 10.1016/j.bbalip.2012.06.014] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/27/2012] [Accepted: 06/29/2012] [Indexed: 12/14/2022]
Abstract
Lysophosphatidic acid (LPA), a simple bioactive phospholipid, is present in biological fluids such as plasma and bronchoalveolar lavage (BAL). It appears to have both pro- and anti-inflammatory roles in inflammatory lung diseases. Exogenous LPA promotes inflammatory responses by regulating the expression of chemokines, cytokines, and cytokine receptors in lung epithelial cells. In addition to the modulation of inflammatory responses, LPA regulates cytoskeleton rearrangement and confers protection against lung injury by enhancing lung epithelial cell barrier integrity and remodeling. The biological effects of LPA are mediated through its cell surface G-protein coupled LPA(1-7) receptors. The roles of LPA receptors in lung fibrosis, asthma, and acute lung injury have been investigated using genetically engineered LPA receptor deficient mice and there appears to be a definitive role for endogenous LPA and its receptors in the pathogenesis of pulmonary inflammatory diseases. This review summarizes recent reports on the role of LPA and its receptors in the regulation of lung epithelial inflammatory responses and remodeling. This article is part of a Special Issue entitled: Advances in Lysophospholipid Research.
Collapse
Affiliation(s)
- Yutong Zhao
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|
35
|
Oikonomou N, Mouratis MA, Tzouvelekis A, Kaffe E, Valavanis C, Vilaras G, Karameris A, Prestwich GD, Bouros D, Aidinis V. Pulmonary autotaxin expression contributes to the pathogenesis of pulmonary fibrosis. Am J Respir Cell Mol Biol 2012; 47:566-74. [PMID: 22744859 DOI: 10.1165/rcmb.2012-0004oc] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic form of diffuse lung disease occurring mainly in older adults. Increased lysophosphatidic acid (LPA) concentrations have been reported in the alveolar space of both idiopathic pulmonary fibrosis patients and a corresponding animal model, whereas the genetic deletion or pharmacological inhibition of LPA receptor 1 attenuated the development of the modeled disease, suggesting a direct involvement of LPA in disease pathogenesis. In this report, increased concentrations of autotaxin (ATX; ENPP2), the enzyme largely responsible for extracellular LPA production, were detected in both murine and human fibrotic lungs. The genetic deletion of ATX from bronchial epithelial cells or macrophages attenuated disease severity, establishing ATX as a novel player in IPF pathogenesis. Furthermore, the pharmacological inhibition of ATX attenuated the development of the modeled disease, suggesting that ATX is a possible therapeutic target in IPF.
Collapse
Affiliation(s)
- Nikos Oikonomou
- Institute of Immunology, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhao J, Wei J, Mialki R, Zou C, Mallampalli RK, Zhao Y. Extracellular signal-regulated kinase (ERK) regulates cortactin ubiquitination and degradation in lung epithelial cells. J Biol Chem 2012; 287:19105-14. [PMID: 22514278 DOI: 10.1074/jbc.m112.339507] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cortactin, an actin-binding protein, is essential for cell growth and motility. We have shown that cortactin is regulated by reversible phosphorylation, but little is known regarding cortactin protein stability. Here, we show that lipopolysaccharide (LPS)-induced cortactin degradation is mediated by extracellular regulated signal kinase (ERK). LPS induces cortactin serine phosphorylation, ubiquitination, and degradation in mouse lung epithelia, an effect abrogated by ERK inhibition. Serine phosphorylation sites mutant, cortactin(S405A/S418A), enhances its protein stability. Cortactin is polyubiquitinated and degraded within the proteasome, whereas a cortactin(K79R) mutant exhibited proteolytic stability during cyclohexamide (CHX) or LPS treatment. The E3 ligase subunit β-Trcp interacts with cortactin, and its overexpression reduced cortactin protein levels, an effect attenuated by ERK inhibition. Overexpression of β-Trcp was sufficient to reduce the protective effects of exogenous cortactin on epithelial cell barrier integrity, an effect not observed after expression of a cortactin(K79R) mutant. These results provide evidence that LPS modulation of cortactin stability is coordinately regulated by stress kinases and the ubiquitin-proteasomal network.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
37
|
Zhao J, He D, Su Y, Berdyshev E, Chun J, Natarajan V, Zhao Y. Lysophosphatidic acid receptor 1 modulates lipopolysaccharide-induced inflammation in alveolar epithelial cells and murine lungs. Am J Physiol Lung Cell Mol Physiol 2011; 301:L547-56. [PMID: 21821728 DOI: 10.1152/ajplung.00058.2011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lysophosphatidic acid (LPA), a bioactive phospholipid, plays an important role in lung inflammation by inducing the release of chemokines and lipid mediators. Our previous studies have shown that LPA induces the secretion of interleukin-8 and prostaglandin E(2) in lung epithelial cells. Here, we demonstrate that LPA receptors contribute to lipopolysaccharide (LPS)-induced inflammation. Pretreatment with LPA receptor antagonist Ki16425 or downregulation of LPA receptor 1 (LPA(1)) by small-interfering RNA (siRNA) attenuated LPS-induced phosphorylation of p38 MAPK, I-κB kinase, and I-κB in MLE12 epithelial cells. In addition, the blocking of LPA(1) also suppressed LPS-induced IL-6 production. Furthermore, LPS treatment promoted interaction between LPA(1) and CD14, a LPS coreceptor, in a time- and dose-dependent manner. Disruption of lipid rafts attenuated the interaction between LPA(1) and CD14. Mice challenged with LPS increased plasma LPA levels and enhanced expression of LPA receptors in lung tissues. To further investigate the role of LPA receptors in LPS-induced inflammation, wild-type, or LPA(1)-deficient mice, or wild-type mice pretreated with Ki16425 were intratracheally challenged with LPS for 24 h. Knock down or inhibition of LPA(1) decreased LPS-induced IL-6 release in bronchoalveolar lavage (BAL) fluids and infiltration of cells into alveolar space compared with wild-type mice. However, no significant differences in total protein concentration in BAL fluids were observed. These results showed that knock down or inhibition of LPA(1) offered significant protection against LPS-induced lung inflammation but not against pulmonary leak as observed in the murine model for lung injury.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Medicine, University of Pittsburgh School of Medicine, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|