1
|
Li W, Ma X, Li X, Zhang X, Sun Y, Ning C, Zhang Q, Wang D, Tang H. Integrating Single-Cell RNA-Seq and ATAC-Seq Analysis Reveals Uterine Cell Heterogeneity and Regulatory Networks Linked to Pimpled Eggs in Chickens. Int J Mol Sci 2024; 25:13431. [PMID: 39769196 PMCID: PMC11679886 DOI: 10.3390/ijms252413431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Pimpled eggs have defective shells, which severely impacts hatching rates and transportation safety. In this study, we constructed single-cell resolution transcriptomic and chromatin accessibility maps from uterine tissues of chickens using single-cell RNA sequencing (scRNA-seq) and single-cell ATAC sequencing (scATAC-seq). We identified 11 major cell types and characterized their marker genes, along with specific transcription factors (TFs) that determine cell fate. CellChat analysis showed that fibroblasts had the most extensive intercellular communication network and that the chickens laying pimpled eggs had amplified immune-related signaling pathways. Differential expression and enrichment analyses indicated that inflammation in pimpled egg-laying chickens may lead to disruptions in their circadian rhythm and changes in the expression of ion transport-related genes, which negatively impacts eggshell quality. We then integrated TF analysis to construct a regulatory network involving TF-target gene-Gene Ontology associations related to pimpled eggs. We found that the transcription factors ATF3, ATF4, JUN, and FOS regulate uterine activities upstream, while the downregulation of ion pumps and genes associated with metal ion binding directly promotes the formation of pimpled eggs. Finally, by integrating the results of scRNA-seq and scATAC-seq, we identified a rare cell type-ionocytes. Our study constructed single-cell resolution transcriptomic and chromatin accessibility maps of chicken uterine tissue and explored the molecular regulatory mechanisms underlying pimpled egg formation. Our findings provide deeper insights into the structure and function of the chicken uterus, as well as the molecular mechanisms of eggshell formation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dan Wang
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China; (W.L.); (X.M.); (X.L.); (X.Z.); (Y.S.); (C.N.); (Q.Z.)
| | - Hui Tang
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China; (W.L.); (X.M.); (X.L.); (X.Z.); (Y.S.); (C.N.); (Q.Z.)
| |
Collapse
|
2
|
Todesco A, Grynblat J, Akoumia KKF, Bonnet D, Mendes‐Ferreira P, Morisset S, Chemla D, Levy M, Méot M, Malekzadeh‐Milani S, Tielemans B, Decante B, Vastel‐Amzallag C, Habert P, Ghigna M, Humbert M, Montani D, Boulate D, Perros F. Pulmonary Hypertension Induced by Right Pulmonary Artery Occlusion: Hemodynamic Consequences of Bmpr2 Mutation. J Am Heart Assoc 2024; 13:e034621. [PMID: 38979789 PMCID: PMC11292755 DOI: 10.1161/jaha.124.034621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/28/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND The primary genetic risk factor for heritable pulmonary arterial hypertension is the presence of monoallelic mutations in the BMPR2 gene. The incomplete penetrance of BMPR2 mutations implies that additional triggers are necessary for pulmonary arterial hypertension occurrence. Pulmonary artery stenosis directly raises pulmonary artery pressure, and the redirection of blood flow to unobstructed arteries leads to endothelial dysfunction and vascular remodeling. We hypothesized that right pulmonary artery occlusion (RPAO) triggers pulmonary hypertension (PH) in rats with Bmpr2 mutations. METHODS AND RESULTS Male and female rats with a 71 bp monoallelic deletion in exon 1 of Bmpr2 and their wild-type siblings underwent acute and chronic RPAO. They were subjected to full high-fidelity hemodynamic characterization. We also examined how chronic RPAO can mimic the pulmonary gene expression pattern associated with installed PH in unobstructed territories. RPAO induced precapillary PH in male and female rats, both acutely and chronically. Bmpr2 mutant and male rats manifested more severe PH compared with their counterparts. Although wild-type rats adapted to RPAO, Bmpr2 mutant rats experienced heightened mortality. RPAO induced a decline in cardiac contractility index, particularly pronounced in male Bmpr2 rats. Chronic RPAO resulted in elevated pulmonary IL-6 (interleukin-6) expression and decreased Gdf2 expression (corrected P value<0.05 and log2 fold change>1). In this context, male rats expressed higher pulmonary levels of endothelin-1 and IL-6 than females. CONCLUSIONS Our novel 2-hit rat model presents a promising avenue to explore the adaptation of the right ventricle and pulmonary vasculature to PH, shedding light on pertinent sex- and gene-related effects.
Collapse
MESH Headings
- Animals
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- Female
- Male
- Pulmonary Artery/physiopathology
- Pulmonary Artery/metabolism
- Hemodynamics
- Disease Models, Animal
- Mutation
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/metabolism
- Rats
- Rats, Sprague-Dawley
- Vascular Remodeling/genetics
- Pulmonary Arterial Hypertension/physiopathology
- Pulmonary Arterial Hypertension/genetics
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/etiology
- Stenosis, Pulmonary Artery/genetics
- Stenosis, Pulmonary Artery/physiopathology
- Stenosis, Pulmonary Artery/metabolism
- Arterial Pressure
- Myocardial Contraction/physiology
Collapse
Affiliation(s)
- Alban Todesco
- Department of Thoracic Surgery, Diseases of the Esophagus and Lung Transplantation, North HospitalAix Marseille University, Assistance Publique‐Hôpitaux de MarseilleMarseilleFrance
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel TherapiesLe Plessis RobinsonFrance
| | - Julien Grynblat
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel TherapiesLe Plessis RobinsonFrance
- M3C‐Necker, Hôpital Necker‐Enfants maladesAP‐HP Université de Paris Cité, Cardiologie Congénitale et PédiatriqueParisFrance
- Faculty of Medicine Le Kremlin‐BicêtreUniversité Paris‐SaclayBures‐sur‐YvetteFrance
| | - Kouamé Kan Firmin Akoumia
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel TherapiesLe Plessis RobinsonFrance
| | - Damien Bonnet
- M3C‐Necker, Hôpital Necker‐Enfants maladesAP‐HP Université de Paris Cité, Cardiologie Congénitale et PédiatriqueParisFrance
| | - Pedro Mendes‐Ferreira
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and PhysiologyFaculty of Medicine of the University of PortoPortoPortugal
- Paris‐Porto Pulmonary Hypertension Collaborative Laboratory (3PH), UMR_S 999, INSERMUniversité Paris‐SaclayParisFrance
| | | | - Denis Chemla
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel TherapiesLe Plessis RobinsonFrance
| | - Marilyne Levy
- M3C‐Necker, Hôpital Necker‐Enfants maladesAP‐HP Université de Paris Cité, Cardiologie Congénitale et PédiatriqueParisFrance
| | - Mathilde Méot
- M3C‐Necker, Hôpital Necker‐Enfants maladesAP‐HP Université de Paris Cité, Cardiologie Congénitale et PédiatriqueParisFrance
| | - Sophie‐Guiti Malekzadeh‐Milani
- M3C‐Necker, Hôpital Necker‐Enfants maladesAP‐HP Université de Paris Cité, Cardiologie Congénitale et PédiatriqueParisFrance
| | - Birger Tielemans
- Department of Imaging and Pathology, Biomedical MRI unit/MosaicKU LeuvenLeuvenBelgium
| | - Benoit Decante
- Preclinical Research Laboratory, Pulmonary Hypertension National Referral Center, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint JosephParis‐Saclay UniversityLe Plessis RobinsonFrance
| | - Carine Vastel‐Amzallag
- Paediatric Cardiology, Centre de Spécialités Pédiatriques de l’Est Parisien, CSPEPCréteilFrance
| | - Paul Habert
- Department of RadiologyNorth Hospital, Assistance Publique–Hôpitaux de MarseilleMarseilleFrance
- Aix Marseille Univ, LIIEMarseilleFrance
| | - Maria‐Rosa Ghigna
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel TherapiesLe Plessis RobinsonFrance
- Department of PathologyInstitut Gustave RoussyVillejuifFrance
| | - Marc Humbert
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel TherapiesLe Plessis RobinsonFrance
- Faculty of Medicine Le Kremlin‐BicêtreUniversité Paris‐SaclayBures‐sur‐YvetteFrance
- AP‐HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral CentreDMU 5 Thorinno, Hôpital BicêtreLe Kremlin‐BicêtreFrance
| | - David Montani
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel TherapiesLe Plessis RobinsonFrance
- Faculty of Medicine Le Kremlin‐BicêtreUniversité Paris‐SaclayBures‐sur‐YvetteFrance
- AP‐HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral CentreDMU 5 Thorinno, Hôpital BicêtreLe Kremlin‐BicêtreFrance
| | - David Boulate
- Department of Thoracic Surgery, Diseases of the Esophagus and Lung Transplantation, North HospitalAix Marseille University, Assistance Publique‐Hôpitaux de MarseilleMarseilleFrance
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel TherapiesLe Plessis RobinsonFrance
- COMPutational Pharmacology and clinical Oncology (COMPO), INRIA‐INSERMAix Marseille UniversityMarseilleFrance
| | - Frédéric Perros
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel TherapiesLe Plessis RobinsonFrance
- Paris‐Porto Pulmonary Hypertension Collaborative Laboratory (3PH), UMR_S 999, INSERMUniversité Paris‐SaclayParisFrance
- CarMeN Laboratory, INSERM U1060, INRAE U1397Université Claude Bernard Lyon1Pierre‐BéniteFrance
| |
Collapse
|
3
|
Ke H, Chen Z, Zhao X, Yang C, Luo T, Ou W, Wang L, Liu H. Research progress on activation transcription factor 3: A promising cardioprotective molecule. Life Sci 2023:121869. [PMID: 37355225 DOI: 10.1016/j.lfs.2023.121869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023]
Abstract
Activation transcription factor 3 (ATF3), a member of the ATF/cyclic adenosine monophosphate response element binding family, can be induced by a variety of stresses. Numerous studies have indicated that ATF3 plays multiple roles in the development and progression of cardiovascular diseases, including atherosclerosis, hypertrophy, fibrosis, myocardial ischemia-reperfusion, cardiomyopathy, and other cardiac dysfunctions. In past decades, ATF3 has been demonstrated to be detrimental to some cardiac diseases. Current studies have indicated that ATF3 can function as a cardioprotective molecule in antioxidative stress, lipid metabolic metabolism, energy metabolic regulation, and cell death modulation. To unveil the potential therapeutic role of ATF3 in cardiovascular diseases, we organized this review to explore the protective effects and mechanisms of ATF3 on cardiac dysfunction, which might provide rational evidence for the prevention and cure of cardiovascular diseases.
Collapse
Affiliation(s)
- Haoteng Ke
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China; Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Zexing Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China; Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xuanbin Zhao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China; Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chaobo Yang
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Tao Luo
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Wen Ou
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Lizi Wang
- Department of Health Management, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Haiqiong Liu
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Department of Health Management, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
4
|
Billah M, Naz A, Noor R, Bhindi R, Khachigian LM. Early Growth Response-1: Friend or Foe in the Heart? Heart Lung Circ 2023; 32:e23-e35. [PMID: 37024319 DOI: 10.1016/j.hlc.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 04/07/2023]
Abstract
Cardiovascular disease is a major cause of mortality and morbidity worldwide. Early growth response-1 (Egr-1) plays a critical regulatory role in a range of experimental models of cardiovascular diseases. Egr-1 is an immediate-early gene and is upregulated by various stimuli including shear stress, oxygen deprivation, oxidative stress and nutrient deprivation. However, recent research suggests a new, underexplored cardioprotective side of Egr-1. The main purpose of this review is to explore and summarise the dual nature of Egr-1 in cardiovascular pathobiology.
Collapse
Affiliation(s)
- Muntasir Billah
- Department of Cardiology, Kolling Institute of Medical Research, Northern Sydney Local Health District, Sydney, NSW, Australia; Sydney Medical School Northern, The University of Sydney, Sydney, NSW, Australia.
| | - Adiba Naz
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Rashed Noor
- School of Environmental and Life Sciences, Independent University Bangladesh, Dhaka, Bangladesh
| | - Ravinay Bhindi
- Department of Cardiology, Kolling Institute of Medical Research, Northern Sydney Local Health District, Sydney, NSW, Australia; Sydney Medical School Northern, The University of Sydney, Sydney, NSW, Australia
| | - Levon M Khachigian
- Vascular Biology and Translational Research, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
5
|
James NE, Woodman M, De La Cruz P, Eurich K, Ozsoy MA, Schorl C, Hanley LC, Ribeiro JR. Adaptive transcriptomic and immune infiltrate responses in the tumor immune microenvironment following neoadjuvant chemotherapy in high grade serous ovarian cancer reveal novel prognostic associations and activation of pro-tumorigenic pathways. Front Immunol 2022; 13:965331. [PMID: 36131935 PMCID: PMC9483165 DOI: 10.3389/fimmu.2022.965331] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
The high rate of ovarian cancer recurrence and chemoresistance necessitates further research into how chemotherapy affects the tumor immune microenvironment (TIME). While studies have shown that immune infiltrate increases following neoadjuvant (NACT) chemotherapy, there lacks a comprehensive understanding of chemotherapy-induced effects on immunotranscriptomics and cancer-related pathways and their relationship with immune infiltrate and patient responses. In this study, we performed NanoString nCounter® PanCancer IO360 analysis of 31 high grade serous ovarian cancer (HGSOC) patients with matched pre-treatment biopsy and post-NACT tumor. We observed increases in pro-tumorigenic and immunoregulatory pathways and immune infiltrate following NACT, with striking increases in a cohort of genes centered on the transcription factors ATF3 and EGR1. Using quantitative PCR, we analyzed several of the top upregulated genes in HGSOC cell lines, noting that two of them, ATF3 and AREG, were consistently upregulated with chemotherapy exposure and significantly increased in platinum resistant cells compared to their sensitive counterparts. Furthermore, we observed that pre-NACT immune infiltrate and pathway scores were not strikingly related to platinum free interval (PFI), but post-NACT immune infiltrate, pathway scores, and gene expression were. Finally, we found that higher levels of a cohort of proliferative and DNA damage-related genes was related to shorter PFI. This study underscores the complex alterations in the ovarian TIME following chemotherapy exposure and begins to untangle how immunologic factors are involved in mediating chemotherapy response, which will allow for the future development of novel immunologic therapies to combat chemoresistance.
Collapse
Affiliation(s)
- Nicole E. James
- Department of Obstetrics and Gynecology, Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
- Department of Obstetrics and Gynecology, Warren-Alpert Medical School of Brown University, Providence, RI, United States
- *Correspondence: Nicole E. James,
| | - Morgan Woodman
- Department of Obstetrics and Gynecology, Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
| | - Payton De La Cruz
- Pathobiology Graduate Program, Brown University, Providence, RI, United States
| | - Katrin Eurich
- Department of Obstetrics and Gynecology, Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
- Department of Obstetrics and Gynecology, Warren-Alpert Medical School of Brown University, Providence, RI, United States
| | - Melih Arda Ozsoy
- Department of Biochemistry, Brown University, Providence, RI, United States
| | - Christoph Schorl
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Linda C. Hanley
- Department of Pathology, Women and Infants Hospital, Providence, RI, United States
| | - Jennifer R. Ribeiro
- Department of Obstetrics and Gynecology, Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
- Department of Obstetrics and Gynecology, Warren-Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
6
|
Wang J, Struebing FL, Geisert EE. Commonalities of optic nerve injury and glaucoma-induced neurodegeneration: Insights from transcriptome-wide studies. Exp Eye Res 2021; 207:108571. [PMID: 33844961 PMCID: PMC9890784 DOI: 10.1016/j.exer.2021.108571] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 02/03/2023]
Abstract
Glaucoma is a collection of diseases that lead to an irreversible vision loss due to damage of retinal ganglion cells (RGCs). Although the underlying events leading to RGC death are not fully understood, recent research efforts are beginning to define the genetic changes that play a critical role in the initiation and progression of glaucomatous injury and RGC death. Several genetic and experimental animal models have been developed to mimic glaucomatous neurodegeneration. These models differ in many respects but all result in the loss of RGCs. Assessing transcriptional changes across different models could provide a more complete perspective on the molecular drivers of RGC degeneration. For the past several decades, changes in the retinal transcriptome during neurodegeneration process were defined using microarray methods, RNA sequencing and now single cell RNA sequencing. It is understood that these methods have strengths and weaknesses due to technical differences and variations in the analytical tools used. In this review, we focus on the use of transcriptome-wide expression profiling of the changes occurring as RGCs are lost across different glaucoma models. Commonalities of optic nerve crush and glaucoma-induced neurodegeneration are identified and discussed.
Collapse
Affiliation(s)
- Jiaxing Wang
- Emory Eye Center, Department of Ophthalmology, Emory University, 1365B Clifton Road NE, Atlanta, GA, 30322, USA
| | - Felix L. Struebing
- Center for Neuropathology and Prion Research, Ludwig Maximilian University of Munich, Germany,Department for Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Eldon E. Geisert
- Emory Eye Center, Department of Ophthalmology, Emory University, 1365B Clifton Road NE, Atlanta, GA, 30322, USA,Corresponding author: (E.E. Geisert)
| |
Collapse
|
7
|
Loganathan N, McIlwraith EK, Belsham DD. Bisphenol A Induces Agrp Gene Expression in Hypothalamic Neurons through a Mechanism Involving ATF3. Neuroendocrinology 2021; 111:678-695. [PMID: 32575098 DOI: 10.1159/000509592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/22/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Bisphenol A (BPA) is a ubiquitous endocrine disrupting chemical and obesogen. Although limited evidence exists of the effects of BPA on hypothalamic agouti-related peptide (AgRP) levels, the mechanisms underlying these effects remain unknown. Given that AgRP is a potent orexigenic neuropeptide, determining the mechanism by which BPA increases AgRP is critical to preventing the progression to metabolic disease. METHODS Using quantitative reverse transcriptase polymerase chain reaction, we investigated the response of Agrp-expressing mouse hypothalamic cell lines to BPA treatment. The percentage of total BPA entering hypothalamic cells in culture was quantified using an enzyme-linked immunosorbent assay. In order to identify the mechanism underlying BPA-mediated changes in Agrp, siRNA knockdown of transcription factors, FOXO1, CHOP, ATF3, ATF4, ATF6, and small-molecule inhibitors of endoplasmic reticulum stress, JNK or MEK/ERK were used. RESULTS BPA increased mRNA levels of Agrp in six hypothalamic cell lines (mHypoA-59, mHypoE-41, mHypoA-2/12, mHypoE-46, mHypoE-44, and mHypoE-42). Interestingly, only 18% of the total BPA in the culture medium entered the cells after 24 h, suggesting that the exposure concentration is much lower than the treatment concentration. BPA increased pre-Agrp mRNA levels, indicating increased Agrp transcription. Knockdown of the transcription factor ATF3 prevented BPA-mediated increase in Agrp, pre-Agrp, and in part Npy mRNA levels. However, chemical chaperone, sodium phenylbutyrate, JNK inhibitor, SP600125, or the MEK/ERK inhibitor PD0352901 did not block BPA-induced Agrp upregulation. CONCLUSION Overall, these results indicate that hypothalamic Agrp is susceptible to dysregulation by BPA and implicate ATF3 as a common mediator of the orexigenic effects of BPA in hypothalamic neurons.
Collapse
Affiliation(s)
- Neruja Loganathan
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Emma K McIlwraith
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada,
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada,
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada,
| |
Collapse
|
8
|
Wei F, Jing H, Wei M, Liu L, Wu J, Wang M, Han D, Yang F, Yang B, Jiao D, Zheng G, Zhang L, Xi W, Guo Z, Yang AG, Qin W, Zhou Y, Wen W. Ring finger protein 2 promotes colorectal cancer progression by suppressing early growth response 1. Aging (Albany NY) 2020; 12:26199-26220. [PMID: 33346749 PMCID: PMC7803491 DOI: 10.18632/aging.202396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Ring finger protein 2 (RNF2) is an important component of polycomb repressive complex 1. RNF2 is upregulated in many kinds of tumors, and elevated RNF2 expression is associated with a poor prognosis in certain cancers. To assess the function of RNF2 in colorectal cancer, we examined RNF2 protein levels in 313 paired colorectal cancer tissues and adjacent normal tissues. We then analyzed the association of RNF2 expression with the patients’ clinicopathologic features and prognoses. RNF2 expression was upregulated in colorectal cancer tissues and was associated with the tumor differentiation status, tumor stage and prognosis. In colorectal cancer cell lines, downregulation of RNF2 inhibited cell proliferation and induced apoptosis. Gene microarray analysis revealed that early growth response 1 (EGR1) was upregulated in RNF2-knockdown cells. Knocking down EGR1 partially reversed the inhibition of cell proliferation and the induction of apoptosis in RNF2-knockdown cells. RNF2 was enriched at the EGR1 promoter, where it mono-ubiquitinated histone H2A, thereby inhibiting EGR1 expression. These results indicate that RNF2 is oncogenic in colorectal cancer and may promote disease progression by inhibiting EGR1 expression. RNF2 is thus a potential prognostic marker and therapeutic target in colorectal cancer.
Collapse
Affiliation(s)
- Feilong Wei
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China
| | - Haoren Jing
- Department of Anorectal Surgery, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin 300013, China
| | - Ming Wei
- Urology Department of No. 989 Hospital, Joint Logistics Support Force of PLA, Luoyang 471000, China
| | - Lei Liu
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China
| | - Jieheng Wu
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an 710032, China
| | - Meng Wang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an 710032, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Fa Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Bo Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Dian Jiao
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China
| | - Guoxu Zheng
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an 710032, China
| | - Lingling Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an 710032, China
| | - Wenjin Xi
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an 710032, China
| | - Zhangyan Guo
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an 710032, China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an 710032, China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Yi Zhou
- Department of Anorectal Surgery, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin 300013, China
| | - Weihong Wen
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
9
|
Choe N, Kwon DH, Ryu J, Shin S, Cho HJ, Joung H, Eom GH, Ahn Y, Park WJ, Nam KI, Kim YK, Kook H. miR-27a-3p Targets ATF3 to Reduce Calcium Deposition in Vascular Smooth Muscle Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:627-639. [PMID: 33230462 PMCID: PMC7578555 DOI: 10.1016/j.omtn.2020.09.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/23/2020] [Indexed: 01/16/2023]
Abstract
Vascular calcification, the ectopic deposition of calcium in blood vessels, develops in association with various metabolic diseases and atherosclerosis and is an independent predictor of morbidity and mortality associated with these diseases. Herein, we report that reduction of microRNA-27a-3p (miR-27a-3p) causes an increase in activating transcription factor 3 (ATF3), a novel osteogenic transcription factor, in vascular smooth muscle cells. Both microRNA (miRNA) and mRNA microarrays were performed with rat vascular smooth muscle cells, and reciprocally regulated pairs of miRNA and mRNA were selected after bioinformatics analysis. Inorganic phosphate significantly reduced the expression of miR-27a-3p in A10 cells. The transcript level was also reduced in vitamin D3-administered mouse aortas. miR-27a-3p mimic reduced calcium deposition, whereas miR-27a-3p inhibitor increased it. The Atf3 mRNA level was upregulated in a cellular vascular calcification model, and miR-27a-3p reduced the Atf3 mRNA and protein levels. Transfection with Atf3 could recover the miR-27a-3p-induced reduction of calcium deposition. Our results suggest that reduction of miR-27a-3p may contribute to the development of vascular calcification by de-repression of ATF3.
Collapse
Affiliation(s)
- Nakwon Choe
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Duk-Hwa Kwon
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Juhee Ryu
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea.,Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Sera Shin
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Hye Jung Cho
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Hosouk Joung
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Gwang Hyeon Eom
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Youngkeun Ahn
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Woo Jin Park
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Kwang-Il Nam
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Hyun Kook
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| |
Collapse
|
10
|
Giacomelli E, Meraviglia V, Campostrini G, Cochrane A, Cao X, van Helden RWJ, Krotenberg Garcia A, Mircea M, Kostidis S, Davis RP, van Meer BJ, Jost CR, Koster AJ, Mei H, Míguez DG, Mulder AA, Ledesma-Terrón M, Pompilio G, Sala L, Salvatori DCF, Slieker RC, Sommariva E, de Vries AAF, Giera M, Semrau S, Tertoolen LGJ, Orlova VV, Bellin M, Mummery CL. Human-iPSC-Derived Cardiac Stromal Cells Enhance Maturation in 3D Cardiac Microtissues and Reveal Non-cardiomyocyte Contributions to Heart Disease. Cell Stem Cell 2020; 26:862-879.e11. [PMID: 32459996 PMCID: PMC7284308 DOI: 10.1016/j.stem.2020.05.004] [Citation(s) in RCA: 379] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/05/2020] [Accepted: 05/01/2020] [Indexed: 12/12/2022]
Abstract
Cardiomyocytes (CMs) from human induced pluripotent stem cells (hiPSCs) are functionally immature, but this is improved by incorporation into engineered tissues or forced contraction. Here, we showed that tri-cellular combinations of hiPSC-derived CMs, cardiac fibroblasts (CFs), and cardiac endothelial cells also enhance maturation in easily constructed, scaffold-free, three-dimensional microtissues (MTs). hiPSC-CMs in MTs with CFs showed improved sarcomeric structures with T-tubules, enhanced contractility, and mitochondrial respiration and were electrophysiologically more mature than MTs without CFs. Interactions mediating maturation included coupling between hiPSC-CMs and CFs through connexin 43 (CX43) gap junctions and increased intracellular cyclic AMP (cAMP). Scaled production of thousands of hiPSC-MTs was highly reproducible across lines and differentiated cell batches. MTs containing healthy-control hiPSC-CMs but hiPSC-CFs from patients with arrhythmogenic cardiomyopathy strikingly recapitulated features of the disease. Our MT model is thus a simple and versatile platform for modeling multicellular cardiac diseases that will facilitate industry and academic engagement in high-throughput molecular screening. Cardiac fibroblasts and endothelial cells induce hiPSC-cardiomyocyte maturation CX43 gap junctions form between cardiac fibroblasts and cardiomyocytes cAMP-pathway activation contributes to hiPSC-cardiomyocyte maturation Patient-derived hiPSC-cardiac fibroblasts cause arrhythmia in microtissues
Collapse
Affiliation(s)
- Elisa Giacomelli
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Viviana Meraviglia
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Giulia Campostrini
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Amy Cochrane
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Xu Cao
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Ruben W J van Helden
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Ana Krotenberg Garcia
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Maria Mircea
- Leiden Institute of Physics, Leiden University, 2333 Leiden, the Netherlands
| | - Sarantos Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Richard P Davis
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Berend J van Meer
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Carolina R Jost
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Abraham J Koster
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - David G Míguez
- Centro de Biologia Molecular Severo Ochoa, Departamento de Física de la Materia Condensada, Instituto Nicolas Cabrera and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Aat A Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Mario Ledesma-Terrón
- Centro de Biologia Molecular Severo Ochoa, Departamento de Física de la Materia Condensada, Instituto Nicolas Cabrera and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Giulio Pompilio
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Luca Sala
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Daniela C F Salvatori
- Central Laboratory Animal Facility, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Roderick C Slieker
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 Leiden, the Netherlands; Department of Epidemiology and Biostatistics, Amsterdam Public Health Institute, VU University Medical Center, 1007 Amsterdam, the Netherlands
| | - Elena Sommariva
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Antoine A F de Vries
- Department of Cardiology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Stefan Semrau
- Leiden Institute of Physics, Leiden University, 2333 Leiden, the Netherlands
| | - Leon G J Tertoolen
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Valeria V Orlova
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands.
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands; Department of Biology, University of Padua, 35121 Padua, Italy; Veneto Institute of Molecular Medicine, 35129 Padua, Italy.
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands; Department of Applied Stem Cell Technologies, University of Twente, 7500 Enschede, the Netherlands.
| |
Collapse
|
11
|
Guenzle J, Garrelfs NWC, Goeldner JM, Weyerbrock A. Cyclooxygenase (COX) Inhibition by Acetyl Salicylic Acid (ASA) Enhances Antitumor Effects of Nitric Oxide in Glioblastoma In Vitro. Mol Neurobiol 2019; 56:6046-6055. [DOI: 10.1007/s12035-019-1513-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/24/2019] [Indexed: 02/06/2023]
|
12
|
Activating transcription factor 3 in cardiovascular diseases: a potential therapeutic target. Basic Res Cardiol 2018; 113:37. [PMID: 30094473 DOI: 10.1007/s00395-018-0698-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases (CVDs) are the primary causes of death worldwide. Among the numerous signaling molecules involved in CVDs, transcriptional factors directly influence gene expression and play a critical role in regulating cell function and the development of diseases. Activating transcription factor (ATF) 3 is an adaptive-response gene in the ATF/cAMP responsive element-binding (CREB) protein family of transcription factors that acts as either a repressor or an activator of transcription via the formation of homodimers or heterodimers with other ATF/CREB members. A appropriate ATF3 expression is important for the normal physiology of cells, and dysfunction of ATF3 is associated with various pathophysiological responses such as inflammation, apoptosis, oxidative stress and endoplasmic reticulum stress, and diseases, including CVDs. This review focuses on the role of ATF3 in cardiac hypertrophy, heart failure, atherosclerosis, ischemic heart diseases, hypertension and diabetes mellitus to provide a novel therapeutic target for CVDs.
Collapse
|
13
|
Wang J, Cheng W, Wang Z, Xin L, Zhang W. ATF3 inhibits the inflammation induced by Mycoplasma pneumonia in vitro and in vivo. Pediatr Pulmonol 2017; 52:1163-1170. [PMID: 28440917 DOI: 10.1002/ppul.23705] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/22/2017] [Indexed: 01/29/2023]
Abstract
OBJECTIVES Activating transcription factor-3 (ATF3) is a key regulator of inflammatory responses. We aimed to investigate the effects and mechanisms of ATF3 on the inflammatory cytokines are induced by Mycoplasma pneumonia (MP). STUDY DESIGN RAW264.7 and mouse peritoneal macrophages were exposed to various time with or without MP infection (3, 6, 12, 24, and 48 h), and detect the expression of ATF3. Adenovirus-expression of ATF3 (Ad/ATF3) or Ad/βgal was transfected into cells which were exposed to MP for 48 h, RT-PCR and ELISA was used to evaluate the expression and secretion of TNF-α, IL-1β, IL-6, and IL-18. In addition, intravenous administration Ad/ATF3 or Ad/βgal into the mice, the secretion of inflammatory cytokines were detected using ELISA. ChIP assay was used to determine whether ATF3 can bind to the promoter of Early growth response protein 1 (Egr-1). Western blot was used to detect the expression of Egr-1 and Fyn. RESULTS ATF3 was increased at 3, 6, 12, and 24 h and the highest expression levels occurs in 6 h, there is no significant differences at 24 and 48 h compared with 0 h or CON group in RAW 264.7. Similar results were seen in mouse peritoneal macrophages. Overexpression of ATF3 resulted in the reduction of inflammatory cytokines. ChIP assay revealed that ATF3 can bind to the promoter of Egr-1. Overexpression of ATF3 inhibited the protein expression of Egr-1 and Fyn; conversely, ATF3-deficiency promoted the expression of Egr-1 and Fyn. Overexpression of Egr-1 reduced the anti-inflammatory action of ATF3. CONCLUSIONS ATF3 inhibit the expression and release of TNF-α, IL-1β, IL-6, and IL-18 induced by MP in vitro and in vivo, which is associated with its negative regulation of Egr-1/Fyn signaling pathway.
Collapse
Affiliation(s)
- Jing Wang
- The Second Department of Respiration, Xi'an Children's Hospital, Xi'an, P. R. China
| | - Wei Cheng
- The Second Department of Respiration, Xi'an Children's Hospital, Xi'an, P. R. China
| | - Zhen Wang
- The Second Department of Respiration, Xi'an Children's Hospital, Xi'an, P. R. China
| | - Lihong Xin
- The Second Department of Respiration, Xi'an Children's Hospital, Xi'an, P. R. China
| | - Wen Zhang
- The Second Department of Respiration, Xi'an Children's Hospital, Xi'an, P. R. China
| |
Collapse
|
14
|
Schoen I, Koitzsch S. ATF3-Dependent Regulation of EGR1 in vitro and in vivo. ORL J Otorhinolaryngol Relat Spec 2017; 79:239-250. [PMID: 28803237 DOI: 10.1159/000478937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/21/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND/AIMS Activating transcription factor 3 (ATF3) and early growth response protein 1 (EGR1) are reported to interact, but their use as prognostic factors in cancer is discussed controversially. METHODS We measured ATF3 and EGR1 gene expression changes in human mini-organ cultures (MOCs) of healthy nasal epithelia, UM-SCC-22B, and FADUDD cells after acid reflux exposure. Next, ATF3 and EGR1 gene expression was analysed in tumour tissues and related to the median expression of autologous reference tissue samples. RESULTS ATF3 and EGR1 mRNA expression was significantly reduced after consecutive exposure of MOCs at pH <7.0 to artificial gastric juice (refluxate). In contrast, ATF3 mRNA was upregulated significantly within the first hour of incubation. EGR1 mRNA exhibited no significant changes. The analysed cell lines exhibited a cell line-specific alteration. In FADUDD cells, the upregulation of EGR1 was significant after refluxate exposure, but in HN-SCC 22B, no significant changes were detected. The analysis of the HNSCC samples confirmed the heterogeneous data of the literature. CONCLUSION The data maintain the hypothesis that ATF3 and EGR1 are involved in the beginning of inflammatory processes. Whether these two transcription factors act as tumour suppressors or promoters is context dependent and warrants analysis in further studies.
Collapse
Affiliation(s)
- Ilona Schoen
- Laboratory of Experimental Oncology, Department of Otolaryngology, Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | |
Collapse
|
15
|
Ghigo A, Frati G, Sciarretta S. A novel protective role for activating transcription factor 3 in the cardiac response to metabolic stress. Cardiovasc Res 2017; 113:113-114. [PMID: 28082449 DOI: 10.1093/cvr/cvw252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Giacomo Frati
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, Latina (LT) 04100, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, Località Camerelle, Pozzilli (IS) 86077, Italy
| | - Sebastiano Sciarretta
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, Latina (LT) 04100, Italy; .,Department of AngioCardioNeurology, IRCCS Neuromed, Località Camerelle, Pozzilli (IS) 86077, Italy
| |
Collapse
|
16
|
Kalfon R, Koren L, Aviram S, Schwartz O, Hai T, Aronheim A. ATF3 expression in cardiomyocytes preserves homeostasis in the heart and controls peripheral glucose tolerance. Cardiovasc Res 2016; 113:134-146. [DOI: 10.1093/cvr/cvw228] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 09/01/2016] [Accepted: 10/28/2016] [Indexed: 12/31/2022] Open
|
17
|
Offermann B, Knauer S, Singh A, Fernández-Cachón ML, Klose M, Kowar S, Busch H, Boerries M. Boolean Modeling Reveals the Necessity of Transcriptional Regulation for Bistability in PC12 Cell Differentiation. Front Genet 2016; 7:44. [PMID: 27148350 PMCID: PMC4830832 DOI: 10.3389/fgene.2016.00044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/14/2016] [Indexed: 12/18/2022] Open
Abstract
The nerve growth factor NGF has been shown to cause cell fate decisions toward either differentiation or proliferation depending on the relative activity of downstream pERK, pAKT, or pJNK signaling. However, how these protein signals are translated into and fed back from transcriptional activity to complete cellular differentiation over a time span of hours to days is still an open question. Comparing the time-resolved transcriptome response of NGF- or EGF-stimulated PC12 cells over 24 h in combination with protein and phenotype data we inferred a dynamic Boolean model capturing the temporal sequence of protein signaling, transcriptional response and subsequent autocrine feedback. Network topology was optimized by fitting the model to time-resolved transcriptome data under MEK, PI3K, or JNK inhibition. The integrated model confirmed the parallel use of MAPK/ERK, PI3K/AKT, and JNK/JUN for PC12 cell differentiation. Redundancy of cell signaling is demonstrated from the inhibition of the different MAPK pathways. As suggested in silico and confirmed in vitro, differentiation was substantially suppressed under JNK inhibition, yet delayed only under MEK/ERK inhibition. Most importantly, we found that positive transcriptional feedback induces bistability in the cell fate switch. De novo gene expression was necessary to activate autocrine feedback that caused Urokinase-Type Plasminogen Activator (uPA) Receptor signaling to perpetuate the MAPK activity, finally resulting in the expression of late, differentiation related genes. Thus, the cellular decision toward differentiation depends on the establishment of a transcriptome-induced positive feedback between protein signaling and gene expression thereby constituting a robust control between proliferation and differentiation.
Collapse
Affiliation(s)
- Barbara Offermann
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg Freiburg, Germany
| | - Steffen Knauer
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg Freiburg, Germany
| | - Amit Singh
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg Freiburg, Germany
| | - María L Fernández-Cachón
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg Freiburg, Germany
| | - Martin Klose
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg Freiburg, Germany
| | - Silke Kowar
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg Freiburg, Germany
| | - Hauke Busch
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University FreiburgFreiburg, Germany; German Cancer ConsortiumFreiburg, Germany; German Cancer Research CenterHeidelberg, Germany
| | - Melanie Boerries
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University FreiburgFreiburg, Germany; German Cancer ConsortiumFreiburg, Germany; German Cancer Research CenterHeidelberg, Germany
| |
Collapse
|
18
|
Zhou H, Yuan Y, Ni J, Guo H, Deng W, Bian ZY, Tang QZ. Pleiotropic and puzzling effects of ATF3 in maladaptive cardiac remodeling. Int J Cardiol 2016; 206:87-8. [PMID: 26780683 DOI: 10.1016/j.ijcard.2016.01.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
Affiliation(s)
- Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| | - Jian Ni
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| | - Haipeng Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| | - Zhou-Yan Bian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
19
|
Yang J, Yang CJ, Yang J, Fan ZX. ATF3: A promotion effect or a inhibition effect in cardiac maladaptive remodeling. Int J Cardiol 2015; 201:245-246. [PMID: 26301647 DOI: 10.1016/j.ijcard.2015.08.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 11/22/2022]
Affiliation(s)
- Jun Yang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang 443000, Hubei Province, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China.
| | - Chao-Jun Yang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang 443000, Hubei Province, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang 443000, Hubei Province, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Zhi-Xing Fan
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang 443000, Hubei Province, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| |
Collapse
|
20
|
Koren L, Alishekevitz D, Elhanani O, Nevelsky A, Hai T, Kehat I, Shaked Y, Aronheim A. ATF3-dependent cross-talk between cardiomyocytes and macrophages promotes cardiac maladaptive remodeling. Int J Cardiol 2015. [PMID: 26201690 DOI: 10.1016/j.ijcard.2015.06.099] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
RATIONALE Pressure overload induces adaptive remodeling processes in the heart. However, when pressure overload persists, adaptive changes turn into maladaptive alterations leading to cardiac hypertrophy and heart failure. ATF3 is a stress inducible transcription factor that is transiently expressed following neuroendocrine stimulation. However, its role in chronic pressure overload dependent cardiac hypertrophy is currently unknown. OBJECTIVE The objective of the study was to study the role of ATF3 in chronic pressure overload dependent cardiac remodeling processes. METHODS AND RESULTS Pressure overload was induced by phenylephrine (PE) mini-osmotic pumps in various mice models of whole body, cardiac specific, bone marrow (BM) specific and macrophage specific ATF3 ablations. We show that ATF3-KO mice exhibit a significantly reduced expression of cardiac remodeling markers following chronic pressure overload. Consistently, the lack of ATF3 specifically in either cardiomyocytes or BM derived cells blunts the hypertrophic response to PE infusion. A unique cross-talk between cardiomyocytes and macrophages was identified. Cardiomyocytes induce an ATF3 dependent induction of an inflammatory response leading to macrophage recruitment to the heart. Adoptive transfer of wild type macrophages, but not ATF3-KO derived macrophages, into wild type mice potentiates maladaptive response to PE infusion. CONCLUSIONS Collectively, this study places ATF3 as a key regulator in promoting pressure overload induced cardiac hypertrophy through a cross-talk between cardiomyocytes and macrophages. Inhibiting this cross-talk may serve as a useful approach to blunt maladaptive remodeling processes in the heart.
Collapse
Affiliation(s)
- L Koren
- Department of Molecular Genetics, The B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - D Alishekevitz
- Department of Cell Biology and Cancer Science, The B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - O Elhanani
- Department of Molecular Genetics, The B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - A Nevelsky
- Radiotherapy Department, Rambam Health Care Campus, Haifa, Israel
| | - T Hai
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio USA
| | - I Kehat
- Department of Physiology, Biophysics and Systems Biology, The B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Y Shaked
- Department of Cell Biology and Cancer Science, The B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - A Aronheim
- Department of Molecular Genetics, The B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
21
|
EGR1 Functions as a Potent Repressor of MEF2 Transcriptional Activity. PLoS One 2015; 10:e0127641. [PMID: 26011708 PMCID: PMC4444265 DOI: 10.1371/journal.pone.0127641] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/17/2015] [Indexed: 11/19/2022] Open
Abstract
The myocyte enhancer factor 2 (MEF2) transcription factor requires interactions with co-factors for precise regulation of its target genes. Our lab previously reported that the mammalian MEF2A isoform regulates the cardiomyocyte costamere, a critical muscle-specific focal adhesion complex involved in contractility, through its transcriptional control of genes encoding proteins localized to this cytoskeletal structure. To further dissect the transcriptional mechanisms of costamere gene regulation and identify potential co-regulators of MEF2A, a bioinformatics analysis of transcription factor binding sites was performed using the proximal promoter regions of selected costamere genes. One of these predicted sites belongs to the early growth response (EGR) transcription factor family. The EGR1 isoform has been shown to be involved in a number of pathways in cardiovascular homeostasis and disease, making it an intriguing candidate MEF2 coregulator to further characterize. Here, we demonstrate that EGR1 interacts with MEF2A and is a potent and specific repressor of MEF2 transcriptional activity. Furthermore, we show that costamere gene expression in cardiomyocytes is dependent on EGR1 transcriptional activity. This study identifies a mechanism by which MEF2 activity can be modulated to ensure that costamere gene expression is maintained at levels commensurate with cardiomyocyte contractile activity.
Collapse
|
22
|
Atf3 negatively regulates Ptgs2/Cox2 expression during acute inflammation. Prostaglandins Other Lipid Mediat 2015; 116-117:49-56. [PMID: 25619459 DOI: 10.1016/j.prostaglandins.2015.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/29/2014] [Accepted: 01/05/2015] [Indexed: 12/19/2022]
Abstract
By generating prostaglandins, cyclooxygenase-2 (Cox-2/Ptgs2) plays a critical role in regulating inflammatory responses. While several inflammatory stimuli have been shown to increase Ptgs2 expression, less is known about how the transcription of this gene is terminated. Here we show that stimulation of macrophages with yeast zymosan, a TLR2/6 and dectin-1 agonist, causes a transient increase in the expression of Ptgs2 accompanied by a simultaneous increase in the expression of the transcriptional repressor, activating transcription factor-3 (Atf3). The expression of Ptgs2 was significantly higher in resident peritoneal macrophages isolated from Atf3(-/-) mice than that from Atf3(+/+) mice and was associated with higher prostaglandin production upon stimulation with zymosan. In activated macrophages, Atf3 accumulated in the nucleus and chromatin-immunoprecipitation analysis showed that Atf3 is recruited to the Ptgs2 promoter region. In acute peritonitis and in cutaneous wounds, there was increased leukocyte accumulation and higher levels of prostaglandins (PGE2/PGD2) in inflammatory exudates of Atf3(-/-) mice compared with WT mice. Collectively, these results demonstrate that during acute inflammation Atf3 negatively regulates Ptgs2 and therefore dysregulation of this axis could potentially contribute to aberrant Ptgs2 expression in chronic inflammatory diseases. Moreover, this axis could be a new therapeutic target for suppressing Ptgs2 expression and the resultant inflammatory responses.
Collapse
|
23
|
Koivisto E, Jurado Acosta A, Moilanen AM, Tokola H, Aro J, Pennanen H, Säkkinen H, Kaikkonen L, Ruskoaho H, Rysä J. Characterization of the regulatory mechanisms of activating transcription factor 3 by hypertrophic stimuli in rat cardiomyocytes. PLoS One 2014; 9:e105168. [PMID: 25136830 PMCID: PMC4138181 DOI: 10.1371/journal.pone.0105168] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/18/2014] [Indexed: 01/08/2023] Open
Abstract
Aims Activating transcription factor 3 (ATF3) is a stress-activated immediate early gene suggested to have both detrimental and cardioprotective role in the heart. Here we studied the mechanisms of ATF3 activation by hypertrophic stimuli and ATF3 downstream targets in rat cardiomyocytes. Methods and Results When neonatal rat cardiomyocytes were exposed to endothelin-1 (ET-1, 100 nM) and mechanical stretching in vitro, maximal increase in ATF3 expression occurred at 1 hour. Inhibition of extracellular signal-regulated kinase (ERK) by PD98059 decreased ET-1– and stretch–induced increase of ATF3 protein but not ATF3 mRNA levels, whereas protein kinase A (PKA) inhibitor H89 attenuated both ATF3 mRNA transcription and protein expression in response to ET-1 and stretch. To characterize further the regulatory mechanisms upstream of ATF3, p38 mitogen-activated protein kinase (MAPK) signaling was investigated using a gain-of-function approach. Adenoviral overexpression of p38α, but not p38β, increased ATF3 mRNA and protein levels as well as DNA binding activity. To investigate the role of ATF3 in hypertrophic process, we overexpressed ATF3 by adenovirus-mediated gene transfer. In vitro, ATF3 gene delivery attenuated the mRNA transcription of interleukin-6 (IL-6) and plasminogen activator inhibitor-1 (PAI-1), and enhanced nuclear factor-κB (NF-κB) and Nkx-2.5 DNA binding activities. Reduced PAI-1 expression was also detected in vivo in adult rat heart by direct intramyocardial adenovirus-mediated ATF3 gene delivery. Conclusions These data demonstrate that ATF3 activation by ET-1 and mechanical stretch is partly mediated through ERK and cAMP-PKA pathways, whereas p38 MAPK pathway is involved in ATF3 activation exclusively through p38α isoform. ATF3 activation caused induction of modulators of the inflammatory response NF-κB and Nkx-2.5, as well as attenuation of pro-fibrotic and pro-inflammatory proteins IL-6 and PAI-1, suggesting cardioprotective role for ATF3 in the heart.
Collapse
Affiliation(s)
- Elina Koivisto
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - Alicia Jurado Acosta
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - Anne-Mari Moilanen
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
- Department of Pathology, Institute of Diagnostics, University of Oulu, Oulu, Finland
| | - Heikki Tokola
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
- Department of Pathology, Institute of Diagnostics, University of Oulu, Oulu, Finland
| | - Jani Aro
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - Harri Pennanen
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - Hanna Säkkinen
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - Leena Kaikkonen
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - Heikki Ruskoaho
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Jaana Rysä
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
24
|
Zhang JD, Berntenis N, Roth A, Ebeling M. Data mining reveals a network of early-response genes as a consensus signature of drug-induced in vitro and in vivo toxicity. THE PHARMACOGENOMICS JOURNAL 2014; 14:208-16. [PMID: 24217556 PMCID: PMC4034126 DOI: 10.1038/tpj.2013.39] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 09/20/2013] [Accepted: 09/26/2013] [Indexed: 01/29/2023]
Abstract
Gene signatures of drug-induced toxicity are of broad interest, but they are often identified from small-scale, single-time point experiments, and are therefore of limited applicability. To address this issue, we performed multivariate analysis of gene expression, cell-based assays, and histopathological data in the TG-GATEs (Toxicogenomics Project-Genomics Assisted Toxicity Evaluation system) database. Data mining highlights four genes-EGR1, ATF3, GDF15 and FGF21-that are induced 2 h after drug administration in human and rat primary hepatocytes poised to eventually undergo cytotoxicity-induced cell death. Modelling and simulation reveals that these early stress-response genes form a functional network with evolutionarily conserved structure and intrinsic dynamics. This is underlined by the fact that early induction of this network in vivo predicts drug-induced liver and kidney pathology with high accuracy. Our findings demonstrate the value of early gene-expression signatures in predicting and understanding compound-induced toxicity. The identified network can empower first-line tests that reduce animal use and costs of safety evaluation.
Collapse
Affiliation(s)
- J D Zhang
- pRED Pharma Research and Development, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, Basel, Switzerland
| | - N Berntenis
- pRED Pharma Research and Development, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, Basel, Switzerland
| | - A Roth
- pRED Pharma Research and Development, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, Basel, Switzerland
| | - M Ebeling
- pRED Pharma Research and Development, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, Basel, Switzerland
| |
Collapse
|
25
|
Tindall MJ, Clerk A. Modelling negative feedback networks for activating transcription factor 3 predicts a dominant role for miRNAs in immediate early gene regulation. PLoS Comput Biol 2014; 10:e1003597. [PMID: 24811474 PMCID: PMC4014390 DOI: 10.1371/journal.pcbi.1003597] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 03/20/2014] [Indexed: 11/28/2022] Open
Abstract
Activating transcription factor 3 (Atf3) is rapidly and transiently upregulated in numerous systems, and is associated with various disease states. Atf3 is required for negative feedback regulation of other genes, but is itself subject to negative feedback regulation possibly by autorepression. In cardiomyocytes, Atf3 and Egr1 mRNAs are upregulated via ERK1/2 signalling and Atf3 suppresses Egr1 expression. We previously developed a mathematical model for the Atf3-Egr1 system. Here, we adjusted and extended the model to explore mechanisms of Atf3 feedback regulation. Introduction of an autorepressive loop for Atf3 tuned down its expression and inhibition of Egr1 was lost, demonstrating that negative feedback regulation of Atf3 by Atf3 itself is implausible in this context. Experimentally, signals downstream from ERK1/2 suppress Atf3 expression. Mathematical modelling indicated that this cannot occur by phosphorylation of pre-existing inhibitory transcriptional regulators because the time delay is too short. De novo synthesis of an inhibitory transcription factor (ITF) with a high affinity for the Atf3 promoter could suppress Atf3 expression, but (as with the Atf3 autorepression loop) inhibition of Egr1 was lost. Developing the model to include newly-synthesised miRNAs very efficiently terminated Atf3 protein expression and, with a 4-fold increase in the rate of degradation of mRNA from the mRNA/miRNA complex, profiles for Atf3 mRNA, Atf3 protein and Egr1 mRNA approximated to the experimental data. Combining the ITF model with that of the miRNA did not improve the profiles suggesting that miRNAs are likely to play a dominant role in switching off Atf3 expression post-induction. Activating transcription factor 3 (Atf3) is an important regulatory transcription factor which is associated with inflammation, restraint of the immune response and cancer. In this work, we develop a series of mathematical models to understand how Atf3 may be regulated. Informed with data from the literature and our own experiments, we show that self-regulation of Atf3 does not allow for variation between experimentally observed Atf3 mRNA and Atf3 protein expression profiles. A fast-acting signal via phosphorylated RSK is also shown to be implausible for similar reasons. Extending our mathematical model further, we postulate for the first time, that the observed dynamical variation in Atf3 mRNA and protein can be described by microRNAs downstream of RSKs. The further inclusion of an inhibitory transcription factor for Atf3 expression has little effect on these findings.
Collapse
Affiliation(s)
- Marcus J. Tindall
- Department of Mathematics & Statistics, University of Reading, Reading, Berkshire, United Kingdom
- School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
- * E-mail: (MJT); (AC)
| | - Angela Clerk
- School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
- * E-mail: (MJT); (AC)
| |
Collapse
|
26
|
Zhou H, Guo H, Zong J, Dai J, Yuan Y, Bian ZY, Tang QZ. ATF3 regulates multiple targets and may play a dual role in cardiac hypertrophy and injury. Int J Cardiol 2014; 174:838-9. [PMID: 24794959 DOI: 10.1016/j.ijcard.2014.04.160] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 04/13/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| | - Haipeng Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Jing Zong
- Department of Cardiology, The affiliated hospital of Xuzhou Medical College, Xuzhou 221000, China
| | - Jia Dai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| | - Zhou-Yan Bian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
27
|
Cui X, Hou Y, Yang S, Xie Y, Zhang S, Zhang Y, Zhang Q, Lu X, Liu GE, Sun D. Transcriptional profiling of mammary gland in Holstein cows with extremely different milk protein and fat percentage using RNA sequencing. BMC Genomics 2014; 15:226. [PMID: 24655368 PMCID: PMC3998192 DOI: 10.1186/1471-2164-15-226] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/18/2014] [Indexed: 11/15/2022] Open
Abstract
Background Recently, RNA sequencing (RNA-seq) has rapidly emerged as a major transcriptome profiling system. Elucidation of the bovine mammary gland transcriptome by RNA-seq is essential for identifying candidate genes that contribute to milk composition traits in dairy cattle. Results We used massive, parallel, high-throughput, RNA-seq to generate the bovine transcriptome from the mammary glands of four lactating Holstein cows with extremely high and low phenotypic values of milk protein and fat percentage. In total, we obtained 48,967,376–75,572,578 uniquely mapped reads that covered 82.25% of the current annotated transcripts, which represented 15549 mRNA transcripts, across all the four mammary gland samples. Among them, 31 differentially expressed genes (p < 0.05, false discovery rate q < 0.05) between the high and low groups of cows were revealed. Gene ontology and pathway analysis demonstrated that the 31 differently expressed genes were enriched in specific biological processes with regard to protein metabolism, fat metabolism, and mammary gland development (p < 0.05). Integrated analysis of differential gene expression, previously reported quantitative trait loci, and genome-wide association studies indicated that TRIB3, SAA (SAA1, SAA3, and M-SAA3.2), VEGFA, PTHLH, and RPL23A were the most promising candidate genes affecting milk protein and fat percentage. Conclusions This study investigated the complexity of the mammary gland transcriptome in dairy cattle using RNA-seq. Integrated analysis of differential gene expression and the reported quantitative trait loci and genome-wide association study data permitted the identification of candidate key genes for milk composition traits.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Dongxiao Sun
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
28
|
Dannoura A, Giraldo A, Pereira I, Gibbins JM, Dash PR, Bicknell KA, Brooks G. Ibuprofen inhibits migration and proliferation of human coronary artery smooth muscle cells by inducing a differentiated phenotype: role of peroxisome proliferator-activated receptor γ. J Pharm Pharmacol 2014; 66:779-92. [PMID: 24438071 DOI: 10.1111/jphp.12203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/16/2013] [Indexed: 12/29/2022]
Abstract
OBJECTIVES The search for agents that are capable of preventing restenosis and reduce the risk of late thrombosis is of utmost importance. In this study we aim to evaluate the in vitro effects of ibuprofen on proliferation and migration of human coronary artery smooth muscle cells and on endothelial cells. METHODS Cell proliferation was evaluated by trypan blue exclusion. Cell migration was assessed by wound-healing 'scratch' assay and time-lapse video microscopy. Protein expression was assessed by immunoblotting, and morphology by immunocytochemistry. The involvement of the PPARγ pathway was studied with the agonist troglitazone, and the use of selective antagonists such as PGF2α and GW9662. KEY FINDINGS We demonstrate that ibuprofen inhibits proliferation and migration of HCASMCs and induces a switch in HCASMCs towards a differentiated and contractile phenotype, and that these effects are mediated through the PPARγ pathway. Importantly we also show that the effects of ibuprofen are cell type-specific as it does not affect migration and proliferation of endothelial cells. CONCLUSIONS Taken together, our results suggest that ibuprofen could be an effective drug for the development of novel drug-eluting stents that could lead to reduced rates of restenosis and potentially other complications of DES implantation.
Collapse
Affiliation(s)
- Abeer Dannoura
- School of Pharmacy, University of Reading, Reading, UK; Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| | | | | | | | | | | | | |
Collapse
|
29
|
Ye F, Yuan F, Li X, Cooper N, Tinney JP, Keller BB. Gene expression profiles in engineered cardiac tissues respond to mechanical loading and inhibition of tyrosine kinases. Physiol Rep 2013; 1:e00078. [PMID: 24303162 PMCID: PMC3841024 DOI: 10.1002/phy2.78] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 08/07/2013] [Indexed: 12/17/2022] Open
Abstract
Engineered cardiac tissues (ECTs) are platforms to investigate cardiomyocyte maturation and functional integration, the feasibility of generating tissues for cardiac repair, and as models for pharmacology and toxicology bioassays. ECTs rapidly mature in vitro to acquire the features of functional cardiac muscle and respond to mechanical load with increased proliferation and maturation. ECTs are now being investigated as platforms for in vitro models for human diseases and for pharmacologic screening for drug toxicities. We tested the hypothesis that global ECT gene expression patterns are complex and sensitive to mechanical loading and tyrosine kinase inhibitors similar to the maturing myocardium. We generated ECTs from day 14.5 rat embryo ventricular cells, as previously published, and then conditioned constructs after 5 days in culture for 48 h with mechanical stretch (5%, 0.5 Hz) and/or the p38 MAPK (p38 mitogen-activated protein kinase) inhibitor BIRB796. RNA was isolated from individual ECTs and assayed using a standard Agilent rat 4 × 44k V3 microarray and Pathway Analysis software for transcript expression fold changes and changes in regulatory molecules and networks. Changes in expression were confirmed by quantitative-polymerase chain reaction (q-PCR) for selected regulatory molecules. At the threshold of a 1.5-fold change in expression, stretch altered 1559 transcripts, versus 1411 for BIRB796, and 1846 for stretch plus BIRB796. As anticipated, top pathways altered in response to these stimuli include cellular development, cellular growth and proliferation; tissue development; cell death, cell signaling, and small molecule biochemistry as well as numerous other pathways. Thus, ECTs display a broad spectrum of altered gene expression in response to mechanical load and/or tyrosine kinase inhibition, reflecting a complex regulation of proliferation, differentiation, and architectural alignment of cardiomyocytes and noncardiomyocytes within ECT.
Collapse
Affiliation(s)
- Fei Ye
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville Louisville, Kentucky ; Affiliated Hospital of Guiyang Medical College Guiyang, China
| | | | | | | | | | | |
Collapse
|
30
|
Koren L, Elhanani O, Kehat I, Hai T, Aronheim A. Adult cardiac expression of the activating transcription factor 3, ATF3, promotes ventricular hypertrophy. PLoS One 2013; 8:e68396. [PMID: 23874609 PMCID: PMC3707568 DOI: 10.1371/journal.pone.0068396] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/29/2013] [Indexed: 12/21/2022] Open
Abstract
Cardiac hypertrophy is an adaptive response to various mechanophysical and
pathophysiological stresses. However, when chronic stress is sustained, the
beneficial response turns into a maladaptive process that eventually leads to
heart failure. Although major advances in the treatment of patients have reduced
mortality, there is a dire need for novel treatments for cardiac hypertrophy.
Accordingly, considerable efforts are being directed towards developing mice
models and understanding the processes that lead to cardiac hypertrophy. A case
in point is ATF3, an immediate early transcription factor whose expression is
induced in various cardiac stress models but has been reported to have
conflicting functional significance in hypertrophy. To address this issue, we
generated a transgenic mouse line with tetracycline-regulated ATF3 cardiac
expression. These mice allowed us to study the consequence of ATF3 expression in
the embryo or during the adult period, thus distinguishing the effect of ATF3 on
development versus pathogenesis of cardiac dysfunction. Importantly, ATF3
expression in adult mice resulted in rapid ventricles hypertrophy, heart
dysfunction, and fibrosis. When combined with a phenylephrine-infusion pressure
overload model, the ATF3 expressing mice displayed a severe outcome and heart
dysfunction. In a complementary approach, ATF3 KO mice displayed a lower level
of heart hypertrophy in the same pressure overload model. In summary, ectopic
expression of ATF3 is sufficient to promote cardiac hypertrophy and exacerbates
the deleterious effect of chronic pressure overload; conversely, ATF3 deletion
protects the heart. Therefore, ATF3 may serve as an important drug target to
reduce the detrimental consequences of heart hypertrophy.
Collapse
Affiliation(s)
- Lilach Koren
- Department of Molecular Genetics, the Rappaport Family Institute for
Research in the Medical Sciences, Technion-Israel Institute of Technology,
Haifa, Israel
| | - Ofer Elhanani
- Department of Molecular Genetics, the Rappaport Family Institute for
Research in the Medical Sciences, Technion-Israel Institute of Technology,
Haifa, Israel
| | - Izhak Kehat
- Department of Physiology The Rappaport Family Institute for Research in
the Medical Sciences, Technion-Israel Institute of Technology, Haifa,
Israel
| | - Tsonwin Hai
- Department of Molecular and Cellular Biochemistry, Ohio State University,
Columbus, Ohio, United States of America
| | - Ami Aronheim
- Department of Molecular Genetics, the Rappaport Family Institute for
Research in the Medical Sciences, Technion-Israel Institute of Technology,
Haifa, Israel
- * E-mail:
| |
Collapse
|
31
|
Wang CM, Yang WH. Loss of SUMOylation on ATF3 inhibits proliferation of prostate cancer cells by modulating CCND1/2 activity. Int J Mol Sci 2013; 14:8367-80. [PMID: 23591848 PMCID: PMC3645748 DOI: 10.3390/ijms14048367] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 03/28/2013] [Accepted: 04/09/2013] [Indexed: 11/30/2022] Open
Abstract
SUMOylation plays an important role in regulating a wide range of cellular processes. Previously, we showed that ATF3, a stress response mediator, can be SUMOylated and lysine 42 is the major SUMO site. However, the significance of ATF3 SUMOylation in biological processes is still poorly understood. In the present study, we investigated the role of ATF3 SUMOylation on CCND activity and cellular proliferation in human prostate cancer cells. First, we showed that ATF3 can be SUMOylated endogenously in the overexpression system, and lysine 42 is the major SUMO site. Unlike normal prostate tissue and androgen-responsive LNCaP cancer cells, androgen-independent PC3 and DU145 cancer cells did not express ATF3 endogenously. Overexpression of ATF3 increased CCND1/2 expression in PC3 and DU145 cancer cells. Interestingly, we observed that SUMOylation is essential for ATF3-mediated CCND1/2 activation. Finally, we observed that SUMOylation plays a functional role in ATF3-mediated cellular proliferation in PC3 and DU145 cells. Taken together, our results demonstrate that SUMO modification of ATF3 influences CCND1/2 activity and cellular proliferation of prostate cancer PC3 and DU145 cells and explains at least in part how ATF3 functions to regulate cancer development.
Collapse
Affiliation(s)
- Chiung-Min Wang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA.
| | | |
Collapse
|
32
|
p90 ribosomal S6 kinases play a significant role in early gene regulation in the cardiomyocyte response to G(q)-protein-coupled receptor stimuli, endothelin-1 and α(1)-adrenergic receptor agonists. Biochem J 2013; 450:351-63. [PMID: 23215897 PMCID: PMC3573779 DOI: 10.1042/bj20121371] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
ERK1/2 (extracellular-signal-regulated kinase 1/2) and their substrates RSKs (p90 ribosomal S6 kinases) phosphorylate different transcription factors, contributing differentially to transcriptomic profiles. In cardiomyocytes ERK1/2 are required for >70% of the transcriptomic response to endothelin-1. In the present study we investigated the role of RSKs in the transcriptomic responses to the Gq-protein-coupled receptor agonists endothelin-1, phenylephrine (a generic α1-adrenergic receptor agonist) and A61603 (α1A-adrenergic receptor selective). Phospho-ERK1/2 and phospho-RSKs appeared in cardiomyocyte nuclei within 2–3 min of stimulation (endothelin-1>A61603≈phenylephrine). All agonists increased nuclear RSK2, but only endothelin-1 increased the nuclear RSK1 content. PD184352 (inhibits ERK1/2 activation) and BI-D1870 (inhibits RSKs) were used to dissect the contribution of RSKs to the endothelin-1-responsive transcriptome. Of the 213 RNAs up-regulated after 1 h, 51% required RSKs for their up-regulation, whereas 29% required ERK1/2 but not RSKs. The transcriptomic response to phenylephrine overlapped with, but was not identical with, endothelin-1. As with endothelin-1, PD184352 inhibited the up-regulation of most phenylephrine-responsive transcripts, but the greater variation in the effects of BI-D1870 suggests that differential RSK signalling influences global gene expression. A61603 induced similar changes in RNA expression in cardiomyocytes as phenylephrine, indicating that the signal was mediated largely through α1A-adrenergic receptors. A61603 also increased expression of immediate early genes in perfused adult rat hearts and, as in cardiomyocytes, up-regulation of the majority of genes was inhibited by PD184352. PD184352 or BI-D1870 prevented the increased surface area induced by endothelin-1 in cardiomyocytes. Thus RSKs play a significant role in regulating cardiomyocyte gene expression and hypertrophy in response to Gq-protein-coupled receptor stimulation.
Collapse
|