1
|
Chen F, Li G, Fu S, Zhang J. Functional Landscape of hnRNPA3 in Disease Pathogenesis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70010. [PMID: 40130711 DOI: 10.1002/wrna.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/16/2025] [Accepted: 03/06/2025] [Indexed: 03/26/2025]
Abstract
The heterogeneous nuclear ribonucleic acid protein family participates in various intracellular reactions, such as RNA splicing, transport, DNA repair, cellular signal transduction, and gene expression regulation, and is involved in various disease processes. As a late-discovered member, heterogeneous nuclear ribonucleoprotein A3 has received increasing attention, but its main physiological functions and exact mechanisms involved in disease processes have not yet reached a consensus. In this review, we summarize the function of heterogeneous nuclear ribonucleoprotein A3 and the literature on its role in neurodegenerative and metabolic diseases, as well as in various tumors, to explore the applicability of heterogeneous nuclear ribonucleoprotein A3 as a therapeutic target and prognostic indicator.
Collapse
Affiliation(s)
- Fang Chen
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Genghan Li
- The First Clinical Department, China Medical University, Shenyang, China
| | - Shuang Fu
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jihong Zhang
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Role of Heterogeneous Nuclear Ribonucleoproteins in the Cancer-Immune Landscape. Int J Mol Sci 2023; 24:ijms24065086. [PMID: 36982162 PMCID: PMC10049280 DOI: 10.3390/ijms24065086] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Cancer remains the second leading cause of death, accounting for approximately 20% of all fatalities. Evolving cancer cells and a dysregulated immune system create complex tumor environments that fuel tumor growth, metastasis, and resistance. Over the past decades, significant progress in deciphering cancer cell behavior and recognizing the immune system as a hallmark of tumorigenesis has been achieved. However, the underlying mechanisms controlling the evolving cancer-immune landscape remain mostly unexplored. Heterogeneous nuclear ribonuclear proteins (hnRNP), a highly conserved family of RNA-binding proteins, have vital roles in critical cellular processes, including transcription, post-transcriptional modifications, and translation. Dysregulation of hnRNP is a critical contributor to cancer development and resistance. HnRNP contribute to the diversity of tumor and immune-associated aberrant proteomes by controlling alternative splicing and translation. They can also promote cancer-associated gene expression by regulating transcription factors, binding to DNA directly, or promoting chromatin remodeling. HnRNP are emerging as newly recognized mRNA readers. Here, we review the roles of hnRNP as regulators of the cancer-immune landscape. Dissecting the molecular functions of hnRNP will provide a better understanding of cancer-immune biology and will impact the development of new approaches to control and treat cancer.
Collapse
|
3
|
Gcanga L, Tamgue O, Ozturk M, Pillay S, Jacobs R, Chia JE, Mbandi SK, Davids M, Dheda K, Schmeier S, Alam T, Roy S, Suzuki H, Brombacher F, Guler R. Host-Directed Targeting of LincRNA-MIR99AHG Suppresses Intracellular Growth of Mycobacterium tuberculosis. Nucleic Acid Ther 2022; 32:421-437. [PMID: 35895506 PMCID: PMC7613730 DOI: 10.1089/nat.2022.0009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) kills 1.6 million people worldwide every year, and there is an urgent need for targeting host-pathogen interactions as a strategy to reduce mycobacterial resistance to current antimicrobials. Noncoding RNAs are emerging as important regulators of numerous biological processes and avenues for exploitation in host-directed therapeutics. Although long noncoding RNAs (lncRNAs) are abundantly expressed in immune cells, their functional role in gene regulation and bacterial infections remains understudied. In this study, we identify an immunoregulatory long intergenic noncoding RNA, lincRNA-MIR99AHG, which is upregulated in mouse and human macrophages upon IL-4/IL-13 stimulation and downregulated after clinical Mtb HN878 strain infection and in peripheral blood mononuclear cells from active TB patients. To evaluate the functional role of lincRNA-MIR99AHG, we used antisense locked nucleic acid (LNA) GapmeR-mediated antisense oligonucleotide (ASO) lncRNA knockdown experiments. Knockdown of lincRNA-MIR99AHG with ASOs significantly reduced intracellular Mtb growth in mouse and human macrophages and reduced pro-inflammatory cytokine production. In addition, in vivo treatment of mice with MIR99AHG ASOs reduced the mycobacterial burden in the lung and spleen. Furthermore, in macrophages, lincRNA-MIR99AHG is translocated to the nucleus and interacts with high affinity to hnRNPA2/B1 following IL-4/IL-13 stimulation and Mtb HN878 infection. Together, these findings identify lincRNA-MIR99AHG as a positive regulator of inflammation and macrophage polarization to promote Mtb growth and a possible target for adjunctive host-directed therapy against TB.
Collapse
Affiliation(s)
- Lorna Gcanga
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Department of Pathology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC) University of Cape Town, Cape Town, South Africa
| | - Ousman Tamgue
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Department of Pathology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC) University of Cape Town, Cape Town, South Africa.,Department of Biochemistry, Faculty of Sciences, University of Douala, Douala, Cameroon
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Department of Pathology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC) University of Cape Town, Cape Town, South Africa
| | - Shandre Pillay
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Department of Pathology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC) University of Cape Town, Cape Town, South Africa
| | - Raygaana Jacobs
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Department of Pathology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC) University of Cape Town, Cape Town, South Africa
| | - Julius Ebua Chia
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Department of Pathology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC) University of Cape Town, Cape Town, South Africa
| | - Stanley Kimbung Mbandi
- Division of Immunology, Department of Pathology, South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Malika Davids
- Division of Pulmonology, Department of Medicine, Centre for Lung Infection and Immunology, UCT Lung Institute, University of Cape Town, Cape Town, South Africa.,South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | - Keertan Dheda
- Division of Pulmonology, Department of Medicine, Centre for Lung Infection and Immunology, UCT Lung Institute, University of Cape Town, Cape Town, South Africa.,South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa.,Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical medicine, London, United Kingdom
| | - Sebastian Schmeier
- College of Science, School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Tanvir Alam
- Information and Computing Technology Division, College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Sugata Roy
- RIKEN Center for Integrative Medical Sciences, Cellular Function Conversion Technology Team, Yokohama, Japan
| | - Harukazu Suzuki
- RIKEN Center for Integrative Medical Sciences, Cellular Function Conversion Technology Team, Yokohama, Japan
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Department of Pathology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC) University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Address correspondence to: Frank Brombacher, PhD, International Centre for Genetic Engineering and Biotechnology (ICGEB) Department of Pathology, Cape Town Component, Cape Town 7925, South Africa
| | - Reto Guler
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Department of Pathology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC) University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Reto Guler, PhD, Division of Immunology, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town 7925, South Africa
| |
Collapse
|
4
|
Müller M, Fäh T, Schaefer M, Hermes V, Luitz J, Stalder P, Arora R, Ngondo RP, Ciaudo C. AGO1 regulates pericentromeric regions in mouse embryonic stem cells. Life Sci Alliance 2022; 5:e202101277. [PMID: 35236760 PMCID: PMC8897595 DOI: 10.26508/lsa.202101277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 01/09/2023] Open
Abstract
Argonaute proteins (AGOs), which play an essential role in cytosolic post-transcriptional gene silencing, have been also reported to function in nuclear processes like transcriptional activation or repression, alternative splicing and, chromatin organization. As most of these studies have been conducted in human cancer cell lines, the relevance of AGOs nuclear functions in the context of mouse early embryonic development remains uninvestigated. Here, we examined a possible role of the AGO1 protein on the distribution of constitutive heterochromatin in mouse embryonic stem cells (mESCs). We observed a specific redistribution of the repressive histone mark H3K9me3 and the heterochromatin protein HP1α, away from pericentromeric regions upon Ago1 depletion. Furthermore, we demonstrated that major satellite transcripts are strongly up-regulated in Ago1_KO mESCs and that their levels are partially restored upon AGO1 rescue. We also observed a similar redistribution of H3K9me3 and HP1α in Drosha_KO mESCs, suggesting a role for microRNAs (miRNAs) in the regulation of heterochromatin distribution in mESCs. Finally, we showed that specific miRNAs with complementarity to major satellites can partially regulate the expression of these transcripts.
Collapse
Affiliation(s)
- Madlen Müller
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zürich, Zürich, Switzerland
| | - Tara Fäh
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Moritz Schaefer
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zürich, Zürich, Switzerland
| | - Victoria Hermes
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Janina Luitz
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Patrick Stalder
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zürich, Zürich, Switzerland
| | - Rajika Arora
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Richard Patryk Ngondo
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Constance Ciaudo
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
| |
Collapse
|
5
|
Tan CP, Sinigaglia L, Gomez V, Nicholls J, Habib NA. RNA Activation-A Novel Approach to Therapeutically Upregulate Gene Transcription. Molecules 2021; 26:molecules26216530. [PMID: 34770939 PMCID: PMC8586927 DOI: 10.3390/molecules26216530] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
RNA activation (RNAa) is a mechanism whereby RNA oligos complementary to genomic sequences around the promoter region of genes increase the transcription output of their target gene. Small activating RNA (saRNA) mediate RNAa through interaction with protein co-factors to facilitate RNA polymerase II activity and nucleosome remodeling. As saRNA are small, versatile and safe, they represent a new class of therapeutics that can rescue the downregulation of critical genes in disease settings. This review highlights our current understanding of saRNA biology and describes various examples of how saRNA are successfully used to treat various oncological, neurological and monogenic diseases. MTL-CEBPA, a first-in-class compound that reverses CEBPA downregulation in oncogenic processes using CEBPA-51 saRNA has entered clinical trial for the treatment of hepatocellular carcinoma (HCC). Preclinical models demonstrate that MTL-CEBPA reverses the immunosuppressive effects of myeloid cells and allows for the synergistic enhancement of other anticancer drugs. Encouraging results led to the initiation of a clinical trial combining MTL-CEBPA with a PD-1 inhibitor for treatment of solid tumors.
Collapse
Affiliation(s)
- Choon Ping Tan
- MiNA Therapeutics Ltd., Translation & Innovation Hub, 84 Wood Lane, London W12 0BZ, UK; (C.P.T.); (L.S.); (V.G.); (J.N.)
| | - Laura Sinigaglia
- MiNA Therapeutics Ltd., Translation & Innovation Hub, 84 Wood Lane, London W12 0BZ, UK; (C.P.T.); (L.S.); (V.G.); (J.N.)
| | - Valentí Gomez
- MiNA Therapeutics Ltd., Translation & Innovation Hub, 84 Wood Lane, London W12 0BZ, UK; (C.P.T.); (L.S.); (V.G.); (J.N.)
| | - Joanna Nicholls
- MiNA Therapeutics Ltd., Translation & Innovation Hub, 84 Wood Lane, London W12 0BZ, UK; (C.P.T.); (L.S.); (V.G.); (J.N.)
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Nagy A. Habib
- MiNA Therapeutics Ltd., Translation & Innovation Hub, 84 Wood Lane, London W12 0BZ, UK; (C.P.T.); (L.S.); (V.G.); (J.N.)
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
- Correspondence: ; Tel.: +44-(0)20-3313-8574
| |
Collapse
|
6
|
Thibault PA, Ganesan A, Kalyaanamoorthy S, Clarke JPWE, Salapa HE, Levin MC. hnRNP A/B Proteins: An Encyclopedic Assessment of Their Roles in Homeostasis and Disease. BIOLOGY 2021; 10:biology10080712. [PMID: 34439945 PMCID: PMC8389229 DOI: 10.3390/biology10080712] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022]
Abstract
The hnRNP A/B family of proteins is canonically central to cellular RNA metabolism, but due to their highly conserved nature, the functional differences between hnRNP A1, A2/B1, A0, and A3 are often overlooked. In this review, we explore and identify the shared and disparate homeostatic and disease-related functions of the hnRNP A/B family proteins, highlighting areas where the proteins have not been clearly differentiated. Herein, we provide a comprehensive assembly of the literature on these proteins. We find that there are critical gaps in our grasp of A/B proteins' alternative splice isoforms, structures, regulation, and tissue and cell-type-specific functions, and propose that future mechanistic research integrating multiple A/B proteins will significantly improve our understanding of how this essential protein family contributes to cell homeostasis and disease.
Collapse
Affiliation(s)
- Patricia A. Thibault
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada
| | - Aravindhan Ganesan
- ArGan’s Lab, School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Subha Kalyaanamoorthy
- Department of Chemistry, Faculty of Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Joseph-Patrick W. E. Clarke
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Hannah E. Salapa
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada
| | - Michael C. Levin
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada
- Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Correspondence:
| |
Collapse
|
7
|
Emerging Contribution of PancRNAs in Cancer. Cancers (Basel) 2020; 12:cancers12082035. [PMID: 32722129 PMCID: PMC7464463 DOI: 10.3390/cancers12082035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
“Cancer” includes a heterogeneous group of diseases characterized by abnormal growth beyond natural boundaries. Neoplastic transformation of cells is orchestrated by multiple molecular players, including oncogenic transcription factors, epigenetic modifiers, RNA binding proteins, and coding and noncoding transcripts. The use of computational methods for global and quantitative analysis of RNA processing regulation provides new insights into the genomic and epigenomic features of the cancer transcriptome. In particular, noncoding RNAs are emerging as key molecular players in oncogenesis. Among them, the promoter-associated noncoding RNAs (pancRNAs) are noncoding transcripts acting in cis to regulate their host genes, including tumor suppressors and oncogenes. In this review, we will illustrate the role played by pancRNAs in cancer biology and will discuss the latest findings that connect pancRNAs with cancer risk and progression. The molecular mechanisms involved in the function of pancRNAs may open the path to novel therapeutic opportunities, thus expanding the repertoire of targets to be tested as anticancer agents in the near future.
Collapse
|
8
|
Liu Y, Shi SL. The roles of hnRNP A2/B1 in RNA biology and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1612. [PMID: 32588964 DOI: 10.1002/wrna.1612] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022]
Abstract
The RNA-binding protein hnRNPA2/B1 is a member of the hnRNPs family and is widely expressed in various tissues. hnRNPA2/B1 recognizes and binds specific RNA substrates and DNA motifs and is involved in the transcription, splicing processing, transport, stability, and translation regulation of a variety of RNA molecules and in regulating the expression of a large number of genes. hnRNPA2/B1 is also involved in telomere maintenance and DNA repair, while its expression changes and mutations are involved in the development of various tumors and neurodegenerative and autoimmune diseases. This paper reviews the role and mechanism of hnRNPA2/B1 in RNA metabolism, tumors, and neurodegenerative and autoimmune diseases. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Yu Liu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.,School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Song-Lin Shi
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
9
|
Li X, Wang X, Cheng Z, Zhu Q. AGO2 and its partners: a silencing complex, a chromatin modulator, and new features. Crit Rev Biochem Mol Biol 2020; 55:33-53. [DOI: 10.1080/10409238.2020.1738331] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xiaojing Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Xueying Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Zeneng Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Liu J, Guo B. RNA-based therapeutics for colorectal cancer: Updates and future directions. Pharmacol Res 2019; 152:104550. [PMID: 31866285 DOI: 10.1016/j.phrs.2019.104550] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/12/2019] [Accepted: 11/16/2019] [Indexed: 01/20/2023]
Abstract
Colorectal cancer (CRC) is one of the most common causes of cancer death worldwide. While standard chemotherapy and new targeted therapy have been improved recently, problems such as multidrug resistance (MDR) and severe side effects remain unresolved. RNAs are essential to all biological processes including cell proliferation and differentiation, cell cycle, apoptosis, activation of tumor suppressor genes, suppression of oncogenes. Therefore, there are various potential approaches to address genetic disease like CRC at the RNA level. In contrast to conventional treatments, RNA-based therapeutics such as RNA interference, antisense oligonucleotides, RNA aptamer, ribozymes, have the advantages of high specificity, high potency and low toxicity. It has gained more and more attention due to the flexibility in modulating a wide range of targets. Here, we highlight recent advances and clinical studies involving RNA-based therapeutics and CRC. We also discuss their advantages and limitations that remain to be overcome for the treatment of human CRC.
Collapse
Affiliation(s)
- Jingwen Liu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77030, United States.
| | - Bin Guo
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77030, United States.
| |
Collapse
|
11
|
Abstract
The RNA interference (RNAi) pathway regulates mRNA stability and translation in nearly all human cells. Small double-stranded RNA molecules can efficiently trigger RNAi silencing of specific genes, but their therapeutic use has faced numerous challenges involving safety and potency. However, August 2018 marked a new era for the field, with the US Food and Drug Administration approving patisiran, the first RNAi-based drug. In this Review, we discuss key advances in the design and development of RNAi drugs leading up to this landmark achievement, the state of the current clinical pipeline and prospects for future advances, including novel RNAi pathway agents utilizing mechanisms beyond post-translational RNAi silencing.
Collapse
|
12
|
Yoon S, Rossi JJ. Therapeutic Potential of Small Activating RNAs (saRNAs) in Human Cancers. Curr Pharm Biotechnol 2018; 19:604-610. [PMID: 29804529 PMCID: PMC6204660 DOI: 10.2174/1389201019666180528084059] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/09/2018] [Accepted: 05/23/2018] [Indexed: 01/24/2023]
Abstract
Background: RNA is increasingly recognized as a powerful molecule that can be used to control gene expression. Sophisticated, well-engineered RNA-based regulators are being developed as oligotherapeutics. Methods: In particular, small activating RNAs (saRNAs) are promising therapeutic options for targeting human diseases. Numerous saRNAs targeting multiple cancers have been developed in preclinical models. One saRNA targeting C/EBPα is currently undergoing clinical trials in liver cancer. Results and Conclusion: In this review, we describe the current working model of the intracellular mechanism of saRNA, discuss the recent progress of saRNA therapeutics in preclinical and clinical trials, and current advances in targeted delivery using aptamers in detail.
Collapse
Affiliation(s)
- Sorah Yoon
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, United States
| | - John J Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, United States.,Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, California, United States
| |
Collapse
|
13
|
Zhang Q, Miao S, Han X, Li C, Zhang M, Cui K, Xiong T, Chen Z, Wang C, Xu H. MicroRNA-3619-5p suppresses bladder carcinoma progression by directly targeting β-catenin and CDK2 and activating p21. Cell Death Dis 2018; 9:960. [PMID: 30237499 PMCID: PMC6147790 DOI: 10.1038/s41419-018-0986-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 02/07/2023]
Abstract
Current studies indicate that microRNAs (miRNAs) are widely decreased in various tumors and function as tumor suppressors by inhibiting cancer cell proliferation, survival, invasion, and migration. The potential application of using miRNAs to predict therapeutic responses to multiple types of cancer treatment holds high promise. In current study, we demonstrate that miR-3619-5p is downregulated in bladder cancer (BCa) tissues and cells. Exogenous overexpression of miR-3619-5p in BCa cells inhibits proliferation, migration, and invasion. Moreover, a nude mouse xenograft model shows that miR-3619-5p inhibits BCa cell growth. We also demonstrate that miR-3619-5p leads to the activation of p21 by targeting its promoter in BCa cells. Enforced miR-3619-5p expression consistently leads to the downregulation of β-catenin and cyclin-dependent kinase 2 (CDK2) through predicted binding sites within the β-catenin and CDK2 3′-untranslated regions (UTRs), respectively. Moreover, β-catenin and CDK2 knockdown is able to mimic BCa cells growth and metastasis effects induced by overexpressing miR-3619-5p. We further confirm that miR-3619-5p inhibits Wnt-β-catenin signal pathway and EMT progression in BCa cells. We also found that miR-3619-5p-induced growth arrest and metastasis inhibition are p21-dependent in BCa cells. Taken together, these results confirm that miR-3619-5p plays a tumor suppressive role in BCa by interfering with cell growth and metastasis and may serve as a potential therapeutic target in BCa treatment.
Collapse
Affiliation(s)
- Qingsong Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 JieFang Avenue, 430030, Wuhan, Hubei, China.,Department of Urology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Shinan District, 26600, Qingdao, Shandong, China
| | - Shuo Miao
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 JieFang Avenue, 430030, Wuhan, Hubei, China
| | - Xihong Han
- Department of Cardiology, Shouguang People's Hospital, 262700, Shouguang, Shandong, China
| | - Chuanchang Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 JieFang Avenue, 430030, Wuhan, Hubei, China
| | - Mengyang Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 JieFang Avenue, 430030, Wuhan, Hubei, China
| | - Kai Cui
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 JieFang Avenue, 430030, Wuhan, Hubei, China
| | - Tao Xiong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 JieFang Avenue, 430030, Wuhan, Hubei, China
| | - Zhong Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 JieFang Avenue, 430030, Wuhan, Hubei, China.
| | - Chenghe Wang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, 200025, Shanghai, China
| | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 JieFang Avenue, 430030, Wuhan, Hubei, China
| |
Collapse
|
14
|
Laham-Karam N, Laitinen P, Turunen TA, Ylä-Herttuala S. Activating the Chromatin by Noncoding RNAs. Antioxid Redox Signal 2018; 29:813-831. [PMID: 28699365 DOI: 10.1089/ars.2017.7248] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE The extent and breadth of transcription have recently been uncovered and this has revealed an extensive array of noncoding RNAs (ncRNAs). The biological role and significance of these ncRNAs have been realized and to date it appears that ncRNAs may have many important regulatory functions. ncRNAs are multifaceted and they induce a complexity of different types of transcriptional and posttranscriptional regulation, including gene activation. Recent Advances: Association of ncRNAs with gene activation is an important finding. Not only enhancer RNA (eRNA) but other types of ncRNAs, including small RNA (sRNA), long-noncoding RNA (lncRNA), microRNA (miRNA), and PIWI-associated RNA (piRNA), have also been implicated in gene activation. Interestingly, they often coincide with histone modifications that favor an open chromatin. In addition, these ncRNAs can recruit key factors important for transcription, including RNA polymerase II. They may directly bind the genomic DNA or act as scaffolds; alternatively, they may loop the chromatin to enhance transcription. CRITICAL ISSUES Although the role of small activating (sa)RNAs has been considerably studied, the roles of miRNAs and piRNAs in gene activation still need to be substantiated and issues of specificity require further studies. FUTURE DIRECTIONS The ncRNA field is coming out of its infancy and we are gaining a global picture of the importance of ncRNAs. However, detailed mechanisms of action of the different ncRNAs are still to be determined. This may reveal novel ways of transcriptional regulation, which will facilitate our ability to utilize these regulatory pathways for research and therapeutic purposes. Antioxid. Redox Signal. 29, 813-831.
Collapse
Affiliation(s)
- Nihay Laham-Karam
- 1 A.I. Virtanen Institute, University of Eastern Finland , Kuopio, Finland
| | - Pia Laitinen
- 1 A.I. Virtanen Institute, University of Eastern Finland , Kuopio, Finland
| | - Tiia A Turunen
- 1 A.I. Virtanen Institute, University of Eastern Finland , Kuopio, Finland
| | - Seppo Ylä-Herttuala
- 1 A.I. Virtanen Institute, University of Eastern Finland , Kuopio, Finland .,2 Heart Center, Kuopio University Hospital , Kuopio, Finland .,3 Gene Therapy Unit, Kuopio University Hospital , Kuopio, Finland
| |
Collapse
|
15
|
Dar SA, Kumar M. saRNAdb: Resource of Small Activating RNAs for Up-regulating the Gene Expression. J Mol Biol 2018; 430:2212-2218. [PMID: 29625201 DOI: 10.1016/j.jmb.2018.03.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/19/2018] [Accepted: 03/22/2018] [Indexed: 12/19/2022]
Abstract
RNA activation (RNAa) is the process of enhancing selective gene expression at transcriptional level using double-stranded RNAs, targeting gene promoter. These RNA molecules are usually 21 nucleotides long and termed as small activating RNAs (saRNAs). They are involved in gene regulation, epigenetics, gain-of-function studies and have potential therapeutic applications for various diseases especially cancer. RNAa is opposite to RNA interference in functionality; however, both processes share some protein machinery. There are many RNA interference centered online resources but no one for saRNAs; therefore, we developed "saRNAdb" database (http://bioinfo.imtech.res.in/manojk/sarna/). It contains 2150 manually curated saRNA entries with detailed information about their nucleotide sequences, activities, corresponding target gene, promoter and other experimental data. Besides, saRNA-promoter binding location, predicted saRNA features, tools (off-target, map) and RNAa-related proteins with their interacting partners are provided. saRNAdb is expected to assist in RNA research especially for nucleic acid-based therapeutics development.
Collapse
Affiliation(s)
- Showkat Ahmad Dar
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research, Sector 39A, Chandigarh 160036, India
| | - Manoj Kumar
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research, Sector 39A, Chandigarh 160036, India.
| |
Collapse
|
16
|
Vaschetto LM. miRNA activation is an endogenous gene expression pathway. RNA Biol 2018; 15:826-828. [PMID: 29537927 PMCID: PMC6152443 DOI: 10.1080/15476286.2018.1451722] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/07/2018] [Indexed: 12/27/2022] Open
Abstract
Transfection of small non-coding RNAs (sncRNAs) molecules has become a routine technique widely used for silencing gene expression by triggering post-transcriptional and transcriptional RNA interference (RNAi) pathways. Moreover, in the past decade, small activating (saRNA) sequences targeting promoter regions were also reported, thereby a RNA-based gene activation (RNAa) mechanism has been proposed. In this regard, Turner and colleagues recently discovered an endogenous microRNA (miRNA) which binds its promoter in order to upregulate its own expression. Interestingly, several miRNA-induced RNA activation (miRNAa) phenomena have since then been identified. My objective here is to introduce the reader into the emergent miRNAa research field, as well as bring together important discoveries about this unexplored transcriptional activation pathway.
Collapse
Affiliation(s)
- Luis M. Vaschetto
- Instituto de Diversidad y Ecología Animal, Consejo Nacional de Investigaciones Científicas y Técnicas (IDEA, CONICET), Av. Vélez Sarsfield 299, X5000JJC Córdoba, Argentina
- Cátedra de Diversidad Animal I, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, (FCEFyN, UNC), Av. Vélez Sarsfield 299, X5000JJC Córdoba, Argentina
| |
Collapse
|
17
|
Setten RL, Lightfoot HL, Habib NA, Rossi JJ. Development of MTL-CEBPA: Small Activating RNA Drug for Hepatocellular Carcinoma. Curr Pharm Biotechnol 2018; 19:611-621. [PMID: 29886828 PMCID: PMC6204661 DOI: 10.2174/1389201019666180611093428] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Oligonucleotide drug development has revolutionised the drug discovery field. Within this field, 'small' or 'short' activating RNAs (saRNA) are a more recently discovered category of short double-stranded RNA with clinical potential. saRNAs promote transcription from target loci, a phenomenon widely observed in mammals known as RNA activation (RNAa). OBJECTIVE The ability to target a particular gene is dependent on the sequence of the saRNA. Hence, the potential clinical application of saRNAs is to increase target gene expression in a sequence-specific manner. saRNA-based therapeutics present opportunities for expanding the "druggable genome" with particular areas of interest including transcription factor activation and cases of haploinsufficiency. RESULTS AND CONCLUSION In this mini-review, we describe the pre-clinical development of the first saRNA drug to enter the clinic. This saRNA, referred to as MTL-CEBPA, induces increased expression of the transcription factor CCAAT/enhancer-binding protein alpha (CEBPα), a tumour suppressor and critical regulator of hepatocyte function. MTL-CEBPA is presently in Phase I clinical trials for hepatocellular carcinoma (HCC). The clinical development of MTL-CEBPA will demonstrate "proof of concept" that saRNAs can provide the basis for drugs which enhance target gene expression and consequently improve treatment outcome in patients.
Collapse
Affiliation(s)
| | | | | | - John J. Rossi
- Address correspondence to this author at the Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA; Tel: 626-218-7390; Fax: 626-301-8371; E-mail:
| |
Collapse
|
18
|
Zhang Q, Wang C, Miao S, Li C, Chen Z, Li F. Enhancing E-cadherin expression via promoter-targeted miR-373 suppresses bladder cancer cells growth and metastasis. Oncotarget 2017; 8:93969-93983. [PMID: 29212202 PMCID: PMC5706848 DOI: 10.18632/oncotarget.21400] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022] Open
Abstract
Previous studies showed that miR-373 had the capacity to induce tumor suppressor gene E-cadherin expression in prostate cancer cells. However, whether miR-373 can activate the expression of E-cadherin in human bladder cancer (BCa) cells and inhibit cells remains to be elucidated. Here, we found that both miR-373 and E-cadherin were low expressed in BCa tissues and cell lines, and significantly correlated with tumor stage, grade, and lymph node metastasis. In addition, decreased E-cadherin expression or low expression of both miR-373 and E-cadherin is associated with poor overall survival in patients with BCa. Transfection of miR-373 into BCa cells readily activated E-cadherin expression by targeting promoter. Moreover, miR-373 exhibited robust capacity to inhibit cells proliferation, suppress migration and invasion by enhancing E-cadherin expression, and significantly suppress the growth of xenografts and metastasis in nude mice. Altogether, our findings indicate that miR-373 may as a tumor suppressor in BCa by activating E-cadherin expression.
Collapse
Affiliation(s)
- Qingsong Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Chenghe Wang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| | - Shuo Miao
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Chuanchang Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhong Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Fan Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
19
|
Abstract
The ability to develop efficient and versatile technologies for manipulating gene expression is a fundamental issue both in biotechnology and therapeutics. The endogenous RNA interference (RNAi) pathway which mediates gene silencing was discovered at the end of the 20th century and it is nowadays considered as an essential strategy for knockdown of specific genes and for studying gene function. Remarkably, during the past decade, a RNA-induced mechanism of gene activation has also been reported. Likewise RNAi, the RNA activation (RNAa) process is also mediated by sequence-specific double-stranded RNA (dsRNA) molecules, and interesting resemblances between both RNA-based transcriptional mechanisms have been described. Small activating RNAs (saRNAs) and related molecules have been used for targeting of genes in species that are as different as nematodes and humans, and similar dsRNA-induced activation phenomena have also been observed in plants. The aim of this letter is to highlight recent molecular insights into yet unexplored RNAa mechanism and its potential for manipulating transcriptional activity. J. Cell. Biochem. 119: 247-249, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Luis María Vaschetto
- Instituto de Diversidad y Ecología Animal, Consejo Nacional de Investigaciones Científicas y Técnicas (IDEA, CONICET), Av. Vélez Sarsfield 299, X5000JJC, Córdoba, Argentina.,Cátedra de Diversidad Animal I, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, (FCEFyN, UNC), Av. Vélez Sarsfield 299, X5000JJC, Córdoba, Argentina
| |
Collapse
|
20
|
Kang MR, Li G, Pan T, Xing JC, Li LC. Development of Therapeutic dsP21-322 for Cancer Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [PMID: 28639203 DOI: 10.1007/978-981-10-4310-9_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Small activating RNAs (saRNAs) are a class of artificially designed short duplex RNAs targeted at the promoter of a particular gene to upregulate its expression via a mechanism known as RNA activation (RNAa) and hold great promise for treating a wide variety of diseases including those undruggable by conventional therapies. The therapeutic benefits of saRNAs have been demonstrated in a number of preclinical studies carried out in different disease models including cancer. With many tumor suppressor genes (TSGs) downregulated due to either epigenetic mechanisms or haploinsufficiency resulting from deletion/mutation, cancer is an ideal disease space for saRNA therapeutics which can restore the expression of TSGs via epigenetic reprogramming. The p21WAF1/CIP gene is a TSG frequently downregulated in cancer and an saRNA for p21WAF1/CIP known as dsP21-322 has been identified to be a sequence-specific p21WAF1/CIP activator in a number of cancer types. In this chapter, we review preclinical development of medicinal dsP21-322 for cancer, especially prostate cancer and bladder cancer, and highlight its potential for further clinical development.
Collapse
Affiliation(s)
| | - Gongcheng Li
- Department of Urology, Wuhan General Hospital, Guangzhou Command PLA, Wuhan, China
| | - Tiejun Pan
- Department of Urology, Wuhan General Hospital, Guangzhou Command PLA, Wuhan, China
| | - Jin-Chun Xing
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Long-Cheng Li
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, China. .,Laboratory of Molecular Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
21
|
Li LC. Small RNA-Guided Transcriptional Gene Activation (RNAa) in Mammalian Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [DOI: 10.1007/978-981-10-4310-9_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
23
|
Oligonucleotide therapies for disorders of the nervous system. Nat Biotechnol 2017; 35:249-263. [PMID: 28244991 DOI: 10.1038/nbt.3784] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/09/2017] [Indexed: 12/14/2022]
Abstract
Oligonucleotide therapies are currently experiencing a resurgence driven by advances in backbone chemistry and discoveries of novel therapeutic pathways that can be uniquely and efficiently modulated by the oligonucleotide drugs. A quarter of a century has passed since oligonucleotides were first applied in living mammalian brain to modulate gene expression. Despite challenges in delivery to the brain, multiple oligonucleotide-based compounds are now being developed for treatment of human brain disorders by direct delivery inside the blood brain barrier (BBB). Notably, the first new central nervous system (CNS)-targeted oligonucleotide-based drug (nusinersen/Spinraza) was approved by US Food and Drug Administration (FDA) in late 2016 and several other compounds are in advanced clinical trials. Human testing of brain-targeted oligonucleotides has highlighted unusual pharmacokinetic and pharmacodynamic properties of these compounds, including complex active uptake mechanisms, low systemic exposure, extremely long half-lives, accumulation and gradual release from subcellular depots. Further work on oligonucleotide uptake, development of formulations for delivery across the BBB and relevant disease biology studies are required for further optimization of the oligonucleotide drug development process for brain applications.
Collapse
|
24
|
Target-Recognition Mechanism and Specificity of RNA Activation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [DOI: 10.1007/978-981-10-4310-9_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Turunen TA, Ylä-Herttuala S, Turunen MP. Enhancing Angiogenesis in Mice by VEGF-Targeting Small Activating RNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [PMID: 28639201 DOI: 10.1007/978-981-10-4310-9_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The prevalence of cardiovascular diseases is steadily increasing, and it is the leading cause of death worldwide. Therefore, new treatments, such as gene therapy are needed. During the last decade, the role of small noncoding RNAs (ncRNAs) in the regulation of gene expression at the transcriptional level has been shown. Promoter-targeted small RNAs recruit histone-modifying enzymes and can either repress or induce target gene expression. As an example, we have targeted mouse VEGF-A promoter with small hairpin RNAs (shRNAs) and identified two shRNAs which either repressed or induced VEGF-A expression on messenger RNA and protein level in vitro, depending on the targeted location. The changes in expression levels correlate with changes in the levels of epigenetic markers, such as histone modifications associated with repressed or active state of chromatin. In ischemic mouse hindlimbs, upregulation of VEGF-A expression increased vascularity and blood flow. When VEGF-A was upregulated in mouse myocardial infarction model, the blood vessel formation in the risk zone was observed and infarct size was significantly decreased already 2 weeks after treatment. We suggest that epigenetic upregulation of VEGF-A by ncRNAs can be transferred to clinical use for the treatment of ischemic diseases in the near future.
Collapse
Affiliation(s)
- Tiia A Turunen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko P Turunen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
26
|
|
27
|
HnRNPA2 is a novel histone acetyltransferase that mediates mitochondrial stress-induced nuclear gene expression. Cell Discov 2016; 2:16045. [PMID: 27990297 PMCID: PMC5148442 DOI: 10.1038/celldisc.2016.45] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/24/2016] [Indexed: 12/28/2022] Open
Abstract
Reduced mitochondrial DNA copy number, mitochondrial DNA mutations or disruption of
electron transfer chain complexes induce mitochondria-to-nucleus retrograde signaling,
which induces global change in nuclear gene expression ultimately contributing to various
human pathologies including cancer. Recent studies suggest that these mitochondrial
changes cause transcriptional reprogramming of nuclear genes although the mechanism of
this cross talk remains unclear. Here, we provide evidence that mitochondria-to-nucleus
retrograde signaling regulates chromatin acetylation and alters nuclear gene expression
through the heterogeneous ribonucleoprotein A2 (hnRNAP2). These processes are reversed
when mitochondrial DNA content is restored to near normal cell levels. We show that the
mitochondrial stress-induced transcription coactivator hnRNAP2 acetylates Lys 8 of H4
through an intrinsic histone lysine acetyltransferase (KAT) activity with Arg 48 and Arg
50 of hnRNAP2 being essential for acetyl-CoA binding and acetyltransferase activity. H4K8
acetylation at the mitochondrial stress-responsive promoters by hnRNAP2 is essential for
transcriptional activation. We found that the previously described mitochondria-to-nucleus
retrograde signaling-mediated transformation of C2C12 cells caused an increased expression
of genes involved in various oncogenic processes, which is retarded in hnRNAP2 silenced or
hnRNAP2 KAT mutant cells. Taken together, these data show that altered gene expression by
mitochondria-to-nucleus retrograde signaling involves a novel hnRNAP2-dependent epigenetic
mechanism that may have a role in cancer and other pathologies.
Collapse
|
28
|
Gustincich S, Zucchelli S, Mallamaci A. The Yin and Yang of nucleic acid-based therapy in the brain. Prog Neurobiol 2016; 155:194-211. [PMID: 27887908 DOI: 10.1016/j.pneurobio.2016.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 11/16/2016] [Accepted: 11/20/2016] [Indexed: 02/06/2023]
Abstract
The post-genomic era has unveiled the existence of a large repertory of non-coding RNAs and repetitive elements that play a fundamental role in cellular homeostasis and dysfunction. These may represent unprecedented opportunities to modify gene expression at the right time in the correct space in vivo, providing an almost unlimited reservoir of new potential pharmacological agents. Hijacking their mode of actions, the druggable genome can be extended to regulatory RNAs and DNA elements in a scalable fashion. Here, we discuss the state-of-the-art of nucleic acid-based drugs to treat neurodegenerative diseases. Beneficial effects can be obtained by inhibiting (Yin) and increasing (Yang) gene expression, depending on the disease and the drug target. Together with the description of the current use of inhibitory RNAs (small inhibitory RNAs and antisense oligonucleotides) in animal models and clinical trials, we discuss the molecular basis and applications of new classes of activatory RNAs at transcriptional (RNAa) and translational (SINEUP) levels.
Collapse
Affiliation(s)
- Stefano Gustincich
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), Genova, Italy; Area of Neuroscience, SISSA, Trieste, Italy.
| | - Silvia Zucchelli
- Area of Neuroscience, SISSA, Trieste, Italy; Department of Health Sciences, Universita' del Piemonte Orientale, Novara, Italy
| | | |
Collapse
|
29
|
Xie D, Shang L, Peng L, Li L. Up-regulation of VEZT by small activating RNA inhibits the proliferation, invasion and migration of gastric cancer cells. Biochem Biophys Res Commun 2016; 482:542-548. [PMID: 27856244 DOI: 10.1016/j.bbrc.2016.11.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/12/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To identify an effective saRNA sequence that can specifically up-regulate VEZT expression and to determine the influence of saRNA had on gastric cancer cell growth, proliferation, invasion and migration. METHODS Three various saRNAs, that target the VEZT gene promoter at different locations relative to the transcription start site were synthesized. A dsControl saRNA was synthesized as a negative control, and a specific shRNA was synthesized to knockdown VEZT and eliminate any off-target effects of the saRNA. Both SGC-7901 and M-28 cells were either transfected with the different saRNAs, or treated with Lipofectamine2000 alone. To determine the most effective saRNA, real-time PCR and Western blot were used to determine the VEZT mRNA and protein content, respectively, of each treatment group. After selection, both cell lines were treated with the chosen saRNA, dsControl or Lipofectamine2000. The saRNA treated cells were divided into two groups: the first group was used immediately in the experiments, and the second group was transfected with shRNA by using RNAi-Mate. The proliferation of cells transfected with saRNA, or saRNA and shRNA, as well as the other control cells, was detected by CCK-8. The invasive and migratory abilities were determined using the transwell chamber assay. RESULTS We identified the most effective saRNA via real-time PCR and Western blot. The selected saRNA inhibited the growth, invasion and migration of GC cells by specially reactivating VEZT. The real-time PCR and Western blot results showed that treatment with saRNA caused a significant up-regulation of VEZT, and an obvious decrease in the proliferative, invasive and migratory abilities; compared with the control groups (P < 0.01); furthermore, there were no significant differences among the control groups (P > 0.05). This phenomenon provides a theoretical basis for saRNA design and gene therapy for gastric cancer.
Collapse
Affiliation(s)
- Detian Xie
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250000, Shandong, China
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250000, Shandong, China
| | - Lipan Peng
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250000, Shandong, China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250000, Shandong, China.
| |
Collapse
|
30
|
Wu HL, Li SM, Hu J, Yu X, Xu H, Chen Z, Ye ZQ. Demystifying the mechanistic and functional aspects of p21 gene activation with double-stranded RNAs in human cancer cells. J Exp Clin Cancer Res 2016; 35:145. [PMID: 27639690 PMCID: PMC5027115 DOI: 10.1186/s13046-016-0423-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/09/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The recently identified phenomenon of double-stranded RNA (dsRNA)-mediated gene activation (RNAa) has been studied extensively, as it is present in humans, mice, and Caenorhabditis elegans, suggesting that dsRNA-mediated RNAa is an evolutionarily conserved mechanism. Previous studies have shown that dsP21-322 can induce tumor suppressor gene p21 expression in several human cancer cells. Nonetheless, the role of dsRNAs in the activation of gene expression, including their target molecules and associated key factors, remains poorly understood. METHODS Oligonucleotides were used to overexpress dsRNAs and dsControl. Real-time PCR and Western blotting were used to detect corresponding mRNA and protein expression, respectively. Fluorescence microscopy was used to examine the kinetics of dsRNA subcellular distribution. Luciferase reporter assays were performed to verify dsRNA target molecules. Chromatin immunoprecipitation (ChIP) assays were carried out to determine whether histone modification and other associated key factors are involved in saRNA-mediated p21 expression. RESULTS We demonstrated that dsRNA-mediated p21 induction in human cell lines is a common phenomenon. This process occurs at the transcriptional level, and the complementary p21 promoter is the intended dsRNA target. Additionally, ChIP assays indicated that p21 activation was accompanied by an increased enrichment of AGO1 and the trimethylation of histone H3K4 at dsRNA-targeted genomic sites. CONCLUSION These data systematically reveal the mechanistic and functional aspects of ncRNA-mediated p21 activation in human cancer cells, which may be a useful tool to analyze gene function and aid in the development of novel drug targets for cancer therapeutics.
Collapse
Affiliation(s)
- Huan-Lei Wu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Sen-Mao Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Avenue, No. 1095, Wuhan, 430030, People's Republic of China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jia Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Avenue, No. 1095, Wuhan, 430030, People's Republic of China. .,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Xiao Yu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Avenue, No. 1095, Wuhan, 430030, People's Republic of China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Avenue, No. 1095, Wuhan, 430030, People's Republic of China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Zhong Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Avenue, No. 1095, Wuhan, 430030, People's Republic of China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Zhang-Qun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Avenue, No. 1095, Wuhan, 430030, People's Republic of China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| |
Collapse
|
31
|
Xia W, Li D, Wang G, Ni J, Zhuang J, Ha M, Wang J, Ye Y. Small activating RNA upregulates NIS expression: promising potential for hepatocellular carcinoma endoradiotherapy. Cancer Gene Ther 2016; 23:333-340. [PMID: 27608773 DOI: 10.1038/cgt.2016.36] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 08/03/2016] [Indexed: 12/29/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. Currently, the clinical strategies available for the treatment of HCC remain insufficient for the poor prognosis. Sodium/iodide symporter (NIS)-based radioiodine therapy is proposed as a promising therapeutic strategy for the treatment of HCC. However, it is difficult for HCC cells to trap iodine for the lower expression of NIS. Small activating RNA (saRNA) is a newly identified small double-stranded RNA (dsRNA) that can induce endogenous gene expression by targeting promoter sequences. Here, we designed an saRNA (saRNA-482) that targeted the NIS promoter sequences. In the cultured HepG2 cells and Hep3B cells, the expressions of NIS were upregulated after transfection of saRNA-482. In addition, the uptake of 125I increased in the cultured HepG2 and Hep3B cells transfected with saRNA-482. Furthermore, the cell viabilities were significantly inhibited in the saRNA-482-transfected HepG2 and Hep3B cells after 131I treatment. Meanwhile, the apoptosis of saRNA-482-transfected HepG2 and Hep3B cells significantly increased after 131I treatment. The results suggest that RNA activation-mediated upregulation of NIS may have an endoradiotherapeutic potential in the treatment of HCC.
Collapse
Affiliation(s)
- W Xia
- Department of Nuclear Medicine, Shanghai Seventh People's Hospital, Shanghai, China
| | - D Li
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - G Wang
- Department of Nuclear Medicine, Shanghai Seventh People's Hospital, Shanghai, China
| | - J Ni
- Department of Nuclear Medicine, Shanghai Seventh People's Hospital, Shanghai, China
| | - J Zhuang
- Department of Nuclear Medicine, Shanghai Seventh People's Hospital, Shanghai, China
| | - M Ha
- Department of Infectious Diseases, Shanghai Seventh People's Hospital, Shanghai, China
| | - J Wang
- President's Office of Shanghai Seventh People's Hospital, Shanghai, China
| | - Y Ye
- Central Laboratory, Shanghai Seventh People's Hospital, Shanghai, China
| |
Collapse
|
32
|
Wu Z, Li Y, Li Z, Liu Z, Qin Z, Li X, Ye Y, Bu L, Lin B, Wang Z, Jia G, Chen G. Transcriptional regulation of E-cadherin by small activating RNA: A new double-stranded RNA. Int J Oncol 2016; 49:1620-8. [DOI: 10.3892/ijo.2016.3643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/11/2016] [Indexed: 11/06/2022] Open
|
33
|
RNA Activation of the Vascular Endothelial Growth Factor Gene (VEGF) Promoter by Double-Stranded RNA and Hypoxia: Role of Noncoding VEGF Promoter Transcripts. Mol Cell Biol 2016; 36:1480-93. [PMID: 26976645 DOI: 10.1128/mcb.01096-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/07/2016] [Indexed: 11/20/2022] Open
Abstract
RNA activation (RNAa) is a gene regulation process in which promoter-targeted short double-stranded RNAs (dsRNAs) or microRNAs (miRs) induce target gene expression at the transcriptional level. Here, we investigate the presence of cryptic promoter transcripts within the VEGF promoter. Single-strand sense and antisense noncoding vascular endothelial growth factor (NcVEGF) promoter transcripts are identified, and their respective expression is studied in cells transfected with a VEGF promoter targeted dsRNA, namely, dsVEGF706, in hypoxic cells and in human malignant lung tissues. Interestingly, in dsVEGF706-transfected, as well as in hypoxic cells, NcVEGF expression levels increase coordinately with coding VEGF expression. Ago2 interaction with both sense and antisense NcVEGFs is increased in hypoxic cells, whereas in dsVEGF706-transfected cells, Ago2 and the antisense strand of the dsRNA interact specifically with the sense NcVEGF transcript. Furthermore, both dsVEGF706 and ectopic NcVEGF transcripts are able to activate the VEGF promoter endogenously present or in a reporter construct. Finally, using small interfering RNA targeting Ago2, we show that RNAa plays a role in the maintenance of increased VEGF and NcVEGF expression after hypoxia. Given the central role of VEGF in major human diseases, including cancer, this novel molecular mechanism is poised to reveal promising possibilities for therapeutic interventions.
Collapse
|
34
|
Wang B, Sun J, Shi J, Guo Q, Tong X, Zhang J, Hu N, Hu Y. Small-Activating RNA Can Change Nucleosome Positioning in Human Fibroblasts. ACTA ACUST UNITED AC 2016; 21:634-42. [PMID: 26993320 DOI: 10.1177/1087057116637562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/15/2016] [Indexed: 11/16/2022]
Abstract
RNA activation (RNAa) is a mechanism of positive gene expression regulation mediated by small-activating RNAs (saRNAs), which target gene promoters and have been used as tools to manipulate gene expression. Studies have shown that RNAa is associated with epigenetic modifications at promoter regions; however, it is unclear whether these modifications are the cause or a consequence of RNAa. In this study, we examined changes in nucleosome repositioning and the involvement of RNA polymerase II (RNAPII) in this process. We screened saRNAs for OCT4 (POU5F1), SOX2, and NANOG, and identified several novel saRNAs. We found that nucleosome positioning was altered after saRNA treatment and that the formation of nucleosome-depleted regions (NDRs) contributed to RNAa at sites of RNAPII binding, such as the TATA box, CpG islands (CGIs), proximal enhancers, and proximal promoters. Moreover, RNAPII appeared to be bound specifically to NDRs. These results suggested that changes in nucleosome positions resulted from RNAa. We thus propose a hypothesis that targeting promoter regions using exogenous saRNAs can induce the formation of NDRs, exposing regulatory binding sites to recruit RNAPII, a key component of preinitiation complex, and leading to increased initiation of transcription.
Collapse
Affiliation(s)
- Bin Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China Department of Biology, Kunming University, Kunming, China
| | - Jing Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jiandong Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Qing Guo
- Department of Biology, Kunming University, Kunming, China
| | - Xiangrong Tong
- Department of Biology, Kunming University, Kunming, China
| | - Jin Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Ningzhu Hu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - YunZhang Hu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
35
|
Portnoy V, Lin SHS, Li KH, Burlingame A, Hu ZH, Li H, Li LC. saRNA-guided Ago2 targets the RITA complex to promoters to stimulate transcription. Cell Res 2016; 26:320-35. [PMID: 26902284 PMCID: PMC4783471 DOI: 10.1038/cr.2016.22] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/22/2015] [Accepted: 01/12/2016] [Indexed: 12/21/2022] Open
Abstract
Small activating RNAs (saRNAs) targeting specific promoter regions are able to stimulate gene expression at the transcriptional level, a phenomenon known as RNA activation (RNAa). It is known that RNAa depends on Ago2 and is associated with epigenetic changes at the target promoters. However, the precise molecular mechanism of RNAa remains elusive. Using human CDKN1A (p21) as a model gene, we characterized the molecular nature of RNAa. We show that saRNAs guide Ago2 to and associate with target promoters. saRNA-loaded Ago2 facilitates the assembly of an RNA-induced transcriptional activation (RITA) complex, which, in addition to saRNA-Ago2 complex, includes RHA and CTR9, the latter being a component of the PAF1 complex. RITA interacts with RNA polymerase II to stimulate transcription initiation and productive elongation, accompanied by monoubiquitination of histone 2B. Our results establish the existence of a cellular RNA-guided genome-targeting and transcriptional activation mechanism and provide important new mechanistic insights into the RNAa process.
Collapse
Affiliation(s)
- Victoria Portnoy
- Department of Urology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Szu Hua Sharon Lin
- Department of Urology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Kathy H Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Alma Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Zheng-Hui Hu
- Department of Urology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Hao Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Long-Cheng Li
- Department of Urology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA.,Laboratory of Molecular Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
36
|
Meng X, Jiang Q, Chang N, Wang X, Liu C, Xiong J, Cao H, Liang Z. Small activating RNA binds to the genomic target site in a seed-region-dependent manner. Nucleic Acids Res 2016; 44:2274-82. [PMID: 26873922 PMCID: PMC4797303 DOI: 10.1093/nar/gkw076] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/29/2016] [Indexed: 01/27/2023] Open
Abstract
RNA activation (RNAa) is the upregulation of gene expression by small activating RNAs (saRNAs). In order to investigate the mechanism by which saRNAs act in RNAa, we used the progesterone receptor (PR) gene as a model, established a panel of effective saRNAs and assessed the involvement of the sense and antisense strands of saRNA in RNAa. All active saRNAs had their antisense strand effectively incorporated into Ago2, whereas such consistency did not occur for the sense strand. Using a distal hotspot for saRNA targeting at 1.6-kb upstream from the PR transcription start site, we further established that gene activation mediated by saRNA depended on the complementarity of the 5' region of the antisense strand, and that such activity was largely abolished by mutations in this region of the saRNA. We found markedly reduced RNAa effects when we created mutations in the genomic target site of saRNA PR-1611, thus providing evidence that RNAa depends on the integrity of the DNA target. We further demonstrated that this saRNA bound the target site on promoter DNA. These results demonstrated that saRNAs work via an on-site mechanism by binding to target genomic DNA in a seed-region-dependent manner, reminiscent of miRNA-like target recognition.
Collapse
Affiliation(s)
- Xing Meng
- Institute of Molecular Medicine, Peking University, Beijing 100871, PR China
| | - Qian Jiang
- Institute of Molecular Medicine, Peking University, Beijing 100871, PR China
| | - Nannan Chang
- Institute of Molecular Medicine, Peking University, Beijing 100871, PR China
| | - Xiaoxia Wang
- Institute of Molecular Medicine, Peking University, Beijing 100871, PR China
| | - Chujun Liu
- Institute of Molecular Medicine, Peking University, Beijing 100871, PR China
| | - Jingwei Xiong
- Institute of Molecular Medicine, Peking University, Beijing 100871, PR China
| | - Huiqing Cao
- Institute of Molecular Medicine, Peking University, Beijing 100871, PR China
| | - Zicai Liang
- Institute of Molecular Medicine, Peking University, Beijing 100871, PR China Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| |
Collapse
|
37
|
Konno M, Koseki J, Kawamoto K, Nishida N, Matsui H, Dewi DL, Ozaki M, Noguchi Y, Mimori K, Gotoh N, Tanuma N, Shima H, Doki Y, Mori M, Ishii H. Embryonic MicroRNA-369 Controls Metabolic Splicing Factors and Urges Cellular Reprograming. PLoS One 2015; 10:e0132789. [PMID: 26176628 PMCID: PMC4503752 DOI: 10.1371/journal.pone.0132789] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 06/19/2015] [Indexed: 12/24/2022] Open
Abstract
Noncoding microRNAs inhibit translation and lower the transcript stability of coding mRNA, however miR-369 s, in aberrant silencing genomic regions, stabilizes target proteins under cellular stress. We found that in vitro differentiation of embryonic stem cells led to chromatin methylation of histone H3K4 at the miR-369 region on chromosome 12qF in mice, which is expressed in embryonic cells and is critical for pluripotency. Proteomic analyses revealed that miR-369 stabilized translation of pyruvate kinase (Pkm2) splicing factors such as HNRNPA2B1. Overexpression of miR-369 stimulated Pkm2 splicing and enhanced induction of cellular reprogramming by induced pluripotent stem cell factors, whereas miR-369 knockdown resulted in suppression. Furthermore, immunoprecipitation analysis showed that the Argonaute complex contained the fragile X mental retardation-related protein 1 and HNRNPA2B1 in a miR-369-depedent manner. Our findings demonstrate a unique role of the embryonic miR-369-HNRNPA2B1 axis in controlling metabolic enzyme function, and suggest a novel pathway linking epigenetic, transcriptional, and metabolic control in cell reprogramming.
Collapse
Affiliation(s)
- Masamitsu Konno
- Department of Frontier Science for Cancer and Chemotherapy, Osaka University Graduate School of Medicine, Osaka, 565–0871, Japan
| | - Jun Koseki
- Department of Cancer Profiling Discovery, Osaka University Graduate School of Medicine, Osaka, 565–0871, Japan
| | - Koichi Kawamoto
- Department of Frontier Science for Cancer and Chemotherapy, Osaka University Graduate School of Medicine, Osaka, 565–0871, Japan
- Department of Gastrointestinal Surgery, Osaka University Graduate School of Medicine, Osaka, 565–0871, Japan
| | - Naohiro Nishida
- Department of Frontier Science for Cancer and Chemotherapy, Osaka University Graduate School of Medicine, Osaka, 565–0871, Japan
| | | | - Dyah Laksmi Dewi
- Department of Frontier Science for Cancer and Chemotherapy, Osaka University Graduate School of Medicine, Osaka, 565–0871, Japan
- Department of Gastrointestinal Surgery, Osaka University Graduate School of Medicine, Osaka, 565–0871, Japan
| | - Miyuki Ozaki
- Department of Frontier Science for Cancer and Chemotherapy, Osaka University Graduate School of Medicine, Osaka, 565–0871, Japan
| | - Yuko Noguchi
- Department of Frontier Science for Cancer and Chemotherapy, Osaka University Graduate School of Medicine, Osaka, 565–0871, Japan
| | - Koshi Mimori
- Kyushu University, Department of Molecular and Surgical Oncology, Tsurumihara 4546, Beppu, Ohita, 874–0838, Japan
| | - Noriko Gotoh
- Division of Cancer Cell Biology, Cancer Research Institute of Kanazawa University, Kakuma-machi, Kanazawa, 920–1192, Japan
| | - Nobuhiro Tanuma
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, 981–1293, Japan
| | - Hiroshi Shima
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, 981–1293, Japan
| | - Yuichiro Doki
- Department of Frontier Science for Cancer and Chemotherapy, Osaka University Graduate School of Medicine, Osaka, 565–0871, Japan
- Department of Cancer Profiling Discovery, Osaka University Graduate School of Medicine, Osaka, 565–0871, Japan
- Department of Gastrointestinal Surgery, Osaka University Graduate School of Medicine, Osaka, 565–0871, Japan
| | - Masaki Mori
- Department of Frontier Science for Cancer and Chemotherapy, Osaka University Graduate School of Medicine, Osaka, 565–0871, Japan
- Department of Cancer Profiling Discovery, Osaka University Graduate School of Medicine, Osaka, 565–0871, Japan
- Department of Gastrointestinal Surgery, Osaka University Graduate School of Medicine, Osaka, 565–0871, Japan
| | - Hideshi Ishii
- Department of Frontier Science for Cancer and Chemotherapy, Osaka University Graduate School of Medicine, Osaka, 565–0871, Japan
- Department of Cancer Profiling Discovery, Osaka University Graduate School of Medicine, Osaka, 565–0871, Japan
| |
Collapse
|
38
|
Laham-Karam N, Lalli M, Leinonen N, Ylä-Herttuala S. Differential Regulation of Vascular Endothelial Growth Factors by Promoter-targeted shRNAs. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e243. [PMID: 25988242 PMCID: PMC4560792 DOI: 10.1038/mtna.2015.16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/16/2015] [Indexed: 02/06/2023]
Abstract
Vascular endothelial growth factors (VEGFs) and their receptors (VEGF-R) are central regulators of vasculogenesis, angiogenesis, and lymphangiogenesis. They contribute to many vascular-related pathologies, and hence VEGF-targeted therapies have been widely sought after. In this study, the authors investigated the ability of promoter-targeted small hairpin RNAs (shRNAs) to regulate VEGF-A, VEGF-C and VEGF-R1 in different cell lines. The authors identified shRNAs that can upregulate hVEGF-C at both the mRNA and protein levels, and differentially regulate hVEGF-A depending on the cell type. Likewise, the authors identified shRNA that downregulated VEGF-R1 gene expression. Hence, promoter-targeted shRNAs can affect endogenous gene expression not only bimodally, but also differentially in a cell-type specific manner. Importantly, all three genes tested were regulated by at least one shRNA, supporting the idea that nuclear RNA interference is a widespread phenomenon. The level of regulation across the panel of shRNAs varied maximally from a 2.2-fold increase to a 4-fold decrease. This level of change should be useful in fine-tuning and modulating target gene expression, which for potent molecules, such as VEGF-A and VEGF-C, can be very beneficial. These promoter-targeted shRNAs may facilitate the design and development of targeted, context-dependent strategies for both pro- and antiangiogenic therapies for the treatment of vascular-related pathologies.
Collapse
Affiliation(s)
- Nihay Laham-Karam
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Marianne Lalli
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Nastasia Leinonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- 1] Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland [2] Science Service Center, Kuopio University Hospital, Kuopio, Finland [3] Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
39
|
Zhang Y, Pu HW, Chen HM, Zhu LJ, Li XM, Chen X. Significance of expression of Gstp and HnRNPA2/B1 in esophageal squamous cell carcinoma. Shijie Huaren Xiaohua Zazhi 2015; 23:104-109. [DOI: 10.11569/wcjd.v23.i1.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of Gstp and HnRNPA2/B1 in esophageal squamous cell carcinoma (ESCC) and to analyze their clinical significance.
METHODS: Immunohistochemical method was used to detect the expression of Gstp and HnRNPA2/B1 in 68 ESCC tissues and 48 normal esophageal tissues, and their correlations with the clinicopathologic characteristics of ESCC were analyzed.
RESULTS: The positive rates of Gstp and HnRNPA2/B1 expression were significantly higher in ESCC than in normal esophageal tissues (60.3% vs 27.1%, 54.4% vs 29.1%, P < 0.05). Gstp expression had no significant correlation with gender, age, ethnicity, tumor size or infiltration depth (P > 0.05), but was significantly correlated with tumor differentiation, lymph node metastasis and clinical stage (P < 0.05). HnRNPA2/B1 expression had no significant correlation with gender, age, national, tumor size or infiltration depth (P > 0.05), but was significantly correlated with tumor differentiation, lymph node metastasis and clinical stage (P < 0.05).
CONCLUSION: Gstp and HnRNPA2/B1 may play a role in the occurrence and development of ESCC. Gstp and HnRNPA2/B1 expression may be used to judge the malignant degree of ESCC.
Collapse
|
40
|
Ishida YI, Takeshita M, Kataoka H. Functional foods effective for hepatitis C: Identification of oligomeric proanthocyanidin and its action mechanism. World J Hepatol 2014; 6:870-879. [PMID: 25544874 PMCID: PMC4269906 DOI: 10.4254/wjh.v6.i12.870] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/03/2014] [Accepted: 10/27/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of viral hepatitis and currently infects approximately 170 million people worldwide. An infection by HCV causes high rates of chronic hepatitis (> 75%) and progresses to liver cirrhosis and hepatocellular carcinoma ultimately. HCV can be eliminated by a combination of pegylated α-interferon and the broad-spectrum antiviral drug ribavirin; however, this treatment is still associated with poor efficacy and tolerability and is often accompanied by serious side-effects. While some novel direct-acting antivirals against HCV have been developed recently, high medical costs limit the access to the therapy in cost-sensitive countries. To search for new natural anti-HCV agents, we screened local agricultural products for their suppressive activities against HCV replication using the HCV replicon cell system in vitro. We found a potent inhibitor of HCV RNA expression in the extracts of blueberry leaves and then identified oligomeric proanthocyanidin as the active ingredient. Further investigations into the action mechanism of oligomeric proanthocyanidin suggested that it is an inhibitor of heterogeneous nuclear ribonucleoproteins (hnRNPs) such as hnRNP A2/B1. In this review, we presented an overview of functional foods and ingredients efficient for HCV infection, the chemical structural characteristics of oligomeric proanthocyanidin, and its action mechanism.
Collapse
|
41
|
Wang C, Chen Z, Ge Q, Hu J, Li F, Hu J, Xu H, Ye Z, Li LC. Up-regulation of p21(WAF1/CIP1) by miRNAs and its implications in bladder cancer cells. FEBS Lett 2014; 588:4654-64. [PMID: 25447520 DOI: 10.1016/j.febslet.2014.10.037] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 10/27/2014] [Accepted: 10/31/2014] [Indexed: 11/24/2022]
Abstract
We have previously reported that synthetic dsRNA can activate p21 expression by targeting the p21 promoter, thereby suppressing the proliferation of human bladder cancer cells. As complementarity between dsRNA and its target sequences is necessary for RNA activation, miRNAs may also trigger p21 expression through the same mechanism. Here, the expression levels of three miRNAs (miR-370, miR-1180 and miR-1236) decreased in bladder cancer tissues compared to healthy controls and the levels of these mRNAs positively correlated with p21 mRNA levels. The three miRNAs induced nuclear p21 expression through p21-promoter binding. Overexpression of the three miRNAs inhibited the proliferation of bladder cancer cells mainly by regulating p21. Therefore, these miRNAs could be candidates for anti-cancer drugs.
Collapse
Affiliation(s)
- Chenghe Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan 430030, Hubei, China
| | - Zhong Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan 430030, Hubei, China.
| | - Qiangqiang Ge
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan 430030, Hubei, China
| | - Junhui Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan 430030, Hubei, China
| | - Fan Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan 430030, Hubei, China
| | - Jia Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan 430030, Hubei, China
| | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan 430030, Hubei, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan 430030, Hubei, China
| | - Long-Cheng Li
- Laboratory of Molecular Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
42
|
Zheng L, Wang L, Gan J, Zhang H. RNA activation: promise as a new weapon against cancer. Cancer Lett 2014; 355:18-24. [PMID: 25261049 DOI: 10.1016/j.canlet.2014.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/30/2014] [Accepted: 09/04/2014] [Indexed: 02/05/2023]
Abstract
RNA activation (RNAa) is a novel mechanism in which short RNA duplexes, referred to as small activating RNAs (saRNAs), enable sequence-specific gene activation capable of lasting up to 2 weeks. RNAa was named in contrast to RNA interference (RNAi). Although many mysteries remain, increasing evidence demonstrates that RNAa not only provides a novel mechanism for the study of gene function and regulation, but also holds exciting potential for clinical translation to therapeutic modality against cancers. In this review, we will focus on the potential applications of RNAa in cancer studies and therapeutics.
Collapse
Affiliation(s)
- Lin Zheng
- Department of Biotherapy, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, China; Cancer Research Center, Shantou University Medical College, Shantou, China
| | - Lu Wang
- Department of Biotherapy, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, China; Cancer Research Center, Shantou University Medical College, Shantou, China
| | - Jinfeng Gan
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - Hao Zhang
- Department of Biotherapy, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, China; Cancer Research Center, Shantou University Medical College, Shantou, China; Tumor Tissue Bank, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, China.
| |
Collapse
|
43
|
Husso T, Ylä-Herttuala S, Turunen MP. A New Gene Therapy Approach for Cardiovascular Disease by Non-coding RNAs Acting in the Nucleus. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e197. [PMID: 25405466 PMCID: PMC4461992 DOI: 10.1038/mtna.2014.48] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/14/2014] [Indexed: 11/26/2022]
Abstract
This review discusses recent developments in the use of non-coding RNAs (ncRNAs) for the regulation of therapeutically relevant genes, with special focus on applications for the treatment of cardiovascular diseases. The interest in using ncRNAs as therapeutics has steadily increased since the discovery of RNA interference. During the last decade it has become evident that these RNAs, delivered either as oligos or expressed as small hairpin RNAs (shRNAs) from vectors, can either upregulate (transcriptional gene activation, TGA) or downregulate (transcriptional gene silencing, TGS) gene expression, typically inducing epigenetic changes in their target sites in the chromatin. Also, the important role of naturally occurring long non-coding RNAs (lncRNAs) has been recently discovered and will likely provide new insights into cardiovascular pathology and provide new treatment strategies based on the manipulation of their expression. In this review, we discuss the possibility of using ncRNAs for activating or silencing therapeutically relevant genes, such as VEGF-A, for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Tiia Husso
- Department of Biotechnology and Molecular Medicine, A.I.Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- 1] Department of Biotechnology and Molecular Medicine, A.I.Virtanen Institute, University of Eastern Finland, Kuopio, Finland [2] Science Service Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Mikko P Turunen
- 1] Department of Biotechnology and Molecular Medicine, A.I.Virtanen Institute, University of Eastern Finland, Kuopio, Finland [2] Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
44
|
Zhao F, Pan S, Gu Y, Guo S, Dai Q, Yu Y, Zhang W. Reactivation of HIC-1 gene by saRNA inhibits clonogenicity and invasiveness in breast cancer cells. Oncol Lett 2014; 9:159-164. [PMID: 25435951 PMCID: PMC4246611 DOI: 10.3892/ol.2014.2633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 08/15/2014] [Indexed: 01/09/2023] Open
Abstract
Hypermethylated in cancer 1 (HIC-1) is a tumor suppressor gene, which is epigenetically silenced in breast cancer. It is known that the loss of HIC-1, caused by promoter hypermethylation, is associated with tumor aggression and poor survival in breast carcinoma. It has been shown that small activating RNA (saRNA) targeting promoter sequences may induce gene re-expression. In the current study, saRNA was used to restore HIC-1 expression, and the effects on colony formation, invasiveness and the cell cycle in breast cancer cells were explored. dsHIC1-2998, an saRNA, exhibited activating efficacy on MCF-7 and MDA-MB-231 cancer cell lines. A clonogenicity assay showed that evident colony inhibition was induced via saRNA-mediated re-expression of HIC-1 in the two cancer cell lines. Reactivation of HIC-1 significantly inhibited cell migration and invasion, resulting in G0/G1 cell cycle arrest in these cell lines. These findings suggest that HIC-1 may be a potential target in gene therapy for the treatment of breast cancer. saRNA may function as a therapeutic option for upregulating tumor suppressor genes in breast cancer.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Surgery, The Ninth People's Hospital of Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, P.R. China
| | - Shengli Pan
- Department of Surgery, Shanghai Ruijin Hospital of Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, P.R. China
| | - Yan Gu
- Department of Surgery, The Ninth People's Hospital of Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, P.R. China
| | - Shanyu Guo
- Department of Surgery, The Ninth People's Hospital of Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, P.R. China
| | - Qiancheng Dai
- Department of Surgery, The Ninth People's Hospital of Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, P.R. China
| | - Yingyan Yu
- Department of Surgery, Shanghai Ruijin Hospital of Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, P.R. China
| | - Wei Zhang
- Department of Surgery, The Ninth People's Hospital of Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
45
|
Batsché E, Ameyar-Zazoua M. The influence of Argonaute proteins on alternative RNA splicing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:141-56. [DOI: 10.1002/wrna.1264] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 07/28/2014] [Accepted: 07/31/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Eric Batsché
- Institut Pasteur, Dpt Biologie du Développement et Cellules Souches; Unité de Régulation Epigénétique; 75015 Paris France
- URA2578; CNRS
| | - Maya Ameyar-Zazoua
- Institut Pasteur, Dpt Biologie du Développement et Cellules Souches; Unité de Régulation Epigénétique; 75015 Paris France
- URA2578; CNRS
- Laboratoire Epigénétique et Destin Cellulaire, CNRS UMR7216; Université Paris Diderot, Cité Sorbonne Paris; Paris France
| |
Collapse
|
46
|
Global effects of the CSR-1 RNA interference pathway on the transcriptional landscape. Nat Struct Mol Biol 2014; 21:358-65. [PMID: 24681887 PMCID: PMC4068146 DOI: 10.1038/nsmb.2801] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/02/2014] [Indexed: 12/20/2022]
Abstract
Argonaute proteins and their small RNA cofactors short interfering RNAs are known to inhibit gene expression at the transcriptional and post-transcriptional levels. In Caenorhabditis elegans, the Argonaute CSR-1 binds thousands of endogenous siRNAs (endo-siRNAs) that are antisense to germline transcripts. However, its role in gene expression regulation remains controversial. Here we used genome-wide profiling of nascent RNA transcripts and found that the CSR-1 RNA interference pathway promoted sense-oriented RNA polymerase II transcription. Moreover, a loss of CSR-1 function resulted in global increase in antisense transcription and ectopic transcription of silent chromatin domains, which led to reduced chromatin incorporation of centromere-specific histone H3. On the basis of these findings, we propose that the CSR-1 pathway helps maintain the directionality of active transcription, thereby propagating the distinction between transcriptionally active and silent genomic regions.
Collapse
|
47
|
Upregulation of RECK gene expression by small double-stranded RNA targeting the promoter region. Cancer Gene Ther 2014; 21:164-70. [PMID: 24651481 DOI: 10.1038/cgt.2014.12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/04/2014] [Accepted: 03/04/2014] [Indexed: 11/09/2022]
Abstract
Recent studies have demonstrated that small double-stranded RNAs (dsRNAs) complementary to the promoter region of target genes enhance the expression of those genes following transfection into cells. Here we show that expression of the matrix metalloproteinase (MMP) inhibitor RECK is activated in the cultured tumor cell lines by transfection with dsRNA complementary to the promoter of the RECK gene, leading to suppression of the expression of MMPs and it inhibited tumor cell invasion. These results support the suggestion that dsRNA complementary to the promoter region of tumor suppressor genes would have potential as a novel antitumor agent.
Collapse
|
48
|
Turunen MP, Husso T, Musthafa H, Laidinen S, Dragneva G, Laham-Karam N, Honkanen S, Paakinaho A, Laakkonen JP, Gao E, Vihinen-Ranta M, Liimatainen T, Ylä-Herttuala S. Epigenetic upregulation of endogenous VEGF-A reduces myocardial infarct size in mice. PLoS One 2014; 9:e89979. [PMID: 24587164 PMCID: PMC3935957 DOI: 10.1371/journal.pone.0089979] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/23/2014] [Indexed: 11/19/2022] Open
Abstract
"Epigenetherapy" alters epigenetic status of the targeted chromatin and modifies expression of the endogenous therapeutic gene. In this study we used lentiviral in vivo delivery of small hairpin RNA (shRNA) into hearts in a murine infarction model. shRNA complementary to the promoter of vascular endothelial growth factor (VEGF-A) was able to upregulate endogenous VEGF-A expression. Histological and multiphoton microscope analysis confirmed the therapeutic effect in the transduced hearts. Magnetic resonance imaging (MRI) showed in vivo that the infarct size was significantly reduced in the treatment group 14 days after the epigenetherapy. Importantly, we show that promoter-targeted shRNA upregulates all isoforms of endogenous VEGF-A and that an intact hairpin structure is required for the shRNA activity. In conclusion, regulation of gene expression at the promoter level is a promising new treatment strategy for myocardial infarction and also potentially useful for the upregulation of other endogenous genes.
Collapse
Affiliation(s)
- Mikko P. Turunen
- Department of Biotechnology and Molecular Medicine, A.I.Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Tiia Husso
- Department of Biotechnology and Molecular Medicine, A.I.Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Haja Musthafa
- Department of Biotechnology and Molecular Medicine, A.I.Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Svetlana Laidinen
- Department of Biotechnology and Molecular Medicine, A.I.Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Galina Dragneva
- Department of Biotechnology and Molecular Medicine, A.I.Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Nihay Laham-Karam
- Department of Biotechnology and Molecular Medicine, A.I.Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Sanna Honkanen
- Department of Biotechnology and Molecular Medicine, A.I.Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Anne Paakinaho
- Department of Biotechnology and Molecular Medicine, A.I.Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Johanna P. Laakkonen
- Department of Biotechnology and Molecular Medicine, A.I.Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Erhe Gao
- The Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Timo Liimatainen
- Department of Biotechnology and Molecular Medicine, A.I.Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Department of Biotechnology and Molecular Medicine, A.I.Virtanen Institute, University of Eastern Finland, Kuopio, Finland
- Research Unit and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
49
|
Small activating RNA restores the activity of the tumor suppressor HIC-1 on breast cancer. PLoS One 2014; 9:e86486. [PMID: 24489730 PMCID: PMC3904905 DOI: 10.1371/journal.pone.0086486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/09/2013] [Indexed: 12/20/2022] Open
Abstract
HIC-1 is a gene that is hypermethylated in cancer, and commonly downregulated in human breast cancer. However, the precise mechanisms and molecular pathways regulated by HIC-1 remain unclear. We assessed HIC-1 expression on a tissue microarray containing 80 cases of breast cancer. We also analyzed its biological function by restoring HIC-1 expression using 5-aza-2′ deoxycytidine (5-CdR) and small-activating RNAs for the reversal of HIC-1 tumor suppressive effects on MCF-7 and MDA-MB-231 cell lines. An Agilent Q44h global expressing microarray was probed after restoring the expression of HIC-1. Data demonstrated that HIC-1 expression was reduced significantly in breast cancer tissues. HIC-1 immunohistochemistry resulted in mean staining scores in cancer tissue and normal ductal epithelia of 3.54 and 8.2, respectively (p<0.01). 5-CdR partially reversed HIC-1 expression, and modulated cell growth and apoptosis. dsHIC1-2998, an saRNA, showed activating efficacy in breast cancer cells. A group of differentially expressed genes were characterized by cDNA microarray. Upon saRNA treatment, genes upregulated included those involved in immune activation, cell cycle interference, the induction of apoptosis, anti-metastasis, and cell differentiation. Downregulated genes included oncogenes and those that play roles in cell invasion, cell growth, and cell division. Our findings may provide valuable resources not only for gene functional studies, but also for potential clinical applications to develop novel drug targets.
Collapse
|
50
|
Reebye V, Sætrom P, Mintz P, Huang K, Swiderski P, Peng L, Liu C, Liu X, Jensen S, Zacharoulis D, Kostomitsopoulos N, Kasahara N, Nicholls J, Jiao L, Pai M, Mizandari M, Chikovani T, Emara M, Haoudi A, Tomalia D, Rossi J, Habib N, Spalding D. Novel RNA oligonucleotide improves liver function and inhibits liver carcinogenesis in vivo. Hepatology 2014; 59:216-227. [PMID: 23929703 PMCID: PMC4655108 DOI: 10.1002/hep.26669] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/31/2013] [Indexed: 12/11/2022]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) occurs predominantly in patients with liver cirrhosis. Here we show an innovative RNA-based targeted approach to enhance endogenous albumin production while reducing liver tumor burden. We designed short-activating RNAs (saRNA) to enhance expression of C/EBPα (CCAAT/enhancer-binding protein-α), a transcriptional regulator and activator of albumin gene expression. Increased levels of both C/EBPα and albumin mRNA in addition to a 3-fold increase in albumin secretion and 50% decrease in cell proliferation was observed in C/EBPα-saRNA transfected HepG2 cells. Intravenous injection of C/EBPα-saRNA in a cirrhotic rat model with multifocal liver tumors increased circulating serum albumin by over 30%, showing evidence of improved liver function. Tumor burden decreased by 80% (P = 0.003) with a 40% reduction in a marker of preneoplastic transformation. Since C/EBPα has known antiproliferative activities by way of retinoblastoma, p21, and cyclins, we used messenger RNA (mRNA) expression liver cancer-specific microarray in C/EBPα-saRNA-transfected HepG2 cells to confirm down-regulation of genes strongly enriched for negative regulation of apoptosis, angiogenesis, and metastasis. Up-regulated genes were enriched for tumor suppressors and positive regulators of cell differentiation. A quantitative polymerase chain reaction (PCR) and western blot analysis of C/EBPα-saRNA-transfected cells suggested that in addition to the known antiproliferative targets of C/EBPα, we also observed suppression of interleukin (IL)6R, c-Myc, and reduced STAT3 phosphorylation. CONCLUSION A novel injectable saRNA-oligonucleotide that enhances C/EBPα expression successfully reduces tumor burden and simultaneously improves liver function in a clinically relevant liver cirrhosis/HCC model.
Collapse
MESH Headings
- Albumins/metabolism
- Animals
- CCAAT-Enhancer-Binding Protein-alpha/metabolism
- Carcinoma, Hepatocellular/complications
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Drug Evaluation, Preclinical
- Gene Expression Regulation
- Genetic Therapy
- Hep G2 Cells
- Humans
- Injections, Intravenous
- Liver/pathology
- Liver Cirrhosis/complications
- Liver Function Tests
- Liver Neoplasms, Experimental/complications
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/pathology
- Male
- Oligonucleotide Array Sequence Analysis
- Proto-Oncogene Proteins c-myc/metabolism
- RNA/therapeutic use
- Rats
- Rats, Wistar
- Receptors, Interleukin-6/metabolism
- STAT3 Transcription Factor/metabolism
Collapse
Affiliation(s)
- V. Reebye
- Department of Surgery and Cancer; Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - P. Sætrom
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway
- Department of Computer and Information Science, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway
| | - P.J. Mintz
- Department of Surgery and Cancer; Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - K.W. Huang
- Department of Surgery & Hepatitis Research Center. National Taiwan University Hospital, Taipei City, 10002, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University. Taipei City, 10002, Taiwan
| | - P. Swiderski
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope, CA 91010. USA
| | - L. Peng
- Centre Interdisciplinaire de Nanoscience de Marseille, 13288 Marseille, France
| | - C. Liu
- Centre Interdisciplinaire de Nanoscience de Marseille, 13288 Marseille, France
| | - X.X. Liu
- Centre Interdisciplinaire de Nanoscience de Marseille, 13288 Marseille, France
| | - S. Jensen
- Department of Surgery and Cancer; Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - D. Zacharoulis
- Department of Surgery, University Hospital of Larissa Mezourlo, Larisa, Greece
| | - N. Kostomitsopoulos
- Centre for Experimental Surgery, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - N. Kasahara
- Department of Medicine, UCLA School of Medicine, Los Angeles, CA 90095-7019, USA
| | - J.P. Nicholls
- Department of Surgery and Cancer; Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - L.R. Jiao
- Department of Surgery and Cancer; Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - M. Pai
- Department of Surgery and Cancer; Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - M. Mizandari
- Department of Radiology. Tbilisi 1 Hospital University Clinic. High Technology Medical Center. Tbilisi, Georgia
| | - T. Chikovani
- Department of Microbiology and Immunology. Faculty of Medicine. Tbilisi State Medical University. Tbilisi, Georgia
| | - M.M. Emara
- Qatar Biomedical Research Institute, Education City, P.O BOX 5825, Doha, Qatar
| | - A. Haoudi
- Qatar Biomedical Research Institute, Education City, P.O BOX 5825, Doha, Qatar
| | - D.A. Tomalia
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - J.J. Rossi
- Division of Molecular Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - N.A. Habib
- Department of Surgery and Cancer; Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | | |
Collapse
|