1
|
Ben Abderrazek R, Hamdi E, Piccirilli A, Dhaouadi S, Muyldermans S, Perilli M, Bouhaouala-Zahar B. Camel-Derived Nanobodies as Potent Inhibitors of New Delhi Metallo-β-Lactamase-1 Enzyme. Molecules 2024; 29:1431. [PMID: 38611711 PMCID: PMC11013165 DOI: 10.3390/molecules29071431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 04/14/2024] Open
Abstract
The injudicious usage of antibiotics during infections caused by Gram-negative bacteria leads to the emergence of β-lactamases. Among them, the NDM-1 enzyme poses a serious threat to human health. Developing new antibiotics or inhibiting β-lactamases might become essential to reduce and prevent bacterial infections. Nanobodies (Nbs), the smallest antigen-binding single-domain fragments derived from Camelidae heavy-chain-only antibodies, targeting enzymes, are innovative alternatives to develop effective inhibitors. The biopanning of an immune VHH library after phage display has helped to retrieve recombinant antibody fragments with high inhibitory activity against recombinant-NDM-1 enzyme. Nb02NDM-1, Nb12NDM-1, and Nb17NDM-1 behaved as uncompetitive inhibitors against NDM-1 with Ki values in the nM range. Remarkably, IC50 values of 25.0 nM and 8.5 nM were noted for Nb02NDM-1 and Nb17NDM-1, respectively. The promising inhibition of NDM-1 by Nbs highlights their potential application in combating particular Gram-negative infections.
Collapse
Affiliation(s)
- Rahma Ben Abderrazek
- Laboratoire des Biomolécules Venins et Applications Théranostiques, Institut Pasteur Tunis, 13 Place Pasteur, Tunisie Université Tunis El Manar, B.P N 93, Tunis 1068, Tunisia; (E.H.); (S.D.); (B.B.-Z.)
| | - Emna Hamdi
- Laboratoire des Biomolécules Venins et Applications Théranostiques, Institut Pasteur Tunis, 13 Place Pasteur, Tunisie Université Tunis El Manar, B.P N 93, Tunis 1068, Tunisia; (E.H.); (S.D.); (B.B.-Z.)
- Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, Università degli Studi dell’Aquila, Via Veteoio Coppito, 67100 L’Aquila, Italy; (A.P.); (M.P.)
| | - Alessandra Piccirilli
- Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, Università degli Studi dell’Aquila, Via Veteoio Coppito, 67100 L’Aquila, Italy; (A.P.); (M.P.)
| | - Sayda Dhaouadi
- Laboratoire des Biomolécules Venins et Applications Théranostiques, Institut Pasteur Tunis, 13 Place Pasteur, Tunisie Université Tunis El Manar, B.P N 93, Tunis 1068, Tunisia; (E.H.); (S.D.); (B.B.-Z.)
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleenlaan, 9, 1050 Brussels, Belgium;
| | - Mariagrazia Perilli
- Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, Università degli Studi dell’Aquila, Via Veteoio Coppito, 67100 L’Aquila, Italy; (A.P.); (M.P.)
| | - Balkiss Bouhaouala-Zahar
- Laboratoire des Biomolécules Venins et Applications Théranostiques, Institut Pasteur Tunis, 13 Place Pasteur, Tunisie Université Tunis El Manar, B.P N 93, Tunis 1068, Tunisia; (E.H.); (S.D.); (B.B.-Z.)
- Faculté de Médecine de Tunis, Université Tunis El Manar, B.P N 93, Tunis 1068, Tunisia
| |
Collapse
|
2
|
Cawez F, Mercuri PS, Morales-Yãnez FJ, Maalouf R, Vandevenne M, Kerff F, Guérin V, Mainil J, Thiry D, Saulmont M, Vanderplasschen A, Lafaye P, Aymé G, Bogaerts P, Dumoulin M, Galleni M. Development of Nanobodies as Theranostic Agents against CMY-2-Like Class C β-Lactamases. Antimicrob Agents Chemother 2023; 67:e0149922. [PMID: 36892280 PMCID: PMC10112224 DOI: 10.1128/aac.01499-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/24/2023] [Indexed: 03/10/2023] Open
Abstract
Three soluble single-domain fragments derived from the unique variable region of camelid heavy-chain antibodies (VHHs) against the CMY-2 β-lactamase behaved as inhibitors. The structure of the complex VHH cAbCMY-2(254)/CMY-2 showed that the epitope is close to the active site and that the CDR3 of the VHH protrudes into the catalytic site. The β-lactamase inhibition pattern followed a mixed profile with a predominant noncompetitive component. The three isolated VHHs recognized overlapping epitopes since they behaved as competitive binders. Our study identified a binding site that can be targeted by a new class of β-lactamase inhibitors designed on the sequence of the paratope. Furthermore, the use of mono- or bivalent VHH and rabbit polyclonal anti-CMY-2 antibodies enables the development of the first generation of enzyme-linked immunosorbent assay (ELISA) for the detection of CMY-2 produced by CMY-2-expressing bacteria, irrespective of resistotype.
Collapse
Affiliation(s)
- Frédéric Cawez
- InBioS, Center for Protein Engineering, Biological Macromolecules, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Paola Sandra Mercuri
- InBioS, Center for Protein Engineering, Biological Macromolecules, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Francisco Javier Morales-Yãnez
- InBioS, Center for Protein Engineering, NEPTUNS, Department of Life Sciences, University of Liège, Liège, Belgium
- ALPANANO, Center for Protein Engineering & FARAH, University of Liège, Liège, Belgium
| | - Rita Maalouf
- InBioS, Center for Protein Engineering, NEPTUNS, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Marylène Vandevenne
- InBios, Center for Protein Engineering, ROBOTEIN, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Frederic Kerff
- InBioS, Center for Protein Engineering, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Virginie Guérin
- Bacteriology, FARAH and Faculty of Veterinary Medicine, Department of Infectious and Parasitic Diseases, University of Liège, Liège, Belgium
| | - Jacques Mainil
- Bacteriology, FARAH and Faculty of Veterinary Medicine, Department of Infectious and Parasitic Diseases, University of Liège, Liège, Belgium
| | - Damien Thiry
- Bacteriology, FARAH and Faculty of Veterinary Medicine, Department of Infectious and Parasitic Diseases, University of Liège, Liège, Belgium
| | - Marc Saulmont
- Regional Animal Health and Identification Association (ARSIA), Ciney, Belgium
| | - Alain Vanderplasschen
- ALPANANO, Center for Protein Engineering & FARAH, University of Liège, Liège, Belgium
- Immunology-Vaccinology, FARAH and Faculty of Veterinary Medicine, Department of Infectious and Parasitic Diseases, University of Liège, Liège, Belgium
| | - Pierre Lafaye
- Institut Pasteur, Université Paris Cité, CNRS UMR 328, Paris, France
| | - Gabriel Aymé
- Institut Pasteur, Université Paris Cité, CNRS UMR 328, Paris, France
| | - Pierre Bogaerts
- National Reference Center for Antibiotic-Resistant Gram-Negative Bacilli, Department of Clinical Microbiology, CHU UCL Namur, Yvoir, Belgium
| | - Mireille Dumoulin
- InBioS, Center for Protein Engineering, NEPTUNS, Department of Life Sciences, University of Liège, Liège, Belgium
- ALPANANO, Center for Protein Engineering & FARAH, University of Liège, Liège, Belgium
| | - Moreno Galleni
- InBioS, Center for Protein Engineering, Biological Macromolecules, Department of Life Sciences, University of Liège, Liège, Belgium
| |
Collapse
|
3
|
Phage Display-Derived Peptides and Antibodies for Bacterial Infectious Diseases Therapy and Diagnosis. Molecules 2023; 28:molecules28062621. [PMID: 36985593 PMCID: PMC10052323 DOI: 10.3390/molecules28062621] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
The emergence of antibiotic-resistant-bacteria is a serious public health threat, which prompts us to speed up the discovery of novel antibacterial agents. Phage display technology has great potential to screen peptides or antibodies with high binding capacities for a wide range of targets. This property is significant in the rapid search for new antibacterial agents for the control of bacterial resistance. In this paper, we not only summarized the recent progress of phage display for the discovery of novel therapeutic agents, identification of action sites of bacterial target proteins, and rapid detection of different pathogens, but also discussed several problems of this technology that must be solved. Breakthrough in these problems may further promote the development and application of phage display technology in the biomedical field in the future.
Collapse
|
4
|
Cheng Q, Zeng P, Chi Chan EW, Chen S. Development of Peptide-based Metallo-β-lactamase Inhibitors as a New Strategy to Combat Antimicrobial Resistance: A Mini-review. Curr Pharm Des 2022; 28:3538-3545. [PMID: 36177630 DOI: 10.2174/1381612828666220929154255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 01/28/2023]
Abstract
Global dissemination of antimicrobial resistance (AMR) not only poses a significant threat to human health, food security, and social development but also results in millions of deaths each year. In Gram-negative bacteria, the primary mechanism of resistance to β-lactam antibiotics is the production of β-lactamases, one of which is carbapenem-hydrolyzing β-lactamases known as carbapenemases. As a general scheme, these enzymes are divided into Ambler class A, B, C, and D based on their protein sequence homology. Class B β-lactamases are also known as metallo-β-lactamases (MBLs). The incidence of recovery of bacteria expressing metallo-β- lactamases (MBLs) has increased dramatically in recent years, almost reaching a pandemic proportion. MBLs can be further divided into three subclasses (B1, B2, and B3) based on the homology of protein sequences as well as the differences in zinc coordination. The development of inhibitors is one effective strategy to suppress the activities of MBLs and restore the activity of β-lactam antibiotics. Although thousands of MBL inhibitors have been reported, none have been approved for clinical use. This review describes the clinical application potential of peptide-based drugs that exhibit inhibitory activity against MBLs identified in past decades. In this report, peptide-based inhibitors of MBLs are divided into several groups based on the mode of action, highlighting compounds of promising properties that are suitable for further advancement. We discuss how traditional computational tools, such as in silico screening and molecular docking, along with new methods, such as deep learning and machine learning, enable a more accurate and efficient design of peptide-based inhibitors of MBLs.
Collapse
Affiliation(s)
- Qipeng Cheng
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Ping Zeng
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Edward Wai Chi Chan
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
5
|
Aromatic Schiff bases confer inhibitory efficacy against New Delhi metallo-β-lactamase-1 (NDM-1). Bioorg Chem 2022; 126:105910. [PMID: 35653899 DOI: 10.1016/j.bioorg.2022.105910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022]
Abstract
The irregular use of antibiotics has created a natural selection pressure for bacteria to adapt resistance. Bacterial resistance caused by metallo-β-lactamases (MβLs) has been the most prevalent in terms of posing a threat to human health. The New Delhi metallo-β-lactamase-1 (NDM-1) has been shown to be capable of hydrolyzing almost all β-lactams. In this work, eight aromatic Schiff bases 1-8 were prepared and identified by enzyme kinetic assays to be the potent inhibitors of NDM-1 (except 4). These molecules exhibited a more than 95 % inhibition, and an IC50 value in the range of 0.13-19 μM on the target enzyme, and 3 was found to be the most effective inhibitor (IC50 = 130 nM). Analysis of structure-activity relationship revealed that the o-hydroxy phenyl improved the inhibitory activity of Schiff bases on NDM-1. The inhibition mode assays including isothermal titration calorimetry (ITC) disclosed that both compounds 3 and 5 exhibited a reversibly mixed inhibition on NDM-1, with a Ki value of 1.9 and 10.8 μM, respectively. Antibacterial activity tests indicated that a dose of 64 μg·mL-1 Schiff bases resulted in 2-128-fold reduction in MICs of cefazolin on E. coli producing NDM-1 (except 4). Cytotoxicity assays showed that both Schiff bases 3 and 5 have low cytotoxicity on the mouse fibroblast (L929) cells at a concentration of up to 400 μM. Docking studies suggested that the hydroxyl group interacts with Gln123 and Glu152 of NDM-1, and the amino groups interact with the backbone amide groups of Glu152 and Asp223. This study provided a novel scaffold for the development of NDM-1 inhibitors.
Collapse
|
6
|
Thomas PW, Cho EJ, Bethel CR, Smisek T, Ahn YC, Schroeder JM, Thomas CA, Dalby KN, Beckham JT, Crowder MW, Bonomo RA, Fast W. Discovery of an Effective Small-Molecule Allosteric Inhibitor of New Delhi Metallo-β-lactamase (NDM). ACS Infect Dis 2022; 8:811-824. [PMID: 35353502 DOI: 10.1021/acsinfecdis.1c00577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To identify novel inhibitors of the carbapenemase New Delhi metallo-β-lactamase (NDM) as possible therapeutic compounds, we conducted a high-throughput screen of a 43,358-compound library. One of these compounds, a 2-quinazolinone linked through a diacylhydrazine to a phenyl ring (QDP-1) (IC50 = 7.9 ± 0.5 μM), was characterized as a slow-binding reversible inhibitor (Kiapp = 4 ± 2 μM) with a noncompetitive mode of inhibition in which substrate and inhibitor enhance each other's binding affinity. These studies, along with differential scanning fluorimetry, zinc quantitation, and selectivity studies, support an allosteric mechanism of inhibition. Cotreatment with QDP-1 effectively lowers minimum inhibitory concentrations of carbapenems for a panel of resistant Escherichia coli and Klebsiella pneumoniae clinical isolates expressing NDM-1 but not for those expressing only serine carbapenemases. QDP-1 represents a novel allosteric approach for NDM drug development for potential use alone or with other NDM inhibitors to counter carbapenem resistance in enterobacterales.
Collapse
Affiliation(s)
- Pei W. Thomas
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas 78712, United States
| | - Eun Jeong Cho
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas 78712, United States
- Targeted Therapeutic Drug Discovery and Development Program, College of Pharmacy, University of Texas, Austin, Texas 78712, United States
| | - Christopher R. Bethel
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Thomas Smisek
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas 78712, United States
| | - Yeong-Chan Ahn
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas 78712, United States
| | - John M. Schroeder
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas 78712, United States
| | - Caitlyn A. Thomas
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Kevin N. Dalby
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas 78712, United States
- Targeted Therapeutic Drug Discovery and Development Program, College of Pharmacy, University of Texas, Austin, Texas 78712, United States
| | - Josh T. Beckham
- Texas Institute for Discovery Education in Science, University of Texas, Austin, Texas 78712, United States
| | - Michael W. Crowder
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Departments of Pharmacology, Molecular Biology & Microbiology, and Proteomics & Bioinformatics, Case Western Reserve University, Cleveland, Ohio 44106, United States
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio 44106, United States
| | - Walter Fast
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas 78712, United States
- LaMontagne Center for Infectious Disease, University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
7
|
Nagulapalli Venkata KC, Ellebrecht M, Tripathi SK. Efforts towards the inhibitor design for New Delhi metallo-beta-lactamase (NDM-1). Eur J Med Chem 2021; 225:113747. [PMID: 34391033 DOI: 10.1016/j.ejmech.2021.113747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/16/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
Antimicrobial stewardship is imperative when treating bacterial infections because the misuse and overuse of antibiotics have caused pathogens to develop life-threatening resistance mechanisms. The New Delhi metallo-beta-lactamase (NDM-1) is one of many enzymes that enable bacterial resistance. NDM-1 is a more recently discovered beta-lactamase with the ability to inactivate a wide range of beta-lactam antibiotics. Multiple NDM-1 inhibitors have been designed and tested; however, due to the complexity of the NDM-1 active site, there is currently no inhibitor on the market. Consequently, an infection caused by bacteria possessing the gene for the NDM-1 enzyme is a serious and potentially fatal complication. An abundance of research has been invested over the past decade in search of an NDM-1 inhibitor. This review aims to summarize various NDM-1 inhibitor designs that have been developed in recent years.
Collapse
Affiliation(s)
| | - Morgan Ellebrecht
- St. Louis College of Pharmacy, University of Health Sciences and Pharmacy, St. Louis, MO, 63110, USA
| | - Siddharth K Tripathi
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
8
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
9
|
Egorov AM, Ulyashova MM, Rubtsova MY. Inhibitors of β-Lactamases. New Life of β-Lactam Antibiotics. BIOCHEMISTRY (MOSCOW) 2021; 85:1292-1309. [PMID: 33280574 DOI: 10.1134/s0006297920110024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
β-Lactam antibiotics account for about 60% of all produced antibiotics. Due to a high activity and minimal side effects, they are the most commonly used class of antibacterial drugs for the treatment of various infectious diseases of humans and animals, including severe hospital infections. However, the emergence of bacteria resistant to β-lactams has led to the clinical inefficiency of these antibiotics, and as a result, their use in medicine has been limited. The search for new effective ways for overcoming the resistance to β-lactam antibiotics is an essential task. The major mechanism of bacterial resistance is the synthesis of β-lactamases (BLs) that break the antibiotic β-lactam ring. Here, we review specific inhibitors of serine β-lactamases and metallo-β-lactamases and discuss approaches for creating new inhibitors that would prolong the "life" of β-lactams.
Collapse
Affiliation(s)
- A M Egorov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - M M Ulyashova
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - M Yu Rubtsova
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
10
|
Can We Exploit β-Lactamases Intrinsic Dynamics for Designing More Effective Inhibitors? Antibiotics (Basel) 2020; 9:antibiotics9110833. [PMID: 33233339 PMCID: PMC7700307 DOI: 10.3390/antibiotics9110833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
β-lactamases (BLs) represent the most frequent cause of antimicrobial resistance in Gram-negative bacteria. Despite the continuous efforts in the development of BL inhibitors (BLIs), new BLs able to hydrolyze the last developed antibiotics rapidly emerge. Moreover, the insurgence rate of effective mutations is far higher than the release of BLIs able to counteract them. This results in a shortage of antibiotics that is menacing the effective treating of infectious diseases. The situation is made even worse by the co-expression in bacteria of BLs with different mechanisms and hydrolysis spectra, and by the lack of inhibitors able to hit them all. Differently from other targets, BL flexibility has not been deeply exploited for drug design, possibly because of the small protein size, for their apparent rigidity and their high fold conservation. In this mini-review, we discuss the evidence for BL binding site dynamics being crucial for catalytic efficiency, mutation effect, and for the design of new inhibitors. Then, we report on identified allosteric sites in BLs and on possible allosteric inhibitors, as a strategy to overcome the frequent occurrence of mutations in BLs and the difficulty of competing efficaciously with substrates. Nevertheless, allosteric inhibitors could work synergistically with traditional inhibitors, increasing the chances of restoring bacterial susceptibility towards available antibiotics.
Collapse
|
11
|
Yang Y, Guo Y, Zhou Y, Gao Y, Wang X, Wang J, Niu X. Discovery of a Novel Natural Allosteric Inhibitor That Targets NDM-1 Against Escherichia coli. Front Pharmacol 2020; 11:581001. [PMID: 33123013 PMCID: PMC7566295 DOI: 10.3389/fphar.2020.581001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/07/2020] [Indexed: 11/25/2022] Open
Abstract
At present, the resistance of New Delhi metallo-β-lactamase-1 (NDM-1) to carbapenems and cephalosporins, one of the mechanisms of bacterial resistance against β-lactam antibiotics, poses a threat to human health. In this work, based on the virtual ligand screen method, we found that carnosic acid (CA), a natural compound, exhibited a significant inhibitory effect against NDM-1 (IC50 = 27.07 μM). Although carnosic acid did not display direct antibacterial activity, the combination of carnosic acid and meropenem still showed bactericidal activity after the loss of bactericidal effect of meropenem. The experimental results showed that carnosic acid can enhance the antibacterial activity of meropenem against Escherichia coli ZC-YN3. To explore the inhibitory mechanism of carnosic acid against NDM-1, we performed the molecular dynamics simulation and binding energy calculation for the NDM-1-CA complex system. Notably, the 3D structure of the complex obtained from molecular modeling indicates that the binding region of carnosic acid with NDM-1 was not situated in the active region of protein. Due to binding to the allosteric pocket of carnosic acid, the active region conformation of NDM-1 was observed to have been altered. The distance from the active center of the NDM-1-CA complex was larger than that of the free protein, leading to loss of activity. Then, the mutation experiments showed that carnosic acid had lower inhibitory activity against mutated protein than wild-type proteins. Fluorescence experiments verified the results reported above. Thus, our data indicate that carnosic acid is a potential NDM-1 inhibitor and is a promising drug for the treatment of NDM-1 producing pathogens.
Collapse
Affiliation(s)
- Yanan Yang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Yan Guo
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Yonglin Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Yawen Gao
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Jianfeng Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
12
|
Inhibitory Potential of Polyclonal Camel Antibodies against New Delhi Metallo-β-lactamase-1 (NDM-1). Molecules 2020; 25:molecules25194453. [PMID: 32998307 PMCID: PMC7584030 DOI: 10.3390/molecules25194453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 11/16/2022] Open
Abstract
New Delhi Metallo-β-lactamase-1 (NDM-1) is the most prevalent type of metallo-β-lactamase, able to hydrolyze almost all antibiotics of the β-lactam group, leading to multidrug-resistant bacteria. To date, there are no clinically relevant inhibitors to fight NDM-1. The use of dromedary polyclonal antibody inhibitors against NDM-1 represents a promising new class of molecules with inhibitory activity. In the current study, immunoreactivities of dromedary Immunoglobulin G (IgG) isotypes containing heavy-chain and conventional antibodies were tested after successful immunization of dromedary using increasing amounts of the recombinant NDM-1 enzyme. Inhibition kinetic assays, performed using a spectrophotometric method with nitrocefin as a reporter substrate, demonstrated that IgG1, IgG2, and IgG3 were able to inhibit not only the hydrolytic activity of NDM-1 but also Verona integron-encoded metallo-β-lactamase (VIM-1) (subclass B1) and L1 metallo-β-lactamase (L1) (subclass B3) with inhibitory concentration (IC50) values ranging from 100 to 0.04 μM. Investigations on the ability of IgG subclasses to reduce the growth of recombinant Escherichia coli BL21(DE3)/codon plus cells containing the recombinant plasmid expressing NDM-1, L1, or VIM-1 showed that the addition of IgGs (4 and 8 mg/L) to the cell culture was unable to restore the susceptibility of carbapenems. Interestingly, IgGs were able to interact with NDM-1, L1, and VIM-1 when tested on the periplasm extract of each cultured strain. The inhibitory concentration was in the micromolar range for all β-lactams tested. A visualization of the 3D structural basis using the three enzyme Protein Data Bank (PDB) files supports preliminarily the recorded inhibition of the three MBLs.
Collapse
|
13
|
Yan Y, Li G, Li G. Principles and current strategies targeting metallo‐β‐lactamase mediated antibacterial resistance. Med Res Rev 2020; 40:1558-1592. [PMID: 32100311 DOI: 10.1002/med.21665] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/18/2019] [Accepted: 02/11/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Yu‐Hang Yan
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of PharmacySichuan UniversityChengdu Sichuan China
| | - Gen Li
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of PharmacySichuan UniversityChengdu Sichuan China
| | - Guo‐Bo Li
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of PharmacySichuan UniversityChengdu Sichuan China
| |
Collapse
|
14
|
Khan NH, Bui AA, Xiao Y, Sutton RB, Shaw RW, Wylie BJ, Latham MP. A DNA aptamer reveals an allosteric site for inhibition in metallo-β-lactamases. PLoS One 2019; 14:e0214440. [PMID: 31009467 PMCID: PMC6476477 DOI: 10.1371/journal.pone.0214440] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
The hydrolysis of β-lactam antibiotics by β-lactamase enzymes is the most prominent antibiotic resistance mechanism for many pathogenic bacteria. Out of this broad class of enzymes, metallo-β-lactamases are of special clinical interest because of their broad substrate specificities. Several in vitro inhibitors for various metallo-β-lactamases have been reported with no clinical efficacy. Previously, we described a 10-nucleotide single stranded DNA aptamer (10-mer) that inhibits Bacillus cereus 5/B/6 metallo-β-lactamase very effectively. Here, we find that the aptamer shows uncompetitive inhibition of Bacillus cereus 5/B/6 metallo-β-lactamase during cefuroxime hydrolysis. To understand the mechanism of inhibition, we report a 2.5 Å resolution X-ray crystal structure and solution-state NMR analysis of the free enzyme. Chemical shift perturbations were observed in the HSQC spectra for several residues upon titrating with increasing concentrations of the 10-mer. In the X-ray crystal structure, these residues are distal to the active site, suggesting an allosteric mechanism for the aptamer inhibition of the enzyme. HADDOCK molecular docking simulations suggest that the 10-mer docks 26 Å from the active site. We then mutated the three lysine residues in the basic binding patch to glutamine and measured the catalytic activity and inhibition by the 10-mer. No significant inhibition of these mutants was observed by the 10-mer as compared to wild type. Interestingly, mutation of Lys50 (Lys78; according to standard MBL numbering system) resulted in reduced enzymatic activity relative to wild type in the absence of inhibitor, further highlighting an allosteric mechanism for inhibition.
Collapse
Affiliation(s)
- Nazmul H. Khan
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Anthony A. Bui
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Yang Xiao
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - R. Bryan Sutton
- Department of Cell Physiology & Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Robert W. Shaw
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Benjamin J. Wylie
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Michael P. Latham
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| |
Collapse
|
15
|
Vasylieva N, Kitamura S, Dong J, Barnych B, Hvorecny KL, Madden DR, Gee SJ, Wolan DW, Morisseau C, Hammock BD. Nanobody-based binding assay for the discovery of potent inhibitors of CFTR inhibitory factor (Cif). Anal Chim Acta 2019; 1057:106-113. [PMID: 30832908 DOI: 10.1016/j.aca.2018.12.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/21/2018] [Accepted: 12/26/2018] [Indexed: 12/23/2022]
Abstract
Lead identification and optimization are essential steps in the development of a new drug. It requires cost-effective, selective and sensitive chemical tools. Here, we report a novel method using nanobodies that allows the efficient screening for potent ligands. The method is illustrated with the cystic fibrosis transmembrane conductance regulator inhibitory factor (Cif), a virulence factor secreted by the opportunistic pathogen Pseudomonas aeruginosa. 18 nanobodies selective to Cif were isolated by bio-panning from nanobody-phage library constructed from immunized llama. 8 out of 18 nanobodies were identified as potent inhibitors of Cif enzymatic activity with IC50s in the range of 0.3-6.4 μM. A nanobody VHH219 showed high affinity (KD = 0.08 nM) to Cif and the highest inhibitory potency, IC50 = 0.3 μM. A displacement sandwich ELISA (dsELISA) with VHH219 was then developed for classification of synthetic small molecule inhibitors according their inhibitory potency. The developed assay allowed identification of new inhibitor with highest potency reported so far (0.16 ± 0.02 μM). The results from dsELISA assay correlates strongly with a conventional fluorogenic assay (R = 0.9998) in predicting the inhibitory potency of the tested compounds. However, the novel dsELISA is an order of magnitude more sensitive and allows the identification and ranking of potent inhibitors missed by the classic fluorogenic assay method. These data were supported with Octet biolayer interferometry measurements. The novel method described herein relies solely on the binding properties of the specific neutralizing nanobody, and thus is applicable to any pharmacological target for which such a nanobody can be found, independent of any requirement for catalytic activity.
Collapse
Affiliation(s)
- Natalia Vasylieva
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA, 95616, United States
| | - Seiya Kitamura
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA, 95616, United States; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jiexian Dong
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA, 95616, United States
| | - Bogdan Barnych
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA, 95616, United States
| | - Kelli L Hvorecny
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Dean R Madden
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Shirley J Gee
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA, 95616, United States
| | - Dennis W Wolan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA, 95616, United States.
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA, 95616, United States
| |
Collapse
|
16
|
Abstract
Single-domain antibodies (sdAbs), the autonomous variable domains of heavy chain-only antibodies produced naturally by camelid ungulates and cartilaginous fishes, have evolved to bind antigen using only three complementarity-determining region (CDR) loops rather than the six present in conventional VH:VL antibodies. It has been suggested, based on limited evidence, that sdAbs may adopt paratope structures that predispose them to preferential recognition of recessed protein epitopes, but poor or non-recognition of protuberant epitopes and small molecules. Here, we comprehensively surveyed the evidence in support of this hypothesis. We found some support for a global structural difference in the paratope shapes of sdAbs compared with those of conventional antibodies: sdAb paratopes have smaller molecular surface areas and diameters, more commonly have non-canonical CDR1 and CDR2 structures, and have elongated CDR3 length distributions, but have similar amino acid compositions and are no more extended (interatomic distance measured from CDR base to tip) than conventional antibody paratopes. Comparison of X-ray crystal structures of sdAbs and conventional antibodies in complex with cognate antigens showed that sdAbs and conventional antibodies bury similar solvent-exposed surface areas on proteins and form similar types of non-covalent interactions, although these are more concentrated in the compact sdAb paratope. Thus, sdAbs likely have privileged access to distinct antigenic regions on proteins, but only owing to their small molecular size and not to general differences in molecular recognition mechanism. The evidence surrounding the purported inability of sdAbs to bind small molecules was less clear. The available data provide a structural framework for understanding the evolutionary emergence and function of autonomous heavy chain-only antibodies.
Collapse
Affiliation(s)
- Kevin A Henry
- a Human Health Therapeutics Research Centre , National Research Council Canada , Ottawa , Ontario , Canada
| | - C Roger MacKenzie
- a Human Health Therapeutics Research Centre , National Research Council Canada , Ottawa , Ontario , Canada.,b School of Environmental Sciences , University of Guelph , Guelph , Ontario , Canada
| |
Collapse
|
17
|
Cawez F, Duray E, Hu Y, Vandenameele J, Romão E, Vincke C, Dumoulin M, Galleni M, Muyldermans S, Vandevenne M. Combinatorial Design of a Nanobody that Specifically Targets Structured RNAs. J Mol Biol 2018; 430:1652-1670. [PMID: 29654796 DOI: 10.1016/j.jmb.2018.03.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/08/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
|
18
|
Mojica MF, Bonomo RA, Fast W. B1-Metallo-β-Lactamases: Where Do We Stand? Curr Drug Targets 2017; 17:1029-50. [PMID: 26424398 DOI: 10.2174/1389450116666151001105622] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 12/31/1969] [Accepted: 09/14/2015] [Indexed: 11/22/2022]
Abstract
Metallo-β-Lactamases (MBLs) are class Bβ-lactamases that hydrolyze almost all clinically-availableβ-lactam antibiotics. MBLs feature the distinctive αβ/βα sandwich fold of the metallo-hydrolase/oxidoreductase superfamily and possess a shallow active-site groove containing one or two divalent zinc ions, flanked by flexible loops. According to sequence identity and zinc ion dependence, MBLs are classified into three subclasses (B1, B2 and B3), of which the B1 subclass enzymes have emerged as the most clinically significant. Differences among the active site architectures, the nature of zinc ligands, and the catalytic mechanisms have limited the development of a common inhibitor. In this review, we will describe the molecular epidemiology and structural studies of the most prominent representatives of class B1 MBLs (NDM-1, IMP-1 and VIM-2) and describe the implications for inhibitor design to counter this growing clinical threat.
Collapse
Affiliation(s)
| | - Robert A Bonomo
- Medical Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Blvd., Cleveland, OH 44106, USA.
| | - Walter Fast
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas, Austin TX, 78712, USA.
| |
Collapse
|
19
|
Discovery of a novel conformational equilibrium in urokinase-type plasminogen activator. Sci Rep 2017; 7:3385. [PMID: 28611361 PMCID: PMC5469797 DOI: 10.1038/s41598-017-03457-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/27/2017] [Indexed: 01/15/2023] Open
Abstract
Although trypsin-like serine proteases have flexible surface-exposed loops and are known to adopt higher and lower activity conformations, structural determinants for the different conformations have remained largely obscure. The trypsin-like serine protease, urokinase-type plasminogen activator (uPA), is central in tissue remodeling processes and also strongly implicated in tumor metastasis. We solved five X-ray crystal structures of murine uPA (muPA) in the absence and presence of allosteric molecules and/or substrate-like molecules. The structure of unbound muPA revealed an unsuspected non-chymotrypsin-like protease conformation in which two β-strands in the core of the protease domain undergoes a major antiparallel-to-parallel conformational transition. We next isolated two anti-muPA nanobodies; an active-site binding nanobody and an allosteric nanobody. Crystal structures of the muPA:nanobody complexes and hydrogen-deuterium exchange mass spectrometry revealed molecular insights about molecular factors controlling the antiparallel-to-parallel equilibrium in muPA. Together with muPA activity assays, the data provide valuable insights into regulatory mechanisms and conformational flexibility of uPA and trypsin-like serine proteases in general.
Collapse
|
20
|
Muyldermans S, Smider VV. Distinct antibody species: structural differences creating therapeutic opportunities. Curr Opin Immunol 2016; 40:7-13. [PMID: 26922135 PMCID: PMC4884505 DOI: 10.1016/j.coi.2016.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/01/2016] [Accepted: 02/11/2016] [Indexed: 11/27/2022]
Abstract
Antibodies have been a remarkably successful class of molecules for binding a large number of antigens in therapeutic, diagnostic, and research applications. Typical antibodies derived from mouse or human sources use the surface formed by complementarity determining regions (CDRs) on the variable regions of the heavy chain/light chain heterodimer, which typically forms a relatively flat binding surface. Alternative species, particularly camelids and bovines, provide a unique paradigm for antigen recognition through novel domains which form the antigen binding paratope. For camelids, heavy chain antibodies bind antigen with only a single heavy chain variable region, in the absence of light chains. In bovines, ultralong CDR-H3 regions form an independently folding minidomain, which protrudes from the surface of the antibody and is diverse in both its sequence and disulfide patterns. The atypical paratopes of camelids and bovines potentially provide the ability to interact with different epitopes, particularly recessed or concave surfaces, compared to traditional antibodies.
Collapse
Affiliation(s)
- Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Vaughn V Smider
- Fabrus Inc., Division of Sevion Therapeutics, San Diego, CA 92121, United States; Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, United States.
| |
Collapse
|
21
|
Rotondo CM, Marrone L, Goodfellow VJ, Ghavami A, Labbé G, Spencer J, Dmitrienko GI, Siemann S. Arginine-containing peptides as potent inhibitors of VIM-2 metallo-β-lactamase. Biochim Biophys Acta Gen Subj 2015; 1850:2228-38. [DOI: 10.1016/j.bbagen.2015.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
|
22
|
Gill EE, Franco OL, Hancock REW. Antibiotic adjuvants: diverse strategies for controlling drug-resistant pathogens. Chem Biol Drug Des 2015; 85:56-78. [PMID: 25393203 PMCID: PMC4279029 DOI: 10.1111/cbdd.12478] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 01/08/2023]
Abstract
The growing number of bacterial pathogens that are resistant to numerous antibiotics is a cause for concern around the globe. There have been no new broad-spectrum antibiotics developed in the last 40 years, and the drugs we have currently are quickly becoming ineffective. In this article, we explore a range of therapeutic strategies that could be employed in conjunction with antibiotics and may help to prolong the life span of these life-saving drugs. Discussed topics include antiresistance drugs, which are administered to potentiate the effects of current antimicrobials in bacteria where they are no longer (or never were) effective; antivirulence drugs, which are directed against bacterial virulence factors; host-directed therapies, which modulate the host's immune system to facilitate infection clearance; and alternative treatments, which include such therapies as oral rehydration for diarrhea, phage therapy, and probiotics. All of these avenues show promise for the treatment of bacterial infections and should be further investigated to explore their full potential in the face of a postantibiotic era.
Collapse
Affiliation(s)
- Erin E Gill
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | | | | |
Collapse
|
23
|
Abstract
Life as we know it heavily relies on biological catalysis, in fact, in a very nonromantic version of it, life could be considered as a series of chemical reactions, regulated by the guarding principles of thermodynamics. In ancient times, a beating heart was a good sign of vitality, however, to me, it is actually the presence of active enzymes that counts… Though we do not usually pay attention, the history of enzymology is as old as humanity itself, and dates back to the ancient times. This paper is dedicated to these early moments of this remarkable science that touched our lives in the past and will make life a lot more efficient for humanity in the future. There was almost always a delicate, fundamentally essential relationship between mankind and the enzymes. Challenged by a very alien and hostile Nature full of predators, prehistoric men soon discovered the medicinal properties of the plants, through trial and error. In fact, they accidently discovered the enzyme inhibitors and thus, in crude terms, kindled a sparkling area of research. These plant-derivatives that acted as enzyme inhibitors helped prehistoric men in their pursuit of survival and protection from predators; in hunting and fishing… Later in history, while the underlying purposes of survival and increasing the quality of life stayed intact, the ways and means of enzymology experienced a massive transformation, as the 'trial and error' methodology of the ancients is now replaced with rational scientific theories.
Collapse
|
24
|
Zhai Y, Han D, Pan Y, Wang S, Fang J, Wang P, Liu XW. Enhancing GDP-fucose production in recombinant Escherichia coli by metabolic pathway engineering. Enzyme Microb Technol 2014; 69:38-45. [PMID: 25640723 DOI: 10.1016/j.enzmictec.2014.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/10/2014] [Accepted: 12/01/2014] [Indexed: 01/22/2023]
Abstract
Guanosine 5'-diphosphate (GDP)-fucose is the indispensible donor substrate for fucosyltransferase-catalyzed synthesis of fucose-containing biomolecules, which have been found involving in various biological functions. In this work, the salvage pathway for GDP-fucose biosynthesis from Bacterioides fragilis was introduced into Escherichia coli. Besides, the biosynthesis of guanosine 5'-triphosphate (GTP), an essential substrate for GDP-fucose biosynthesis, was enhanced via overexpression of enzymes involved in the salvage pathway of GTP biosynthesis. The production capacities of metabolically engineered strains bearing different combinations of recombinant enzymes were compared. The shake flask fermentation of the strain expressing Fkp, Gpt, Gmk and Ndk obtained the maximum GDP-fucose content of 4.6 ± 0.22 μmol/g (dry cell mass), which is 4.2 fold that of the strain only expressing Fkp. Through fed-batch fermentation, the GDP-fucose content further rose to 6.6 ± 0.14 μmol/g (dry cell mass). In addition to a better productivity than previous fermentation processes based on the de novo pathway for GDP-fucose biosynthesis, the established schemes in this work also have the advantage to be a potential avenue to GDP-fucose analogs encompassing chemical modification on the fucose residue.
Collapse
Affiliation(s)
- Yafei Zhai
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250100, People's Republic of China; The State Key Laboratory of Microbial Technology and School of Life Science, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Donglei Han
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250100, People's Republic of China; The State Key Laboratory of Microbial Technology and School of Life Science, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Ying Pan
- The State Key Laboratory of Microbial Technology and School of Life Science, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Shuaishuai Wang
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250100, People's Republic of China; The State Key Laboratory of Microbial Technology and School of Life Science, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Junqiang Fang
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Peng Wang
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Xian-wei Liu
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250100, People's Republic of China.
| |
Collapse
|
25
|
Abstract
Nanobodies (Nbs) are small antibody fragments derived from camelid heavy chain antibodies through recombinant gene technology. Their exceptional physicochemical properties, possibility of humanization and unique antigen recognition properties make them excellent candidates for targeted delivery of biologically active components. Several different therapeutic approaches based on the novel camelid Nbs have been developed to treat a wide range of diseases ranging from immune, bone, blood and neurological disorders; infectious diseases and cancer. This review provides a comprehensive overview of the current state of the use of camelid-derived Nbs as novel therapeutic agents against multiple diseases.
Collapse
|
26
|
Metallo-β-lactamase: Inhibitors and reporter substrates. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1648-59. [DOI: 10.1016/j.bbapap.2013.04.024] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/18/2013] [Accepted: 04/21/2013] [Indexed: 11/22/2022]
|