1
|
Hamid A, Ladke J, Shah A, Ganguli S, Pal M, Singh A, Bhandari R. Interaction with IP6K1 supports pyrophosphorylation of substrate proteins by the inositol pyrophosphate 5-InsP7. Biosci Rep 2024; 44:BSR20240792. [PMID: 39230924 PMCID: PMC11461180 DOI: 10.1042/bsr20240792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024] Open
Abstract
Inositol pyrophosphates (PP-InsPs) are a sub-family of water soluble inositol phosphates that possess one or more diphosphate groups. PP-InsPs can transfer their β-phosphate group to a phosphorylated Ser residue to generate pyrophosphorylated Ser. This unique post-translational modification occurs on Ser residues that lie in acidic stretches within an intrinsically disordered protein sequence. Serine pyrophosphorylation is dependent on the presence of Mg2+ ions, but does not require an enzyme for catalysis. The mechanisms by which cells regulate PP-InsP-mediated pyrophosphorylation are still unknown. We performed mass spectrometry to identify interactors of IP6K1, an enzyme responsible for the synthesis of the PP-InsP 5-InsP7. Interestingly, IP6K1 interacted with several proteins that are known to undergo 5-InsP7-mediated pyrophosphorylation, including the nucleolar proteins NOLC1, TCOF and UBF1, and AP3B1, the β subunit of the AP3 adaptor protein complex. The IP6K1 interactome also included CK2, a protein kinase that phosphorylates Ser residues prior to pyrophosphorylation. We observe the formation of a protein complex between IP6K1, AP3B1, and the catalytic α-subunit of CK2, and show that disrupting IP6K1 binding to AP3B1 lowers its in vivo pyrophosphorylation. We propose that assembly of a substrate-CK2-IP6K complex would allow for coordinated pre-phosphorylation and pyrophosphorylation of the target serine residue, and provide a mechanism to regulate this enzyme-independent modification.
Collapse
Affiliation(s)
- Aisha Hamid
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Jayashree S. Ladke
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Akruti Shah
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Shubhra Ganguli
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Monisita Pal
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Arpita Singh
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| |
Collapse
|
2
|
Fu L, Du J, Furkert D, Shipton ML, Liu X, Aguirre T, Chin AC, Riley AM, Potter BVL, Fiedler D, Zhang X, Zhu Y, Fu C. Depleting inositol pyrophosphate 5-InsP7 protected the heart against ischaemia-reperfusion injury by elevating plasma adiponectin. Cardiovasc Res 2024; 120:954-970. [PMID: 38252884 PMCID: PMC11218692 DOI: 10.1093/cvr/cvae017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024] Open
Abstract
AIMS Adiponectin is an adipocyte-derived circulating protein that exerts cardiovascular and metabolic protection. Due to the futile degradation of endogenous adiponectin and the challenges of exogenous administration, regulatory mechanisms of adiponectin biosynthesis are of significant pharmacological interest. METHODS AND RESULTS Here, we report that 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7) generated by inositol hexakisphosphate kinase 1 (IP6K1) governed circulating adiponectin levels via thiol-mediated protein quality control in the secretory pathway. IP6K1 bound to adiponectin and DsbA-L and generated 5-InsP7 to stabilize adiponectin/ERp44 and DsbA-L/Ero1-Lα interactions, driving adiponectin intracellular degradation. Depleting 5-InsP7 by either IP6K1 deletion or pharmacological inhibition blocked intracellular adiponectin degradation. Whole-body and adipocyte-specific deletion of IP6K1 boosted plasma adiponectin levels, especially its high molecular weight forms, and activated AMPK-mediated protection against myocardial ischaemia-reperfusion injury. Pharmacological inhibition of 5-InsP7 biosynthesis in wild-type but not adiponectin knockout mice attenuated myocardial ischaemia-reperfusion injury. CONCLUSION Our findings revealed that 5-InsP7 is a physiological regulator of adiponectin biosynthesis that is amenable to pharmacological intervention for cardioprotection.
Collapse
Affiliation(s)
- Lin Fu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Jimin Du
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Megan L Shipton
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Xiaoqi Liu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Tim Aguirre
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Alfred C Chin
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Andrew M Riley
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Barry V L Potter
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Xu Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Yi Zhu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Chenglai Fu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai 200092, China
| |
Collapse
|
3
|
Qi J, Shi L, Zhu L, Chen Y, Zhu H, Cheng W, Chen AF, Fu C. Functions, Mechanisms, and therapeutic applications of the inositol pyrophosphates 5PP-InsP 5 and InsP 8 in mammalian cells. J Cardiovasc Transl Res 2024; 17:197-215. [PMID: 37615888 DOI: 10.1007/s12265-023-10427-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023]
Abstract
Water-soluble myo-inositol phosphates have long been characterized as second messengers. The signaling properties of these compounds are determined by the number and arrangement of phosphate groups on the myo-inositol backbone. Recently, higher inositol phosphates with pyrophosphate groups were recognized as signaling molecules. 5-Diphosphoinositol 1,2,3,4,6-pentakisphosphate (5PP-InsP5) is the most abundant isoform, constituting more than 90% of intracellular inositol pyrophosphates. 5PP-InsP5 can be further phosphorylated to 1,5-bisdiphosphoinositol 2,3,4,6-tetrakisphosphate (InsP8). These two molecules, 5PP-InsP5 and InsP8, are present in various subcellular compartments, where they participate in regulating diverse cellular processes such as cell death, energy homeostasis, and cytoskeletal dynamics. The synthesis and metabolism of inositol pyrophosphates are subjected to tight regulation, allowing for their highly specific functions. Blocking the 5PP-InsP5/InsP8 signaling pathway by inhibiting the biosynthesis of 5PP-InsP5 demonstrates therapeutic benefits in preclinical studies, and thus holds promise as a therapeutic approach for certain diseases treatment, such as metabolic disorders.
Collapse
Affiliation(s)
- Ji Qi
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Linhui Shi
- Department of Critical Care Unit, Ningbo Medical Center Li Huili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Limei Zhu
- Department of Trauma Orthopedics, Ningbo No.6 Hospital, Ningbo, 315040, China
| | - Yuanyuan Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Hong Zhu
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Weiwei Cheng
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Chenglai Fu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
4
|
Gu C, Li X, Zong G, Wang H, Shears SB. IP8: A quantitatively minor inositol pyrophosphate signaling molecule that punches above its weight. Adv Biol Regul 2024; 91:101002. [PMID: 38064879 DOI: 10.1016/j.jbior.2023.101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 02/25/2024]
Abstract
The inositol pyrophosphates (PP-IPs) are specialized members of the wider inositol phosphate signaling family that possess functionally significant diphosphate groups. The PP-IPs exhibit remarkable functionally versatility throughout the eukaryotic kingdoms. However, a quantitatively minor PP-IP - 1,5 bisdiphosphoinositol tetrakisphosphate (1,5-IP8) - has received considerably less attention from the cell signalling community. The main purpose of this review is to summarize recently-published data which have now brought 1,5-IP8 into the spotlight, by expanding insight into the molecular mechanisms by which this polyphosphate regulates many fundamental biological processes.
Collapse
Affiliation(s)
- Chunfang Gu
- Inositol signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709 USA
| | - Xingyao Li
- Inositol signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709 USA
| | - Guangning Zong
- Inositol signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709 USA
| | - Huanchen Wang
- Inositol signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709 USA.
| | - Stephen B Shears
- Inositol signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709 USA.
| |
Collapse
|
5
|
Hostachy S, Wang H, Zong G, Franke K, Riley AM, Schmieder P, Potter BVL, Shears SB, Fiedler D. Fluorination Influences the Bioisostery of Myo-Inositol Pyrophosphate Analogs. Chemistry 2023; 29:e202302426. [PMID: 37773020 PMCID: PMC7615343 DOI: 10.1002/chem.202302426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
Inositol pyrophosphates (PP-IPs) are densely phosphorylated messenger molecules involved in numerous biological processes. PP-IPs contain one or two pyrophosphate group(s) attached to a phosphorylated myo-inositol ring. 5PP-IP5 is the most abundant PP-IP in human cells. To investigate the function and regulation by PP-IPs in biological contexts, metabolically stable analogs have been developed. Here, we report the synthesis of a new fluorinated phosphoramidite reagent and its application for the synthesis of a difluoromethylene bisphosphonate analog of 5PP-IP5 . Subsequently, the properties of all currently reported analogs were benchmarked using a number of biophysical and biochemical methods, including co-crystallization, ITC, kinase activity assays and chromatography. Together, the results showcase how small structural alterations of the analogs can have notable effects on their properties in a biochemical setting and will guide in the choice of the most suitable analog(s) for future investigations.
Collapse
Affiliation(s)
- Sarah Hostachy
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Straße 1013125BerlinGermany
| | - Huanchen Wang
- Inositol Signaling GroupNational Institutes of HealthResearch Triangle ParkNorth Carolina27709USA
| | - Guangning Zong
- Inositol Signaling GroupNational Institutes of HealthResearch Triangle ParkNorth Carolina27709USA
| | - Katy Franke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Straße 1013125BerlinGermany
| | - Andrew M. Riley
- Medicinal Chemistry & Drug Discovery Department of PharmacologyUniversity of OxfordOxfordOX1 3QTUK
| | - Peter Schmieder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Straße 1013125BerlinGermany
| | - Barry V. L. Potter
- Medicinal Chemistry & Drug Discovery Department of PharmacologyUniversity of OxfordOxfordOX1 3QTUK
| | - Stephen B. Shears
- Inositol Signaling GroupNational Institutes of HealthResearch Triangle ParkNorth Carolina27709USA
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Straße 1013125BerlinGermany
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| |
Collapse
|
6
|
Qi J, Cheng W, Gao Z, Chen Y, Shipton ML, Furkert D, Chin AC, Riley AM, Fiedler D, Potter BVL, Fu C. Itraconazole inhibits endothelial cell migration by disrupting inositol pyrophosphate-dependent focal adhesion dynamics and cytoskeletal remodeling. Biomed Pharmacother 2023; 161:114449. [PMID: 36857911 PMCID: PMC7614367 DOI: 10.1016/j.biopha.2023.114449] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
The antifungal drug itraconazole has been repurposed to anti-angiogenic agent, but the mechanisms of action have been elusive. Here we report that itraconazole disrupts focal adhesion dynamics and cytoskeletal remodeling, which requires 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7). We find that inositol hexakisphosphate kinase 1 (IP6K1) binds Arp2 and generates 5-InsP7 to recruit coronin, a negative regulator of the Arp2/3 complex. IP6K1 also produces focal adhesion-enriched 5-InsP7, which binds focal adhesion kinase (FAK) at the FERM domain to promote its dimerization and phosphorylation. Itraconazole treatment elicits displacement of IP6K1/5-InsP7, thus augments 5-InsP7-mediated inhibition of Arp2/3 complex and reduces 5-InsP7-mediated FAK dimerization. Itraconazole-treated cells display reduced focal adhesion dynamics and actin cytoskeleton remodeling. Accordingly, itraconazole severely disrupts cell motility, an essential component of angiogenesis. These results demonstrate critical roles of IP6K1-generated 5-InsP7 in regulating focal adhesion dynamics and actin cytoskeleton remodeling and reveal functional mechanisms by which itraconazole inhibits cell motility.
Collapse
Affiliation(s)
- Ji Qi
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Weiwei Cheng
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhe Gao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuanyuan Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Megan L Shipton
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Alfred C Chin
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Andrew M Riley
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Barry V L Potter
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Chenglai Fu
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China; Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
7
|
Sahu S, Gordon J, Gu C, Sobhany M, Fiedler D, Stanley RE, Shears SB. Nucleolar Architecture Is Modulated by a Small Molecule, the Inositol Pyrophosphate 5-InsP 7. Biomolecules 2023; 13:biom13010153. [PMID: 36671538 PMCID: PMC9855682 DOI: 10.3390/biom13010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Inositol pyrophosphates (PP-InsPs); are a functionally diverse family of eukaryotic molecules that deploy a highly-specialized array of phosphate groups as a combinatorial cell-signaling code. One reductive strategy to derive a molecular-level understanding of the many actions of PP-InsPs is to individually characterize the proteins that bind them. Here, we describe an alternate approach that seeks a single, collective rationalization for PP-InsP binding to an entire group of proteins, i.e., the multiple nucleolar proteins previously reported to bind 5-InsP7 (5-diphospho-inositol-1,2,3,4,6-pentakisphosphate). Quantitative confocal imaging of the outer nucleolar granular region revealed its expansion when cellular 5-InsP7 levels were elevated by either (a) reducing the 5-InsP7 metabolism by a CRISPR-based knockout (KO) of either NUDT3 or PPIP5Ks; or (b), the heterologous expression of wild-type inositol hexakisphosphate kinase, i.e., IP6K2; separate expression of a kinase-dead IP6K2 mutant did not affect granular volume. Conversely, the nucleolar granular region in PPIP5K KO cells shrank back to the wild-type volume upon attenuating 5-InsP7 synthesis using either a pan-IP6K inhibitor or the siRNA-induced knockdown of IP6K1+IP6K2. Significantly, the inner fibrillar volume of the nucleolus was unaffected by 5-InsP7. We posit that 5-InsP7 acts as an 'electrostatic glue' that binds together positively charged surfaces on separate proteins, overcoming mutual protein-protein electrostatic repulsion the latter phenomenon is a known requirement for the assembly of a non-membranous biomolecular condensate.
Collapse
Affiliation(s)
- Soumyadip Sahu
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Jacob Gordon
- Nucleolar Integrity Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge CB2 0XY, UK
- Department of Haematology, University of Cambridge School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Chunfang Gu
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Mack Sobhany
- Nucleolar Integrity Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Robin E. Stanley
- Nucleolar Integrity Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Stephen B. Shears
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
- Correspondence: ; Tel.: +1-984-287-3483
| |
Collapse
|
8
|
Nguyen Trung M, Furkert D, Fiedler D. Versatile signaling mechanisms of inositol pyrophosphates. Curr Opin Chem Biol 2022; 70:102177. [PMID: 35780751 DOI: 10.1016/j.cbpa.2022.102177] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 01/03/2023]
Abstract
Inositol pyrophosphates (PP-InsPs) constitute a group of highly charged messengers, which regulate central biological processes in health and disease, such as cellular phosphate and general energy homeostasis. Deciphering the molecular mechanisms underlying PP-InsP-mediated signaling remains a challenge due to the unique properties of these molecules, the different modes of action they can access, and a somewhat limited chemical and analytical toolset. Herein, we summarize the most recent mechanistic insights into PP-InsP signaling, which illustrate our progress in connecting mechanism and function of PP-InsPs.
Collapse
Affiliation(s)
- Minh Nguyen Trung
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| |
Collapse
|
9
|
Sander CL, Luu J, Kim K, Furkert D, Jang K, Reichenwallner J, Kang M, Lee HJ, Eger BT, Choe HW, Fiedler D, Ernst OP, Kim YJ, Palczewski K, Kiser PD. Structural evidence for visual arrestin priming via complexation of phosphoinositols. Structure 2022; 30:263-277.e5. [PMID: 34678158 PMCID: PMC8818024 DOI: 10.1016/j.str.2021.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/06/2021] [Accepted: 09/29/2021] [Indexed: 02/05/2023]
Abstract
Visual arrestin (Arr1) terminates rhodopsin signaling by blocking its interaction with transducin. To do this, Arr1 translocates from the inner to the outer segment of photoreceptors upon light stimulation. Mounting evidence indicates that inositol phosphates (InsPs) affect Arr1 activity, but the Arr1-InsP molecular interaction remains poorly defined. We report the structure of bovine Arr1 in a ligand-free state featuring a near-complete model of the previously unresolved C-tail, which plays a crucial role in regulating Arr1 activity. InsPs bind to the N-domain basic patch thus displacing the C-tail, suggesting that they prime Arr1 for interaction with rhodopsin and help direct Arr1 translocation. These structures exhibit intact polar cores, suggesting that C-tail removal by InsP binding is insufficient to activate Arr1. These results show how Arr1 activity can be controlled by endogenous InsPs in molecular detail.
Collapse
Affiliation(s)
- Christopher L Sander
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Ophthalmology and the Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA
| | - Jennings Luu
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Ophthalmology and the Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA
| | - Kyumhyuk Kim
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Kiyoung Jang
- Department of Lifestyle Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | | | - MinSoung Kang
- Department of Lifestyle Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Daejeon 34114, Republic of Korea
| | - Ho-Jun Lee
- Department of Ophthalmology and the Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA; Research Service, VA Long Beach Healthcare System, Long Beach, CA 90822, USA
| | - Bryan T Eger
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hui-Woog Choe
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yong Ju Kim
- Department of Lifestyle Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; Department of Oriental Medicine Resources, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Krzysztof Palczewski
- Department of Ophthalmology and the Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA; Department of Chemistry and Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA; Department of Physiology & Biophysics, University of California, Irvine, CA 92697, USA
| | - Philip D Kiser
- Department of Ophthalmology and the Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA; Department of Physiology & Biophysics, University of California, Irvine, CA 92697, USA; Research Service, VA Long Beach Healthcare System, Long Beach, CA 90822, USA.
| |
Collapse
|
10
|
Hostachy S, Utesch T, Franke K, Dornan GL, Furkert D, Türkaydin B, Haucke V, Sun H, Fiedler D. Dissecting the activation of insulin degrading enzyme by inositol pyrophosphates and their bisphosphonate analogs. Chem Sci 2021; 12:10696-10702. [PMID: 34476054 PMCID: PMC8372538 DOI: 10.1039/d1sc02975d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/06/2021] [Indexed: 11/21/2022] Open
Abstract
Inositol poly- and pyrophosphates (InsPs and PP-InsPs) are densely phosphorylated eukaryotic messengers, which are involved in numerous cellular processes. To elucidate their signaling functions at the molecular level, non-hydrolyzable bisphosphonate analogs of inositol pyrophosphates, PCP-InsPs, have been instrumental. Here, an efficient synthetic strategy to obtain these analogs in unprecedented quantities is described - relying on the use of combined phosphate ester-phosphoramidite reagents. The PCP-analogs, alongside their natural counterparts, were applied to investigate their regulatory effect on insulin-degrading enzyme (IDE), using a range of biochemical, biophysical and computational methods. A unique interplay between IDE, its substrates and the PP-InsPs was uncovered, in which the PP-InsPs differentially modulated the activity of the enzyme towards short peptide substrates. Aided by molecular docking and molecular dynamics simulations, a flexible binding mode for the InsPs/PP-InsPs was identified at the anion binding site of IDE. Targeting IDE for therapeutic purposes should thus take regulation by endogenous PP-InsP metabolites into account.
Collapse
Affiliation(s)
- Sarah Hostachy
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle Str. 10 13125 Berlin Germany
| | - Tillmann Utesch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle Str. 10 13125 Berlin Germany
| | - Katy Franke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle Str. 10 13125 Berlin Germany
| | - Gillian Leigh Dornan
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle Str. 10 13125 Berlin Germany
| | - David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle Str. 10 13125 Berlin Germany
- Institut für Chemie, Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Berke Türkaydin
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle Str. 10 13125 Berlin Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle Str. 10 13125 Berlin Germany
| | - Han Sun
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle Str. 10 13125 Berlin Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle Str. 10 13125 Berlin Germany
- Institut für Chemie, Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| |
Collapse
|
11
|
Shears SB, Wang H. Metabolism and Functions of Inositol Pyrophosphates: Insights Gained from the Application of Synthetic Analogues. Molecules 2020; 25:E4515. [PMID: 33023101 PMCID: PMC7583957 DOI: 10.3390/molecules25194515] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/17/2022] Open
Abstract
Inositol pyrophosphates (PP-InsPs) comprise an important group of intracellular, diffusible cellular signals that a wide range of biological processes throughout the yeast, plant, and animal kingdoms. It has been difficult to gain a molecular-level mechanistic understanding of the actions of these molecules, due to their highly phosphorylated nature, their low levels, and their rapid metabolic turnover. More recently, these obstacles to success are being surmounted by the chemical synthesis of a number of insightful PP-InsP analogs. This review will describe these analogs and will indicate the important chemical and biological information gained by using them.
Collapse
Affiliation(s)
- Stephen B. Shears
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | | |
Collapse
|
12
|
Minini M, Senni A, Unfer V, Bizzarri M. The Key Role of IP 6K: A Novel Target for Anticancer Treatments? Molecules 2020; 25:molecules25194401. [PMID: 32992691 PMCID: PMC7583815 DOI: 10.3390/molecules25194401] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/29/2022] Open
Abstract
Inositol and its phosphate metabolites play a pivotal role in several biochemical pathways and gene expression regulation: inositol pyrophosphates (PP-IPs) have been increasingly appreciated as key signaling modulators. Fluctuations in their intracellular levels hugely impact the transfer of phosphates and the phosphorylation status of several target proteins. Pharmacological modulation of the proteins associated with PP-IP activities has proved to be beneficial in various pathological settings. IP7 has been extensively studied and found to play a key role in pathways associated with PP-IP activities. Three inositol hexakisphosphate kinase (IP6K) isoforms regulate IP7 synthesis in mammals. Genomic deletion or enzymic inhibition of IP6K1 has been shown to reduce cell invasiveness and migration capacity, protecting against chemical-induced carcinogenesis. IP6K1 could therefore be a useful target in anticancer treatment. Here, we summarize the current understanding that established IP6K1 and the other IP6K isoforms as possible targets for cancer therapy. However, it will be necessary to determine whether pharmacological inhibition of IP6K is safe enough to begin clinical study. The development of safe and selective inhibitors of IP6K isoforms is required to minimize undesirable effects.
Collapse
Affiliation(s)
- Mirko Minini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- Department of Surgery ‘P. Valdoni’, Sapienza University of Rome, 00161 Rome, Italy
- Systems Biology Group Lab, Sapienza University of Rome, 00185 Rome, Italy;
- Correspondence: (M.M.); (M.B.)
| | - Alice Senni
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- Department of Surgery ‘P. Valdoni’, Sapienza University of Rome, 00161 Rome, Italy
| | - Vittorio Unfer
- Systems Biology Group Lab, Sapienza University of Rome, 00185 Rome, Italy;
| | - Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- Systems Biology Group Lab, Sapienza University of Rome, 00185 Rome, Italy;
- Correspondence: (M.M.); (M.B.)
| |
Collapse
|
13
|
Furkert D, Hostachy S, Nadler-Holly M, Fiedler D. Triplexed Affinity Reagents to Sample the Mammalian Inositol Pyrophosphate Interactome. Cell Chem Biol 2020; 27:1097-1108.e4. [PMID: 32783964 DOI: 10.1016/j.chembiol.2020.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/19/2020] [Accepted: 07/22/2020] [Indexed: 11/15/2022]
Abstract
The inositol pyrophosphates (PP-InsPs) are a ubiquitous group of highly phosphorylated eukaryotic messengers. They have been linked to a panoply of central cellular processes, but a detailed understanding of the discrete signaling events is lacking in most cases. To create a more mechanistic picture of PP-InsP signaling, we sought to annotate the mammalian interactome of the most abundant inositol pyrophosphate 5PP-InsP5. To do so, triplexed affinity reagents were developed, in which a metabolically stable PP-InsP analog was immobilized in three different ways. Application of these triplexed reagents to mammalian lysates identified between 300 and 400 putative interacting proteins. These interactomes revealed connections between 5PP-InsP5 and central cellular regulators, such as lipid phosphatases, protein kinases, and GTPases, and identified protein domains commonly targeted by 5PP-InsP5. Both the triplexed affinity reagents, and the proteomic datasets, constitute powerful resources for the community, to launch future investigations into the multiple signaling modalities of inositol pyrophosphates.
Collapse
Affiliation(s)
- David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Sarah Hostachy
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Michal Nadler-Holly
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| |
Collapse
|
14
|
Inositol Pyrophosphates: Signaling Molecules with Pleiotropic Actions in Mammals. Molecules 2020; 25:molecules25092208. [PMID: 32397291 PMCID: PMC7249018 DOI: 10.3390/molecules25092208] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
Inositol pyrophosphates (PP-IPs) such as 5-diphosphoinositol pentakisphosphate (5-IP7) are inositol metabolites containing high-energy phosphoanhydride bonds. Biosynthesis of PP-IPs is mediated by IP6 kinases (IP6Ks) and PPIP5 kinases (PPIP5Ks), which transfer phosphate to inositol hexakisphosphate (IP6). Pleiotropic actions of PP-IPs are involved in many key biological processes, including growth, vesicular remodeling, and energy homeostasis. PP-IPs function to regulate their target proteins through allosteric interactions or protein pyrophosphorylation. This review summarizes the current understanding of how PP-IPs control mammalian cellular signaling networks in physiology and disease.
Collapse
|
15
|
Cattley RT, Lee M, Boggess WC, Hawse WF. Transforming growth factor β (TGF-β) receptor signaling regulates kinase networks and phosphatidylinositol metabolism during T-cell activation. J Biol Chem 2020; 295:8236-8251. [PMID: 32358062 DOI: 10.1074/jbc.ra120.012572] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/26/2020] [Indexed: 01/06/2023] Open
Abstract
The cytokine content in tissue microenvironments shapes the functional capacity of a T cell. This capacity depends on the integration of extracellular signaling through multiple receptors, including the T-cell receptor (TCR), co-receptors, and cytokine receptors. Transforming growth factor β (TGF-β) signals through its cognate receptor, TGFβR, to SMAD family member proteins and contributes to the generation of a transcriptional program that promotes regulatory T-cell differentiation. In addition to transcription, here we identified specific signaling networks that are regulated by TGFβR. Using an array of biochemical approaches, including immunoblotting, kinase assays, immunoprecipitation, and flow cytometry, we found that TGFβR signaling promotes the formation of a SMAD3/4-protein kinase A (PKA) complex that activates C-terminal Src kinase (CSK) and thereby down-regulates kinases involved in proximal TCR activation. Additionally, TGFβR signaling potentiated CSK phosphorylation of the P85 subunit in the P85-P110 phosphoinositide 3-kinase (PI3K) heterodimer, which reduced PI3K activity and down-regulated the activation of proteins that require phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) for their activation. Moreover, TGFβR-mediated disruption of the P85-P110 interaction enabled P85 binding to a lipid phosphatase, phosphatase and tensin homolog (PTEN), aiding in the maintenance of PTEN abundance and thereby promoting elevated PtdIns(4,5)P2 levels in response to TGFβR signaling. Taken together, these results highlight that TGF-β influences the trajectory of early T-cell activation by altering PI3K activity and PtdIns levels.
Collapse
Affiliation(s)
- Richard T Cattley
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - William C Boggess
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - William F Hawse
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
16
|
Morrissette VA, Rolfes RJ. The intersection between stress responses and inositol pyrophosphates in Saccharomyces cerevisiae. Curr Genet 2020; 66:901-910. [PMID: 32322930 DOI: 10.1007/s00294-020-01078-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 01/08/2023]
Abstract
Saccharomyces cerevisiae adapts to oxidative, osmotic stress and nutrient deprivation through transcriptional changes, decreased proliferation, and entry into other developmental pathways such as pseudohyphal formation and sporulation. Inositol pyrophosphates are necessary for these cellular responses. Inositol pyrophosphates are molecules composed of the phosphorylated myo-inositol ring that carries one or more diphosphates. Mutations in the enzymes that metabolize these molecules lead to altered patterns of stress resistance, altered morphology, and defective sporulation. Mechanisms to alter the synthesis of inositol pyrophosphates have been recently described, including inhibition of enzyme activity by oxidation and by phosphorylation. Cells with increased levels of 5-diphosphoinositol pentakisphosphate have increased nuclear localization of Msn2 and Gln3. The altered localization of these factors is consistent with the partially induced environmental stress response and increased expression of genes under the control of Msn2/4 and Gln3. Other transcription factors may also exhibit increased nuclear localization based on increased expression of their target genes. These transcription factors are each regulated by TORC1, suggesting that TORC1 may be inhibited by inositol pyrophosphates. Inositol pyrophosphates affect stress responses in other fungi (Aspergillus nidulans, Ustilago maydis, Schizosaccharomyces pombe, and Cryptococcus neoformans), in human and mouse, and in plants, suggesting common mechanisms and possible novel drug development targets.
Collapse
Affiliation(s)
- Victoria A Morrissette
- Department of Biology, Georgetown University, Reiss Science Building 406, Washington, DC, 20057, USA
| | - Ronda J Rolfes
- Department of Biology, Georgetown University, Reiss Science Building 406, Washington, DC, 20057, USA.
| |
Collapse
|
17
|
Mukherjee S, Haubner J, Chakraborty A. Targeting the Inositol Pyrophosphate Biosynthetic Enzymes in Metabolic Diseases. Molecules 2020; 25:molecules25061403. [PMID: 32204420 PMCID: PMC7144392 DOI: 10.3390/molecules25061403] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
In mammals, a family of three inositol hexakisphosphate kinases (IP6Ks) synthesizes the inositol pyrophosphate 5-IP7 from IP6. Genetic deletion of Ip6k1 protects mice from high fat diet induced obesity, insulin resistance and fatty liver. IP6K1 generated 5-IP7 promotes insulin secretion from pancreatic β-cells, whereas it reduces insulin signaling in metabolic tissues by inhibiting the protein kinase Akt. Thus, IP6K1 promotes high fat diet induced hyperinsulinemia and insulin resistance in mice while its deletion has the opposite effects. IP6K1 also promotes fat accumulation in the adipose tissue by inhibiting the protein kinase AMPK mediated energy expenditure. Genetic deletion of Ip6k3 protects mice from age induced fat accumulation and insulin resistance. Accordingly, the pan IP6K inhibitor TNP [N2-(m-trifluorobenzyl), N6-(p-nitrobenzyl)purine] ameliorates obesity, insulin resistance and fatty liver in diet induced obese mice by improving Akt and AMPK mediated insulin sensitivity and energy expenditure. TNP also protects mice from bone loss, myocardial infarction and ischemia reperfusion injury. Thus, the IP6K pathway is a potential target in obesity and other metabolic diseases. Here, we summarize the studies that established IP6Ks as a potential target in metabolic diseases. Further studies will reveal whether inhibition of this pathway has similar pleiotropic benefits on metabolic health of humans.
Collapse
|
18
|
Ganguli S, Shah A, Hamid A, Singh A, Palakurti R, Bhandari R. A high energy phosphate jump - From pyrophospho-inositol to pyrophospho-serine. Adv Biol Regul 2020; 75:100662. [PMID: 31668836 DOI: 10.1016/j.jbior.2019.100662] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Inositol pyrophosphates (PP-IPs) are a class of energy rich metabolites present in all eukaryotic cells. The hydroxyl groups on these water soluble derivatives of inositol are substituted with diphosphate and monophosphate moieties. Since the discovery of PP-IPs in the early 1990s, enormous progress has been made in uncovering pleiotropic roles for these small molecules in cellular physiology. PP-IPs exert their effect on proteins in two ways - allosteric regulation by direct binding, or post-translational regulation by serine pyrophosphorylation, a modification unique to PP-IPs. Serine pyrophosphorylation is achieved by Mg2+-dependent, but enzyme independent transfer of a β-phosphate from a PP-IP to a pre-phosphorylated serine residue located in an acidic motif, within an intrinsically disordered protein sequence. This distinctive post-translational modification has been shown to regulate diverse cellular processes, including rRNA synthesis, glycolysis, and vesicle transport. However, our understanding of the molecular details of this phosphotransfer from pyrophospho-inositol to generate pyrophospho-serine, is still nascent. This review discusses our current knowledge of protein pyrophosphorylation, and recent advances in understanding the mechanism of this important yet overlooked post-translational modification.
Collapse
Affiliation(s)
- Shubhra Ganguli
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, 500039, India; Manipal Academy of Higher Education, Manipal, 576104, India
| | - Akruti Shah
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, 500039, India; Manipal Academy of Higher Education, Manipal, 576104, India
| | - Aisha Hamid
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, 500039, India
| | - Arpita Singh
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, 500039, India
| | - Ravichand Palakurti
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, 500039, India
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, 500039, India.
| |
Collapse
|
19
|
Lorenzo‐Orts L, Couto D, Hothorn M. Identity and functions of inorganic and inositol polyphosphates in plants. THE NEW PHYTOLOGIST 2020; 225:637-652. [PMID: 31423587 PMCID: PMC6973038 DOI: 10.1111/nph.16129] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/22/2019] [Indexed: 05/08/2023]
Abstract
Inorganic polyphosphates (polyPs) and inositol pyrophosphates (PP-InsPs) form important stores of inorganic phosphate and can act as energy metabolites and signaling molecules. Here we review our current understanding of polyP and inositol phosphate (InsP) metabolism and physiology in plants. We outline methods for polyP and InsP detection, discuss the known plant enzymes involved in their synthesis and breakdown, and summarize the potential physiological and signaling functions for these enigmatic molecules in plants.
Collapse
Affiliation(s)
- Laura Lorenzo‐Orts
- Structural Plant Biology LaboratoryDepartment of Botany and Plant BiologyUniversity of Geneva30 Quai E. AnsermetGeneva1211Switzerland
| | - Daniel Couto
- Structural Plant Biology LaboratoryDepartment of Botany and Plant BiologyUniversity of Geneva30 Quai E. AnsermetGeneva1211Switzerland
| | - Michael Hothorn
- Structural Plant Biology LaboratoryDepartment of Botany and Plant BiologyUniversity of Geneva30 Quai E. AnsermetGeneva1211Switzerland
| |
Collapse
|
20
|
ITPK1 mediates the lipid-independent synthesis of inositol phosphates controlled by metabolism. Proc Natl Acad Sci U S A 2019; 116:24551-24561. [PMID: 31754032 PMCID: PMC6900528 DOI: 10.1073/pnas.1911431116] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inositol phosphates (IPs) are a class of signaling molecules regulating cell physiology. The best-characterized IP, the calcium release factor IP3, is generated by phospholipase C hydrolysis of phosphoinositides lipids. For historical and technical reasons, IPs synthesis is believed to originate from the lipid-generated IP3. While this is true in yeast, our work has demonstrated that other organisms use a “soluble” (nonlipid) route to synthesize IPs. This soluble pathway depends on the metabolic status of the cells, and is under the control of the kinase ITPK1, which phosphorylates inositol monophosphate likely generated from glucose. The data shed light on the evolutionary origin of IPs, signaling and tightening the link between these small molecules and basic metabolism. Inositol phosphates (IPs) comprise a network of phosphorylated molecules that play multiple signaling roles in eukaryotes. IPs synthesis is believed to originate with IP3 generated from PIP2 by phospholipase C (PLC). Here, we report that in mammalian cells PLC-generated IPs are rapidly recycled to inositol, and uncover the enzymology behind an alternative “soluble” route to synthesis of IPs. Inositol tetrakisphosphate 1-kinase 1 (ITPK1)—found in Asgard archaea, social amoeba, plants, and animals—phosphorylates I(3)P1 originating from glucose-6-phosphate, and I(1)P1 generated from sphingolipids, to enable synthesis of IP6. We also found using PAGE mass assay that metabolic blockage by phosphate starvation surprisingly increased IP6 levels in a ITPK1-dependent manner, establishing a route to IP6 controlled by cellular metabolic status, that is not detectable by traditional [3H]-inositol labeling. The presence of ITPK1 in archaeal clades thought to define eukaryogenesis indicates that IPs had functional roles before the appearance of the eukaryote.
Collapse
|
21
|
Randall TA, Gu C, Li X, Wang H, Shears SB. A two-way switch for inositol pyrophosphate signaling: Evolutionary history and biological significance of a unique, bifunctional kinase/phosphatase. Adv Biol Regul 2019; 75:100674. [PMID: 31776069 DOI: 10.1016/j.jbior.2019.100674] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 11/25/2022]
Abstract
The inositol pyrophosphates (PP-InsPs) are a unique subgroup of intracellular signals with diverse functions, many of which can be viewed as reflecting an overarching role in metabolic homeostasis. Thus, considerable attention is paid to the enzymes that synthesize and metabolize the PP-InsPs. One of these enzyme families - the diphosphoinositol pentakisphosphate kinases (PPIP5Ks) - provides an extremely rare example of separate kinase and phosphatase activities being present within the same protein. Herein, we review the current state of structure/function insight into the PPIP5Ks, the separate specialized activities of the two metazoan PPIP5K genes, and we describe a phylogenetic analysis that places PPIP5K evolutionary origin within the Excavata, the very earliest of eukaryotes. These different aspects of PPIP5K biology are placed in the context of a single, overriding question. Why are they bifunctional: i.e., what is the particular significance of the ability to turn PP-InsP signaling on or off from two separate 'switches' in a single protein?
Collapse
Affiliation(s)
- Thomas A Randall
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Chunfang Gu
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Xingyao Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Huanchen Wang
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Stephen B Shears
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
22
|
The AKT kinase signaling network is rewired by PTEN to control proximal BCR signaling in germinal center B cells. Nat Immunol 2019; 20:736-746. [PMID: 31011187 PMCID: PMC6724213 DOI: 10.1038/s41590-019-0376-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 03/12/2019] [Indexed: 01/04/2023]
Abstract
Compared to naïve B cells (NBCs), both B cell antigen receptor (BCR) and CD40 signaling are rewired in germinal center (GC) B cells (GCBCs) to optimize selection for high-affinity B cells. The mechanism for BCR reprogramming in GCBCs remains unknown. We describe a GC-specific, AKT kinase-driven negative feedback loop that attenuates BCR signaling. A mass spectrometry proteomic approach revealed that AKT activity was retargeted in GCBCs compared to NBCs. Retargeting was linked to differential AKT T308 and S473 phosphorylation, in turn due to GC-specific upregulation of phosphoinositide-dependent protein kinase PDK1 and the phosphatase PTEN, which retuned phosphatidylinositol-3-OH kinase (PI3K) signals. In GCBCs, AKT preferentially targeted CSK, SHP-1 and HPK1, which are negative regulators of BCR signaling. Phosphorylation results in markedly increased enzymatic activity of these proteins, creating a negative-feedback loop that dampens upstream BCR signaling. Inhibiting AKT substantially enhanced activation of BCR proximal kinase LYN as well as downstream BCR signaling molecules in GCBCs, establishing the relevance of this pathway.
Collapse
|
23
|
Hawse WF, Cattley RT. T cells transduce T-cell receptor signal strength by generating different phosphatidylinositols. J Biol Chem 2019; 294:4793-4805. [PMID: 30692200 DOI: 10.1074/jbc.ra118.006524] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/14/2019] [Indexed: 12/26/2022] Open
Abstract
T-cell receptor (TCR) signaling strength is a dominant factor regulating T-cell differentiation, thymic development, and cytokine signaling. The molecular mechanisms by which TCR signal strength is transduced to downstream signaling networks remains ill-defined. Using computational modeling, biochemical assays, and imaging flow cytometry, we found here that TCR signal strength differentially generates phosphatidylinositol species. Weak TCR signals generated elevated phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and reduced phosphatidylinositol (3,4,5)-trisphosphate (PIP3) levels, whereas strong TCR signals reduced PI(4,5)P2 and elevated PIP3 levels. A proteomics screen revealed that focal adhesion kinase bound PI(4,5)P2, biochemical assays disclosed that focal adhesion kinase is preferentially activated by weak TCR signals and is required for optimal Treg induction, and further biochemical experiments revealed how TCR signaling strength regulates AKT activation. Low PIP3 levels generated by weak TCR signals were sufficient to activate phosphoinositide-dependent kinase-1 to phosphorylate AKT on Thr-308 but insufficient to activate mTOR complex 2 (mTORC2), whereas elevated PIP3 levels generated by a strong TCR signal were required to activate mTORC2 to phosphorylate Ser-473 on AKT. Our results provide support for a model that links TCR signaling to mTORC2 activation via phosphoinositide 3-kinase signaling. Together, the findings in this work establish that T cells measure TCR signal strength by generating different levels of phosphatidylinositol species that engage alternate signaling networks to control cell fate decisions.
Collapse
Affiliation(s)
- William F Hawse
- From the Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Richard T Cattley
- From the Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
24
|
Aloor JJ, Azzam KM, Guardiola JJ, Gowdy KM, Madenspacher JH, Gabor KA, Mueller GA, Lin WC, Lowe JM, Gruzdev A, Henderson MW, Draper DW, Merrick BA, Fessler MB. Leucine-rich repeats and calponin homology containing 4 (Lrch4) regulates the innate immune response. J Biol Chem 2018; 294:1997-2008. [PMID: 30523158 DOI: 10.1074/jbc.ra118.004300] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/27/2018] [Indexed: 01/07/2023] Open
Abstract
Toll-like receptors (TLRs) are pathogen-recognition receptors that trigger the innate immune response. Recent reports have identified accessory proteins that provide essential support to TLR function through ligand delivery and receptor trafficking. Herein, we introduce leucine-rich repeats (LRRs) and calponin homology containing 4 (Lrch4) as a novel TLR accessory protein. Lrch4 is a membrane protein with nine LRRs in its predicted ectodomain. It is widely expressed across murine tissues and has two expression variants that are both regulated by lipopolysaccharide (LPS). Predictive modeling indicates that Lrch4 LRRs conform to the horseshoe-shaped structure typical of LRRs in pathogen-recognition receptors and that the best structural match in the protein database is to the variable lymphocyte receptor of the jawless vertebrate hagfish. Silencing Lrch4 attenuates cytokine induction by LPS and multiple other TLR ligands and dampens the in vivo innate immune response. Lrch4 promotes proper docking of LPS in lipid raft membrane microdomains. We provide evidence that this is through regulation of lipid rafts as Lrch4 silencing reduces cell surface gangliosides, a metric of raft abundance, as well as expression and surface display of CD14, a raft-resident LPS co-receptor. Taken together, we identify Lrch4 as a broad-spanning regulator of the innate immune response and a potential molecular target in inflammatory disease.
Collapse
Affiliation(s)
- Jim J Aloor
- From the Immunity, Inflammation and Disease Laboratory
| | | | | | | | | | | | | | - Wan-Chi Lin
- From the Immunity, Inflammation and Disease Laboratory
| | - Julie M Lowe
- From the Immunity, Inflammation and Disease Laboratory
| | | | | | | | - B Alex Merrick
- National Toxicology Program, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | | |
Collapse
|
25
|
Riley AM, Unterlass JE, Konieczny V, Taylor CW, Helleday T, Potter BVL. A synthetic diphosphoinositol phosphate analogue of inositol trisphosphate. MEDCHEMCOMM 2018; 9:1105-1113. [PMID: 30079174 PMCID: PMC6071853 DOI: 10.1039/c8md00149a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/01/2018] [Indexed: 01/17/2023]
Abstract
Diphosphoinositol phosphates (PP-InsPs) are inositol phosphates (InsPs) that contain PP (diphosphate) groups. Converting a phosphate group in an InsP into a diphosphate has been reported to enhance affinity for some binding proteins. We synthesised 1-PP-Ins(4,5)P2, the first diphosphate analogue of the intracellular signalling molecule InsP3, and examined its effects on InsP3 receptors, which are intracellular Ca2+ channels. 1-PP-Ins(4,5)P2 was indistinguishable from InsP3 in its ability to bind to and activate type 1 InsP3 receptors, indicating that the diphosphate modification of InsP3 affected neither affinity nor efficacy. Nevertheless, 1-PP-Ins(4,5)P2 is the most potent 1-phosphate modified analogue of InsP3 yet identified. PP-InsPs are generally hydrolysed by diphosphoinositol phosphate phosphohydrolases (DIPPs), but 1-PP-Ins(4,5)P2 was not readily metabolised by human DIPPs. Differential scanning fluorimetry showed that 1-PP-Ins(4,5)P2 stabilises DIPP proteins, but to a lesser extent than naturally occurring substrates 1-PP-InsP5 and 5-PP-InsP5. The non-hydrolysable InsP7 analogues 1-PCP-InsP5 and 5-PCP-InsP5 showed comparable stabilising abilities to their natural counterparts and may therefore be promising substrate analogues for co-crystallisation with DIPPs.
Collapse
Affiliation(s)
- Andrew M. Riley
- Medicinal Chemistry and Drug Discovery
, Department of Pharmacology
, University of Oxford
,
Mansfield Road
, Oxford OX1 3QT
, UK
.
; Fax: +44 (0)1865 271853
; Tel: +44 (0)1865 271945
| | - Judith E. Unterlass
- Science for Life Laboratory
, Department of Oncology-Pathology
, Karolinska Institutet
,
SE-171 21 Solna
, Sweden
| | - Vera Konieczny
- Department of Pharmacology
, University of Cambridge
,
Tennis Court Road
, Cambridge CB2 1PD
, UK
| | - Colin W. Taylor
- Department of Pharmacology
, University of Cambridge
,
Tennis Court Road
, Cambridge CB2 1PD
, UK
| | - Thomas Helleday
- Science for Life Laboratory
, Department of Oncology-Pathology
, Karolinska Institutet
,
SE-171 21 Solna
, Sweden
| | - Barry V. L. Potter
- Medicinal Chemistry and Drug Discovery
, Department of Pharmacology
, University of Oxford
,
Mansfield Road
, Oxford OX1 3QT
, UK
.
; Fax: +44 (0)1865 271853
; Tel: +44 (0)1865 271945
| |
Collapse
|
26
|
Chakraborty A. The inositol pyrophosphate pathway in health and diseases. Biol Rev Camb Philos Soc 2018; 93:1203-1227. [PMID: 29282838 PMCID: PMC6383672 DOI: 10.1111/brv.12392] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022]
Abstract
Inositol pyrophosphates (IPPs) are present in organisms ranging from plants, slime moulds and fungi to mammals. Distinct classes of kinases generate different forms of energetic diphosphate-containing IPPs from inositol phosphates (IPs). Conversely, polyphosphate phosphohydrolase enzymes dephosphorylate IPPs to regenerate the respective IPs. IPPs and/or their metabolizing enzymes regulate various cell biological processes by modulating many proteins via diverse mechanisms. In the last decade, extensive research has been conducted in mammalian systems, particularly in knockout mouse models of relevant enzymes. Results obtained from these studies suggest impacts of the IPP pathway on organ development, especially of brain and testis. Conversely, deletion of specific enzymes in the pathway protects mice from various diseases such as diet-induced obesity (DIO), type-2 diabetes (T2D), fatty liver, bacterial infection, thromboembolism, cancer metastasis and aging. Furthermore, pharmacological inhibition of the same class of enzymes in mice validates the therapeutic importance of this pathway in cardio-metabolic diseases. This review critically analyses these findings and summarizes the significance of the IPP pathway in mammalian health and diseases. It also evaluates benefits and risks of targeting this pathway in disease therapies. Finally, future directions of mammalian IPP research are discussed.
Collapse
Affiliation(s)
- Anutosh Chakraborty
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO 63104, U.S.A
| |
Collapse
|
27
|
Nair VS, Gu C, Janoshazi AK, Jessen HJ, Wang H, Shears SB. Inositol Pyrophosphate Synthesis by Diphosphoinositol Pentakisphosphate Kinase-1 is Regulated by Phosphatidylinositol(4,5)bisphosphate. Biosci Rep 2018; 38:BSR20171549. [PMID: 29459425 PMCID: PMC5857911 DOI: 10.1042/bsr20171549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/14/2018] [Accepted: 02/17/2018] [Indexed: 11/17/2022] Open
Abstract
5-diphosphoinositol tetrakisphosphate (5-InsP7) and bisdiphosphoinositol tetrakisphosphate (InsP8) are 'energetic' inositol pyrophosphate signaling molecules that regulate bioenergetic homeostasis. Inositol pyrophosphate levels are regulated by diphosphoinositol pentakisphosphate kinases (PPIP5Ks); these are large modular proteins that host a kinase domain (which phosphorylates 5-InsP7 to InsP8), a phosphatase domain that catalyzes the reverse reaction, and a polyphosphoinositide-binding domain (PBD). Here, we describe new interactions between these three domains in the context of full-length human PPIP5K1. We determine that InsP7 kinase activity is dominant when PPIP5K1 is expressed in intact cells; in contrast, we found that InsP8 phosphatase activity prevails when the enzyme is isolated from its cellular environment. We approach a reconciliation of this disparity by showing that cellular InsP8 phosphatase activity is inhibited by C8-PtdIns(4,5)P2 (IC50 approx. 40 ìM). We recapitulate this phosphatase inhibition with natural PtdIns(4,5)P2 that was incorporated into large unilamellar vesicles. Additionally, PtdIns(4,5)P2 increases net InsP7 kinase activity 5-fold. We oftlinedemonstrate that PtdIns(4,5)P2 is not itself a phosphatase substrate; its inhibition of InsP8 phosphatase activity results from an unusual, functional overlap between the phosphatase domain and the PBD. Finally, we discuss the significance of PtdIns(4,5)P2 as a novel regulator of PPIP5K1, in relation to compartmentalization of InsP7/InsP8 signaling in vivo.
Collapse
Affiliation(s)
- Vasudha S Nair
- NIEHS, Research Triangle Park, North Carolina, United States
| | - Chunfang Gu
- NIEHS, Research Triangle Park, North Carolina, United States
| | | | | | - Huanchen Wang
- NIEHS, Research Triangle Park, North Carolina, United States
| | | |
Collapse
|
28
|
Park SJ, Lee S, Park SE, Kim S. Inositol pyrophosphates as multifaceted metabolites in the regulation of mammalian signaling networks. Anim Cells Syst (Seoul) 2017. [DOI: 10.1080/19768354.2017.1408684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Seung Ju Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seulgi Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seung Eun Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for the BioCentury, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
29
|
Cordeiro CD, Saiardi A, Docampo R. The inositol pyrophosphate synthesis pathway in Trypanosoma brucei is linked to polyphosphate synthesis in acidocalcisomes. Mol Microbiol 2017; 106:319-333. [PMID: 28792096 DOI: 10.1111/mmi.13766] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2017] [Indexed: 12/19/2022]
Abstract
Inositol pyrophosphates are novel signaling molecules possessing high-energy pyrophosphate bonds and involved in a number of biological functions. Here, we report the correct identification and characterization of the kinases involved in the inositol pyrophosphate biosynthetic pathway in Trypanosoma brucei: inositol polyphosphate multikinase (TbIPMK), inositol pentakisphosphate 2-kinase (TbIP5K) and inositol hexakisphosphate kinase (TbIP6K). TbIP5K and TbIP6K were not identifiable by sequence alone and their activities were validated by enzymatic assays with the recombinant proteins or by their complementation of yeast mutants. We also analyzed T. brucei extracts for the presence of inositol phosphates using polyacrylamide gel electrophoresis and high-performance liquid chromatography. Interestingly, we could detect inositol phosphate (IP), inositol 4,5-bisphosphate (IP2 ), inositol 1,4,5-trisphosphate (IP3 ), and inositol hexakisphosphate (IP6 ) in T. brucei different stages. Bloodstream forms unable to produce inositol pyrophosphates, due to downregulation of TbIPMK expression by conditional knockout, have reduced levels of polyphosphate and altered acidocalcisomes. Our study links the inositol pyrophosphate pathway to the synthesis of polyphosphate in acidocalcisomes, and may lead to better understanding of these organisms and provide new targets for drug discovery.
Collapse
Affiliation(s)
- Ciro D Cordeiro
- Department of Cellular Biology, and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, WC1E 6BT, Gower Street, London, UK
| | - Roberto Docampo
- Department of Cellular Biology, and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
30
|
Shears SB. Intimate connections: Inositol pyrophosphates at the interface of metabolic regulation and cell signaling. J Cell Physiol 2017; 233:1897-1912. [PMID: 28542902 DOI: 10.1002/jcp.26017] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 12/11/2022]
Abstract
Inositol pyrophosphates are small, diffusible signaling molecules that possess the most concentrated three-dimensional array of phosphate groups in Nature; up to eight phosphates are crammed around a six-carbon inositol ring. This review discusses the physico-chemical properties of these unique molecules, and their mechanisms of action. Also provided is information on the enzymes that regulate the levels and hence the signaling properties of these molecules. This review pursues the idea that many of the biological effects of inositol pyrophosphates can be rationalized by their actions at the interface of cell signaling and metabolism that is essential to cellular and organismal homeostasis.
Collapse
Affiliation(s)
- Stephen B Shears
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
31
|
Shah A, Ganguli S, Sen J, Bhandari R. Inositol Pyrophosphates: Energetic, Omnipresent and Versatile Signalling Molecules. J Indian Inst Sci 2017; 97:23-40. [PMID: 32214696 PMCID: PMC7081659 DOI: 10.1007/s41745-016-0011-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 11/16/2016] [Indexed: 12/21/2022]
Abstract
Inositol pyrophosphates (PP-IPs) are a class of energy-rich signalling molecules found in all eukaryotic cells. These are derivatives of inositol that contain one or more diphosphate (or pyrophosphate) groups in addition to monophosphates. The more abundant and best studied PP-IPs are diphosphoinositol pentakisphosphate (IP7) and bis-diphosphoinositol tetrakisphosphate (IP8). These molecules can influence protein function by two mechanisms: binding and pyrophosphorylation. The former involves the specific interaction of a particular inositol pyrophosphate with a binding site on a protein, while the latter is a unique attribute of inositol pyrophosphates, wherein the β-phosphate moiety is transferred from a PP-IP to a pre-phosphorylated serine residue in a protein to generate pyrophosphoserine. Both these events can result in changes in the target protein’s activity, localisation or its interaction with other partners. As a consequence of their ubiquitous presence in all eukaryotic organisms and all cell types examined till date, and their ability to modify protein function, PP-IPs have been found to participate in a wide range of metabolic, developmental, and signalling pathways. This review highlights
many of the known functions of PP-IPs in the context of their temporal and spatial distribution in eukaryotic cells.
Collapse
Affiliation(s)
- Akruti Shah
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana India
- Graduate Studies, Manipal University, Manipal, Karnataka India
| | - Shubhra Ganguli
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana India
- Graduate Studies, Manipal University, Manipal, Karnataka India
| | - Jayraj Sen
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana India
- Graduate Studies, Manipal University, Manipal, Karnataka India
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana India
| |
Collapse
|
32
|
Neuronal migration is mediated by inositol hexakisphosphate kinase 1 via α-actinin and focal adhesion kinase. Proc Natl Acad Sci U S A 2017; 114:2036-2041. [PMID: 28154132 DOI: 10.1073/pnas.1700165114] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inositol hexakisphosphate kinase 1 (IP6K1), which generates 5-diphosphoinositol pentakisphosphate (5-IP7), physiologically mediates numerous functions. We report that IP6K1 deletion leads to brain malformation and abnormalities of neuronal migration. IP6K1 physiologically associates with α-actinin and localizes to focal adhesions. IP6K1 deletion disrupts α-actinin's intracellular localization and function. The IP6K1 deleted cells display substantial decreases of stress fiber formation and impaired cell migration and spreading. Regulation of α-actinin by IP6K1 requires its kinase activity. Deletion of IP6K1 abolishes α-actinin tyrosine phosphorylation, which is known to be regulated by focal adhesion kinase (FAK). FAK phosphorylation is substantially decreased in IP6K1 deleted cells. 5-IP7, a product of IP6K1, promotes FAK autophosphorylation. Pharmacologic inhibition of IP6K by TNP [N2-(m-Trifluorobenzyl), N6-(p-nitrobenzyl)purine] recapitulates the phenotype of IP6K1 deletion. These findings establish that IP6K1 physiologically regulates neuronal migration by binding to α-actinin and influencing phosphorylation of both FAK and α-actinin through its product 5-IP7.
Collapse
|
33
|
Abstract
Inositol hexakisphosphate kinase 2 (IP6K2) potentiates pro-apoptotic signalling and increases the sensitivity of mammalian cells to cytotoxic agents. Diphosphoinositol pentakisphosphate kinase (PPIP5K) generates inositol pyrophosphates (InsPPs) that are structurally distinct from those produced by IP6K2 and their possible roles in affecting cell viability remain unclear. In the present study, we tested the impact of PPIP5K1 on cellular sensitivity to various genotoxic agents to determine if PPIP5K1 and IP6K2 contribute similarly to apoptosis. We observed that PPIP5K1 overexpression decreased sensitivity of cells toward several cytotoxic agents, including etoposide, cisplatin, and sulindac. We further tested the impact of PPIP5K1 overexpression on an array of apoptosis markers and observed that PPIP5K1 decreased p53 phosphorylation on key residues, including Ser-15, -46, and -392. Overexpression of a kinase-impaired PPIP5K1 mutant failed to protect cells from apoptosis, indicating this protection is a consequence PPIP5K1 catalytic activity, in contrast with the sensitivity conferred by IP6K2, which is dependent on both catalytic and non-catalytic functions. These observations reveal distinct roles for PPIP5K1 and IP6K2 and the InsPPs they produce in controlling cell death.
Collapse
|
34
|
Abstract
To help define the molecular basis of cellular signalling cascades, and their biological functions, there is considerable value in utilizing a high-quality chemical 'probe' that has a well-defined interaction with a specific cellular protein. Such reagents include inhibitors of protein kinases and small molecule kinases, as well as mimics or antagonists of intracellular signals. The purpose of this review is to consider recent progress and promising future directions for the development of novel molecules that can interrogate and manipulate the cellular actions of inositol pyrophosphates (PP-IPs)--a specialized, 'energetic' group of cell-signalling molecules in which multiple phosphate and diphosphate groups are crammed around a cyclohexane polyol scaffold.
Collapse
|
35
|
Inositol polyphosphates intersect with signaling and metabolic networks via two distinct mechanisms. Proc Natl Acad Sci U S A 2016; 113:E6757-E6765. [PMID: 27791083 DOI: 10.1073/pnas.1606853113] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Inositol-based signaling molecules are central eukaryotic messengers and include the highly phosphorylated, diffusible inositol polyphosphates (InsPs) and inositol pyrophosphates (PP-InsPs). Despite the essential cellular regulatory functions of InsPs and PP-InsPs (including telomere maintenance, phosphate sensing, cell migration, and insulin secretion), the majority of their protein targets remain unknown. Here, the development of InsP and PP-InsP affinity reagents is described to comprehensively annotate the interactome of these messenger molecules. By using the reagents as bait, >150 putative protein targets were discovered from a eukaryotic cell lysate (Saccharomyces cerevisiae). Gene Ontology analysis of the binding partners revealed a significant overrepresentation of proteins involved in nucleotide metabolism, glucose metabolism, ribosome biogenesis, and phosphorylation-based signal transduction pathways. Notably, we isolated and characterized additional substrates of protein pyrophosphorylation, a unique posttranslational modification mediated by the PP-InsPs. Our findings not only demonstrate that the PP-InsPs provide a central line of communication between signaling and metabolic networks, but also highlight the unusual ability of these molecules to access two distinct modes of action.
Collapse
|
36
|
Shears SB, Baughman BM, Gu C, Nair VS, Wang H. The significance of the 1-kinase/1-phosphatase activities of the PPIP5K family. Adv Biol Regul 2016; 63:98-106. [PMID: 27776974 DOI: 10.1016/j.jbior.2016.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 10/13/2016] [Accepted: 10/15/2016] [Indexed: 01/29/2023]
Abstract
The inositol pyrophosphates (diphosphoinositol polyphosphates), which include 1-InsP7, 5-InsP7, and InsP8, are highly 'energetic' signaling molecules that play important roles in many cellular processes, particularly with regards to phosphate and bioenergetic homeostasis. Two classes of kinases synthesize the PP-InsPs: IP6Ks and PPIP5Ks. The significance of the IP6Ks - and their 5-InsP7 product - has been widely reported. However, relatively little is known about the biological significance of the PPIP5Ks. The purpose of this review is to provide an update on developments in our understanding of key features of the PPIP5Ks, which we believe strengthens the hypothesis that their catalytic activities serve important cellular functions. Central to this discussion is the recent discovery that the PPIP5K is a rare example of a single protein that catalyzes a kinase/phosphatase futile cycle.
Collapse
Affiliation(s)
- Stephen B Shears
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 101 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Brandi M Baughman
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 101 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Chunfang Gu
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 101 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Vasudha S Nair
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 101 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Huanchen Wang
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 101 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
37
|
Inositol hexakisphosphate kinase-1 interacts with perilipin1 to modulate lipolysis. Int J Biochem Cell Biol 2016; 78:149-155. [PMID: 27373682 DOI: 10.1016/j.biocel.2016.06.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/20/2016] [Accepted: 06/28/2016] [Indexed: 12/21/2022]
Abstract
Lipolysis leads to the breakdown of stored triglycerides (TAG) to release free fatty acids (FFA) and glycerol which is utilized by energy expenditure pathways to generate energy. Therefore, a decrease in lipolysis augments fat accumulation in adipocytes which promotes weight gain. Conversely, if lipolysis is not complemented by energy expenditure, it leads to FFA induced insulin resistance and type-2 diabetes. Thus, lipolysis is under stringent physiological regulation, although the precise mechanism of the regulation is not known. Deletion of inositol hexakisphosphate kinase-1 (IP6K1), the major inositol pyrophosphate biosynthetic enzyme, protects mice from high fat diet (HFD) induced obesity and insulin resistance. IP6K1-KO mice are lean due to enhanced energy expenditure. Therefore, IP6K1 is a target in obesity and type-2 diabetes. However, the mechanism/s by which IP6K1 regulates adipose tissue lipid metabolism is yet to be understood. Here, we demonstrate that IP6K1-KO mice display enhanced basal lipolysis. IP6K1 modulates lipolysis via its interaction with the lipolytic regulator protein perilipin1 (PLIN1). Furthermore, phosphorylation of IP6K1 at a PKC/PKA motif modulates its interaction with PLIN1 and lipolysis. Thus, IP6K1 is a novel regulator of PLIN1 mediated lipolysis.
Collapse
|
38
|
Thota SG, Bhandari R. The emerging roles of inositol pyrophosphates in eukaryotic cell physiology. J Biosci 2016; 40:593-605. [PMID: 26333405 DOI: 10.1007/s12038-015-9549-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inositol pyrophosphates are water soluble derivatives of inositol that contain pyrophosphate or diphosphate moieties in addition to monophosphates. The best characterised inositol pyrophosphates, are IP7 (diphosphoinositol pentakisphosphate or PP-IP5), and IP8 (bisdiphosphoinositol tetrakisphosphate or (PP)2-IP4). These energy-rich small molecules are present in all eukaryotic cells, from yeast to mammals, and are involved in a wide range of cellular functions including apoptosis, vesicle trafficking, DNA repair, osmoregulation, phosphate homeostasis, insulin sensitivity, immune signalling, cell cycle regulation, and ribosome synthesis. Identified more than 20 years ago, there is still only a rudimentary understanding of the mechanisms by which inositol pyrophosphates participate in these myriad pathways governing cell physiology and homeostasis. The unique stereochemical and bioenergetic properties these molecules possess as a consequence of the presence of one or two pyrophosphate moieties in the vicinity of densely packed monophosphates are likely to form the molecular basis for their participation in multiple signalling and metabolic pathways. The aim of this review is to provide first time researchers in this area with an introduction to inositol pyrophosphates and a comprehensive overview on their cellular functions.
Collapse
Affiliation(s)
- Swarna Gowri Thota
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500 001, India
| | | |
Collapse
|
39
|
PPIP5K1 interacts with the exocyst complex through a C-terminal intrinsically disordered domain and regulates cell motility. Cell Signal 2016; 28:401-411. [PMID: 26854614 DOI: 10.1016/j.cellsig.2016.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 11/24/2022]
Abstract
Cellular signaling involves coordinated regulation of many events. Scaffolding proteins are crucial regulators of cellular signaling, because they are able to affect numerous events by coordinating specific interactions among multiple protein partners in the same pathway. Scaffolding proteins often contain intrinsically disordered regions (IDR) that facilitate the formation and function of distinct protein complexes. We show that PPIP5K1 contains an unusually long and evolutionarily conserved IDR. To investigate the biological role(s) of this domain, we identified interacting proteins using affinity purification coupled with mass spectrometry. Here, we report that PPIP5K1 is associated with a network of proteins that regulate vesicle-mediated transport. We further identified exocyst complex component 1 as a direct interactor with the IDR of PPIP5K1. Additionally, we report that knockdown of PPIP5K1 decreases motility of HeLa cells in a wound-healing assay. These results suggest that PPIP5K1 might play an important role in regulating function of exocyst complex in establishing cellular polarity and directional migration of cells.
Collapse
|
40
|
Wang H, Nair VS, Holland AA, Capolicchio S, Jessen HJ, Johnson MK, Shears SB. Asp1 from Schizosaccharomyces pombe binds a [2Fe-2S](2+) cluster which inhibits inositol pyrophosphate 1-phosphatase activity. Biochemistry 2015; 54:6462-74. [PMID: 26422458 DOI: 10.1021/acs.biochem.5b00532] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Iron-sulfur (Fe-S) clusters are widely distributed protein cofactors that are vital to cellular biochemistry and the maintenance of bioenergetic homeostasis, but to our knowledge, they have never been identified in any phosphatase. Here, we describe an iron-sulfur cluster in Asp1, a dual-function kinase/phosphatase that regulates cell morphogenesis in Schizosaccharomyces pombe. Full-length Asp1, and its phosphatase domain (Asp1(371-920)), were each heterologously expressed in Escherichia coli. The phosphatase activity is exquisitely specific: it hydrolyzes the 1-diphosphate from just two members of the inositol pyrophosphate (PP-InsP) signaling family, namely, 1-InsP7 and 1,5-InsP8. We demonstrate that Asp1 does not hydrolyze either InsP6, 2-InsP7, 3-InsP7, 4-InsP7, 5-InsP7, 6-InsP7, or 3,5-InsP8. We also recorded 1-phosphatase activity in a human homologue of Asp1, hPPIP5K1, which was heterologously expressed in Drosophila S3 cells with a biotinylated N-terminal tag, and then isolated from cell lysates with avidin beads. Purified, recombinant Asp1(371-920) contained iron and acid-labile sulfide, but the stoichiometry (0.8 atoms of each per protein molecule) indicates incomplete iron-sulfur cluster assembly. We reconstituted the Fe-S cluster in vitro under anaerobic conditions, which increased the stoichiometry to approximately 2 atoms of iron and acid-labile sulfide per Asp1 molecule. The presence of a [2Fe-2S](2+) cluster in Asp1(371-920) was demonstrated by UV-visible absorption, resonance Raman spectroscopy, and electron paramagnetic resonance spectroscopy. We determined that this [2Fe-2S](2+) cluster is unlikely to participate in redox chemistry, since it rapidly degraded upon reduction by dithionite. Biochemical and mutagenic studies demonstrated that the [2Fe-2S](2+) cluster substantially inhibits the phosphatase activity of Asp1, thereby increasing its net kinase activity.
Collapse
Affiliation(s)
- Huanchen Wang
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health , 101 T. W. Alexander Drive, Research Triangle Park, North Carolina 27709, United States
| | - Vasudha S Nair
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health , 101 T. W. Alexander Drive, Research Triangle Park, North Carolina 27709, United States
| | - Ashley A Holland
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia , Athens, Georgia 30602, United States
| | - Samanta Capolicchio
- Department of Chemistry, University of Zurich (UZH) , Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Henning J Jessen
- Department of Chemistry, University of Zurich (UZH) , Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Michael K Johnson
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia , Athens, Georgia 30602, United States
| | - Stephen B Shears
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health , 101 T. W. Alexander Drive, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
41
|
Riley AM, Wang H, Shears SB, L. Potter BV. Synthetic tools for studying the chemical biology of InsP8. Chem Commun (Camb) 2015; 51:12605-8. [PMID: 26153667 PMCID: PMC4643724 DOI: 10.1039/c5cc05017k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/03/2015] [Indexed: 12/28/2022]
Abstract
To synthesise stabilised mimics of InsP8, the most phosphorylated inositol phosphate signalling molecule in Nature, we replaced its two diphosphate (PP) groups with either phosphonoacetate (PA) or methylenebisphosphonate (PCP) groups. Utility of the PA and PCP analogues was verified by structural and biochemical analyses of their interactions with enzymes of InsP8 metabolism.
Collapse
Affiliation(s)
- Andrew M. Riley
- Wolfson Laboratory of Medicinal Chemistry , Department of Pharmacy and Pharmacology , University of Bath , Claverton Down , Bath , BA2 7AY , UK
| | - Huanchen Wang
- Inositol Signaling Group , Laboratory of Signal Transduction , National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle Park , North Carolina , USA
| | - Stephen B. Shears
- Inositol Signaling Group , Laboratory of Signal Transduction , National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle Park , North Carolina , USA
| | - Barry V. L. Potter
- Wolfson Laboratory of Medicinal Chemistry , Department of Pharmacy and Pharmacology , University of Bath , Claverton Down , Bath , BA2 7AY , UK
- Department of Pharmacology , University of Oxford , Mansfield Road , Oxford , OX1 3QT , UK . ; Fax: +44-1865-271853 ; Tel: +44-1865-271945
| |
Collapse
|
42
|
Williams MJ, Eriksson A, Shaik M, Voisin S, Yamskova O, Paulsson J, Thombare K, Fredriksson R, Schiöth HB. The Obesity-Linked Gene Nudt3 Drosophila Homolog Aps Is Associated With Insulin Signaling. Mol Endocrinol 2015; 29:1303-19. [PMID: 26168034 DOI: 10.1210/me.2015-1077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Several genome-wide association studies have linked the Nudix hydrolase family member nucleoside diphosphate-linked moiety X motif 3 (NUDT3) to obesity. However, the manner of NUDT3 involvement in obesity is unknown, and NUDT3 expression, regulation, and signaling in the central nervous system has not been studied. We performed an extensive expression analysis in mice, as well as knocked down the Drosophila NUDT3 homolog Aps in the nervous system, to determine its effect on metabolism. Detailed in situ hybridization studies in the mouse brain revealed abundant Nudt3 mRNA and protein expression throughout the brain, including reward- and feeding-related regions of the hypothalamus and amygdala, whereas Nudt3 mRNA expression was significantly up-regulated in the hypothalamus and brainstem of food-deprived mice. Knocking down Aps in the Drosophila central nervous system, or a subset of median neurosecretory cells, known as the insulin-producing cells (IPCs), induces hyperinsulinemia-like phenotypes, including a decrease in circulating trehalose levels as well as significantly decreasing all carbohydrate levels under starvation conditions. Moreover, lowering Aps IPC expression leads to a decreased ability to recruit these lipids during starvation. Also, loss of neuronal Aps expression caused a starvation susceptibility phenotype while inducing hyperphagia. Finally, the loss of IPC Aps lowered the expression of Akh, Ilp6, and Ilp3, genes known to be inhibited by insulin signaling. These results point toward a role for this gene in the regulation of insulin signaling, which could explain the robust association with obesity in humans.
Collapse
Affiliation(s)
- Michael J Williams
- Department of Neuroscience, Division of Functional Pharmacology, Uppsala University, 75 124 Uppsala, Sweden
| | - Anders Eriksson
- Department of Neuroscience, Division of Functional Pharmacology, Uppsala University, 75 124 Uppsala, Sweden
| | - Muksheed Shaik
- Department of Neuroscience, Division of Functional Pharmacology, Uppsala University, 75 124 Uppsala, Sweden
| | - Sarah Voisin
- Department of Neuroscience, Division of Functional Pharmacology, Uppsala University, 75 124 Uppsala, Sweden
| | - Olga Yamskova
- Department of Neuroscience, Division of Functional Pharmacology, Uppsala University, 75 124 Uppsala, Sweden
| | - Johan Paulsson
- Department of Neuroscience, Division of Functional Pharmacology, Uppsala University, 75 124 Uppsala, Sweden
| | - Ketan Thombare
- Department of Neuroscience, Division of Functional Pharmacology, Uppsala University, 75 124 Uppsala, Sweden
| | - Robert Fredriksson
- Department of Neuroscience, Division of Functional Pharmacology, Uppsala University, 75 124 Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Neuroscience, Division of Functional Pharmacology, Uppsala University, 75 124 Uppsala, Sweden
| |
Collapse
|
43
|
Yong ST, Nguyen HN, Choi JH, Bortner CD, Williams J, Pulloor NK, Krishnan MN, Shears SB. Identification of a functional nuclear translocation sequence in hPPIP5K2. BMC Cell Biol 2015; 16:17. [PMID: 26084399 PMCID: PMC4472268 DOI: 10.1186/s12860-015-0063-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 05/20/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cells contain several inositol pyrophosphates (PP-InsPs; also known as diphosphoinositol polyphosphates), which play pivotal roles in cellular and organismic homeostasis. It has been proposed that determining mechanisms of compartmentation of the synthesis of a particular PP-InsP is key to understanding how each of them may exert a specific function. Human PPIP5K2 (hPPIP5K2), one of the key enzymes that synthesizes PP-InsPs, contains a putative consensus sequence for a nuclear localization signal (NLS). However, such in silico analysis has limited predictive power, and may be complicated by phosphorylation events that can dynamically modulate NLS function. We investigated if this candidate NLS is functional and regulated, using the techniques of cell biology, mutagenesis and mass spectrometry. RESULTS Multiple sequence alignments revealed that the metazoan PPIP5K2 family contains a candidate NLS within a strikingly well-conserved 63 amino-acid domain. By analyzing the distribution of hPPIP5K2-GFP in HEK293T cells with the techniques of confocal microscopy and imaging flow cytometry, we found that a distinct pool of hPPIP5K2 is present in the nucleus. Imaging flow cytometry yielded particular insight into the characteristics of the nuclear hPPIP5K2 sub-pool, through a high-throughput, statistically-robust analysis of many hundreds of cells. Mutagenic disruption of the candidate NLS in hPPIP5K2 reduced its degree of nuclear localization. Proximal to the NLS is a Ser residue (S1006) that mass spectrometry data indicate is phosphorylated inside cells. The degree of nuclear localization of hPPIP5K2 was increased when S1006 was rendered non-phosphorylatable by its mutation to Ala. Conversely, a S1006D phosphomimetic mutant of hPPIP5K2 exhibited a lower degree of nuclear localization. CONCLUSIONS The current study describes for the first time the functional significance of an NLS in the conserved PPIP5K2 family. We have further demonstrated that there is phosphorylation of a Ser residue that is proximal to the NLS of hPPIP5K2. These conclusions draw attention to nuclear compartmentation of PPIP5K2 as being a physiologically relevant and covalently-regulated event. Our study also increases general insight into the consensus sequences of other NLSs, the functions of which might be similarly regulated.
Collapse
Affiliation(s)
- Sheila T Yong
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 101 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Hoai-Nghia Nguyen
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 101 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Jae H Choi
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 101 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA. .,Current address: Thermo Fisher Scientific, LSG/Biosciences Division, 3747 N. Meridian Drive, Rockford, IL, 61101, USA.
| | - Carl D Bortner
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 101 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Jason Williams
- Protein Microcharacterization Core Facility, Mass Spectrometry Group, National Institute of Environmental Health Sciences, National Institutes of Health, 101 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Niyas K Pulloor
- Program on Emerging Infectious Diseases, DUKE-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Republic of Singapore.
| | - Manoj N Krishnan
- Program on Emerging Infectious Diseases, DUKE-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Republic of Singapore.
| | - Stephen B Shears
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 101 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
44
|
Shears SB. Inositol pyrophosphates: why so many phosphates? Adv Biol Regul 2014; 57:203-16. [PMID: 25453220 DOI: 10.1016/j.jbior.2014.09.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 10/24/2022]
Abstract
The inositol pyrophosphates (PP-InsPs) are a specialized group of "energetic" signaling molecules found in yeasts, plants and animals. PP-InsPs boast the most crowded three dimensional phosphate arrays found in Nature; multiple phosphates and diphosphates are crammed around the six-carbon, inositol ring. Yet, phosphate esters are also a major energy currency in cells. So the synthesis of PP-InsPs, and the maintenance of their levels in the face of a high rate of ongoing turnover, all requires significant bioenergetic input. What are the particular properties of PP-InsPs that repay this investment of cellular energy? Potential answers to that question are discussed here, against the backdrop of a recent hypothesis that signaling by PP-InsPs is evolutionarily ancient. The latter idea is extended herein, with the proposal that the primordial origins of PP-InsPs is reflected in the apparent lack of isomeric specificity of certain of their actions. Nevertheless, there are other aspects of signaling by these polyphosphates that are more selective for a particular PP-InsP isomer. Consideration of the nature of both specific and non-specific effects of PP-InsPs can help rationalize why such molecules possess so many phosphates.
Collapse
Affiliation(s)
- Stephen B Shears
- Inositol Signaling Group, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, DHHS, PO Box 12233, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
45
|
Chen J, Wang L, Shen Y, Yu J, Ye T, Zhuang C, Zhang W. Key genes associated with osteoporosis revealed by genome wide gene expression analysis. Mol Biol Rep 2014; 41:5971-7. [PMID: 24993113 DOI: 10.1007/s11033-014-3474-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/14/2014] [Indexed: 11/29/2022]
Abstract
Gene expression profiles of circulating monocytes were analyzed to identify key genes associated with osteoporosis. Raw microarray data were downloaded from gene expression omnibus under accession number GSE7158, including 8 microarray dataset for patients with high peak bone mass (PBM) and 8 for low PBM. Package linear models for microarray data of R was adopted to screen out differentially expressed genes (DEGs). Gene ontology enrichment analysis and Kyoto encyclopedia of genes and genomes pathway analysis were performed with plug-ins of cytoscape. Protein-protein interaction network was constructed using FunCoup. A total of 283 DEGs were identified in low-PBM group, including 135 up- and 148 down-regulated genes. A considerable part of DEGs were localized in plasma membrane. Several ion transport-related pathways were revealed, such as mineral absorption and carbohydrate digestion and absorption. A range of DEGs were identified and some of them were related to calcium transport as well as osteoporosis. These findings are helpful in disclosing the pathogenetic mechanisms of osteoporosis.
Collapse
Affiliation(s)
- Jie Chen
- Department of Orthopedics, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
46
|
IP6K structure and the molecular determinants of catalytic specificity in an inositol phosphate kinase family. Nat Commun 2014; 5:4178. [PMID: 24956979 DOI: 10.1038/ncomms5178] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/21/2014] [Indexed: 01/27/2023] Open
Abstract
Inositol trisphosphate kinases (IP3Ks) and inositol hexakisphosphate kinases (IP6Ks) each regulate specialized signalling activities by phosphorylating either InsP3 or InsP6 respectively. The molecular basis for these different kinase activities can be illuminated by a structural description of IP6K. Here we describe the crystal structure of an Entamoeba histolytica hybrid IP6K/IP3K, an enzymatic parallel to a 'living fossil'. Through molecular modelling and mutagenesis, we extrapolated our findings to human IP6K2, which retains vestigial IP3K activity. Two structural elements, an α-helical pair and a rare, two-turn 310 helix, together forge a substrate-binding pocket with an open clamshell geometry. InsP6 forms substantial contacts with both structural elements. Relative to InsP6, enzyme-bound InsP3 rotates 55° closer to the α-helices, which provide most of the protein's interactions with InsP3. These data reveal the molecular determinants of IP6K activity, and suggest an unusual evolutionary trajectory for a primordial kinase that could have favored efficient bifunctionality, before propagation of separate IP3Ks and IP6Ks.
Collapse
|
47
|
Wu M, Chong LS, Capolicchio S, Jessen HJ, Resnick AC, Fiedler D. Elucidating diphosphoinositol polyphosphate function with nonhydrolyzable analogues. Angew Chem Int Ed Engl 2014; 53:7192-7. [PMID: 24888434 DOI: 10.1002/anie.201402905] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/25/2014] [Indexed: 11/11/2022]
Abstract
The diphosphoinositol polyphosphates (PP-IPs) represent a novel class of high-energy phosphate-containing messengers which control a wide variety of cellular processes. It is thought that PP-IPs exert their pleiotropic effects as allosteric regulators and through pyrophosphorylation of protein substrates. However, most details of PP-IP signaling have remained elusive because of a paucity of suitable tools. We describe the synthesis of PP-IP bisphosphonate analogues (PCP-IPs), which are resistant to chemical and biochemical degradation. While the two regioisomers 1PCP-IP5 and 5PCP-IP5 inhibited Akt phosphorylation with similar potencies, 1PCP-IP5 was much more effective at inhibiting its cognate phosphatase hDIPP1. Furthermore, the PCP analogues inhibit protein pyrophosphorylation because of their inability to transfer the β-phosphoryl group, and thus enable the distinction between PP-IP signaling mechanisms. As such, the PCP analogues will find widespread applications for the structural and biochemical characterization of PP-IP signaling properties.
Collapse
Affiliation(s)
- Mingxuan Wu
- Department of Chemistry, Princeton University, Washington Rd, Princeton, NJ 08544 (USA)
| | | | | | | | | | | |
Collapse
|
48
|
Wu M, Chong LS, Capolicchio S, Jessen HJ, Resnick AC, Fiedler D. Elucidating Diphosphoinositol Polyphosphate Function with Nonhydrolyzable Analogues. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402905] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mingxuan Wu
- Department of Chemistry, Princeton University, Washington Rd, Princeton, NJ 08544 (USA)
| | - Lucy S. Chong
- Colket Translational Research Bldg, The Children's Hospital of Philadelphia, 3501 Civic Center Blvd, Philadelphia, PA 19104 (USA)
| | - Samanta Capolicchio
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland)
| | - Henning J. Jessen
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland)
| | - Adam C. Resnick
- Colket Translational Research Bldg, The Children's Hospital of Philadelphia, 3501 Civic Center Blvd, Philadelphia, PA 19104 (USA)
| | - Dorothea Fiedler
- Department of Chemistry, Princeton University, Washington Rd, Princeton, NJ 08544 (USA)
| |
Collapse
|
49
|
Wang H, Godage HY, Riley AM, Weaver JD, Shears SB, Potter BVL. Synthetic inositol phosphate analogs reveal that PPIP5K2 has a surface-mounted substrate capture site that is a target for drug discovery. ACTA ACUST UNITED AC 2014; 21:689-99. [PMID: 24768307 PMCID: PMC4085797 DOI: 10.1016/j.chembiol.2014.03.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/28/2014] [Accepted: 03/17/2014] [Indexed: 11/17/2022]
Abstract
Diphosphoinositol pentakisphosphate kinase 2 (PPIP5K2) is one of the mammalian PPIP5K isoforms responsible for synthesis of diphosphoinositol polyphosphates (inositol pyrophosphates; PP-InsPs), regulatory molecules that function at the interface of cell signaling and organismic homeostasis. The development of drugs that inhibit PPIP5K2 could have both experimental and therapeutic applications. Here, we describe a synthetic strategy for producing naturally occurring 5-PP-InsP4, as well as several inositol polyphosphate analogs, and we study their interactions with PPIP5K2 using biochemical and structural approaches. These experiments uncover an additional ligand-binding site on the surface of PPIP5K2, adjacent to the catalytic pocket. This site facilitates substrate capture from the bulk phase, prior to transfer into the catalytic pocket. In addition to demonstrating a “catch-and-pass” reaction mechanism in a small molecule kinase, we demonstrate that binding of our analogs to the substrate capture site inhibits PPIP5K2. This work suggests that the substrate-binding site offers new opportunities for targeted drug design. Chemical synthesis of 5-PP-InsP4 and a diphosphorylated analog Chemical synthesis of inositol polyphosphate analogs with hydrophobic groups An inositol pyrophosphate kinase has a surface-mounted, substrate capture site Structural and biochemical characterization of a catch-and-pass catalytic cycle
Collapse
Affiliation(s)
- Huanchen Wang
- Inositol Signaling Group, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Himali Y Godage
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Bath, Somerset BA2 7AY, UK
| | - Andrew M Riley
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Bath, Somerset BA2 7AY, UK
| | - Jeremy D Weaver
- Inositol Signaling Group, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Stephen B Shears
- Inositol Signaling Group, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | - Barry V L Potter
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Bath, Somerset BA2 7AY, UK.
| |
Collapse
|
50
|
Thomas MP, Potter BVL. The enzymes of human diphosphoinositol polyphosphate metabolism. FEBS J 2013; 281:14-33. [PMID: 24152294 PMCID: PMC4063336 DOI: 10.1111/febs.12575] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/10/2013] [Accepted: 10/15/2013] [Indexed: 12/22/2022]
Abstract
Diphospho-myo-inositol polyphosphates have many roles to play, including roles in apoptosis, vesicle trafficking, the response of cells to stress, the regulation of telomere length and DNA damage repair, and inhibition of the cyclin-dependent kinase Pho85 system that monitors phosphate levels. This review focuses on the three classes of enzymes involved in the metabolism of these compounds: inositol hexakisphosphate kinases, inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinases and diphosphoinositol polyphosphate phosphohydrolases. However, these enzymes have roles beyond being mere catalysts, and their interactions with other proteins have cellular consequences. Through their interactions, the three inositol hexakisphosphate kinases have roles in exocytosis, diabetes, the response to infection, and apoptosis. The two inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinases influence the cellular response to phosphatidylinositol (3,4,5)-trisphosphate and the migration of pleckstrin homology domain-containing proteins to the plasma membrane. The five diphosphoinositol polyphosphate phosphohydrolases interact with ribosomal proteins and transcription factors, as well as proteins involved in membrane trafficking, exocytosis, ubiquitination and the proteasomal degradation of target proteins. Possible directions for future research aiming to determine the roles of these enzymes are highlighted.
Collapse
Affiliation(s)
- Mark P Thomas
- Department of Pharmacy & Pharmacology, University of Bath, UK
| | | |
Collapse
|